InvokeAI/invokeai/backend/stable_diffusion/multi_diffusion_pipeline.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

188 lines
8.0 KiB
Python
Raw Normal View History

from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Callable, Optional
import torch
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
PipelineIntermediateState,
StableDiffusionGeneratorPipeline,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import TextConditioningData
from invokeai.backend.tiles.utils import TBLR
@dataclass
class MultiDiffusionRegionConditioning:
# Region coords in latent space.
region: TBLR
text_conditioning_data: TextConditioningData
control_data: list[ControlNetData]
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
"""A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising."""
# Plan:
# - latents_from_embeddings(...) will accept all of the same global params, but the "local" params will be bundled
# together with tile locations.
# - What is "local"?:
# - conditioning_data could be local, but for upscaling will be global
# - control_data makes more sense as global, then we split it up as we split up the latents
# - ip_adapter_data sort of has 3 modes to consider:
# - global style: applied in the same way to all tiles
# - local style: apply different IP-Adapters to each tile
# - global structure: we want to crop the input image and run the IP-Adapter on each separately
# - t2i_adapter_data won't be supported at first - it's not popular enough
# - All the inpainting params are global and need to be cropped accordingly
# - Local:
# - latents
# - conditioning_data
# - noise
# - control_data
# - ip_adapter_data (skip for now)
# - t2i_adapter_data (skip for now)
# - mask
# - masked_latents
# - is_gradient_mask ???
# - Can we support inpainting models in this node?
# - TBD, need to think about this more
# - step(...) remains mostly unmodified, is not overriden in this sub-class.
# - May need a cleaner AddsMaskGuidance implementation to handle this plan... we'll see.
def multi_diffusion_denoise(
self,
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning],
latents: torch.Tensor,
scheduler_step_kwargs: dict[str, Any],
noise: Optional[torch.Tensor],
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None],
) -> torch.Tensor:
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
return latents
batch_size, _, latent_height, latent_width = latents.shape
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
if noise is not None:
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
# full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
# TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after
# cropping into regions.
self._adjust_memory_efficient_attention(latents)
# Populate a weighted mask that will be used to combine the results from each region after every step.
# For now, we assume that each regions has the same weight (1.0).
region_weight_mask = torch.zeros(
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
)
for region_conditioning in multi_diffusion_conditioning:
region = region_conditioning.region
region_weight_mask[:, :, region.top : region.bottom, region.left : region.right] += 1.0
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
)
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t = t.expand(batch_size)
merged_latents = torch.zeros_like(latents)
merged_pred_original: torch.Tensor | None = None
for region_conditioning in multi_diffusion_conditioning:
# Run a denoising step on the region.
step_output = self._region_step(
region_conditioning=region_conditioning,
t=batched_t,
latents=latents,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
)
# Store the results from the region.
region = region_conditioning.region
merged_latents[:, :, region.top : region.bottom, region.left : region.right] += step_output.prev_sample
pred_orig_sample = getattr(step_output, "pred_original_sample", None)
if pred_orig_sample is not None:
# If one region has pred_original_sample, then we can assume that all regions will have it, because
# they all use the same scheduler.
if merged_pred_original is None:
merged_pred_original = torch.zeros_like(latents)
merged_pred_original[:, :, region.top : region.bottom, region.left : region.right] += (
pred_orig_sample
)
# Normalize the merged results.
latents = merged_latents / region_weight_mask
predicted_original = None
if merged_pred_original is not None:
predicted_original = merged_pred_original / region_weight_mask
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
)
)
return latents
@torch.inference_mode()
def _region_step(
self,
region_conditioning: MultiDiffusionRegionConditioning,
t: torch.Tensor,
latents: torch.Tensor,
step_index: int,
total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
):
use_regional_prompting = (
region_conditioning.text_conditioning_data.cond_regions is not None
or region_conditioning.text_conditioning_data.uncond_regions is not None
)
if use_regional_prompting:
raise NotImplementedError("Regional prompting is not yet supported in Multi-Diffusion.")
# Crop the inputs to the region.
region_latents = latents[
:,
:,
region_conditioning.region.top : region_conditioning.region.bottom,
region_conditioning.region.left : region_conditioning.region.right,
]
# Run the denoising step on the region.
return self.step(
t=t,
latents=region_latents,
conditioning_data=region_conditioning.text_conditioning_data,
step_index=step_index,
total_step_count=total_step_count,
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=region_conditioning.control_data,
)