2022-09-06 00:40:10 +00:00
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Derived from source code carrying the following copyrights
# Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
# Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
import torch
import numpy as np
import random
import os
import time
import re
import sys
import traceback
import transformers
2022-09-16 17:09:04 +00:00
import io
import hashlib
2022-09-18 13:47:57 +00:00
import cv2
import skimage
2022-09-06 00:40:10 +00:00
from omegaconf import OmegaConf
2022-10-08 15:37:23 +00:00
from ldm . invoke . generator . base import downsampling
2022-09-06 00:40:10 +00:00
from PIL import Image , ImageOps
from torch import nn
2022-09-14 11:02:31 +00:00
from pytorch_lightning import seed_everything , logging
2022-09-06 00:40:10 +00:00
2022-09-13 17:17:14 +00:00
from ldm . util import instantiate_from_config
from ldm . models . diffusion . ddim import DDIMSampler
from ldm . models . diffusion . plms import PLMSSampler
2022-09-06 00:40:10 +00:00
from ldm . models . diffusion . ksampler import KSampler
2022-10-08 15:37:23 +00:00
from ldm . invoke . pngwriter import PngWriter
from ldm . invoke . args import metadata_from_png
from ldm . invoke . image_util import InitImageResizer
from ldm . invoke . devices import choose_torch_device , choose_precision
from ldm . invoke . conditioning import get_uc_and_c
2022-09-15 15:02:17 +00:00
2022-10-11 19:25:57 +00:00
def fix_func ( orig ) :
if hasattr ( torch . backends , ' mps ' ) and torch . backends . mps . is_available ( ) :
def new_func ( * args , * * kw ) :
device = kw . get ( " device " , " mps " )
kw [ " device " ] = " cpu "
return orig ( * args , * * kw ) . to ( device )
return new_func
return orig
torch . rand = fix_func ( torch . rand )
torch . rand_like = fix_func ( torch . rand_like )
torch . randn = fix_func ( torch . randn )
torch . randn_like = fix_func ( torch . randn_like )
torch . randint = fix_func ( torch . randint )
torch . randint_like = fix_func ( torch . randint_like )
torch . bernoulli = fix_func ( torch . bernoulli )
torch . multinomial = fix_func ( torch . multinomial )
2022-09-06 00:40:10 +00:00
""" Simplified text to image API for stable diffusion/latent diffusion
Example Usage :
from ldm . generate import Generate
# Create an object with default values
2022-09-14 11:02:31 +00:00
gr = Generate ( ' stable-diffusion-1.4 ' )
2022-09-06 00:40:10 +00:00
# do the slow model initialization
gr . load_model ( )
# Do the fast inference & image generation. Any options passed here
# override the default values assigned during class initialization
# Will call load_model() if the model was not previously loaded and so
# may be slow at first.
# The method returns a list of images. Each row of the list is a sub-list of [filename,seed]
results = gr . prompt2png ( prompt = " an astronaut riding a horse " ,
outdir = " ./outputs/samples " ,
iterations = 3 )
for row in results :
print ( f ' filename= { row [ 0 ] } ' )
print ( f ' seed = { row [ 1 ] } ' )
# Same thing, but using an initial image.
results = gr . prompt2png ( prompt = " an astronaut riding a horse " ,
outdir = " ./outputs/,
iterations = 3 ,
init_img = " ./sketches/horse+rider.png " )
for row in results :
print ( f ' filename= { row [ 0 ] } ' )
print ( f ' seed = { row [ 1 ] } ' )
# Same thing, but we return a series of Image objects, which lets you manipulate them,
# combine them, and save them under arbitrary names
results = gr . prompt2image ( prompt = " an astronaut riding a horse "
outdir = " ./outputs/ " )
for row in results :
im = row [ 0 ]
seed = row [ 1 ]
im . save ( f ' ./outputs/samples/an_astronaut_riding_a_horse- { seed } .png ' )
im . thumbnail ( 100 , 100 ) . save ( ' ./outputs/samples/astronaut_thumb.jpg ' )
Note that the old txt2img ( ) and img2img ( ) calls are deprecated but will
still work .
2022-09-09 13:26:10 +00:00
The full list of arguments to Generate ( ) are :
gr = Generate (
2022-09-14 11:02:31 +00:00
# these values are set once and shouldn't be changed
conf = path to configuration file ( ' configs/models.yaml ' )
model = symbolic name of the model in the configuration file
2022-09-17 17:56:25 +00:00
precision = float precision to be used
2022-09-14 11:02:31 +00:00
# this value is sticky and maintained between generation calls
sampler_name = [ ' ddim ' , ' k_dpm_2_a ' , ' k_dpm_2 ' , ' k_euler_a ' , ' k_euler ' , ' k_heun ' , ' k_lms ' , ' plms ' ] / / k_lms
# these are deprecated - use conf and model instead
2022-09-09 13:26:10 +00:00
weights = path to model weights ( ' models/ldm/stable-diffusion-v1/model.ckpt ' )
2022-09-14 11:02:31 +00:00
config = path to model configuraiton ( ' configs/stable-diffusion/v1-inference.yaml ' )
2022-09-09 13:26:10 +00:00
)
2022-09-06 00:40:10 +00:00
"""
class Generate :
""" Generate class
Stores default values for multiple configuration items
"""
def __init__ (
self ,
2022-09-14 11:02:31 +00:00
model = ' stable-diffusion-1.4 ' ,
conf = ' configs/models.yaml ' ,
embedding_path = None ,
2022-09-06 00:40:10 +00:00
sampler_name = ' k_lms ' ,
ddim_eta = 0.0 , # deterministic
full_precision = False ,
2022-09-17 17:56:25 +00:00
precision = ' auto ' ,
2022-09-14 11:02:31 +00:00
# these are deprecated; if present they override values in the conf file
weights = None ,
config = None ,
2022-09-13 17:17:14 +00:00
gfpgan = None ,
codeformer = None ,
2022-10-06 14:54:05 +00:00
esrgan = None ,
free_gpu_mem = False ,
2022-09-06 00:40:10 +00:00
) :
2022-09-14 11:02:31 +00:00
models = OmegaConf . load ( conf )
mconfig = models [ model ]
self . weights = mconfig . weights if weights is None else weights
self . config = mconfig . config if config is None else config
self . height = mconfig . height
self . width = mconfig . width
self . iterations = 1
self . steps = 50
self . cfg_scale = 7.5
self . sampler_name = sampler_name
self . ddim_eta = 0.0 # same seed always produces same image
2022-09-17 17:56:25 +00:00
self . precision = precision
2022-09-14 11:02:31 +00:00
self . strength = 0.75
self . seamless = False
self . embedding_path = embedding_path
self . model = None # empty for now
self . sampler = None
self . device = None
self . session_peakmem = None
self . generators = { }
self . base_generator = None
self . seed = None
2022-09-13 17:17:14 +00:00
self . gfpgan = gfpgan
self . codeformer = codeformer
self . esrgan = esrgan
2022-10-06 14:54:05 +00:00
self . free_gpu_mem = free_gpu_mem
2022-09-14 11:02:31 +00:00
# Note that in previous versions, there was an option to pass the
# device to Generate(). However the device was then ignored, so
# it wasn't actually doing anything. This logic could be reinstated.
device_type = choose_torch_device ( )
2022-09-06 00:40:10 +00:00
self . device = torch . device ( device_type )
2022-09-17 17:56:25 +00:00
if full_precision :
if self . precision != ' auto ' :
raise ValueError ( ' Remove --full_precision / -F if using --precision ' )
print ( ' Please remove deprecated --full_precision / -F ' )
print ( ' If auto config does not work you can use --precision=float32 ' )
self . precision = ' float32 '
if self . precision == ' auto ' :
self . precision = choose_precision ( self . device )
2022-09-06 00:40:10 +00:00
# for VRAM usage statistics
2022-09-14 11:02:31 +00:00
self . session_peakmem = torch . cuda . max_memory_allocated ( ) if self . _has_cuda else None
2022-09-06 00:40:10 +00:00
transformers . logging . set_verbosity_error ( )
2022-09-14 11:02:31 +00:00
# gets rid of annoying messages about random seed
logging . getLogger ( ' pytorch_lightning ' ) . setLevel ( logging . ERROR )
2022-09-06 00:40:10 +00:00
def prompt2png ( self , prompt , outdir , * * kwargs ) :
"""
Takes a prompt and an output directory , writes out the requested number
of PNG files , and returns an array of [ [ filename , seed ] , [ filename , seed ] . . . ]
Optional named arguments are the same as those passed to Generate and prompt2image ( )
"""
2022-09-14 11:02:31 +00:00
results = self . prompt2image ( prompt , * * kwargs )
2022-09-06 00:40:10 +00:00
pngwriter = PngWriter ( outdir )
2022-09-14 11:02:31 +00:00
prefix = pngwriter . unique_prefix ( )
outputs = [ ]
2022-09-06 00:40:10 +00:00
for image , seed in results :
name = f ' { prefix } . { seed } .png '
path = pngwriter . save_image_and_prompt_to_png (
2022-09-16 20:35:34 +00:00
image , dream_prompt = f ' { prompt } -S { seed } ' , name = name )
2022-09-06 00:40:10 +00:00
outputs . append ( [ path , seed ] )
return outputs
def txt2img ( self , prompt , * * kwargs ) :
outdir = kwargs . pop ( ' outdir ' , ' outputs/img-samples ' )
return self . prompt2png ( prompt , outdir , * * kwargs )
def img2img ( self , prompt , * * kwargs ) :
outdir = kwargs . pop ( ' outdir ' , ' outputs/img-samples ' )
assert (
' init_img ' in kwargs
) , ' call to img2img() must include the init_img argument '
return self . prompt2png ( prompt , outdir , * * kwargs )
def prompt2image (
self ,
# these are common
prompt ,
2022-09-14 11:02:31 +00:00
iterations = None ,
steps = None ,
seed = None ,
cfg_scale = None ,
ddim_eta = None ,
skip_normalize = False ,
image_callback = None ,
step_callback = None ,
width = None ,
height = None ,
sampler_name = None ,
seamless = False ,
log_tokenization = False ,
with_variations = None ,
variation_amount = 0.0 ,
2022-09-14 11:10:39 +00:00
threshold = 0.0 ,
perlin = 0.0 ,
2022-09-08 11:34:03 +00:00
# these are specific to img2img and inpaint
2022-09-14 11:02:31 +00:00
init_img = None ,
init_mask = None ,
fit = False ,
strength = None ,
2022-09-18 13:47:57 +00:00
init_color = None ,
2022-09-12 19:37:26 +00:00
# these are specific to embiggen (which also relies on img2img args)
embiggen = None ,
embiggen_tiles = None ,
2022-09-06 00:40:10 +00:00
# these are specific to GFPGAN/ESRGAN
2022-09-18 19:01:05 +00:00
facetool = None ,
2022-09-14 11:02:31 +00:00
gfpgan_strength = 0 ,
2022-09-18 19:01:05 +00:00
codeformer_fidelity = None ,
2022-09-14 11:02:31 +00:00
save_original = False ,
upscale = None ,
# Set this True to handle KeyboardInterrupt internally
catch_interrupts = False ,
2022-09-29 22:58:06 +00:00
hires_fix = False ,
2022-09-06 00:40:10 +00:00
* * args ,
) : # eat up additional cruft
"""
2022-09-09 22:49:51 +00:00
ldm . generate . prompt2image ( ) is the common entry point for txt2img ( ) and img2img ( )
2022-09-06 00:40:10 +00:00
It takes the following arguments :
prompt / / prompt string ( no default )
iterations / / iterations ( 1 ) ; image count = iterations
steps / / refinement steps per iteration
seed / / seed for random number generator
width / / width of image , in multiples of 64 ( 512 )
height / / height of image , in multiples of 64 ( 512 )
cfg_scale / / how strongly the prompt influences the image ( 7.5 ) ( must be > 1 )
seamless / / whether the generated image should tile
init_img / / path to an initial image
strength / / strength for noising / unnoising init_img . 0.0 preserves image exactly , 1.0 replaces it completely
gfpgan_strength / / strength for GFPGAN . 0.0 preserves image exactly , 1.0 replaces it completely
ddim_eta / / image randomness ( eta = 0.0 means the same seed always produces the same image )
step_callback / / a function or method that will be called each step
image_callback / / a function or method that will be called each time an image is generated
with_variations / / a weighted list [ ( seed_1 , weight_1 ) , ( seed_2 , weight_2 ) , . . . ] of variations which should be applied before doing any generation
variation_amount / / optional 0 - 1 value to slerp from - S noise to random noise ( allows variations on an image )
2022-09-14 01:56:17 +00:00
threshold / / optional value > = 0 to add thresholding to latent values for k - diffusion samplers ( 0 disables )
2022-09-12 20:34:10 +00:00
perlin / / optional 0 - 1 value to add a percentage of perlin noise to the initial noise
2022-09-12 19:37:26 +00:00
embiggen / / scale factor relative to the size of the - - init_img ( - I ) , followed by ESRGAN upscaling strength ( 0 - 1.0 ) , followed by minimum amount of overlap between tiles as a decimal ratio ( 0 - 1.0 ) or number of pixels
embiggen_tiles / / list of tiles by number in order to process and replace onto the image e . g . ` 0 2 4 `
2022-09-06 00:40:10 +00:00
To use the step callback , define a function that receives two arguments :
- Image GPU data
- The step number
To use the image callback , define a function of method that receives two arguments , an Image object
and the seed . You can then do whatever you like with the image , including converting it to
different formats and manipulating it . For example :
def process_image ( image , seed ) :
image . save ( f { ' images/seed.png ' } )
2022-10-08 15:37:23 +00:00
The code used to save images to a directory can be found in ldm / invoke / pngwriter . py .
It contains code to create the requested output directory , select a unique informative
name for each image , and write the prompt into the PNG metadata .
2022-09-06 00:40:10 +00:00
"""
# TODO: convert this into a getattr() loop
2022-09-13 17:17:14 +00:00
steps = steps or self . steps
width = width or self . width
height = height or self . height
seamless = seamless or self . seamless
cfg_scale = cfg_scale or self . cfg_scale
ddim_eta = ddim_eta or self . ddim_eta
iterations = iterations or self . iterations
strength = strength or self . strength
self . seed = seed
2022-09-06 00:40:10 +00:00
self . log_tokenization = log_tokenization
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
self . step_callback = step_callback
2022-09-06 00:40:10 +00:00
with_variations = [ ] if with_variations is None else with_variations
2022-09-14 11:02:31 +00:00
# will instantiate the model or return it from cache
model = self . load_model ( )
2022-09-06 00:40:10 +00:00
for m in model . modules ( ) :
if isinstance ( m , ( nn . Conv2d , nn . ConvTranspose2d ) ) :
m . padding_mode = ' circular ' if seamless else m . _orig_padding_mode
2022-09-13 17:17:14 +00:00
2022-09-06 00:40:10 +00:00
assert cfg_scale > 1.0 , ' CFG_Scale (-C) must be >1.0 '
2022-09-14 01:56:17 +00:00
assert threshold > = 0.0 , ' --threshold must be >=0.0 '
2022-09-06 00:40:10 +00:00
assert (
0.0 < strength < 1.0
) , ' img2img and inpaint strength can only work with 0.0 < strength < 1.0 '
assert (
2022-09-13 17:17:14 +00:00
0.0 < = variation_amount < = 1.0
2022-09-06 00:40:10 +00:00
) , ' -v --variation_amount must be in [0.0, 1.0] '
2022-09-14 01:56:17 +00:00
assert (
0.0 < = perlin < = 1.0
2022-09-28 23:47:36 +00:00
) , ' --perlin must be in [0.0, 1.0] '
2022-09-12 19:37:26 +00:00
assert (
2022-09-13 17:17:14 +00:00
( embiggen == None and embiggen_tiles == None ) or (
( embiggen != None or embiggen_tiles != None ) and init_img != None )
2022-09-12 19:37:26 +00:00
) , ' Embiggen requires an init/input image to be specified '
2022-09-06 00:40:10 +00:00
if len ( with_variations ) > 0 or variation_amount > 1.0 :
assert seed is not None , \
' seed must be specified when using with_variations '
if variation_amount == 0.0 :
assert iterations == 1 , \
' when using --with_variations, multiple iterations are only possible when using --variation_amount '
assert all ( 0 < = weight < = 1 for _ , weight in with_variations ) , \
f ' variation weights must be in [0.0, 1.0]: got { [ weight for _ , weight in with_variations ] } '
width , height , _ = self . _resolution_check ( width , height , log = True )
if sampler_name and ( sampler_name != self . sampler_name ) :
self . sampler_name = sampler_name
self . _set_sampler ( )
tic = time . time ( )
2022-09-14 11:02:31 +00:00
if self . _has_cuda ( ) :
2022-09-06 00:40:10 +00:00
torch . cuda . reset_peak_memory_stats ( )
2022-09-13 17:17:14 +00:00
results = list ( )
init_image = None
mask_image = None
2022-09-06 00:40:10 +00:00
try :
uc , c = get_uc_and_c (
2022-09-14 11:02:31 +00:00
prompt , model = self . model ,
2022-09-06 00:40:10 +00:00
skip_normalize = skip_normalize ,
2022-09-14 11:02:31 +00:00
log_tokens = self . log_tokenization
2022-09-06 00:40:10 +00:00
)
2022-09-21 06:44:46 +00:00
init_image , mask_image = self . _make_images (
init_img ,
init_mask ,
width ,
height ,
fit = fit ,
)
2022-09-08 11:34:03 +00:00
if ( init_image is not None ) and ( mask_image is not None ) :
generator = self . _make_inpaint ( )
2022-09-12 19:37:26 +00:00
elif ( embiggen != None or embiggen_tiles != None ) :
generator = self . _make_embiggen ( )
2022-09-08 11:34:03 +00:00
elif init_image is not None :
generator = self . _make_img2img ( )
2022-09-29 22:58:06 +00:00
elif hires_fix :
generator = self . _make_txt2img2img ( )
2022-09-06 00:40:10 +00:00
else :
2022-09-08 11:34:03 +00:00
generator = self . _make_txt2img ( )
2022-09-06 00:40:10 +00:00
2022-09-13 17:17:14 +00:00
generator . set_variation (
2022-10-06 14:39:08 +00:00
self . seed , variation_amount , with_variations
)
2022-09-06 00:40:10 +00:00
results = generator . generate (
prompt ,
2022-09-13 17:17:14 +00:00
iterations = iterations ,
seed = self . seed ,
sampler = self . sampler ,
steps = steps ,
cfg_scale = cfg_scale ,
conditioning = ( uc , c ) ,
ddim_eta = ddim_eta ,
image_callback = image_callback , # called after the final image is generated
step_callback = step_callback , # called after each intermediate image is generated
width = width ,
height = height ,
init_img = init_img , # embiggen needs to manipulate from the unmodified init_img
init_image = init_image , # notice that init_image is different from init_img
mask_image = mask_image ,
strength = strength ,
2022-09-21 07:10:49 +00:00
threshold = threshold ,
perlin = perlin ,
2022-09-13 17:17:14 +00:00
embiggen = embiggen ,
embiggen_tiles = embiggen_tiles ,
2022-09-06 00:40:10 +00:00
)
2022-09-18 13:47:57 +00:00
if init_color :
self . correct_colors ( image_list = results ,
reference_image_path = init_color ,
image_callback = image_callback )
2022-09-06 00:40:10 +00:00
if upscale is not None or gfpgan_strength > 0 :
self . upscale_and_reconstruct ( results ,
upscale = upscale ,
2022-09-18 19:01:05 +00:00
facetool = facetool ,
2022-09-06 00:40:10 +00:00
strength = gfpgan_strength ,
2022-09-18 19:01:05 +00:00
codeformer_fidelity = codeformer_fidelity ,
2022-09-06 00:40:10 +00:00
save_original = save_original ,
image_callback = image_callback )
except RuntimeError as e :
print ( traceback . format_exc ( ) , file = sys . stderr )
2022-09-08 11:34:03 +00:00
print ( ' >> Could not generate image. ' )
2022-09-14 11:02:31 +00:00
except KeyboardInterrupt :
if catch_interrupts :
print ( ' **Interrupted** Partial results will be returned. ' )
else :
raise KeyboardInterrupt
2022-09-06 00:40:10 +00:00
toc = time . time ( )
print ( ' >> Usage stats: ' )
print (
2022-09-13 17:17:14 +00:00
f ' >> { len ( results ) } image(s) generated in ' , ' %4.2f s ' % (
toc - tic )
2022-09-06 00:40:10 +00:00
)
2022-09-14 11:02:31 +00:00
if self . _has_cuda ( ) :
2022-09-11 14:02:44 +00:00
print (
f ' >> Max VRAM used for this generation: ' ,
' %4.2f G. ' % ( torch . cuda . max_memory_allocated ( ) / 1e9 ) ,
2022-09-14 11:02:31 +00:00
' Current VRAM utilization: ' ,
2022-09-11 14:02:44 +00:00
' %4.2f G ' % ( torch . cuda . memory_allocated ( ) / 1e9 ) ,
)
2022-09-06 00:40:10 +00:00
self . session_peakmem = max (
self . session_peakmem , torch . cuda . max_memory_allocated ( )
)
print (
f ' >> Max VRAM used since script start: ' ,
' %4.2f G ' % ( self . session_peakmem / 1e9 ) ,
)
return results
2022-09-21 06:44:46 +00:00
# this needs to be generalized to all sorts of postprocessors, which should be wrapped
# in a nice harmonized call signature. For now we have a bunch of if/elses!
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
def apply_postprocessor (
self ,
image_path ,
2022-09-21 06:44:46 +00:00
tool = ' gfpgan ' , # one of 'upscale', 'gfpgan', 'codeformer', 'outpaint', or 'embiggen'
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
gfpgan_strength = 0.0 ,
codeformer_fidelity = 0.75 ,
upscale = None ,
2022-09-21 06:44:46 +00:00
out_direction = None ,
2022-10-03 18:39:58 +00:00
outcrop = [ ] ,
2022-09-21 06:44:46 +00:00
save_original = True , # to get new name
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
callback = None ,
opt = None ,
) :
# retrieve the seed from the image;
seed = None
image_metadata = None
prompt = None
2022-09-28 15:48:11 +00:00
args = metadata_from_png ( image_path )
seed = args . seed
prompt = args . prompt
print ( f ' >> retrieved seed { seed } and prompt " { prompt } " from { image_path } ' )
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
if not seed :
print ( ' * Could not recover seed for image. Replacing with 42. This will not affect image quality ' )
seed = 42
2022-09-28 15:48:11 +00:00
# try to reuse the same filename prefix as the original file.
refactor how postprocessors work
- similar call structures for outpainting, outcropping and face restoration modules
- added documentation for outcropping
- post-processing steps now leave a provenance chain (of sorts) in the sd-metadata field:
~~~
scripts/sd-metadata.py outputs/img-samples/curly.942491079.upscale.png
outputs/img-samples/curly.942491079.upscale.png:
{
"model": "stable diffusion",
"model_id": "stable-diffusion-1.4",
"model_hash": "fe4efff1e174c627256e44ec2991ba279b3816e364b49f9be2abc0b3ff3f8556",
"app_id": "lstein/stable-diffusion",
"app_version": "v1.15",
"image": {
"height": 512,
"width": 512,
"steps": 50,
"cfg_scale": 7.5,
"seed": 942491079,
"prompt": [
{
"prompt": "pretty curly-haired redhead woman",
"weight": 1.0
}
],
"postprocessing": [
{
"tool": "outcrop",
"dream_command": "!fix \"test-pictures/curly.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64 right 64"
},
{
"tool": "gfpgan",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.outcrop-02.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8"
},
{
"tool": "upscale",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.gfpgan.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -U 4.0 0.75"
}
],
"sampler": "k_lms",
"variations": [],
"type": "txt2img"
}
}
~~~
2022-10-03 20:53:12 +00:00
# we take everything up to the first period
2022-09-28 15:48:11 +00:00
prefix = None
refactor how postprocessors work
- similar call structures for outpainting, outcropping and face restoration modules
- added documentation for outcropping
- post-processing steps now leave a provenance chain (of sorts) in the sd-metadata field:
~~~
scripts/sd-metadata.py outputs/img-samples/curly.942491079.upscale.png
outputs/img-samples/curly.942491079.upscale.png:
{
"model": "stable diffusion",
"model_id": "stable-diffusion-1.4",
"model_hash": "fe4efff1e174c627256e44ec2991ba279b3816e364b49f9be2abc0b3ff3f8556",
"app_id": "lstein/stable-diffusion",
"app_version": "v1.15",
"image": {
"height": 512,
"width": 512,
"steps": 50,
"cfg_scale": 7.5,
"seed": 942491079,
"prompt": [
{
"prompt": "pretty curly-haired redhead woman",
"weight": 1.0
}
],
"postprocessing": [
{
"tool": "outcrop",
"dream_command": "!fix \"test-pictures/curly.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64 right 64"
},
{
"tool": "gfpgan",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.outcrop-02.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8"
},
{
"tool": "upscale",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.gfpgan.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -U 4.0 0.75"
}
],
"sampler": "k_lms",
"variations": [],
"type": "txt2img"
}
}
~~~
2022-10-03 20:53:12 +00:00
m = re . match ( ' ^([^.]+) \ . ' , os . path . basename ( image_path ) )
2022-09-28 15:48:11 +00:00
if m :
prefix = m . groups ( ) [ 0 ]
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
# face fixers and esrgan take an Image, but embiggen takes a path
image = Image . open ( image_path )
2022-10-03 18:39:58 +00:00
# used by multiple postfixers
uc , c = get_uc_and_c (
prompt , model = self . model ,
skip_normalize = opt . skip_normalize ,
log_tokens = opt . log_tokenization
)
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
if tool in ( ' gfpgan ' , ' codeformer ' , ' upscale ' ) :
if tool == ' gfpgan ' :
facetool = ' gfpgan '
elif tool == ' codeformer ' :
facetool = ' codeformer '
elif tool == ' upscale ' :
facetool = ' gfpgan ' # but won't be run
gfpgan_strength = 0
return self . upscale_and_reconstruct (
[ [ image , seed ] ] ,
facetool = facetool ,
strength = gfpgan_strength ,
codeformer_fidelity = codeformer_fidelity ,
save_original = save_original ,
upscale = upscale ,
image_callback = callback ,
2022-09-28 15:48:11 +00:00
prefix = prefix ,
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
)
2022-10-03 18:39:58 +00:00
elif tool == ' outcrop ' :
2022-10-08 15:37:23 +00:00
from ldm . invoke . restoration . outcrop import Outcrop
2022-10-03 18:39:58 +00:00
extend_instructions = { }
for direction , pixels in _pairwise ( opt . outcrop ) :
extend_instructions [ direction ] = int ( pixels )
refactor how postprocessors work
- similar call structures for outpainting, outcropping and face restoration modules
- added documentation for outcropping
- post-processing steps now leave a provenance chain (of sorts) in the sd-metadata field:
~~~
scripts/sd-metadata.py outputs/img-samples/curly.942491079.upscale.png
outputs/img-samples/curly.942491079.upscale.png:
{
"model": "stable diffusion",
"model_id": "stable-diffusion-1.4",
"model_hash": "fe4efff1e174c627256e44ec2991ba279b3816e364b49f9be2abc0b3ff3f8556",
"app_id": "lstein/stable-diffusion",
"app_version": "v1.15",
"image": {
"height": 512,
"width": 512,
"steps": 50,
"cfg_scale": 7.5,
"seed": 942491079,
"prompt": [
{
"prompt": "pretty curly-haired redhead woman",
"weight": 1.0
}
],
"postprocessing": [
{
"tool": "outcrop",
"dream_command": "!fix \"test-pictures/curly.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64 right 64"
},
{
"tool": "gfpgan",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.outcrop-02.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8"
},
{
"tool": "upscale",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.gfpgan.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -U 4.0 0.75"
}
],
"sampler": "k_lms",
"variations": [],
"type": "txt2img"
}
}
~~~
2022-10-03 20:53:12 +00:00
restorer = Outcrop ( image , self , )
return restorer . process (
2022-10-03 18:39:58 +00:00
extend_instructions ,
refactor how postprocessors work
- similar call structures for outpainting, outcropping and face restoration modules
- added documentation for outcropping
- post-processing steps now leave a provenance chain (of sorts) in the sd-metadata field:
~~~
scripts/sd-metadata.py outputs/img-samples/curly.942491079.upscale.png
outputs/img-samples/curly.942491079.upscale.png:
{
"model": "stable diffusion",
"model_id": "stable-diffusion-1.4",
"model_hash": "fe4efff1e174c627256e44ec2991ba279b3816e364b49f9be2abc0b3ff3f8556",
"app_id": "lstein/stable-diffusion",
"app_version": "v1.15",
"image": {
"height": 512,
"width": 512,
"steps": 50,
"cfg_scale": 7.5,
"seed": 942491079,
"prompt": [
{
"prompt": "pretty curly-haired redhead woman",
"weight": 1.0
}
],
"postprocessing": [
{
"tool": "outcrop",
"dream_command": "!fix \"test-pictures/curly.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64 right 64"
},
{
"tool": "gfpgan",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.outcrop-02.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8"
},
{
"tool": "upscale",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.gfpgan.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -U 4.0 0.75"
}
],
"sampler": "k_lms",
"variations": [],
"type": "txt2img"
}
}
~~~
2022-10-03 20:53:12 +00:00
opt = opt ,
orig_opt = args ,
2022-10-03 18:39:58 +00:00
image_callback = callback ,
prefix = prefix ,
)
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
elif tool == ' embiggen ' :
# fetch the metadata from the image
generator = self . _make_embiggen ( )
2022-09-19 18:54:52 +00:00
opt . strength = 0.40
print ( f ' >> Setting img2img strength to { opt . strength } for happy embiggening ' )
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
# embiggen takes a image path (sigh)
generator . generate (
prompt ,
sampler = self . sampler ,
steps = opt . steps ,
cfg_scale = opt . cfg_scale ,
ddim_eta = self . ddim_eta ,
conditioning = ( uc , c ) ,
init_img = image_path , # not the Image! (sigh)
init_image = image , # embiggen wants both! (sigh)
strength = opt . strength ,
width = opt . width ,
height = opt . height ,
embiggen = opt . embiggen ,
embiggen_tiles = opt . embiggen_tiles ,
image_callback = callback ,
)
2022-09-21 06:44:46 +00:00
elif tool == ' outpaint ' :
2022-10-08 15:37:23 +00:00
from ldm . invoke . restoration . outpaint import Outpaint
refactor how postprocessors work
- similar call structures for outpainting, outcropping and face restoration modules
- added documentation for outcropping
- post-processing steps now leave a provenance chain (of sorts) in the sd-metadata field:
~~~
scripts/sd-metadata.py outputs/img-samples/curly.942491079.upscale.png
outputs/img-samples/curly.942491079.upscale.png:
{
"model": "stable diffusion",
"model_id": "stable-diffusion-1.4",
"model_hash": "fe4efff1e174c627256e44ec2991ba279b3816e364b49f9be2abc0b3ff3f8556",
"app_id": "lstein/stable-diffusion",
"app_version": "v1.15",
"image": {
"height": 512,
"width": 512,
"steps": 50,
"cfg_scale": 7.5,
"seed": 942491079,
"prompt": [
{
"prompt": "pretty curly-haired redhead woman",
"weight": 1.0
}
],
"postprocessing": [
{
"tool": "outcrop",
"dream_command": "!fix \"test-pictures/curly.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64 right 64"
},
{
"tool": "gfpgan",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.outcrop-02.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8"
},
{
"tool": "upscale",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.gfpgan.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -U 4.0 0.75"
}
],
"sampler": "k_lms",
"variations": [],
"type": "txt2img"
}
}
~~~
2022-10-03 20:53:12 +00:00
restorer = Outpaint ( image , self )
return restorer . process (
opt ,
args ,
2022-09-21 06:44:46 +00:00
image_callback = callback ,
refactor how postprocessors work
- similar call structures for outpainting, outcropping and face restoration modules
- added documentation for outcropping
- post-processing steps now leave a provenance chain (of sorts) in the sd-metadata field:
~~~
scripts/sd-metadata.py outputs/img-samples/curly.942491079.upscale.png
outputs/img-samples/curly.942491079.upscale.png:
{
"model": "stable diffusion",
"model_id": "stable-diffusion-1.4",
"model_hash": "fe4efff1e174c627256e44ec2991ba279b3816e364b49f9be2abc0b3ff3f8556",
"app_id": "lstein/stable-diffusion",
"app_version": "v1.15",
"image": {
"height": 512,
"width": 512,
"steps": 50,
"cfg_scale": 7.5,
"seed": 942491079,
"prompt": [
{
"prompt": "pretty curly-haired redhead woman",
"weight": 1.0
}
],
"postprocessing": [
{
"tool": "outcrop",
"dream_command": "!fix \"test-pictures/curly.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64 right 64"
},
{
"tool": "gfpgan",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.outcrop-02.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8"
},
{
"tool": "upscale",
"dream_command": "!fix \"outputs/img-samples/curly.942491079.gfpgan.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -U 4.0 0.75"
}
],
"sampler": "k_lms",
"variations": [],
"type": "txt2img"
}
}
~~~
2022-10-03 20:53:12 +00:00
prefix = prefix
)
2022-09-30 18:53:37 +00:00
elif tool is None :
print ( f ' * please provide at least one postprocessing option, such as -G or -U ' )
return None
add ability to post-process images from the CLI
- supports gfpgan, esrgan, codeformer and embiggen
- To use:
dream> !fix ./outputs/img-samples/000056.292144555.png -ft gfpgan -U2 -G0.8
dream> !fix ./outputs/img-samples/000056.292144555.png -ft codeformer -G 0.8
dream> !fix ./outputs/img-samples/000056.29214455.png -U4
dream> !fix ./outputs/img-samples/000056.292144555.png -embiggen 1.5
The first example invokes gfpgan to fix faces and esrgan to upscale.
The second example invokes codeformer to fix faces, no upscaling
The third example uses esrgan to upscale 4X
The four example runs embiggen to enlarge 1.5X
- This is very preliminary work. There are some anomalies to note:
1. The syntax is non-obvious. I would prefer something like:
!fix esrgan,gfpgan
!fix esrgan
!fix embiggen,codeformer
However, this will require refactoring the gfpgan and embiggen
code.
2. Images generated using gfpgan, esrgan or codeformer all are named
"xxxxxx.xxxxxx.postprocessed.png" and the original is saved.
However, the prefix is a new one that is not related to the
original.
3. Images generated using embiggen are named "xxxxx.xxxxxxx.png",
and once again the prefix is new. I'm not sure whether the
prefix should be aligned with the original file's prefix or not.
Probably not, but opinions welcome.
2022-09-18 21:26:09 +00:00
else :
print ( f ' * postprocessing tool { tool } is not yet supported ' )
return None
2022-09-21 06:44:46 +00:00
def _make_images (
self ,
2022-09-23 08:57:50 +00:00
img ,
mask ,
2022-09-21 06:44:46 +00:00
width ,
height ,
fit = False ,
) :
2022-09-08 11:34:03 +00:00
init_image = None
init_mask = None
2022-09-23 08:57:50 +00:00
if not img :
2022-09-13 17:17:14 +00:00
return None , None
2022-09-08 11:34:03 +00:00
2022-09-21 06:44:46 +00:00
image = self . _load_img (
2022-09-23 08:57:50 +00:00
img ,
2022-09-21 06:44:46 +00:00
width ,
height ,
2022-10-05 02:47:21 +00:00
)
2022-09-08 11:34:03 +00:00
2022-10-06 14:39:08 +00:00
if image . width < self . width and image . height < self . height :
print ( f ' >> WARNING: img2img and inpainting may produce unexpected results with initial images smaller than { self . width } x { self . height } in both dimensions ' )
2022-09-13 17:17:14 +00:00
# if image has a transparent area and no mask was provided, then try to generate mask
2022-10-06 14:39:08 +00:00
if self . _has_transparency ( image ) :
self . _transparency_check_and_warning ( image , mask )
2022-09-13 17:17:14 +00:00
# this returns a torch tensor
2022-10-06 14:39:08 +00:00
init_mask = self . _create_init_mask ( image , width , height , fit = fit )
2022-10-04 01:08:32 +00:00
if ( image . width * image . height ) > ( self . width * self . height ) :
print ( " >> This input is larger than your defaults. If you run out of memory, please use a smaller image. " )
init_image = self . _create_init_image ( image , width , height , fit = fit ) # this returns a torch tensor
2022-09-08 11:34:03 +00:00
2022-09-23 08:57:50 +00:00
if mask :
2022-09-13 17:17:14 +00:00
mask_image = self . _load_img (
2022-10-04 01:08:32 +00:00
mask , width , height ) # this returns an Image
init_mask = self . _create_init_mask ( mask_image , width , height , fit = fit )
2022-09-08 11:34:03 +00:00
2022-09-13 17:17:14 +00:00
return init_image , init_mask
2022-09-08 11:34:03 +00:00
2022-09-23 11:14:28 +00:00
def _make_base ( self ) :
if not self . generators . get ( ' base ' ) :
2022-10-08 15:37:23 +00:00
from ldm . invoke . generator import Generator
2022-09-23 11:14:28 +00:00
self . generators [ ' base ' ] = Generator ( self . model , self . precision )
return self . generators [ ' base ' ]
2022-09-06 00:40:10 +00:00
def _make_img2img ( self ) :
if not self . generators . get ( ' img2img ' ) :
2022-10-08 15:37:23 +00:00
from ldm . invoke . generator . img2img import Img2Img
2022-09-17 17:56:25 +00:00
self . generators [ ' img2img ' ] = Img2Img ( self . model , self . precision )
2022-09-06 00:40:10 +00:00
return self . generators [ ' img2img ' ]
2022-09-17 17:56:25 +00:00
2022-09-12 19:37:26 +00:00
def _make_embiggen ( self ) :
if not self . generators . get ( ' embiggen ' ) :
2022-10-08 15:37:23 +00:00
from ldm . invoke . generator . embiggen import Embiggen
2022-09-17 17:56:25 +00:00
self . generators [ ' embiggen ' ] = Embiggen ( self . model , self . precision )
2022-09-12 19:37:26 +00:00
return self . generators [ ' embiggen ' ]
2022-09-06 00:40:10 +00:00
def _make_txt2img ( self ) :
if not self . generators . get ( ' txt2img ' ) :
2022-10-08 15:37:23 +00:00
from ldm . invoke . generator . txt2img import Txt2Img
2022-09-17 17:56:25 +00:00
self . generators [ ' txt2img ' ] = Txt2Img ( self . model , self . precision )
2022-09-24 08:29:06 +00:00
self . generators [ ' txt2img ' ] . free_gpu_mem = self . free_gpu_mem
2022-09-06 00:40:10 +00:00
return self . generators [ ' txt2img ' ]
2022-09-29 22:58:06 +00:00
def _make_txt2img2img ( self ) :
if not self . generators . get ( ' txt2img2 ' ) :
2022-10-08 15:37:23 +00:00
from ldm . invoke . generator . txt2img2img import Txt2Img2Img
2022-09-29 22:58:06 +00:00
self . generators [ ' txt2img2 ' ] = Txt2Img2Img ( self . model , self . precision )
self . generators [ ' txt2img2 ' ] . free_gpu_mem = self . free_gpu_mem
return self . generators [ ' txt2img2 ' ]
2022-09-06 00:40:10 +00:00
def _make_inpaint ( self ) :
if not self . generators . get ( ' inpaint ' ) :
2022-10-08 15:37:23 +00:00
from ldm . invoke . generator . inpaint import Inpaint
2022-09-17 17:56:25 +00:00
self . generators [ ' inpaint ' ] = Inpaint ( self . model , self . precision )
2022-09-06 00:40:10 +00:00
return self . generators [ ' inpaint ' ]
def load_model ( self ) :
""" Load and initialize the model from configuration variables passed at object creation time """
if self . model is None :
seed_everything ( random . randrange ( 0 , np . iinfo ( np . uint32 ) . max ) )
try :
2022-09-14 11:02:31 +00:00
model = self . _load_model_from_config ( self . config , self . weights )
2022-09-06 00:40:10 +00:00
if self . embedding_path is not None :
model . embedding_manager . load (
2022-09-17 17:56:25 +00:00
self . embedding_path , self . precision == ' float32 ' or self . precision == ' autocast '
2022-09-06 00:40:10 +00:00
)
self . model = model . to ( self . device )
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
self . model . cond_stage_model . device = self . device
except AttributeError as e :
print ( f ' >> Error loading model. { str ( e ) } ' , file = sys . stderr )
print ( traceback . format_exc ( ) , file = sys . stderr )
raise SystemExit from e
self . _set_sampler ( )
for m in self . model . modules ( ) :
if isinstance ( m , ( nn . Conv2d , nn . ConvTranspose2d ) ) :
m . _orig_padding_mode = m . padding_mode
return self . model
2022-09-18 13:47:57 +00:00
def correct_colors ( self ,
image_list ,
reference_image_path ,
image_callback = None ) :
reference_image = Image . open ( reference_image_path )
correction_target = cv2 . cvtColor ( np . asarray ( reference_image ) ,
cv2 . COLOR_RGB2LAB )
for r in image_list :
image , seed = r
image = cv2 . cvtColor ( np . asarray ( image ) ,
cv2 . COLOR_RGB2LAB )
image = skimage . exposure . match_histograms ( image ,
correction_target ,
channel_axis = 2 )
image = Image . fromarray (
cv2 . cvtColor ( image , cv2 . COLOR_LAB2RGB ) . astype ( " uint8 " )
)
if image_callback is not None :
image_callback ( image , seed )
else :
r [ 0 ] = image
2022-09-06 00:40:10 +00:00
def upscale_and_reconstruct ( self ,
image_list ,
2022-09-18 19:01:05 +00:00
facetool = ' gfpgan ' ,
2022-09-06 00:40:10 +00:00
upscale = None ,
strength = 0.0 ,
2022-09-18 19:01:05 +00:00
codeformer_fidelity = 0.75 ,
2022-09-06 00:40:10 +00:00
save_original = False ,
2022-09-28 15:48:11 +00:00
image_callback = None ,
prefix = None ,
) :
2022-09-06 00:40:10 +00:00
for r in image_list :
image , seed = r
try :
if strength > 0 :
2022-09-23 07:40:31 +00:00
if self . gfpgan is not None or self . codeformer is not None :
2022-09-24 07:54:22 +00:00
if facetool == ' gfpgan ' :
if self . gfpgan is None :
2022-09-23 07:40:31 +00:00
print ( ' >> GFPGAN not found. Face restoration is disabled. ' )
2022-09-24 07:54:22 +00:00
else :
image = self . gfpgan . process ( image , strength , seed )
if facetool == ' codeformer ' :
if self . codeformer is None :
print ( ' >> CodeFormer not found. Face restoration is disabled. ' )
else :
2022-09-24 13:33:12 +00:00
cf_device = ' cpu ' if str ( self . device ) == ' mps ' else self . device
image = self . codeformer . process ( image = image , strength = strength , device = cf_device , seed = seed , fidelity = codeformer_fidelity )
2022-09-18 19:01:05 +00:00
else :
2022-09-13 17:17:14 +00:00
print ( " >> Face Restoration is disabled. " )
2022-09-25 22:11:59 +00:00
if upscale is not None :
if self . esrgan is not None :
if len ( upscale ) < 2 :
upscale . append ( 0.75 )
image = self . esrgan . process (
image , upscale [ 1 ] , seed , int ( upscale [ 0 ] ) )
else :
print ( " >> ESRGAN is disabled. Image not upscaled. " )
2022-09-06 00:40:10 +00:00
except Exception as e :
print (
f ' >> Error running RealESRGAN or GFPGAN. Your image was not upscaled. \n { e } '
)
if image_callback is not None :
2022-09-28 15:48:11 +00:00
image_callback ( image , seed , upscaled = True , use_prefix = prefix )
2022-09-06 00:40:10 +00:00
else :
r [ 0 ] = image
# to help WebGUI - front end to generator util function
2022-09-13 17:17:14 +00:00
def sample_to_image ( self , samples ) :
2022-09-23 11:14:28 +00:00
return self . _make_base ( ) . sample_to_image ( samples )
2022-09-06 00:40:10 +00:00
def _set_sampler ( self ) :
msg = f ' >> Setting Sampler to { self . sampler_name } '
if self . sampler_name == ' plms ' :
self . sampler = PLMSSampler ( self . model , device = self . device )
elif self . sampler_name == ' ddim ' :
self . sampler = DDIMSampler ( self . model , device = self . device )
elif self . sampler_name == ' k_dpm_2_a ' :
self . sampler = KSampler (
self . model , ' dpm_2_ancestral ' , device = self . device
)
elif self . sampler_name == ' k_dpm_2 ' :
self . sampler = KSampler ( self . model , ' dpm_2 ' , device = self . device )
elif self . sampler_name == ' k_euler_a ' :
self . sampler = KSampler (
self . model , ' euler_ancestral ' , device = self . device
)
elif self . sampler_name == ' k_euler ' :
self . sampler = KSampler ( self . model , ' euler ' , device = self . device )
elif self . sampler_name == ' k_heun ' :
self . sampler = KSampler ( self . model , ' heun ' , device = self . device )
elif self . sampler_name == ' k_lms ' :
self . sampler = KSampler ( self . model , ' lms ' , device = self . device )
else :
msg = f ' >> Unsupported Sampler: { self . sampler_name } , Defaulting to plms '
self . sampler = PLMSSampler ( self . model , device = self . device )
print ( msg )
2022-10-08 15:37:23 +00:00
# Be warned: config is the path to the model config file, not the invoke conf file!
2022-09-14 11:02:31 +00:00
# Also note that we can get config and weights from self, so why do we need to
# pass them as args?
def _load_model_from_config ( self , config , weights ) :
print ( f ' >> Loading model from { weights } ' )
2022-09-07 17:23:53 +00:00
# for usage statistics
device_type = choose_torch_device ( )
if device_type == ' cuda ' :
2022-09-13 17:17:14 +00:00
torch . cuda . reset_peak_memory_stats ( )
2022-09-07 17:23:53 +00:00
tic = time . time ( )
# this does the work
2022-09-14 11:02:31 +00:00
c = OmegaConf . load ( config )
2022-09-16 17:09:04 +00:00
with open ( weights , ' rb ' ) as f :
weight_bytes = f . read ( )
self . model_hash = self . _cached_sha256 ( weights , weight_bytes )
pl_sd = torch . load ( io . BytesIO ( weight_bytes ) , map_location = ' cpu ' )
del weight_bytes
2022-09-14 11:02:31 +00:00
sd = pl_sd [ ' state_dict ' ]
model = instantiate_from_config ( c . model )
m , u = model . load_state_dict ( sd , strict = False )
2022-09-17 17:56:25 +00:00
if self . precision == ' float16 ' :
2022-09-21 04:32:29 +00:00
print ( ' >> Using faster float16 precision ' )
2022-09-17 17:56:25 +00:00
model . to ( torch . float16 )
2022-09-06 00:40:10 +00:00
else :
2022-09-21 04:32:29 +00:00
print ( ' >> Using more accurate float32 precision ' )
2022-09-17 17:56:25 +00:00
2022-09-10 14:02:43 +00:00
model . to ( self . device )
model . eval ( )
2022-09-07 17:23:53 +00:00
# usage statistics
toc = time . time ( )
print (
f ' >> Model loaded in ' , ' %4.2f s ' % ( toc - tic )
)
2022-09-14 11:02:31 +00:00
if self . _has_cuda ( ) :
2022-09-07 17:23:53 +00:00
print (
' >> Max VRAM used to load the model: ' ,
' %4.2f G ' % ( torch . cuda . max_memory_allocated ( ) / 1e9 ) ,
' \n >> Current VRAM usage: '
' %4.2f G ' % ( torch . cuda . memory_allocated ( ) / 1e9 ) ,
)
2022-09-06 00:40:10 +00:00
return model
2022-10-04 01:08:32 +00:00
def _load_img ( self , img , width , height ) - > Image :
2022-09-23 08:57:50 +00:00
if isinstance ( img , Image . Image ) :
image = img
print (
f ' >> using provided input image of size { image . width } x { image . height } '
)
2022-09-24 08:54:57 +00:00
elif isinstance ( img , str ) :
2022-09-23 08:57:50 +00:00
assert os . path . exists ( img ) , f ' >> { img } : File not found '
image = Image . open ( img )
print (
f ' >> loaded input image of size { image . width } x { image . height } from { img } '
)
else :
image = Image . open ( img )
print (
f ' >> loaded input image of size { image . width } x { image . height } '
)
2022-10-07 16:05:33 +00:00
image = ImageOps . exif_transpose ( image )
2022-10-04 01:08:32 +00:00
return image
def _create_init_image ( self , image , width , height , fit = True ) :
image = image . convert ( ' RGB ' )
2022-09-06 00:40:10 +00:00
if fit :
2022-09-13 17:17:14 +00:00
image = self . _fit_image ( image , ( width , height ) )
2022-09-06 00:40:10 +00:00
else :
image = self . _squeeze_image ( image )
image = np . array ( image ) . astype ( np . float32 ) / 255.0
image = image [ None ] . transpose ( 0 , 3 , 1 , 2 )
image = torch . from_numpy ( image )
2022-09-13 17:17:14 +00:00
image = 2.0 * image - 1.0
2022-09-08 11:34:03 +00:00
return image . to ( self . device )
2022-09-06 00:40:10 +00:00
2022-10-05 02:47:21 +00:00
def _create_init_mask ( self , image , width , height , fit = True ) :
2022-09-06 00:40:10 +00:00
# convert into a black/white mask
2022-09-08 11:34:03 +00:00
image = self . _image_to_mask ( image )
2022-09-06 00:40:10 +00:00
image = image . convert ( ' RGB ' )
2022-10-04 01:08:32 +00:00
# now we adjust the size
if fit :
image = self . _fit_image ( image , ( width , height ) )
else :
image = self . _squeeze_image ( image )
2022-09-13 17:17:14 +00:00
image = image . resize ( ( image . width / / downsampling , image . height / /
2022-09-24 08:37:34 +00:00
downsampling ) , resample = Image . Resampling . NEAREST )
2022-09-06 00:40:10 +00:00
image = np . array ( image )
image = image . astype ( np . float32 ) / 255.0
image = image [ None ] . transpose ( 0 , 3 , 1 , 2 )
image = torch . from_numpy ( image )
2022-09-08 11:34:03 +00:00
return image . to ( self . device )
2022-09-06 00:40:10 +00:00
# The mask is expected to have the region to be inpainted
# with alpha transparency. It converts it into a black/white
# image with the transparent part black.
2022-09-08 11:34:03 +00:00
def _image_to_mask ( self , mask_image , invert = False ) - > Image :
# Obtain the mask from the transparency channel
mask = Image . new ( mode = " L " , size = mask_image . size , color = 255 )
mask . putdata ( mask_image . getdata ( band = 3 ) )
if invert :
mask = ImageOps . invert ( mask )
return mask
2022-09-06 00:40:10 +00:00
2022-09-13 17:17:14 +00:00
def _has_transparency ( self , image ) :
2022-09-06 00:40:10 +00:00
if image . info . get ( " transparency " , None ) is not None :
return True
if image . mode == " P " :
transparent = image . info . get ( " transparency " , - 1 )
for _ , index in image . getcolors ( ) :
if index == transparent :
return True
elif image . mode == " RGBA " :
extrema = image . getextrema ( )
if extrema [ 3 ] [ 0 ] < 255 :
return True
return False
2022-09-13 17:17:14 +00:00
def _check_for_erasure ( self , image ) :
2022-09-08 11:34:03 +00:00
width , height = image . size
2022-09-13 17:17:14 +00:00
pixdata = image . load ( )
colored = 0
2022-09-08 11:34:03 +00:00
for y in range ( height ) :
for x in range ( width ) :
if pixdata [ x , y ] [ 3 ] == 0 :
r , g , b , _ = pixdata [ x , y ]
if ( r , g , b ) != ( 0 , 0 , 0 ) and \
( r , g , b ) != ( 255 , 255 , 255 ) :
colored + = 1
return colored == 0
2022-10-07 01:00:27 +00:00
def _transparency_check_and_warning ( self , image , mask ) :
2022-10-06 14:39:08 +00:00
if not mask :
print (
' >> Initial image has transparent areas. Will inpaint in these regions. ' )
if self . _check_for_erasure ( image ) :
print (
' >> WARNING: Colors underneath the transparent region seem to have been erased. \n ' ,
' >> Inpainting will be suboptimal. Please preserve the colors when making \n ' ,
' >> a transparency mask, or provide mask explicitly using --init_mask (-M). '
)
2022-09-13 17:17:14 +00:00
def _squeeze_image ( self , image ) :
x , y , resize_needed = self . _resolution_check ( image . width , image . height )
2022-09-06 00:40:10 +00:00
if resize_needed :
2022-09-13 17:17:14 +00:00
return InitImageResizer ( image ) . resize ( x , y )
2022-09-06 00:40:10 +00:00
return image
2022-09-13 17:17:14 +00:00
def _fit_image ( self , image , max_dimensions ) :
w , h = max_dimensions
2022-09-06 00:40:10 +00:00
print (
f ' >> image will be resized to fit inside a box { w } x { h } in size. '
)
if image . width > image . height :
2022-09-13 17:17:14 +00:00
h = None # by setting h to none, we tell InitImageResizer to fit into the width and calculate height
2022-09-06 00:40:10 +00:00
elif image . height > image . width :
2022-09-13 17:17:14 +00:00
w = None # ditto for w
2022-09-06 00:40:10 +00:00
else :
pass
2022-09-13 17:17:14 +00:00
# note that InitImageResizer does the multiple of 64 truncation internally
image = InitImageResizer ( image ) . resize ( w , h )
2022-09-06 00:40:10 +00:00
print (
f ' >> after adjusting image dimensions to be multiples of 64, init image is { image . width } x { image . height } '
2022-09-13 17:17:14 +00:00
)
2022-09-06 00:40:10 +00:00
return image
def _resolution_check ( self , width , height , log = False ) :
resize_needed = False
w , h = map (
lambda x : x - x % 64 , ( width , height )
) # resize to integer multiple of 64
if h != height or w != width :
if log :
print (
f ' >> Provided width and height must be multiples of 64. Auto-resizing to { w } x { h } '
)
height = h
2022-09-13 17:17:14 +00:00
width = w
2022-09-06 00:40:10 +00:00
resize_needed = True
return width , height , resize_needed
2022-09-14 11:02:31 +00:00
def _has_cuda ( self ) :
return self . device . type == ' cuda '
2022-09-16 17:09:04 +00:00
def _cached_sha256 ( self , path , data ) :
dirname = os . path . dirname ( path )
basename = os . path . basename ( path )
base , _ = os . path . splitext ( basename )
hashpath = os . path . join ( dirname , base + ' .sha256 ' )
if os . path . exists ( hashpath ) and os . path . getmtime ( path ) < = os . path . getmtime ( hashpath ) :
with open ( hashpath ) as f :
hash = f . read ( )
return hash
print ( f ' >> Calculating sha256 hash of weights file ' )
tic = time . time ( )
sha = hashlib . sha256 ( )
sha . update ( data )
hash = sha . hexdigest ( )
toc = time . time ( )
print ( f ' >> sha256 = { hash } ' , ' ( %4.2f s) ' % ( toc - tic ) )
with open ( hashpath , ' w ' ) as f :
f . write ( hash )
return hash
2022-09-25 08:03:28 +00:00
def write_intermediate_images ( self , modulus , path ) :
counter = - 1
if not os . path . exists ( path ) :
os . makedirs ( path )
def callback ( img ) :
nonlocal counter
counter + = 1
if counter % modulus != 0 :
return ;
image = self . sample_to_image ( img )
image . save ( os . path . join ( path , f ' { counter : 03 } .png ' ) , ' PNG ' )
return callback
2022-10-03 18:39:58 +00:00
def _pairwise ( iterable ) :
" s -> (s0, s1), (s2, s3), (s4, s5), ... "
a = iter ( iterable )
return zip ( a , a )