InvokeAI/invokeai/backend/model_manager/search.py

192 lines
6.7 KiB
Python
Raw Normal View History

# Copyright 2023, Lincoln D. Stein and the InvokeAI Team
"""
Abstract base class and implementation for recursive directory search for models.
Example usage:
```
from invokeai.backend.model_manager import ModelSearch, ModelProbe
def find_main_models(model: Path) -> bool:
info = ModelProbe.probe(model)
if info.model_type == 'main' and info.base_type == 'sd-1':
return True
else:
return False
search = ModelSearch(on_model_found=report_it)
found = search.search('/tmp/models')
print(found) # list of matching model paths
print(search.stats) # search stats
```
"""
import os
from abc import ABC, abstractmethod
from logging import Logger
from pathlib import Path
from typing import Callable, Optional, Set, Union
from pydantic import BaseModel, Field
from invokeai.backend.util.logging import InvokeAILogger
default_logger: Logger = InvokeAILogger.get_logger()
class SearchStats(BaseModel):
items_scanned: int = 0
models_found: int = 0
models_filtered: int = 0
class ModelSearchBase(ABC, BaseModel):
"""
Abstract directory traversal model search class
Usage:
search = ModelSearchBase(
on_search_started = search_started_callback,
on_search_completed = search_completed_callback,
on_model_found = model_found_callback,
)
models_found = search.search('/path/to/directory')
"""
# fmt: off
on_search_started : Optional[Callable[[Path], None]] = Field(default=None, description="Called just before the search starts.") # noqa E221
on_model_found : Optional[Callable[[Path], bool]] = Field(default=None, description="Called when a model is found.") # noqa E221
on_search_completed : Optional[Callable[[Set[Path]], None]] = Field(default=None, description="Called when search is complete.") # noqa E221
stats : SearchStats = Field(default_factory=SearchStats, description="Summary statistics after search") # noqa E221
logger : Logger = Field(default=default_logger, description="Logger instance.") # noqa E221
# fmt: on
class Config:
arbitrary_types_allowed = True
@abstractmethod
def search_started(self) -> None:
"""
Called before the scan starts.
Passes the root search directory to the Callable `on_search_started`.
"""
pass
@abstractmethod
def model_found(self, model: Path) -> None:
"""
Called when a model is found during search.
:param model: Model to process - could be a directory or checkpoint.
Passes the model's Path to the Callable `on_model_found`.
This Callable receives the path to the model and returns a boolean
to indicate whether the model should be returned in the search
results.
"""
pass
@abstractmethod
def search_completed(self) -> None:
"""
Called before the scan starts.
Passes the Set of found model Paths to the Callable `on_search_completed`.
"""
pass
@abstractmethod
def search(self, directory: Union[Path, str]) -> Set[Path]:
"""
Recursively search for models in `directory` and return a set of model paths.
If provided, the `on_search_started`, `on_model_found` and `on_search_completed`
Callables will be invoked during the search.
"""
pass
class ModelSearch(ModelSearchBase):
"""
Implementation of ModelSearch with callbacks.
Usage:
search = ModelSearch()
search.model_found = lambda path : 'anime' in path.as_posix()
found = search.list_models(['/tmp/models1','/tmp/models2'])
# returns all models that have 'anime' in the path
"""
2024-02-13 05:26:49 +00:00
models_found: Optional[Set[Path]] = Field(default=None)
scanned_dirs: Optional[Set[Path]] = Field(default=None)
pruned_paths: Optional[Set[Path]] = Field(default=None)
def search_started(self) -> None:
self.models_found = set()
self.scanned_dirs = set()
self.pruned_paths = set()
if self.on_search_started:
self.on_search_started(self._directory)
def model_found(self, model: Path) -> None:
self.stats.models_found += 1
if self.on_model_found is None or self.on_model_found(model):
self.stats.models_filtered += 1
self.models_found.add(model)
def search_completed(self) -> None:
if self.on_search_completed is not None:
self.on_search_completed(self.models_found)
def search(self, directory: Union[Path, str]) -> Set[Path]:
self._directory = Path(directory)
self.stats = SearchStats() # zero out
self.search_started() # This will initialize _models_found to empty
self._walk_directory(directory)
self.search_completed()
return self.models_found
def _walk_directory(self, path: Union[Path, str]) -> None:
for root, dirs, files in os.walk(path, followlinks=True):
# don't descend into directories that start with a "."
# to avoid the Mac .DS_STORE issue.
if str(Path(root).name).startswith("."):
self.pruned_paths.add(Path(root))
if any(Path(root).is_relative_to(x) for x in self.pruned_paths):
continue
self.stats.items_scanned += len(dirs) + len(files)
for d in dirs:
path = Path(root) / d
if path.parent in self.scanned_dirs:
self.scanned_dirs.add(path)
continue
if any(
2023-11-26 22:13:31 +00:00
(path / x).exists()
for x in [
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
]
):
self.scanned_dirs.add(path)
try:
self.model_found(path)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
for f in files:
path = Path(root) / f
if path.parent in self.scanned_dirs:
continue
if path.suffix in {".ckpt", ".bin", ".pth", ".safetensors", ".pt"}:
try:
self.model_found(path)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))