InvokeAI/invokeai/app/invocations/conditioning.py

89 lines
3.4 KiB
Python
Raw Normal View History

import numpy as np
import torch
2024-02-16 23:03:02 +00:00
from PIL import Image
2024-02-16 23:03:02 +00:00
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InputField,
InvocationContext,
WithMetadata,
invocation,
)
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
@invocation(
"add_conditioning_mask",
title="Add Conditioning Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class AddConditioningMaskInvocation(BaseInvocation):
"""Add a mask to an existing conditioning tensor."""
conditioning: ConditioningField = InputField(description="The conditioning tensor to add a mask to.")
image: ImageField = InputField(
description="A mask image to add to the conditioning tensor. Only the first channel of the image is used. "
"Pixels <128 are excluded from the mask, pixels >=128 are included in the mask."
)
@staticmethod
2024-02-16 23:03:02 +00:00
def convert_image_to_mask(image: Image.Image) -> torch.Tensor:
"""Convert a PIL image to a uint8 mask tensor."""
np_image = np.array(image)
torch_image = torch.from_numpy(np_image[0, :, :])
mask = torch_image >= 128
return mask.to(dtype=torch.uint8)
def invoke(self, context: InvocationContext) -> ConditioningOutput:
image = context.services.images.get_pil_image(self.image.image_name)
mask = self.convert_image_to_mask(image)
mask_name = f"{context.graph_execution_state_id}__{self.id}_conditioning_mask"
context.services.latents.save(mask_name, mask)
self.conditioning.mask_name = mask_name
return ConditioningOutput(conditioning=self.conditioning)
2024-02-16 23:03:02 +00:00
@invocation(
"rectangle_mask",
title="Create Rectangle Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
"""Create a mask image containing a rectangular mask region."""
height: int = InputField(description="The height of the image.")
width: int = InputField(description="The width of the image.")
y_top: int = InputField(description="The top y-coordinate of the rectangle (inclusive).")
y_bottom: int = InputField(description="The bottom y-coordinate of the rectangle (exclusive).")
x_left: int = InputField(description="The left x-coordinate of the rectangle (inclusive).")
x_right: int = InputField(description="The right x-coordinate of the rectangle (exclusive).")
def invoke(self, context: InvocationContext) -> ImageOutput:
mask = np.zeros((self.height, self.width, 3), dtype=np.uint8)
mask[self.y_top : self.y_bottom, self.x_left : self.x_right, :] = 255
mask_image = Image.fromarray(mask)
image_dto = context.services.images.create(
image=mask_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)