InvokeAI/invokeai/app/invocations/metadata.py

227 lines
9.2 KiB
Python
Raw Normal View History

from typing import Any, Literal, Optional, Union
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InputField,
InvocationContext,
MetadataField,
OutputField,
UIType,
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.shared.fields import FieldDescriptions
from ...version import __version__
2023-07-27 14:54:01 +00:00
class MetadataItemField(BaseModel):
label: str = Field(description=FieldDescriptions.metadata_item_label)
value: Any = Field(description=FieldDescriptions.metadata_item_value)
class LoRAMetadataField(BaseModel):
"""LoRA Metadata Field"""
lora: LoRAModelField = Field(description=FieldDescriptions.lora_model)
weight: float = Field(description=FieldDescriptions.lora_weight)
class IPAdapterMetadataField(BaseModel):
"""IP Adapter Field, minus the CLIP Vision Encoder model"""
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: IPAdapterModelField = Field(
description="The IP-Adapter model.",
)
weight: Union[float, list[float]] = Field(
description="The weight given to the IP-Adapter",
)
begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)")
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")
@invocation_output("metadata_item_output")
class MetadataItemOutput(BaseInvocationOutput):
"""Metadata Item Output"""
item: MetadataItemField = OutputField(description="Metadata Item")
@invocation("metadata_item", title="Metadata Item", tags=["metadata"], category="metadata", version="1.0.0")
class MetadataItemInvocation(BaseInvocation):
"""Used to create an arbitrary metadata item. Provide "label" and make a connection to "value" to store that data as the value."""
label: str = InputField(description=FieldDescriptions.metadata_item_label)
value: Any = InputField(description=FieldDescriptions.metadata_item_value, ui_type=UIType.Any)
def invoke(self, context: InvocationContext) -> MetadataItemOutput:
return MetadataItemOutput(item=MetadataItemField(label=self.label, value=self.value))
@invocation_output("metadata_output")
class MetadataOutput(BaseInvocationOutput):
metadata: MetadataField = OutputField(description="Metadata Dict")
@invocation("metadata", title="Metadata", tags=["metadata"], category="metadata", version="1.0.0")
class MetadataInvocation(BaseInvocation):
"""Takes a MetadataItem or collection of MetadataItems and outputs a MetadataDict."""
items: Union[list[MetadataItemField], MetadataItemField] = InputField(
description=FieldDescriptions.metadata_item_polymorphic
)
def invoke(self, context: InvocationContext) -> MetadataOutput:
if isinstance(self.items, MetadataItemField):
# single metadata item
data = {self.items.label: self.items.value}
else:
# collection of metadata items
data = {item.label: item.value for item in self.items}
# add app version
data.update({"app_version": __version__})
return MetadataOutput(metadata=MetadataField.model_validate(data))
@invocation("merge_metadata", title="Metadata Merge", tags=["metadata"], category="metadata", version="1.0.0")
class MergeMetadataInvocation(BaseInvocation):
"""Merged a collection of MetadataDict into a single MetadataDict."""
collection: list[MetadataField] = InputField(description=FieldDescriptions.metadata_collection)
def invoke(self, context: InvocationContext) -> MetadataOutput:
data = {}
for item in self.collection:
data.update(item.model_dump())
return MetadataOutput(metadata=MetadataField.model_validate(data))
GENERATION_MODES = Literal[
"txt2img", "img2img", "inpaint", "outpaint", "sdxl_txt2img", "sdxl_img2img", "sdxl_inpaint", "sdxl_outpaint"
]
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.0.1")
class CoreMetadataInvocation(BaseInvocation):
"""Collects core generation metadata into a MetadataField"""
generation_mode: Optional[GENERATION_MODES] = InputField(
default=None,
description="The generation mode that output this image",
)
positive_prompt: Optional[str] = InputField(default=None, description="The positive prompt parameter")
negative_prompt: Optional[str] = InputField(default=None, description="The negative prompt parameter")
width: Optional[int] = InputField(default=None, description="The width parameter")
height: Optional[int] = InputField(default=None, description="The height parameter")
seed: Optional[int] = InputField(default=None, description="The seed used for noise generation")
rand_device: Optional[str] = InputField(default=None, description="The device used for random number generation")
cfg_scale: Optional[float] = InputField(default=None, description="The classifier-free guidance scale parameter")
steps: Optional[int] = InputField(default=None, description="The number of steps used for inference")
scheduler: Optional[str] = InputField(default=None, description="The scheduler used for inference")
seamless_x: Optional[bool] = InputField(default=None, description="Whether seamless tiling was used on the X axis")
seamless_y: Optional[bool] = InputField(default=None, description="Whether seamless tiling was used on the Y axis")
clip_skip: Optional[int] = InputField(
default=None,
description="The number of skipped CLIP layers",
)
model: Optional[MainModelField] = InputField(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlField]] = InputField(
default=None, description="The ControlNets used for inference"
)
ipAdapters: Optional[list[IPAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
t2iAdapters: Optional[list[T2IAdapterField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
loras: Optional[list[LoRAMetadataField]] = InputField(default=None, description="The LoRAs used for inference")
strength: Optional[float] = InputField(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Optional[str] = InputField(
default=None,
description="The name of the initial image",
)
vae: Optional[VAEModelField] = InputField(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# High resolution fix metadata.
hrf_enabled: Optional[bool] = InputField(
default=None,
description="Whether or not high resolution fix was enabled.",
)
# TODO: should this be stricter or do we just let the UI handle it?
hrf_method: Optional[str] = InputField(
default=None,
description="The high resolution fix upscale method.",
)
hrf_strength: Optional[float] = InputField(
default=None,
description="The high resolution fix img2img strength used in the upscale pass.",
)
# SDXL
positive_style_prompt: Optional[str] = InputField(
default=None,
description="The positive style prompt parameter",
)
negative_style_prompt: Optional[str] = InputField(
default=None,
description="The negative style prompt parameter",
)
# SDXL Refiner
refiner_model: Optional[MainModelField] = InputField(
default=None,
description="The SDXL Refiner model used",
)
refiner_cfg_scale: Optional[float] = InputField(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Optional[int] = InputField(
default=None,
description="The number of steps used for the refiner",
)
refiner_scheduler: Optional[str] = InputField(
default=None,
description="The scheduler used for the refiner",
)
refiner_positive_aesthetic_score: Optional[float] = InputField(
default=None,
description="The aesthetic score used for the refiner",
)
refiner_negative_aesthetic_score: Optional[float] = InputField(
default=None,
description="The aesthetic score used for the refiner",
)
refiner_start: Optional[float] = InputField(
default=None,
description="The start value used for refiner denoising",
)
2023-07-18 14:26:45 +00:00
def invoke(self, context: InvocationContext) -> MetadataOutput:
"""Collects and outputs a CoreMetadata object"""
return MetadataOutput(
metadata=MetadataField.model_validate(
self.model_dump(exclude_none=True, exclude={"id", "type", "is_intermediate", "use_cache"})
)
)
model_config = ConfigDict(extra="allow")