mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
fc25dc8c7f
Former-commit-id: 1f7bec8da117091b3f2e8f58ce45b9caf1b6c89d
209 lines
8.0 KiB
Rust
209 lines
8.0 KiB
Rust
use crate::{
|
|
mesh::Meshable,
|
|
render::{Consts, Globals, Mesh, Model, Renderer, TerrainLocals, TerrainPipeline},
|
|
};
|
|
use client::Client;
|
|
use common::{terrain::TerrainMap, vol::SampleVol, volumes::vol_map_2d::VolMap2dErr};
|
|
use std::{collections::HashMap, i32, sync::mpsc, time::Duration};
|
|
use vek::*;
|
|
|
|
struct TerrainChunk {
|
|
// GPU data
|
|
model: Model<TerrainPipeline>,
|
|
locals: Consts<TerrainLocals>,
|
|
}
|
|
|
|
struct ChunkMeshState {
|
|
pos: Vec2<i32>,
|
|
started_tick: u64,
|
|
active_worker: bool,
|
|
}
|
|
|
|
/// A type produced by mesh worker threads corresponding to the position and mesh of a chunk.
|
|
struct MeshWorkerResponse {
|
|
pos: Vec2<i32>,
|
|
mesh: Mesh<TerrainPipeline>,
|
|
started_tick: u64,
|
|
}
|
|
|
|
/// Function executed by worker threads dedicated to chunk meshing.
|
|
fn mesh_worker(
|
|
pos: Vec2<i32>,
|
|
started_tick: u64,
|
|
volume: <TerrainMap as SampleVol<Aabr<i32>>>::Sample,
|
|
range: Aabb<i32>,
|
|
) -> MeshWorkerResponse {
|
|
MeshWorkerResponse {
|
|
pos,
|
|
mesh: volume.generate_mesh(range),
|
|
started_tick,
|
|
}
|
|
}
|
|
|
|
pub struct Terrain {
|
|
chunks: HashMap<Vec2<i32>, TerrainChunk>,
|
|
|
|
// The mpsc sender and receiver used for talking to meshing worker threads.
|
|
// We keep the sender component for no reason other than to clone it and send it to new workers.
|
|
mesh_send_tmp: mpsc::Sender<MeshWorkerResponse>,
|
|
mesh_recv: mpsc::Receiver<MeshWorkerResponse>,
|
|
mesh_todo: HashMap<Vec2<i32>, ChunkMeshState>,
|
|
}
|
|
|
|
impl Terrain {
|
|
pub fn new() -> Self {
|
|
// Create a new mpsc (Multiple Produced, Single Consumer) pair for communicating with
|
|
// worker threads that are meshing chunks.
|
|
let (send, recv) = mpsc::channel();
|
|
|
|
Self {
|
|
chunks: HashMap::new(),
|
|
|
|
mesh_send_tmp: send,
|
|
mesh_recv: recv,
|
|
mesh_todo: HashMap::new(),
|
|
}
|
|
}
|
|
|
|
/// Maintain terrain data. To be called once per tick.
|
|
pub fn maintain(&mut self, renderer: &mut Renderer, client: &Client) {
|
|
let current_tick = client.get_tick();
|
|
|
|
// Add any recently created or changed chunks to the list of chunks to be meshed.
|
|
for pos in client
|
|
.state()
|
|
.changes()
|
|
.new_chunks
|
|
.iter()
|
|
.chain(client.state().changes().changed_chunks.iter())
|
|
{
|
|
// TODO: ANOTHER PROBLEM HERE!
|
|
// What happens if the block on the edge of a chunk gets modified? We need to spawn
|
|
// a mesh worker to remesh its neighbour(s) too since their ambient occlusion and face
|
|
// elision information changes too!
|
|
for i in -1..2 {
|
|
for j in -1..2 {
|
|
let pos = pos + Vec2::new(i, j);
|
|
|
|
if !self.chunks.contains_key(&pos) {
|
|
let mut neighbours = true;
|
|
for i in -1..2 {
|
|
for j in -1..2 {
|
|
neighbours &= client
|
|
.state()
|
|
.terrain()
|
|
.get_key(pos + Vec2::new(i, j))
|
|
.is_some();
|
|
}
|
|
}
|
|
|
|
if neighbours {
|
|
self.mesh_todo.entry(pos).or_insert(ChunkMeshState {
|
|
pos,
|
|
started_tick: current_tick,
|
|
active_worker: false,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Remove any models for chunks that have been recently removed.
|
|
for pos in &client.state().changes().removed_chunks {
|
|
self.chunks.remove(pos);
|
|
self.mesh_todo.remove(pos);
|
|
}
|
|
|
|
for todo in self
|
|
.mesh_todo
|
|
.values_mut()
|
|
// Only spawn workers for meshing jobs without an active worker already.
|
|
.filter(|todo| !todo.active_worker)
|
|
{
|
|
// Find the area of the terrain we want. Because meshing needs to compute things like
|
|
// ambient occlusion and edge elision, we also need the borders of the chunk's
|
|
// neighbours too (hence the `- 1` and `+ 1`).
|
|
let aabr = Aabr {
|
|
min: todo
|
|
.pos
|
|
.map2(TerrainMap::chunk_size(), |e, sz| e * sz as i32 - 1),
|
|
max: todo
|
|
.pos
|
|
.map2(TerrainMap::chunk_size(), |e, sz| (e + 1) * sz as i32 + 1),
|
|
};
|
|
|
|
// Copy out the chunk data we need to perform the meshing. We do this by taking a
|
|
// sample of the terrain that includes both the chunk we want and its neighbours.
|
|
let volume = match client.state().terrain().sample(aabr) {
|
|
Ok(sample) => sample,
|
|
// Either this chunk or its neighbours doesn't yet exist, so we keep it in the
|
|
// queue to be processed at a later date when we have its neighbours.
|
|
Err(VolMap2dErr::NoSuchChunk) => return,
|
|
_ => panic!("Unhandled edge case"),
|
|
};
|
|
|
|
// The region to actually mesh
|
|
let z_min = volume
|
|
.iter()
|
|
.fold(i32::MAX, |min, (_, chunk)| chunk.get_z_min().min(min));
|
|
let z_max = volume
|
|
.iter()
|
|
.fold(i32::MIN, |max, (_, chunk)| chunk.get_z_max().max(max));
|
|
|
|
let aabb = Aabb {
|
|
min: Vec3::from(aabr.min) + Vec3::unit_z() * z_min,
|
|
max: Vec3::from(aabr.max) + Vec3::unit_z() * z_max,
|
|
};
|
|
|
|
// Clone various things so that they can be moved into the thread.
|
|
let send = self.mesh_send_tmp.clone();
|
|
let pos = todo.pos;
|
|
|
|
// Queue the worker thread.
|
|
client.thread_pool().execute(move || {
|
|
let _ = send.send(mesh_worker(pos, current_tick, volume, aabb));
|
|
});
|
|
todo.active_worker = true;
|
|
}
|
|
|
|
// Receive a chunk mesh from a worker thread and upload it to the GPU, then store it.
|
|
// Only pull out one chunk per frame to avoid an unacceptable amount of blocking lag due
|
|
// to the GPU upload. That still gives us a 60 chunks / second budget to play with.
|
|
if let Ok(response) = self.mesh_recv.recv_timeout(Duration::new(0, 0)) {
|
|
match self.mesh_todo.get(&response.pos) {
|
|
// It's the mesh we want, insert the newly finished model into the terrain model
|
|
// data structure (convert the mesh to a model first of course).
|
|
Some(todo) if response.started_tick == todo.started_tick => {
|
|
self.chunks.insert(
|
|
response.pos,
|
|
TerrainChunk {
|
|
model: renderer
|
|
.create_model(&response.mesh)
|
|
.expect("Failed to upload chunk mesh to the GPU!"),
|
|
locals: renderer
|
|
.create_consts(&[TerrainLocals {
|
|
model_offs: Vec3::from(
|
|
response.pos.map2(TerrainMap::chunk_size(), |e, sz| {
|
|
e as f32 * sz as f32
|
|
}),
|
|
)
|
|
.into_array(),
|
|
}])
|
|
.expect("Failed to upload chunk locals to the GPU!"),
|
|
},
|
|
);
|
|
}
|
|
// Chunk must have been removed, or it was spawned on an old tick. Drop the mesh
|
|
// since it's either out of date or no longer needed.
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn render(&self, renderer: &mut Renderer, globals: &Consts<Globals>) {
|
|
for (_, chunk) in &self.chunks {
|
|
renderer.render_terrain_chunk(&chunk.model, globals, &chunk.locals);
|
|
}
|
|
}
|
|
}
|