2024-06-27 19:17:22 +00:00
|
|
|
import torch
|
|
|
|
|
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
2024-06-28 19:30:35 +00:00
|
|
|
from invokeai.app.invocations.fields import (
|
|
|
|
FieldDescriptions,
|
|
|
|
ImageField,
|
|
|
|
InputField,
|
|
|
|
UIType,
|
|
|
|
WithBoard,
|
|
|
|
WithMetadata,
|
|
|
|
)
|
|
|
|
from invokeai.app.invocations.model import ModelIdentifierField
|
2024-06-27 19:17:22 +00:00
|
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
2024-06-28 19:30:35 +00:00
|
|
|
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
2024-06-27 19:17:22 +00:00
|
|
|
|
|
|
|
|
|
|
|
@invocation("upscale_spandrel", title="Upscale (spandrel)", tags=["upscale"], category="upscale", version="1.0.0")
|
|
|
|
class UpscaleSpandrelInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
|
|
"""Upscales an image using any upscaler supported by spandrel (https://github.com/chaiNNer-org/spandrel)."""
|
|
|
|
|
|
|
|
image: ImageField = InputField(description="The input image")
|
2024-06-28 19:30:35 +00:00
|
|
|
spandrel_image_to_image_model: ModelIdentifierField = InputField(
|
2024-06-28 22:18:45 +00:00
|
|
|
description=FieldDescriptions.spandrel_image_to_image_model, ui_type=UIType.SpandrelImageToImageModel
|
2024-06-28 19:30:35 +00:00
|
|
|
)
|
2024-06-27 19:17:22 +00:00
|
|
|
|
2024-06-28 19:30:35 +00:00
|
|
|
@torch.inference_mode()
|
2024-06-27 19:17:22 +00:00
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
|
|
|
|
# Load the model.
|
2024-06-28 19:30:35 +00:00
|
|
|
spandrel_model_info = context.models.load(self.spandrel_image_to_image_model)
|
|
|
|
|
|
|
|
with spandrel_model_info as spandrel_model:
|
|
|
|
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
|
|
|
|
|
|
|
# Prepare input image for inference.
|
2024-07-02 14:11:25 +00:00
|
|
|
image_tensor = SpandrelImageToImageModel.pil_to_tensor(image)
|
2024-06-28 19:30:35 +00:00
|
|
|
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
|
|
|
|
|
|
|
|
# Run inference.
|
|
|
|
image_tensor = spandrel_model.run(image_tensor)
|
2024-06-27 19:17:22 +00:00
|
|
|
|
|
|
|
# Convert the output tensor to a PIL image.
|
2024-07-02 14:11:25 +00:00
|
|
|
pil_image = SpandrelImageToImageModel.tensor_to_pil(image_tensor)
|
2024-06-27 19:17:22 +00:00
|
|
|
image_dto = context.images.save(image=pil_image)
|
|
|
|
return ImageOutput.build(image_dto)
|