InvokeAI/invokeai/app/invocations/mask.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

91 lines
3.3 KiB
Python
Raw Permalink Normal View History

import numpy as np
2024-03-08 15:30:55 +00:00
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata
2024-03-08 15:30:55 +00:00
from invokeai.app.invocations.primitives import MaskOutput
@invocation(
"rectangle_mask",
title="Create Rectangle Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.1",
2024-03-08 15:30:55 +00:00
)
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
"""Create a rectangular mask."""
width: int = InputField(description="The width of the entire mask.")
height: int = InputField(description="The height of the entire mask.")
2024-03-08 15:30:55 +00:00
x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).")
y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).")
2024-03-08 15:30:55 +00:00
rectangle_width: int = InputField(description="The width of the rectangular masked region.")
rectangle_height: int = InputField(description="The height of the rectangular masked region.")
2024-03-08 15:30:55 +00:00
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = torch.zeros((1, self.height, self.width), dtype=torch.bool)
2024-04-10 19:49:27 +00:00
mask[:, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width] = (
True
)
2024-03-08 15:30:55 +00:00
mask_tensor_name = context.tensors.save(mask)
2024-03-08 15:30:55 +00:00
return MaskOutput(
mask=TensorField(tensor_name=mask_tensor_name),
2024-03-08 15:30:55 +00:00
width=self.width,
height=self.height,
)
@invocation(
"alpha_mask_to_tensor",
title="Alpha Mask to Tensor",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
classification=Classification.Beta,
)
class AlphaMaskToTensorInvocation(BaseInvocation):
"""Convert a mask image to a tensor. Opaque regions are 1 and transparent regions are 0."""
image: ImageField = InputField(description="The mask image to convert.")
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.images.get_pil(self.image.image_name)
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
if self.invert:
mask[0] = torch.tensor(np.array(image)[:, :, 3] == 0, dtype=torch.bool)
else:
mask[0] = torch.tensor(np.array(image)[:, :, 3] > 0, dtype=torch.bool)
return MaskOutput(
mask=TensorField(tensor_name=context.tensors.save(mask)),
height=mask.shape[1],
width=mask.shape[2],
)
@invocation(
"invert_tensor_mask",
title="Invert Tensor Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
classification=Classification.Beta,
)
class InvertTensorMaskInvocation(BaseInvocation):
"""Inverts a tensor mask."""
mask: TensorField = InputField(description="The tensor mask to convert.")
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = context.tensors.load(self.mask.tensor_name)
inverted = ~mask
return MaskOutput(
mask=TensorField(tensor_name=context.tensors.save(inverted)),
height=inverted.shape[1],
width=inverted.shape[2],
)