InvokeAI/invokeai/backend/model_manager/probe.py

681 lines
27 KiB
Python
Raw Normal View History

import json
import re
from pathlib import Path
from typing import Any, Dict, Literal, Optional, Union
import safetensors.torch
import torch
from picklescan.scanner import scan_file_path
from invokeai.backend.model_management.models.base import read_checkpoint_meta
from invokeai.backend.model_management.models.ip_adapter import IPAdapterModelFormat
from invokeai.backend.model_management.util import lora_token_vector_length
from invokeai.backend.util.util import SilenceWarnings
from .config import (
AnyModelConfig,
BaseModelType,
InvalidModelConfigException,
ModelConfigFactory,
ModelFormat,
ModelType,
ModelVariantType,
SchedulerPredictionType,
)
from .hash import FastModelHash
CkptType = Dict[str, Any]
LEGACY_CONFIGS: Dict[BaseModelType, Dict[ModelVariantType, Union[str, Dict[SchedulerPredictionType, str]]]] = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: "v2-inference.yaml",
SchedulerPredictionType.VPrediction: "v2-inference-v.yaml",
},
ModelVariantType.Inpaint: {
SchedulerPredictionType.Epsilon: "v2-inpainting-inference.yaml",
SchedulerPredictionType.VPrediction: "v2-inpainting-inference-v.yaml",
},
},
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: "sd_xl_base.yaml",
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: "sd_xl_refiner.yaml",
},
}
2023-11-26 22:13:31 +00:00
class ProbeBase(object):
"""Base class for probes."""
def __init__(self, model_path: Path):
self.model_path = model_path
def get_base_type(self) -> BaseModelType:
"""Get model base type."""
raise NotImplementedError
def get_format(self) -> ModelFormat:
"""Get model file format."""
raise NotImplementedError
def get_variant_type(self) -> Optional[ModelVariantType]:
"""Get model variant type."""
return None
def get_scheduler_prediction_type(self) -> Optional[SchedulerPredictionType]:
"""Get model scheduler prediction type."""
return None
2023-11-26 22:13:31 +00:00
class ModelProbe(object):
PROBES: Dict[str, Dict[ModelType, type[ProbeBase]]] = {
"diffusers": {},
"checkpoint": {},
"onnx": {},
}
CLASS2TYPE = {
"StableDiffusionPipeline": ModelType.Main,
"StableDiffusionInpaintPipeline": ModelType.Main,
"StableDiffusionXLPipeline": ModelType.Main,
"StableDiffusionXLImg2ImgPipeline": ModelType.Main,
"StableDiffusionXLInpaintPipeline": ModelType.Main,
"LatentConsistencyModelPipeline": ModelType.Main,
"AutoencoderKL": ModelType.Vae,
"AutoencoderTiny": ModelType.Vae,
"ControlNetModel": ModelType.ControlNet,
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
"T2IAdapter": ModelType.T2IAdapter,
}
@classmethod
def register_probe(
cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: type[ProbeBase]
) -> None:
cls.PROBES[format][model_type] = probe_class
@classmethod
def heuristic_probe(
2023-11-26 22:13:31 +00:00
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
) -> AnyModelConfig:
return cls.probe(model_path, fields)
@classmethod
def probe(
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
) -> AnyModelConfig:
"""
Probe the model at model_path and return sufficient information about it
to place it somewhere in the models directory hierarchy. If the model is
already loaded into memory, you may provide it as model in order to avoid
opening it a second time. The prediction_type_helper callable is a function that receives
the path to the model and returns the SchedulerPredictionType.
"""
if fields is None:
fields = {}
format_type = ModelFormat.Diffusers if model_path.is_dir() else ModelFormat.Checkpoint
model_info = None
model_type = None
if format_type == "diffusers":
model_type = cls.get_model_type_from_folder(model_path)
else:
model_type = cls.get_model_type_from_checkpoint(model_path)
format_type = ModelFormat.Onnx if model_type == ModelType.ONNX else format_type
probe_class = cls.PROBES[format_type].get(model_type)
if not probe_class:
raise InvalidModelConfigException(f"Unhandled combination of {format_type} and {model_type}")
hash = FastModelHash.hash(model_path)
probe = probe_class(model_path)
2023-11-26 22:13:31 +00:00
fields["path"] = model_path.as_posix()
fields["type"] = fields.get("type") or model_type
fields["base"] = fields.get("base") or probe.get_base_type()
fields["variant"] = fields.get("variant") or probe.get_variant_type()
fields["prediction_type"] = fields.get("prediction_type") or probe.get_scheduler_prediction_type()
fields["name"] = fields.get("name") or cls.get_model_name(model_path)
fields["description"] = (
fields.get("description") or f"{fields['base'].value} {fields['type'].value} model {fields['name']}"
)
fields["format"] = fields.get("format") or probe.get_format()
fields["original_hash"] = fields.get("original_hash") or hash
fields["current_hash"] = fields.get("current_hash") or hash
# additional fields needed for main and controlnet models
2023-11-26 22:13:31 +00:00
if fields["type"] in [ModelType.Main, ModelType.ControlNet] and fields["format"] == ModelFormat.Checkpoint:
fields["config"] = cls._get_checkpoint_config_path(
model_path,
model_type=fields["type"],
base_type=fields["base"],
variant_type=fields["variant"],
prediction_type=fields["prediction_type"],
).as_posix()
# additional fields needed for main non-checkpoint models
2023-11-26 22:13:31 +00:00
elif fields["type"] == ModelType.Main and fields["format"] in [
ModelFormat.Onnx,
ModelFormat.Olive,
ModelFormat.Diffusers,
]:
fields["upcast_attention"] = fields.get("upcast_attention") or (
fields["base"] == BaseModelType.StableDiffusion2
and fields["prediction_type"] == SchedulerPredictionType.VPrediction
)
model_info = ModelConfigFactory.make_config(fields)
return model_info
@classmethod
def get_model_name(cls, model_path: Path) -> str:
2023-11-26 22:13:31 +00:00
if model_path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
return model_path.stem
else:
return model_path.name
@classmethod
def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: Optional[CkptType] = None) -> ModelType:
if model_path.suffix not in (".bin", ".pt", ".ckpt", ".safetensors", ".pth"):
raise InvalidModelConfigException(f"{model_path}: unrecognized suffix")
if model_path.name == "learned_embeds.bin":
return ModelType.TextualInversion
ckpt = checkpoint if checkpoint else read_checkpoint_meta(model_path, scan=True)
ckpt = ckpt.get("state_dict", ckpt)
for key in ckpt.keys():
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
return ModelType.Main
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
return ModelType.Vae
elif any(key.startswith(v) for v in {"lora_te_", "lora_unet_"}):
return ModelType.Lora
elif any(key.endswith(v) for v in {"to_k_lora.up.weight", "to_q_lora.down.weight"}):
return ModelType.Lora
elif any(key.startswith(v) for v in {"control_model", "input_blocks"}):
return ModelType.ControlNet
elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion
else:
# diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
return ModelType.TextualInversion
raise InvalidModelConfigException(f"Unable to determine model type for {model_path}")
@classmethod
def get_model_type_from_folder(cls, folder_path: Path) -> ModelType:
"""Get the model type of a hugging-face style folder."""
class_name = None
error_hint = None
for suffix in ["bin", "safetensors"]:
if (folder_path / f"learned_embeds.{suffix}").exists():
return ModelType.TextualInversion
if (folder_path / f"pytorch_lora_weights.{suffix}").exists():
return ModelType.Lora
if (folder_path / "unet/model.onnx").exists():
return ModelType.ONNX
if (folder_path / "image_encoder.txt").exists():
return ModelType.IPAdapter
i = folder_path / "model_index.json"
c = folder_path / "config.json"
config_path = i if i.exists() else c if c.exists() else None
if config_path:
with open(config_path, "r") as file:
conf = json.load(file)
if "_class_name" in conf:
class_name = conf["_class_name"]
elif "architectures" in conf:
class_name = conf["architectures"][0]
else:
class_name = None
else:
error_hint = f"No model_index.json or config.json found in {folder_path}."
if class_name and (type := cls.CLASS2TYPE.get(class_name)):
return type
else:
error_hint = f"class {class_name} is not one of the supported classes [{', '.join(cls.CLASS2TYPE.keys())}]"
# give up
raise InvalidModelConfigException(
f"Unable to determine model type for {folder_path}" + (f"; {error_hint}" if error_hint else "")
)
@classmethod
2023-11-26 22:13:31 +00:00
def _get_checkpoint_config_path(
cls,
model_path: Path,
model_type: ModelType,
base_type: BaseModelType,
variant_type: ModelVariantType,
prediction_type: SchedulerPredictionType,
) -> Path:
# look for a YAML file adjacent to the model file first
possible_conf = model_path.with_suffix(".yaml")
if possible_conf.exists():
return possible_conf.absolute()
if model_type == ModelType.Main:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
elif model_type == ModelType.ControlNet:
2023-11-26 22:13:31 +00:00
config_file = (
"../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml"
)
else:
2023-11-26 22:13:31 +00:00
raise InvalidModelConfigException(
f"{model_path}: Unrecognized combination of model_type={model_type}, base_type={base_type}"
)
assert isinstance(config_file, str)
return Path(config_file)
@classmethod
def _scan_and_load_checkpoint(cls, model_path: Path) -> CkptType:
with SilenceWarnings():
if model_path.suffix.endswith((".ckpt", ".pt", ".bin")):
cls._scan_model(model_path.name, model_path)
model = torch.load(model_path)
assert isinstance(model, dict)
return model
else:
return safetensors.torch.load_file(model_path)
@classmethod
def _scan_model(cls, model_name: str, checkpoint: Path) -> None:
"""
Apply picklescanner to the indicated checkpoint and issue a warning
and option to exit if an infected file is identified.
"""
# scan model
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise Exception("The model {model_name} is potentially infected by malware. Aborting import.")
# ##################################################3
# Checkpoint probing
# ##################################################3
2023-11-26 22:13:31 +00:00
class CheckpointProbeBase(ProbeBase):
def __init__(self, model_path: Path):
super().__init__(model_path)
self.checkpoint = ModelProbe._scan_and_load_checkpoint(model_path)
def get_format(self) -> ModelFormat:
return ModelFormat("checkpoint")
def get_variant_type(self) -> ModelVariantType:
model_type = ModelProbe.get_model_type_from_checkpoint(self.model_path, self.checkpoint)
if model_type != ModelType.Main:
return ModelVariantType.Normal
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
if in_channels == 9:
return ModelVariantType.Inpaint
elif in_channels == 5:
return ModelVariantType.Depth
elif in_channels == 4:
return ModelVariantType.Normal
else:
raise InvalidModelConfigException(
f"Cannot determine variant type (in_channels={in_channels}) at {self.model_path}"
)
class PipelineCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2
key_name = "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 2048:
return BaseModelType.StableDiffusionXL
elif key_name in state_dict and state_dict[key_name].shape[-1] == 1280:
return BaseModelType.StableDiffusionXLRefiner
else:
raise InvalidModelConfigException("Cannot determine base type")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
"""Return model prediction type."""
type = self.get_base_type()
if type == BaseModelType.StableDiffusion2:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if "global_step" in checkpoint:
if checkpoint["global_step"] == 220000:
return SchedulerPredictionType.Epsilon
elif checkpoint["global_step"] == 110000:
return SchedulerPredictionType.VPrediction
return SchedulerPredictionType.VPrediction # a guess for sd2 ckpts
elif type == BaseModelType.StableDiffusion1:
return SchedulerPredictionType.Epsilon # a reasonable guess for sd1 ckpts
else:
return SchedulerPredictionType.Epsilon
class VaeCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
# I can't find any standalone 2.X VAEs to test with!
return BaseModelType.StableDiffusion1
class LoRACheckpointProbe(CheckpointProbeBase):
"""Class for LoRA checkpoints."""
def get_format(self) -> ModelFormat:
return ModelFormat("lycoris")
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
token_vector_length = lora_token_vector_length(checkpoint)
if token_vector_length == 768:
return BaseModelType.StableDiffusion1
elif token_vector_length == 1024:
return BaseModelType.StableDiffusion2
elif token_vector_length == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown LoRA type: {self.model_path}")
class TextualInversionCheckpointProbe(CheckpointProbeBase):
"""Class for probing embeddings."""
def get_format(self) -> ModelFormat:
return ModelFormat.EmbeddingFile
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
if "string_to_token" in checkpoint:
token_dim = list(checkpoint["string_to_param"].values())[0].shape[-1]
elif "emb_params" in checkpoint:
token_dim = checkpoint["emb_params"].shape[-1]
else:
token_dim = list(checkpoint.values())[0].shape[0]
if token_dim == 768:
return BaseModelType.StableDiffusion1
elif token_dim == 1024:
return BaseModelType.StableDiffusion2
elif token_dim == 1280:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException("Could not determine base type")
class ControlNetCheckpointProbe(CheckpointProbeBase):
"""Class for probing controlnets."""
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
for key_name in (
"control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
"input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
):
if key_name not in checkpoint:
continue
if checkpoint[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
elif checkpoint[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2
raise InvalidModelConfigException("Unable to determine base type for {self.checkpoint_path}")
class IPAdapterCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
class CLIPVisionCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
class T2IAdapterCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
########################################################
# classes for probing folders
#######################################################
class FolderProbeBase(ProbeBase):
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal
def get_format(self) -> ModelFormat:
return ModelFormat("diffusers")
class PipelineFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
with open(self.model_path / "unet" / "config.json", "r") as file:
unet_conf = json.load(file)
if unet_conf["cross_attention_dim"] == 768:
return BaseModelType.StableDiffusion1
elif unet_conf["cross_attention_dim"] == 1024:
return BaseModelType.StableDiffusion2
elif unet_conf["cross_attention_dim"] == 1280:
return BaseModelType.StableDiffusionXLRefiner
elif unet_conf["cross_attention_dim"] == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
with open(self.model_path / "scheduler" / "scheduler_config.json", "r") as file:
scheduler_conf = json.load(file)
if scheduler_conf["prediction_type"] == "v_prediction":
return SchedulerPredictionType.VPrediction
elif scheduler_conf["prediction_type"] == "epsilon":
return SchedulerPredictionType.Epsilon
else:
raise InvalidModelConfigException("Unknown scheduler prediction type: {scheduler_conf['prediction_type']}")
def get_variant_type(self) -> ModelVariantType:
# This only works for pipelines! Any kind of
# exception results in our returning the
# "normal" variant type
try:
config_file = self.model_path / "unet" / "config.json"
with open(config_file, "r") as file:
conf = json.load(file)
in_channels = conf["in_channels"]
if in_channels == 9:
return ModelVariantType.Inpaint
elif in_channels == 5:
return ModelVariantType.Depth
elif in_channels == 4:
return ModelVariantType.Normal
except Exception:
pass
return ModelVariantType.Normal
class VaeFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
if self._config_looks_like_sdxl():
return BaseModelType.StableDiffusionXL
elif self._name_looks_like_sdxl():
# but SD and SDXL VAE are the same shape (3-channel RGB to 4-channel float scaled down
# by a factor of 8), we can't necessarily tell them apart by config hyperparameters.
return BaseModelType.StableDiffusionXL
else:
return BaseModelType.StableDiffusion1
def _config_looks_like_sdxl(self) -> bool:
# config values that distinguish Stability's SD 1.x VAE from their SDXL VAE.
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
return config.get("scaling_factor", 0) == 0.13025 and config.get("sample_size") in [512, 1024]
def _name_looks_like_sdxl(self) -> bool:
return bool(re.search(r"xl\b", self._guess_name(), re.IGNORECASE))
def _guess_name(self) -> str:
name = self.model_path.name
if name == "vae":
name = self.model_path.parent.name
return name
class TextualInversionFolderProbe(FolderProbeBase):
def get_format(self) -> ModelFormat:
return ModelFormat.EmbeddingFolder
def get_base_type(self) -> BaseModelType:
path = self.model_path / "learned_embeds.bin"
if not path.exists():
2023-11-26 22:13:31 +00:00
raise InvalidModelConfigException(
f"{self.model_path.as_posix()} does not contain expected 'learned_embeds.bin' file"
)
return TextualInversionCheckpointProbe(path).get_base_type()
class ONNXFolderProbe(FolderProbeBase):
def get_format(self) -> ModelFormat:
return ModelFormat("onnx")
def get_base_type(self) -> BaseModelType:
return BaseModelType.StableDiffusion1
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal
class ControlNetFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
# no obvious way to distinguish between sd2-base and sd2-768
dimension = config["cross_attention_dim"]
base_model = (
BaseModelType.StableDiffusion1
if dimension == 768
else (
BaseModelType.StableDiffusion2
if dimension == 1024
else BaseModelType.StableDiffusionXL
if dimension == 2048
else None
)
)
if not base_model:
raise InvalidModelConfigException(f"Unable to determine model base for {self.model_path}")
return base_model
class LoRAFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
model_file = None
for suffix in ["safetensors", "bin"]:
base_file = self.model_path / f"pytorch_lora_weights.{suffix}"
if base_file.exists():
model_file = base_file
break
if not model_file:
raise InvalidModelConfigException("Unknown LoRA format encountered")
return LoRACheckpointProbe(model_file).get_base_type()
class IPAdapterFolderProbe(FolderProbeBase):
def get_format(self) -> IPAdapterModelFormat:
return IPAdapterModelFormat.InvokeAI.value
def get_base_type(self) -> BaseModelType:
model_file = self.model_path / "ip_adapter.bin"
if not model_file.exists():
raise InvalidModelConfigException("Unknown IP-Adapter model format.")
state_dict = torch.load(model_file, map_location="cpu")
cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1]
if cross_attention_dim == 768:
return BaseModelType.StableDiffusion1
elif cross_attention_dim == 1024:
return BaseModelType.StableDiffusion2
elif cross_attention_dim == 2048:
return BaseModelType.StableDiffusionXL
else:
2023-11-26 22:13:31 +00:00
raise InvalidModelConfigException(
f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}."
)
class CLIPVisionFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
return BaseModelType.Any
class T2IAdapterFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
adapter_type = config.get("adapter_type", None)
if adapter_type == "full_adapter_xl":
return BaseModelType.StableDiffusionXL
elif adapter_type == "full_adapter" or "light_adapter":
# I haven't seen any T2I adapter models for SD2, so assume that this is an SD1 adapter.
return BaseModelType.StableDiffusion1
else:
raise InvalidModelConfigException(
f"Unable to determine base model for '{self.model_path}' (adapter_type = {adapter_type})."
)
############## register probe classes ######
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Vae, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Lora, LoRAFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.T2IAdapter, T2IAdapterFolderProbe)
ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.CLIPVision, CLIPVisionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.T2IAdapter, T2IAdapterCheckpointProbe)
ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)