veloren/assets/voxygen/shaders/fluid-frag/shiny.glsl
2023-05-09 19:43:09 +02:00

440 lines
21 KiB
GLSL

#version 420 core
#include <constants.glsl>
#define LIGHTING_TYPE (LIGHTING_TYPE_TRANSMISSION | LIGHTING_TYPE_REFLECTION)
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_SPECULAR
#if (FLUID_MODE == FLUID_MODE_LOW)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
#elif (FLUID_MODE >= FLUID_MODE_MEDIUM)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE
#endif
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
#define HAS_SHADOW_MAPS
// https://www.shadertoy.com/view/XdsyWf
#include <globals.glsl>
#include <random.glsl>
layout(location = 0) in vec3 f_pos;
layout(location = 1) flat in uint f_pos_norm;
layout(location = 2) in vec2 f_vel;
// in vec3 f_col;
// in float f_light;
// in vec3 light_pos[2];
//struct ShadowLocals {
// mat4 shadowMatrices;
// mat4 texture_mat;
//};
//
//layout (std140)
//uniform u_light_shadows {
// ShadowLocals shadowMats[/*MAX_LAYER_FACES*/192];
//};
layout(std140, set = 2, binding = 0)
uniform u_locals {
vec4 model_mat0;
vec4 model_mat1;
vec4 model_mat2;
vec4 model_mat3;
ivec4 atlas_offs;
float load_time;
};
layout(location = 0) out vec4 tgt_color;
layout(location = 1) out uvec4 tgt_mat;
#include <cloud.glsl>
#include <light.glsl>
#include <lod.glsl>
void wave_dx(vec4 posx, vec4 posy, vec2 dir, float speed, float frequency, float timeshift, out vec4 wave, out vec4 dx) {
vec4 x = vec4(
dot(dir, vec2(posx.x, posy.x)),
dot(dir, vec2(posx.y, posy.y)),
dot(dir, vec2(posx.z, posy.z)),
dot(dir, vec2(posx.w, posy.w))
) * frequency + timeshift * speed;
wave = sin(x) + 0.5;
wave *= wave;
dx = -wave * cos(x);
}
// Based loosely on https://www.shadertoy.com/view/MdXyzX.
// Modified to allow calculating the wave function 4 times at once using different positions (used for intepolation
// for moving water). The general idea is to sample the wave function at different positions, where those positions
// depend on increments of the velocity, and then interpolate between those velocities to get a smooth water velocity.
vec4 wave_height(vec4 posx, vec4 posy) {
float iter = 0.0;
float phase = 4.0;
float weight = 1.5;
vec4 w = vec4(0.0);
float ws = 0.0;
const float speed_per_iter = 0.1;
#if (FLUID_MODE == FLUID_MODE_HIGH)
float speed = 1.0;
posx *= 0.2;
posy *= 0.2;
const float drag_factor = 0.035;
const int iters = 21;
const float scale = 15.0;
#else
float speed = 2.0;
posx *= 0.3;
posy *= 0.3;
const float drag_factor = 0.04;
const int iters = 11;
const float scale = 3.0;
#endif
const float iter_shift = (3.14159 * 2.0) / 7.3;
for(int i = 0; i < iters; i ++) {
vec2 p = vec2(sin(iter), cos(iter));
vec4 wave, dx;
wave_dx(posx, posy, p, speed, phase, tick.x, wave, dx);
posx += p.x * dx * weight * drag_factor;
posy += p.y * dx * weight * drag_factor;
w += wave * weight;
iter += iter_shift * 1.5;
ws += weight;
weight = mix(weight, 0.0, 0.2);
phase *= 1.2;
speed += speed_per_iter;
}
return w / ws * scale;
}
float wave_height_vel(vec2 pos) {
vec4 heights = wave_height(
pos.x - tick.x * floor(f_vel.x) - vec2(0.0, tick.x).xyxy,
pos.y - tick.x * floor(f_vel.y) - vec2(0.0, tick.x).xxyy
);
return mix(
mix(heights.x, heights.y, fract(f_vel.x + 1.0)),
mix(heights.z, heights.w, fract(f_vel.x + 1.0)),
fract(f_vel.y + 1.0)
);
}
void main() {
#ifdef EXPERIMENTAL_BAREMINIMUM
tgt_color = vec4(simple_lighting(f_pos.xyz, MU_SCATTER, 1.0), 0.5);
return;
#endif
// First 3 normals are negative, next 3 are positive
vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1));
// TODO: last 3 bits in v_pos_norm should be a number between 0 and 5, rather than 0-2 and a direction.
uint norm_axis = (f_pos_norm >> 30) & 0x3u;
// Increase array access by 3 to access positive values
uint norm_dir = ((f_pos_norm >> 29) & 0x1u) * 3u;
// Use an array to avoid conditional branching
// Temporarily assume all water faces up (this is incorrect but looks better)
vec3 surf_norm = normals[norm_axis + norm_dir];
vec3 f_norm = vec3(0, 0, 1);//surf_norm;
vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
// vec4 light_pos[2];
//#if (SHADOW_MODE == SHADOW_MODE_MAP)
// // for (uint i = 0u; i < light_shadow_count.z; ++i) {
// // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/;
// // }
// vec4 sun_pos = /*vec3(*/shadowMats[0].texture_mat * vec4(f_pos, 1.0)/*)*/;
//#elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE)
// vec4 sun_pos = vec4(0.0);
//#endif
// vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0);
// vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/);
vec3 view_dir = -cam_to_frag;
float frag_dist = length(f_pos - cam_pos.xyz);
vec3 b_norm;
if (f_norm.z > 0.0) {
b_norm = vec3(1, 0, 0);
} else if (f_norm.x > 0.0) {
b_norm = vec3(0, 1, 0);
} else {
b_norm = vec3(0, 0, 1);
}
vec3 c_norm = cross(f_norm, b_norm);
vec3 wave_pos = mod(f_pos + focus_off.xyz, vec3(3000.0)) - (f_pos.z + focus_off.z) * 0.2;
float wave_sample_dist = 0.1;
float wave00 = wave_height_vel(wave_pos.xy);
float wave10 = wave_height_vel(wave_pos.xy + vec2(wave_sample_dist, 0));
float wave01 = wave_height_vel(wave_pos.xy + vec2(0, wave_sample_dist));
// Possibility of div by zero when slope = 0,
// however this only results in no water surface appearing
// and is not likely to occur (could not find any occurrences)
float slope = abs((wave00 - wave10) * (wave00 - wave01)) + 0.001;
vec3 nmap = vec3(
-(wave10 - wave00) / wave_sample_dist,
-(wave01 - wave00) / wave_sample_dist,
wave_sample_dist / slope
);
#if (CLOUD_MODE != CLOUD_MODE_NONE)
if (rain_density > 0 && surf_norm.z > 0.5) {
vec3 drop_density = vec3(2, 2, 2);
vec3 drop_pos = wave_pos + vec3(0, 0, -time_of_day.x * 0.025);
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z += noise_2d(cell2d * 13.1) * 10;
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
if (fract(hash(fract(vec4(cell, 0) * 0.01))) < rain_density * rain_occlusion_at(f_pos.xyz) * 50.0) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
float dist = length((drop_pos - near_cell) / vec3(1, 1, 2));
float drop_rad = 0.125;
nmap.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 50, 0)
* 2500
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
}
}
#endif
nmap = mix(f_norm, normalize(nmap), min(1.0 / pow(frag_dist, 0.75), 1));
//float suppress_waves = max(dot(), 0);
vec3 norm = normalize(f_norm * nmap.z + b_norm * nmap.x + c_norm * nmap.y);
//norm = f_norm;
vec3 water_color = (1.0 - MU_WATER) * MU_SCATTER;
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE >= FLUID_MODE_MEDIUM)
float f_alt = alt_at(f_pos.xy);
#elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_LOW)
float f_alt = f_pos.z;
#endif
float fluid_alt = mix(f_pos.z, f_alt, f_norm.z == 0);
const float alpha = 0.255/*/ / 4.0*//* / 4.0 / sqrt(2.0)*/;
const float n2 = 1.3325;
const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2);
const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2);
const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2);
const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2);
float R_s = (f_pos.z < fluid_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x);
// Water is transparent so both normals are valid.
vec3 cam_norm = faceforward(norm, norm, cam_to_frag);
vec3 reflect_ray_dir = reflect(cam_to_frag/*-view_dir*/, norm);
vec3 refract_ray_dir = refract(cam_to_frag/*-view_dir*/, norm, 1.0 / n2);
vec3 sun_view_dir = view_dir;///*sign(cam_pos.z - fluid_alt) * view_dir;*/cam_pos.z <= fluid_alt ? -view_dir : view_dir;
// vec3 sun_view_dir = cam_pos.z <= fluid_alt ? -view_dir : view_dir;
/* vec4 reflect_ray_dir4 = view_mat * vec4(reflect_ray_dir, 1.0);
reflect_ray_dir = normalize(vec3(reflect_ray_dir4) / reflect_ray_dir4.w); */
// vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
// Squared to account for prior saturation.
float f_light = 1.0;// pow(f_light, 1.5);
vec3 ray_dir;
if (medium.x == MEDIUM_WATER) {
ray_dir = refract(cam_to_frag, -norm, 1.33);
} else {
// Ensure the ray doesn't accidentally point underwater
// TODO: Make this more efficient?
ray_dir = normalize(max(reflect_ray_dir, vec3(-1.0, -1.0, 0.0)));
}
// /*const */vec3 water_color = srgb_to_linear(vec3(0.2, 0.5, 1.0));
// /*const */vec3 water_color = srgb_to_linear(vec3(0.8, 0.9, 1.0));
// NOTE: Linear RGB, attenuation coefficients for water at roughly R, G, B wavelengths.
// See https://en.wikipedia.org/wiki/Electromagnetic_absorption_by_water
// /*const */vec3 water_attenuation = MU_WATER;// vec3(0.8, 0.05, 0.01);
// /*const */vec3 water_color = vec3(0.2, 0.95, 0.99);
/* vec3 sun_dir = get_sun_dir(time_of_day.x);
vec3 moon_dir = get_moon_dir(time_of_day.x); */
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP)
vec4 f_shadow = textureBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy));
float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
#elif (SHADOW_MODE == SHADOW_MODE_NONE)
float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
#endif
float moon_shade_frac = 1.0;// horizon_at2(f_shadow, f_alt, f_pos, moon_dir);
// float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir);
// float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir);
// float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac;
vec3 reflect_color;
#if (REFLECTION_MODE >= REFLECTION_MODE_MEDIUM)
// This is now done in the post-process cloud shader
/* reflect_color = get_sky_color(ray_dir, time_of_day.x, f_pos, vec3(-100000), 0.125, true, 1.0, true, sun_shade_frac); */
/* reflect_color = get_cloud_color(reflect_color, ray_dir, f_pos.xyz, time_of_day.x, 100000.0, 0.1); */
reflect_color = vec3(0);
#else
reflect_color = get_sky_color(ray_dir, time_of_day.x, f_pos, vec3(-100000), 0.125, true, 1.0, true, sun_shade_frac);
#endif
// Sort of non-physical, but we try to balance the reflection intensity with the direct light from the sun,
// resulting in decent reflection of the ambient environment even after the sun has gone down.
reflect_color *= f_light * (sun_shade_frac * 0.75 + 0.25);
// Prevent the sky affecting light when underground
float not_underground = clamp((f_pos.z - f_alt) / 32.0 + 1.0, 0.0, 1.0);
reflect_color *= not_underground;
// DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos);
DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, /*sun_pos*/f_pos);
DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac/*, light_pos*/);
// Hack to determine water depth: color goes down with distance through water, so
// we assume water color absorption from this point a to some other point b is the distance
// along the the ray from a to b where it intersects with the surface plane; if it doesn't,
// then the whole segment from a to b is considered underwater.
// TODO: Consider doing for point lights.
// vec3 cam_surface_dir = faceforward(vec3(0.0, 0.0, 1.0), cam_to_frag, vec3(0.0, 0.0, 1.0));
// vec3 water_intersection_surface_camera = vec3(cam_pos);
// bool _water_intersects_surface_camera = IntersectRayPlane(f_pos, view_dir, vec3(0.0, 0.0, /*f_alt*/f_pos.z + f_light), cam_surface_dir, water_intersection_surface_camera);
// // Should work because we set it up so that if IntersectRayPlane returns false for camera, its default intersection point is cam_pos.
// float water_depth_to_camera = length(water_intersection_surface_camera - f_pos);
// vec3 water_intersection_surface_light = f_pos;
// bool _light_intersects_surface_water = IntersectRayPlane(f_pos, sun_dir.z <= 0.0 ? sun_dir : moon_dir, vec3(0.0, 0.0, /*f_alt*/f_pos.z + f_light), vec3(0.0, 0.0, 1.0), water_intersection_surface_light);
// // Should work because we set it up so that if IntersectRayPlane returns false for light, its default intersection point is f_pos--
// // i.e. if a light ray can't hit the water, it shouldn't contribute to coloring at all.
// float water_depth_to_light = length(water_intersection_surface_light - f_pos);
// // For ambient color, we just take the distance to the surface out of laziness.
// float water_depth_to_vertical = max(/*f_alt - f_pos.z*/f_light, 0.0);
// // Color goes down with distance...
// // See https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law.
// vec3 water_color_direct = exp(-MU_WATER);//exp(-MU_WATER);//vec3(1.0);
// vec3 water_color_direct = exp(-water_attenuation * (water_depth_to_light + water_depth_to_camera));
// vec3 water_color_ambient = exp(-water_attenuation * (water_depth_to_vertical + water_depth_to_camera));
vec3 mu = MU_WATER;
// NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water.
vec3 cam_attenuation = compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, cam_pos.xyz);
//reflect_color *= cam_attenuation;
// float water_depth_to_vertical = max(/*f_alt - f_pos.z*/f_light, 0.0);
// For ambient color, we just take the distance to the surface out of laziness.
// See https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law.
// float water_depth_to_vertical = max(fluid_alt - cam_pos.z/*f_light*/, 0.0);
// vec3 ambient_attenuation = exp(-mu * water_depth_to_vertical);
// For ambient reflection, we just take the water
vec3 k_a = vec3(1.0);
// Oxygen is light blue.
vec3 k_d = vec3(1.0);
vec3 k_s = vec3(0.0);//2.0 * reflect_color;
vec3 emitted_light, reflected_light;
// vec3 light, diffuse_light, ambient_light;
// vec3 light_frac = /*vec3(1.0);*/light_reflection_factor(f_norm/*vec3(0, 0, 1.0)*/, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha);
// 0 = 100% reflection, 1 = translucent water
float passthrough = max(dot(cam_norm, -cam_to_frag), 0) * 0.75;
float max_light = 0.0;
max_light += get_sun_diffuse2(sun_info, moon_info, cam_norm, /*time_of_day.x*/sun_view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, vec3(k_d), /*vec3(f_light * point_shadow)*//*reflect_color*/k_s, alpha, f_norm, 1.0, emitted_light, reflected_light);
emitted_light *= not_underground;
reflected_light *= not_underground;
// Global illumination when underground (silly)
emitted_light += (1.0 - not_underground) * 0.05;
float point_shadow = shadow_at(f_pos, f_norm);
reflected_light *= point_shadow;
// Apply cloud layer to sky
// reflected_light *= /*water_color_direct * */reflect_color * f_light * point_shadow * shade_frac;
// emitted_light *= /*water_color_direct*//*ambient_attenuation * */f_light * point_shadow * max(shade_frac, MIN_SHADOW);
// max_light *= f_light * point_shadow * shade_frac;
// reflected_light *= /*water_color_direct * */reflect_color * f_light * point_shadow;
// emitted_light *= /*water_color_direct*//*ambient_attenuation * */f_light * point_shadow;
// max_light *= f_light * point_shadow;
// vec3 diffuse_light_point = vec3(0.0);
// max_light += lights_at(f_pos, cam_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, vec3(1.0), /*vec3(0.0)*/k_s, alpha, emitted_light, diffuse_light_point);
// vec3 dump_light = vec3(0.0);
// vec3 specular_light_point = vec3(0.0);
// lights_at(f_pos, cam_norm, view_dir, mu, cam_attenuation, fluid_alt, vec3(0.0), vec3(0.0), /*vec3(1.0)*/k_s, alpha, dump_light, specular_light_point);
// diffuse_light_point -= specular_light_point;
// max_light += lights_at(f_pos, cam_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, /*k_d*/vec3(0.0), /*vec3(0.0)*/k_s, alpha, emitted_light, /*diffuse_light*/reflected_light);
max_light += lights_at(f_pos, cam_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, /*k_d*//*vec3(0.0)*/k_d, /*vec3(0.0)*/k_s, alpha, f_norm, 1.0, emitted_light, /*diffuse_light*/reflected_light);
//float reflected_light_point = length(reflected_light);///*length*/(diffuse_light_point.r) + f_light * point_shadow;
// TODO: See if we can be smarter about this using point light distances.
// reflected_light += k_d * (diffuse_light_point/* + f_light * point_shadow * shade_frac*/) + /*water_color_ambient*/specular_light_point;
/* vec3 point_light = light_at(f_pos, norm);
emitted_light += point_light;
reflected_light += point_light; */
// get_sun_diffuse(norm, time_of_day.x, light, diffuse_light, ambient_light, 0.0);
// diffuse_light *= f_light * point_shadow;
// ambient_light *= f_light * point_shadow;
// vec3 point_light = light_at(f_pos, norm);
// light += point_light;
// diffuse_light += point_light;
// reflected_light += point_light;
// vec3 surf_color = srgb_to_linear(vec3(0.2, 0.5, 1.0)) * light * diffuse_light * ambient_light;
const float REFLECTANCE = 1.0;
vec3 surf_color = illuminate(max_light, view_dir, water_color * emitted_light/* * log(1.0 - MU_WATER)*/, /*cam_attenuation * *//*water_color * */reflect_color * REFLECTANCE + water_color * reflected_light/* * log(1.0 - MU_WATER)*/);
// passthrough = pow(passthrough, 1.0 / (1.0 + water_depth_to_camera));
/* surf_color = cam_attenuation.g < 0.5 ?
vec3(1.0, 0.0, 0.0) :
vec3(0.0, 1.0, 1.0)
; */
// passthrough = passthrough * length(cam_attenuation);
// vec3 reflect_ray_dir = reflect(cam_to_frag, norm);
// Hack to prevent the reflection ray dipping below the horizon and creating weird blue spots in the water
// reflect_ray_dir.z = max(reflect_ray_dir.z, 0.01);
// vec4 _clouds;
// vec3 reflect_color = get_sky_color(reflect_ray_dir, time_of_day.x, f_pos, vec3(-100000), 0.25, false, _clouds) * f_light;
// Tint
// reflect_color = mix(reflect_color, surf_color, 0.6);
// vec4 color = mix(vec4(reflect_color * 2.0, 1.0), vec4(surf_color, 1.0 / (1.0 + /*diffuse_light*/(f_light * point_shadow + point_light) * 0.25)), passthrough);
// vec4 color = mix(vec4(reflect_color * 2.0, 1.0), vec4(surf_color, 1.0 / (1.0 + /*diffuse_light*/(/*f_light * point_shadow*/f_light * point_shadow + reflected_light_point/* + point_light*//*reflected_light*/) * 0.25)), passthrough);
// vec4 color = mix(vec4(surf_color, 1.0), vec4(surf_color, 0.0), passthrough);
//vec4 color = vec4(surf_color, 1.0);
// vec4 color = mix(vec4(reflect_color, 1.0), vec4(surf_color, 1.0 / (1.0 + /*diffuse_light*/(/*f_light * point_shadow*/reflected_light_point/* + point_light*//*reflected_light*/))), passthrough);
// float log_cam = log(min(cam_attenuation.r, min(cam_attenuation.g, cam_attenuation.b)));
float min_refl = 0.0;
float opacity = (1.0 - passthrough) * 0.5 / (1.0 + min_refl);
if (medium.x != MEDIUM_WATER) {
min_refl = min(emitted_light.r, min(emitted_light.g, emitted_light.b));
} else {
// Hack to make the transparency of the surface fade when underwater to avoid artifacts
if (dot(refract_ray_dir, cam_to_frag) > 0.0) {
opacity = 0.99;
} else {
opacity = min(sqrt(max(opacity, clamp((f_pos.z - cam_pos.z) * 0.05, 0.0, 1.0))), 0.99);
}
}
vec4 color = vec4(surf_color, opacity);// * (1.0 - /*log(1.0 + cam_attenuation)*//*cam_attenuation*/1.0 / (2.0 - log_cam)));
// vec4 color = vec4(surf_color, mix(1.0, 1.0 / (1.0 + /*0.25 * *//*diffuse_light*/(/*f_light * point_shadow*/reflected_light_point)), passthrough));
// vec4 color = vec4(surf_color, mix(1.0, length(cam_attenuation), passthrough));
/* reflect_color = reflect_color * 0.5 * (diffuse_light + ambient_light);
// 0 = 100% reflection, 1 = translucent water
float passthrough = dot(faceforward(f_norm, f_norm, cam_to_frag), -cam_to_frag);
vec4 color = mix(vec4(reflect_color, 1.0), vec4(vec3(0), 1.0 / (1.0 + diffuse_light * 0.25)), passthrough); */
tgt_color = color;
tgt_mat = uvec4(uvec3((norm + 1.0) * 127.0), MAT_FLUID);
}