InvokeAI/invokeai/frontend/install/model_install.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

865 lines
32 KiB
Python
Raw Normal View History

2023-02-13 04:59:18 +00:00
#!/usr/bin/env python
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
2023-02-21 19:12:57 +00:00
"""
This is the npyscreen frontend to the model installation application.
2023-02-17 19:34:48 +00:00
The work is actually done in backend code in model_install_backend.py.
2023-02-21 19:12:57 +00:00
"""
2023-02-13 04:59:18 +00:00
import argparse
import curses
2023-02-13 04:59:18 +00:00
import os
import sys
import textwrap
2023-02-13 04:59:18 +00:00
from argparse import Namespace
from multiprocessing import Process
from multiprocessing.connection import Connection, Pipe
2023-02-21 19:12:57 +00:00
from pathlib import Path
2023-03-03 06:02:00 +00:00
from shutil import get_terminal_size
from typing import List
2023-02-13 04:59:18 +00:00
import logging
2023-02-13 04:59:18 +00:00
import npyscreen
import torch
from npyscreen import widget
2023-02-13 04:59:18 +00:00
from omegaconf import OmegaConf
2023-04-29 13:43:40 +00:00
import invokeai.backend.util.logging as logger
2023-03-03 06:02:00 +00:00
from ...backend.install.model_install_backend import (
2023-03-03 06:02:00 +00:00
Dataset_path,
default_config_file,
default_dataset,
install_requested_models,
recommended_datasets,
ModelInstallList,
UserSelections,
2023-03-03 06:02:00 +00:00
)
from ...backend import ModelManager
2023-03-03 06:02:00 +00:00
from ...backend.util import choose_precision, choose_torch_device
from ...backend.util.logging import InvokeAILogger
2023-03-03 06:02:00 +00:00
from .widgets import (
CenteredTitleText,
MultiSelectColumns,
SingleSelectColumns,
2023-03-03 06:02:00 +00:00
OffsetButtonPress,
TextBox,
BufferBox,
FileBox,
2023-03-03 06:02:00 +00:00
set_min_terminal_size,
select_stable_diffusion_config_file,
2023-03-03 06:02:00 +00:00
)
from invokeai.app.services.config import get_invokeai_config
# minimum size for the UI
2023-06-05 03:54:52 +00:00
MIN_COLS = 140
MIN_LINES = 50
2023-02-13 04:59:18 +00:00
2023-05-25 13:39:45 +00:00
config = get_invokeai_config(argv=[])
2023-03-03 06:02:00 +00:00
class addModelsForm(npyscreen.FormMultiPage):
# for responsive resizing - disabled
2023-03-03 06:02:00 +00:00
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
# for persistence
current_tab = 0
2023-03-03 06:02:00 +00:00
2023-02-19 21:55:09 +00:00
def __init__(self, parentApp, name, multipage=False, *args, **keywords):
2023-02-21 19:12:57 +00:00
self.multipage = multipage
super().__init__(parentApp=parentApp, name=name, *args, **keywords)
def create(self):
self.keypress_timeout = 10
self.counter = 0
self.subprocess_connection = None
model_manager = ModelManager(config.model_conf_path)
2023-05-30 17:49:43 +00:00
self.starter_models = OmegaConf.load(Dataset_path)['diffusers']
self.installed_diffusers_models = self.list_additional_diffusers_models(
model_manager,
self.starter_models,
)
self.installed_cn_models = model_manager.list_controlnet_models()
self.installed_lora_models = model_manager.list_lora_models()
self.installed_ti_models = model_manager.list_ti_models()
2023-02-13 04:59:18 +00:00
try:
self.existing_models = OmegaConf.load(default_config_file())
2023-02-13 04:59:18 +00:00
except:
self.existing_models = dict()
self.starter_model_list = list(self.starter_models.keys())
2023-02-21 19:12:57 +00:00
self.installed_models = dict()
2023-02-13 04:59:18 +00:00
window_width, window_height = get_terminal_size()
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.FixedText,
2023-02-21 19:12:57 +00:00
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields,",
editable=False,
2023-03-03 06:02:00 +00:00
color="CAUTION",
)
self.add_widget_intelligent(
npyscreen.FixedText,
2023-02-22 02:33:44 +00:00
value="Use cursor arrows to make a selection, and space to toggle checkboxes.",
editable=False,
2023-03-03 06:02:00 +00:00
color="CAUTION",
)
self.nextrely += 1
self.tabs = self.add_widget_intelligent(
SingleSelectColumns,
values=[
'STARTER MODELS',
'MORE DIFFUSION MODELS',
'CONTROLNET MODELS',
'LORA/LYCORIS MODELS',
'TEXTUAL INVERSION MODELS',
],
value=[self.current_tab],
columns = 5,
max_height = 2,
relx=8,
scroll_exit = True,
)
self.tabs.on_changed = self._toggle_tables
top_of_table = self.nextrely
self.starter_diffusers_models = self.add_starter_diffusers()
bottom_of_table = self.nextrely
self.nextrely = top_of_table
self.diffusers_models = self.add_diffusers_widgets(
predefined_models=self.installed_diffusers_models,
model_type='Diffusers',
window_width=window_width,
)
bottom_of_table = max(bottom_of_table,self.nextrely)
self.nextrely = top_of_table
self.controlnet_models = self.add_model_widgets(
predefined_models=self.installed_cn_models,
model_type='ControlNet',
window_width=window_width,
)
bottom_of_table = max(bottom_of_table,self.nextrely)
self.nextrely = top_of_table
self.lora_models = self.add_model_widgets(
predefined_models=self.installed_lora_models,
model_type="LoRA/LyCORIS",
window_width=window_width,
)
bottom_of_table = max(bottom_of_table,self.nextrely)
self.nextrely = top_of_table
self.ti_models = self.add_model_widgets(
predefined_models=self.installed_ti_models,
model_type="Textual Inversion Embeddings",
window_width=window_width,
)
bottom_of_table = max(bottom_of_table,self.nextrely)
self.nextrely = bottom_of_table+1
self.monitor = self.add_widget_intelligent(
BufferBox,
name='Log Messages',
editable=False,
max_height = 15,
)
self.nextrely += 1
done_label = "INSTALL/REMOVE"
back_label = "BACK"
button_length = len(done_label)
button_offset = 0
if self.multipage:
button_length += len(back_label) + 1
button_offset += len(back_label) + 1
self.back_button = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=back_label,
relx=(window_width - button_length) // 2,
rely=-3,
when_pressed_function=self.on_back,
)
self.ok_button = self.add_widget_intelligent(
npyscreen.ButtonPress, # OffsetButtonPress,
name=done_label,
relx=button_offset + 1 + (window_width - button_length) // 2,
rely=-3,
when_pressed_function=self.on_execute
)
self.cancel = self.add_widget_intelligent(
npyscreen.ButtonPress,
name="QUIT",
rely=-3,
relx=window_width-20,
when_pressed_function=self.on_cancel,
)
# This restores the selected page on return from an installation
for i in range(1,self.current_tab+1):
self.tabs.h_cursor_line_down(1)
self._toggle_tables([self.current_tab])
############# diffusers tab ##########
def add_starter_diffusers(self)->dict[str, npyscreen.widget]:
'''Add widgets responsible for selecting diffusers models'''
widgets = dict()
starter_model_labels = self._get_starter_model_labels()
recommended_models = [
x
for x in self.starter_model_list
if self.starter_models[x].get("recommended", False)
]
self.installed_models = sorted(
[x for x in list(self.starter_models.keys()) if x in self.existing_models]
)
widgets.update(
label1 = self.add_widget_intelligent(
CenteredTitleText,
name="Select from a starter set of Stable Diffusion models from HuggingFace.",
editable=False,
labelColor="CAUTION",
)
)
self.nextrely -= 1
# if user has already installed some initial models, then don't patronize them
# by showing more recommendations
show_recommended = not self.existing_models
widgets.update(
models_selected = self.add_widget_intelligent(
2023-06-05 02:00:11 +00:00
MultiSelectColumns,
columns=1,
name="Install Starter Models",
values=starter_model_labels,
value=[
self.starter_model_list.index(x)
for x in self.starter_model_list
if (show_recommended and x in recommended_models)\
or (x in self.existing_models)
],
max_height=len(starter_model_labels) + 1,
relx=4,
scroll_exit=True,
)
)
widgets.update(
purge_deleted = self.add_widget_intelligent(
npyscreen.Checkbox,
2023-05-30 17:49:43 +00:00
name="Purge unchecked diffusers models from disk",
value=False,
scroll_exit=True,
relx=4,
)
2023-02-22 02:33:44 +00:00
)
widgets['purge_deleted'].when_value_edited = lambda: self.sync_purge_buttons(widgets['purge_deleted'])
self.nextrely += 1
return widgets
############# Add a set of model install widgets ########
def add_model_widgets(self,
predefined_models: dict[str,bool],
model_type: str,
window_width: int=120,
install_prompt: str=None,
)->dict[str,npyscreen.widget]:
'''Generic code to create model selection widgets'''
widgets = dict()
model_list = sorted(predefined_models.keys())
if len(model_list) > 0:
max_width = max([len(x) for x in model_list])
columns = window_width // (max_width+6) # 6 characters for "[x] " and padding
columns = min(len(model_list),columns) or 1
prompt = install_prompt or f"Select the desired {model_type} models to install. Unchecked models will be purged from disk."
widgets.update(
label1 = self.add_widget_intelligent(
CenteredTitleText,
name=prompt,
editable=False,
labelColor="CAUTION",
)
)
widgets.update(
models_selected = self.add_widget_intelligent(
MultiSelectColumns,
columns=columns,
name=f"Install {model_type} Models",
values=model_list,
value=[
model_list.index(x)
for x in model_list
if predefined_models[x]
],
max_height=len(model_list)//columns + 1,
relx=4,
scroll_exit=True,
)
)
self.nextrely += 1
widgets.update(
label2 = self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Additional URLs or HuggingFace repo_ids to install (Space separated. Use shift-control-V to paste):",
relx=4,
color='CONTROL',
editable=False,
scroll_exit=True
)
2023-05-30 17:49:43 +00:00
)
self.nextrely -= 1
widgets.update(
download_ids = self.add_widget_intelligent(
TextBox,
max_height=4,
scroll_exit=True,
editable=True,
relx=4
)
)
return widgets
### Tab for arbitrary diffusers widgets ###
def add_diffusers_widgets(self,
predefined_models: dict[str,bool],
model_type: str='Diffusers',
window_width: int=120,
)->dict[str,npyscreen.widget]:
'''Similar to add_model_widgets() but adds some additional widgets at the bottom
to support the autoload directory'''
widgets = self.add_model_widgets(
predefined_models,
'Diffusers',
window_width,
install_prompt="Additional diffusers models already installed. Uncheck to purge from disk.",
)
self.nextrely += 2
widgets.update(
purge_deleted = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Purge unchecked diffusers models from disk",
value=False,
scroll_exit=True,
relx=4,
)
)
label = "Directory to scan for models to automatically import (<tab> autocompletes):"
self.nextrely += 2
widgets.update(
autoload_directory = self.add_widget_intelligent(
# npyscreen.TitleFilename,
FileBox,
max_height=3,
name=label,
select_dir=True,
must_exist=True,
use_two_lines=False,
labelColor="DANGER",
begin_entry_at=len(label)+1,
scroll_exit=True,
)
)
widgets.update(
autoscan_on_startup = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Scan and import from this directory each time InvokeAI starts",
value=False,
relx=4,
scroll_exit=True,
)
)
widgets['purge_deleted'].when_value_edited = lambda: self.sync_purge_buttons(widgets['purge_deleted'])
return widgets
def sync_purge_buttons(self,checkbox):
value = checkbox.value
self.starter_diffusers_models['purge_deleted'].value = value
self.diffusers_models['purge_deleted'].value = value
def resize(self):
super().resize()
if (s := self.starter_diffusers_models.get("models_selected")):
s.values = self._get_starter_model_labels()
def _toggle_tables(self, value=None):
2023-06-01 04:45:07 +00:00
selected_tab = value[0]
widgets = [
self.starter_diffusers_models,
self.diffusers_models,
self.controlnet_models,
self.lora_models,
self.ti_models,
]
for group in widgets:
for k,v in group.items():
v.hidden = True
v.editable = False
for k,v in widgets[selected_tab].items():
v.hidden = False
if not isinstance(v,(npyscreen.FixedText, npyscreen.TitleFixedText, CenteredTitleText)):
v.editable = True
self.__class__.current_tab = selected_tab # for persistence
self.display()
2023-02-21 19:12:57 +00:00
def _get_starter_model_labels(self) -> List[str]:
window_width, window_height = get_terminal_size()
label_width = 25
checkbox_width = 4
spacing_width = 2
description_width = window_width - label_width - checkbox_width - spacing_width
im = self.starter_models
names = self.starter_model_list
2023-02-21 19:12:57 +00:00
descriptions = [
im[x].description[0 : description_width - 3] + "..."
if len(im[x].description) > description_width
else im[x].description
for x in names
]
return [
2023-02-21 19:12:57 +00:00
f"%-{label_width}s %s" % (names[x], descriptions[x])
for x in range(0, len(names))
]
2023-02-13 04:59:18 +00:00
2023-05-30 17:49:43 +00:00
2023-02-21 19:12:57 +00:00
def _get_columns(self) -> int:
window_width, window_height = get_terminal_size()
2023-02-21 19:12:57 +00:00
cols = (
4
if window_width > 240
else 3
if window_width > 160
else 2
if window_width > 80
else 1
)
return min(cols, len(self.installed_models))
def on_execute(self):
self.monitor.entry_widget.buffer(['Processing...'],scroll_end=True)
self.marshall_arguments()
app = self.parentApp
2023-06-05 02:00:11 +00:00
self.ok_button.hidden = True
self.display()
# for communication with the subprocess
parent_conn, child_conn = Pipe()
p = Process(
target = process_and_execute,
kwargs=dict(
opt = app.program_opts,
selections = app.user_selections,
conn_out = child_conn,
)
)
p.start()
child_conn.close()
self.subprocess_connection = parent_conn
# process_and_execute(app.opt, app.user_selections)
def on_back(self):
self.parentApp.switchFormPrevious()
self.editing = False
def on_cancel(self):
self.parentApp.setNextForm(None)
self.parentApp.user_cancelled = True
self.editing = False
########## This routine monitors the child process that is performing model installation and removal #####
def while_waiting(self):
'''Called during idle periods. Main task is to update the Log Messages box with messages
from the child process that does the actual installation/removal'''
c = self.subprocess_connection
if not c:
return
monitor_widget = self.monitor.entry_widget
while c.poll():
try:
data = c.recv_bytes().decode('utf-8')
data.strip('\n')
# processing child is requesting user input to select the
# right configuration file
if data.startswith('*need v2 config'):
_,model_path,*_ = data.split(":",2)
self._return_v2_config(model_path)
# processing child is done
elif data=='*done*':
self._close_subprocess_and_regenerate_form()
break
# update the log message box
else:
monitor_widget.buffer(
textwrap.wrap(data,
width=monitor_widget.width,
subsequent_indent=' ',
),
scroll_end=True
)
self.display()
except (EOFError,OSError):
self.subprocess_connection = None
def _return_v2_config(self,model_path: str):
c = self.subprocess_connection
model_name = Path(model_path).name
message = select_stable_diffusion_config_file(model_name=model_name)
c.send_bytes(message.encode('utf-8'))
def _close_subprocess_and_regenerate_form(self):
app = self.parentApp
self.subprocess_connection.close()
self.subprocess_connection = None
self.monitor.entry_widget.buffer(['** Action Complete **'])
self.display()
# rebuild the form, saving log messages
saved_messages = self.monitor.entry_widget.values
app.main_form = app.addForm(
"MAIN", addModelsForm, name="Install Stable Diffusion Models"
)
app.switchForm('MAIN')
app.main_form.monitor.entry_widget.values = saved_messages
app.main_form.monitor.entry_widget.buffer([''],scroll_end=True)
###############################################################
def list_additional_diffusers_models(self,
manager: ModelManager,
starters:dict
)->dict[str,bool]:
'''Return a dict of all the currently installed models that are not on the starter list'''
model_info = manager.list_models()
additional_models = {
x:True for x in model_info \
if model_info[x]['format']=='diffusers' \
and x not in starters
}
return additional_models
def marshall_arguments(self):
2023-02-21 19:12:57 +00:00
"""
Assemble arguments and store as attributes of the application:
.starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml
True => Install
False => Remove
.scan_directory: Path to a directory of models to scan and import
.autoscan_on_startup: True if invokeai should scan and import at startup time
.import_model_paths: list of URLs, repo_ids and file paths to import
2023-02-21 19:12:57 +00:00
"""
# we're using a global here rather than storing the result in the parentapp
# due to some bug in npyscreen that is causing attributes to be lost
selections = self.parentApp.user_selections
# Starter models to install/remove
starter_models = dict(
map(
lambda x: (self.starter_model_list[x], True),
self.starter_diffusers_models['models_selected'].value,
2023-02-21 19:12:57 +00:00
)
)
selections.purge_deleted_models = self.starter_diffusers_models['purge_deleted'].value or \
self.diffusers_models['purge_deleted'].value
selections.install_models = [x for x in starter_models if x not in self.existing_models]
selections.remove_models = [x for x in self.starter_model_list if x in self.existing_models and x not in starter_models]
# "More" models
selections.import_model_paths = self.diffusers_models['download_ids'].value.split()
if diffusers_selected := self.diffusers_models.get('models_selected'):
selections.remove_models.extend([x
for x in diffusers_selected.values
if self.installed_diffusers_models[x]
and diffusers_selected.values.index(x) not in diffusers_selected.value
]
)
# TODO: REFACTOR THIS REPETITIVE CODE
if cn_models_selected := self.controlnet_models.get('models_selected'):
selections.install_cn_models = [cn_models_selected.values[x]
for x in cn_models_selected.value
if not self.installed_cn_models[cn_models_selected.values[x]]
]
selections.remove_cn_models = [x
for x in cn_models_selected.values
if self.installed_cn_models[x]
and cn_models_selected.values.index(x) not in cn_models_selected.value
]
if (additional_cns := self.controlnet_models['download_ids'].value.split()):
2023-05-30 17:49:43 +00:00
valid_cns = [x for x in additional_cns if '/' in x]
selections.install_cn_models.extend(valid_cns)
# same thing, for LoRAs
if loras_selected := self.lora_models.get('models_selected'):
selections.install_lora_models = [loras_selected.values[x]
for x in loras_selected.value
if not self.installed_lora_models[loras_selected.values[x]]
]
selections.remove_lora_models = [x
for x in loras_selected.values
if self.installed_lora_models[x]
and loras_selected.values.index(x) not in loras_selected.value
]
if (additional_loras := self.lora_models['download_ids'].value.split()):
selections.install_lora_models.extend(additional_loras)
# same thing, for TIs
# TODO: refactor
if tis_selected := self.ti_models.get('models_selected'):
selections.install_ti_models = [tis_selected.values[x]
for x in tis_selected.value
if not self.installed_ti_models[tis_selected.values[x]]
]
selections.remove_ti_models = [x
for x in tis_selected.values
if self.installed_ti_models[x]
and tis_selected.values.index(x) not in tis_selected.value
]
if (additional_tis := self.ti_models['download_ids'].value.split()):
selections.install_ti_models.extend(additional_tis)
# load directory and whether to scan on startup
selections.scan_directory = self.diffusers_models['autoload_directory'].value
selections.autoscan_on_startup = self.diffusers_models['autoscan_on_startup'].value
2023-02-21 19:12:57 +00:00
class AddModelApplication(npyscreen.NPSAppManaged):
def __init__(self,opt):
2023-02-13 04:59:18 +00:00
super().__init__()
self.program_opts = opt
self.user_cancelled = False
self.user_selections = UserSelections()
2023-02-13 04:59:18 +00:00
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.main_form = self.addForm(
"MAIN", addModelsForm, name="Install Stable Diffusion Models", cycle_widgets=True,
2023-02-13 04:59:18 +00:00
)
class StderrToMessage():
def __init__(self, connection: Connection):
self.connection = connection
2023-03-03 06:02:00 +00:00
def write(self, data:str):
self.connection.send_bytes(data.encode('utf-8'))
def flush(self):
pass
# --------------------------------------------------------
def ask_user_for_config_file(model_path: Path,
tui_conn: Connection=None
)->Path:
logger.debug(f'Waiting for user action in dialog box (above).')
if tui_conn:
return _ask_user_for_cf_tui(model_path, tui_conn)
else:
return _ask_user_for_cf_cmdline(model_path)
def _ask_user_for_cf_cmdline(model_path):
choices = [
config.model_conf_path / 'stable-diffusion' / x
for x in ['v2-inference.yaml','v2-inference-v.yaml']
]
print(
f"""
Please select the type of the V2 checkpoint named {model_path.name}:
[1] A Stable Diffusion v2.x base model (512 pixels; there should be no 'parameterization:' line in its yaml file)
[2] A Stable Diffusion v2.x v-predictive model (768 pixels; look for a 'parameterization: "v"' line in its yaml file)
"""
)
choice = None
ok = False
while not ok:
try:
choice = input('select> ').strip()
choice = choices[int(choice)-1]
ok = True
except (ValueError, IndexError):
print(f'{choice} is not a valid choice')
except EOFError:
return
return choice
def _ask_user_for_cf_tui(model_path: Path, tui_conn: Connection)->Path:
try:
tui_conn.send_bytes(f'*need v2 config for:{model_path}'.encode('utf-8'))
# note that we don't do any status checking here
response = tui_conn.recv_bytes().decode('utf-8')
if response is None:
return None
elif response == 'epsilon':
return config.legacy_conf_path / 'v2-inference.yaml'
elif response == 'v':
return config.legacy_conf_path / 'v2-inference-v.yaml'
else:
return Path(response)
except:
return None
# --------------------------------------------------------
def process_and_execute(opt: Namespace,
selections: Namespace,
conn_out: Connection=None,
):
# set up so that stderr is sent to conn_out
if conn_out:
translator = StderrToMessage(conn_out)
sys.stderr = translator
sys.stdout = translator
logger = InvokeAILogger.getLogger()
logger.handlers.clear()
logger.addHandler(logging.StreamHandler(translator))
models_to_install = selections.install_models
models_to_remove = selections.remove_models
directory_to_scan = selections.scan_directory
scan_at_startup = selections.autoscan_on_startup
potential_models_to_install = selections.import_model_paths
2023-05-30 17:49:43 +00:00
install_requested_models(
diffusers = ModelInstallList(models_to_install, models_to_remove),
controlnet = ModelInstallList(selections.install_cn_models, selections.remove_cn_models),
lora = ModelInstallList(selections.install_lora_models, selections.remove_lora_models),
ti = ModelInstallList(selections.install_ti_models, selections.remove_ti_models),
2023-05-30 17:49:43 +00:00
scan_directory=Path(directory_to_scan) if directory_to_scan else None,
external_models=potential_models_to_install,
scan_at_startup=scan_at_startup,
precision="float32"
if opt.full_precision
else choose_precision(torch.device(choose_torch_device())),
purge_deleted=selections.purge_deleted_models,
config_file_path=Path(opt.config_file) if opt.config_file else None,
model_config_file_callback = lambda x: ask_user_for_config_file(x,conn_out)
2023-05-30 17:49:43 +00:00
)
2023-02-21 19:12:57 +00:00
if conn_out:
conn_out.send_bytes('*done*'.encode('utf-8'))
conn_out.close()
2023-02-21 19:12:57 +00:00
2023-02-13 04:59:18 +00:00
# --------------------------------------------------------
def select_and_download_models(opt: Namespace):
2023-02-21 19:12:57 +00:00
precision = (
"float32"
if opt.full_precision
else choose_precision(torch.device(choose_torch_device()))
)
2023-02-13 04:59:18 +00:00
if opt.default_only:
install_requested_models(
install_starter_models=default_dataset(),
2023-02-21 19:12:57 +00:00
precision=precision,
)
elif opt.yes_to_all:
install_requested_models(
install_starter_models=recommended_datasets(),
2023-02-21 19:12:57 +00:00
precision=precision,
)
2023-02-13 04:59:18 +00:00
else:
# needed because the torch library is loaded, even though we don't use it
torch.multiprocessing.set_start_method("spawn")
set_min_terminal_size(MIN_COLS, MIN_LINES)
installApp = AddModelApplication(opt)
installApp.run()
process_and_execute(opt, installApp.user_selections)
2023-02-21 19:12:57 +00:00
2023-02-13 04:59:18 +00:00
# -------------------------------------
def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
parser.add_argument(
"--full-precision",
dest="full_precision",
action=argparse.BooleanOptionalAction,
type=bool,
default=False,
help="use 32-bit weights instead of faster 16-bit weights",
)
parser.add_argument(
"--yes",
"-y",
dest="yes_to_all",
action="store_true",
help='answer "yes" to all prompts',
)
parser.add_argument(
"--default_only",
action="store_true",
help="only install the default model",
)
parser.add_argument(
"--config_file",
"-c",
dest="config_file",
type=str,
default=None,
help="path to configuration file to create",
)
parser.add_argument(
"--root_dir",
dest="root",
type=str,
default=None,
help="path to root of install directory",
)
opt = parser.parse_args()
# setting a global here
if opt.root and Path(opt.root).exists():
config.root = Path(opt.root)
if not (config.root_dir / config.conf_path.parent).exists():
2023-04-29 13:43:40 +00:00
logger.info(
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
2023-02-21 19:12:57 +00:00
)
2023-03-03 06:02:00 +00:00
from invokeai.frontend.install import invokeai_configure
2023-02-21 19:12:57 +00:00
2023-03-03 06:02:00 +00:00
invokeai_configure()
sys.exit(0)
2023-02-13 04:59:18 +00:00
try:
select_and_download_models(opt)
except AssertionError as e:
2023-04-29 13:43:40 +00:00
logger.error(e)
sys.exit(-1)
2023-02-13 04:59:18 +00:00
except KeyboardInterrupt:
curses.nocbreak()
curses.echo()
curses.endwin()
2023-04-29 13:43:40 +00:00
logger.info("Goodbye! Come back soon.")
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
2023-04-29 13:43:40 +00:00
logger.error(
"Insufficient vertical space for the interface. Please make your window taller and try again"
)
2023-02-21 19:12:57 +00:00
elif str(e).startswith("addwstr"):
2023-04-29 13:43:40 +00:00
logger.error(
"Insufficient horizontal space for the interface. Please make your window wider and try again."
)
2023-02-21 19:12:57 +00:00
2023-03-03 06:02:00 +00:00
2023-02-13 04:59:18 +00:00
# -------------------------------------
if __name__ == "__main__":
main()