InvokeAI/invokeai/backend/stable_diffusion/multi_diffusion_pipeline.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

195 lines
9.4 KiB
Python
Raw Permalink Normal View History

from __future__ import annotations
import copy
from dataclasses import dataclass
from typing import Any, Callable, Optional
import torch
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
PipelineIntermediateState,
StableDiffusionGeneratorPipeline,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import TextConditioningData
from invokeai.backend.tiles.utils import Tile
@dataclass
class MultiDiffusionRegionConditioning:
# Region coords in latent space.
region: Tile
text_conditioning_data: TextConditioningData
control_data: list[ControlNetData]
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
"""A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising."""
def _check_regional_prompting(self, multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning]):
"""Validate that regional conditioning is not used."""
for region_conditioning in multi_diffusion_conditioning:
if (
region_conditioning.text_conditioning_data.cond_regions is not None
or region_conditioning.text_conditioning_data.uncond_regions is not None
):
raise NotImplementedError("Regional prompting is not yet supported in Multi-Diffusion.")
def multi_diffusion_denoise(
self,
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning],
target_overlap: int,
latents: torch.Tensor,
scheduler_step_kwargs: dict[str, Any],
noise: Optional[torch.Tensor],
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None],
) -> torch.Tensor:
self._check_regional_prompting(multi_diffusion_conditioning)
if init_timestep.shape[0] == 0:
return latents
batch_size, _, latent_height, latent_width = latents.shape
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
if noise is not None:
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
# full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
assert isinstance(latents, torch.Tensor) # For static type checking.
# TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after
# cropping into regions.
self._adjust_memory_efficient_attention(latents)
# Many of the diffusers schedulers are stateful (i.e. they update internal state in each call to step()). Since
# we are calling step() multiple times at the same timestep (once for each region batch), we must maintain a
# separate scheduler state for each region batch.
# TODO(ryand): This solution allows all schedulers to **run**, but does not fully solve the issue of scheduler
# statefulness. Some schedulers store previous model outputs in their state, but these values become incorrect
# as Multi-Diffusion blending is applied (e.g. the PNDMScheduler). This can result in a blurring effect when
# multiple MultiDiffusion regions overlap. Solving this properly would require a case-by-case review of each
# scheduler to determine how it's state needs to be updated for compatibilty with Multi-Diffusion.
region_batch_schedulers: list[SchedulerMixin] = [
copy.deepcopy(self.scheduler) for _ in multi_diffusion_conditioning
]
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
)
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t = t.expand(batch_size)
merged_latents = torch.zeros_like(latents)
merged_latents_weights = torch.zeros(
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
)
merged_pred_original: torch.Tensor | None = None
for region_idx, region_conditioning in enumerate(multi_diffusion_conditioning):
# Switch to the scheduler for the region batch.
self.scheduler = region_batch_schedulers[region_idx]
# Crop the inputs to the region.
region_latents = latents[
:,
:,
region_conditioning.region.coords.top : region_conditioning.region.coords.bottom,
region_conditioning.region.coords.left : region_conditioning.region.coords.right,
]
# Run the denoising step on the region.
step_output = self.step(
t=batched_t,
latents=region_latents,
conditioning_data=region_conditioning.text_conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=region_conditioning.control_data,
)
# Build a region_weight matrix that applies gradient blending to the edges of the region.
region = region_conditioning.region
_, _, region_height, region_width = step_output.prev_sample.shape
region_weight = torch.ones(
(1, 1, region_height, region_width),
dtype=latents.dtype,
device=latents.device,
)
if region.overlap.left > 0:
left_grad = torch.linspace(
0, 1, region.overlap.left, device=latents.device, dtype=latents.dtype
).view((1, 1, 1, -1))
region_weight[:, :, :, : region.overlap.left] *= left_grad
if region.overlap.top > 0:
top_grad = torch.linspace(
0, 1, region.overlap.top, device=latents.device, dtype=latents.dtype
).view((1, 1, -1, 1))
region_weight[:, :, : region.overlap.top, :] *= top_grad
if region.overlap.right > 0:
right_grad = torch.linspace(
1, 0, region.overlap.right, device=latents.device, dtype=latents.dtype
).view((1, 1, 1, -1))
region_weight[:, :, :, -region.overlap.right :] *= right_grad
if region.overlap.bottom > 0:
bottom_grad = torch.linspace(
1, 0, region.overlap.bottom, device=latents.device, dtype=latents.dtype
).view((1, 1, -1, 1))
region_weight[:, :, -region.overlap.bottom :, :] *= bottom_grad
# Update the merged results with the region results.
merged_latents[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += step_output.prev_sample * region_weight
merged_latents_weights[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += region_weight
pred_orig_sample = getattr(step_output, "pred_original_sample", None)
if pred_orig_sample is not None:
# If one region has pred_original_sample, then we can assume that all regions will have it, because
# they all use the same scheduler.
if merged_pred_original is None:
merged_pred_original = torch.zeros_like(latents)
merged_pred_original[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += pred_orig_sample
# Normalize the merged results.
latents = torch.where(merged_latents_weights > 0, merged_latents / merged_latents_weights, merged_latents)
# For debugging, uncomment this line to visualize the region seams:
# latents = torch.where(merged_latents_weights > 1, 0.0, latents)
predicted_original = None
if merged_pred_original is not None:
predicted_original = torch.where(
merged_latents_weights > 0, merged_pred_original / merged_latents_weights, merged_pred_original
)
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
)
)
return latents