2024-04-09 10:27:03 +00:00
|
|
|
import numpy as np
|
2024-03-08 15:30:55 +00:00
|
|
|
import torch
|
|
|
|
|
2024-04-09 10:28:38 +00:00
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, InvocationContext, invocation
|
2024-04-09 10:27:03 +00:00
|
|
|
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata
|
2024-03-08 15:30:55 +00:00
|
|
|
from invokeai.app.invocations.primitives import MaskOutput
|
|
|
|
|
|
|
|
|
|
|
|
@invocation(
|
|
|
|
"rectangle_mask",
|
|
|
|
title="Create Rectangle Mask",
|
|
|
|
tags=["conditioning"],
|
|
|
|
category="conditioning",
|
2024-04-09 19:17:55 +00:00
|
|
|
version="1.0.1",
|
2024-03-08 15:30:55 +00:00
|
|
|
)
|
|
|
|
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
|
|
|
|
"""Create a rectangular mask."""
|
|
|
|
|
|
|
|
width: int = InputField(description="The width of the entire mask.")
|
2024-04-09 19:17:55 +00:00
|
|
|
height: int = InputField(description="The height of the entire mask.")
|
2024-03-08 15:30:55 +00:00
|
|
|
x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).")
|
2024-04-09 19:17:55 +00:00
|
|
|
y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).")
|
2024-03-08 15:30:55 +00:00
|
|
|
rectangle_width: int = InputField(description="The width of the rectangular masked region.")
|
2024-04-09 19:17:55 +00:00
|
|
|
rectangle_height: int = InputField(description="The height of the rectangular masked region.")
|
2024-03-08 15:30:55 +00:00
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> MaskOutput:
|
|
|
|
mask = torch.zeros((1, self.height, self.width), dtype=torch.bool)
|
2024-04-10 19:49:27 +00:00
|
|
|
mask[:, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width] = (
|
|
|
|
True
|
|
|
|
)
|
2024-03-08 15:30:55 +00:00
|
|
|
|
2024-04-08 18:16:22 +00:00
|
|
|
mask_tensor_name = context.tensors.save(mask)
|
2024-03-08 15:30:55 +00:00
|
|
|
return MaskOutput(
|
2024-04-08 18:16:22 +00:00
|
|
|
mask=TensorField(tensor_name=mask_tensor_name),
|
2024-03-08 15:30:55 +00:00
|
|
|
width=self.width,
|
|
|
|
height=self.height,
|
|
|
|
)
|
2024-04-09 10:27:03 +00:00
|
|
|
|
|
|
|
|
|
|
|
@invocation(
|
|
|
|
"alpha_mask_to_tensor",
|
|
|
|
title="Alpha Mask to Tensor",
|
|
|
|
tags=["conditioning"],
|
|
|
|
category="conditioning",
|
|
|
|
version="1.0.0",
|
|
|
|
)
|
|
|
|
class AlphaMaskToTensorInvocation(BaseInvocation):
|
|
|
|
"""Convert a mask image to a tensor. Opaque regions are 1 and transparent regions are 0."""
|
|
|
|
|
|
|
|
image: ImageField = InputField(description="The mask image to convert.")
|
2024-04-15 02:37:30 +00:00
|
|
|
invert: bool = InputField(default=False, description="Whether to invert the mask.")
|
2024-04-09 10:27:03 +00:00
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> MaskOutput:
|
|
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
|
2024-04-15 02:37:30 +00:00
|
|
|
if self.invert:
|
|
|
|
mask[0] = torch.tensor(np.array(image)[:, :, 3] == 0, dtype=torch.bool)
|
|
|
|
else:
|
|
|
|
mask[0] = torch.tensor(np.array(image)[:, :, 3] > 0, dtype=torch.bool)
|
2024-04-09 10:27:03 +00:00
|
|
|
|
|
|
|
return MaskOutput(
|
|
|
|
mask=TensorField(tensor_name=context.tensors.save(mask)), height=image.height, width=image.width
|
|
|
|
)
|