InvokeAI/invokeai/app/api/routers/models.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

252 lines
11 KiB
Python
Raw Normal View History

2023-07-14 15:14:33 +00:00
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein
2023-07-14 15:14:33 +00:00
import pathlib
2023-07-06 17:15:15 +00:00
from typing import Literal, List, Optional, Union
2023-07-05 10:08:47 +00:00
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, parse_obj_as
2023-07-05 10:08:47 +00:00
from starlette.exceptions import HTTPException
2023-06-11 03:12:21 +00:00
from invokeai.backend import BaseModelType, ModelType
2023-07-05 19:13:21 +00:00
from invokeai.backend.model_management.models import (
OPENAPI_MODEL_CONFIGS,
2023-07-06 17:15:15 +00:00
SchedulerPredictionType,
2023-07-05 19:13:21 +00:00
)
2023-07-06 17:15:15 +00:00
from invokeai.backend.model_management import MergeInterpolationMethod
2023-07-05 10:08:47 +00:00
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
2023-07-06 17:15:15 +00:00
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel):
2023-07-04 21:26:57 +00:00
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList }},
)
async def list_models(
base_model: Optional[BaseModelType] = Query(default=None, description="Base model"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList:
"""Gets a list of models"""
models_raw = ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
@models_router.patch(
2023-07-04 21:26:57 +00:00
"/{base_model}/{model_type}/{model_name}",
2023-04-06 19:17:48 +00:00
operation_id="update_model",
responses={200: {"description" : "The model was updated successfully"},
404: {"description" : "The model could not be found"},
400: {"description" : "Bad request"}
},
status_code = 200,
response_model = UpdateModelResponse,
2023-04-06 19:17:48 +00:00
)
async def update_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse:
2023-04-06 19:17:48 +00:00
""" Add Model """
try:
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info.dict()
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
model_response = parse_obj_as(UpdateModelResponse, model_raw)
except KeyError as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
2023-04-07 02:25:18 +00:00
2023-04-06 19:17:48 +00:00
return model_response
@models_router.post(
"/",
operation_id="import_model",
2023-07-03 23:32:54 +00:00
responses= {
201: {"description" : "The model imported successfully"},
404: {"description" : "The model could not be found"},
2023-07-05 10:08:47 +00:00
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"},
2023-07-03 23:32:54 +00:00
},
status_code=201,
response_model=ImportModelResponse
)
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
2023-07-03 23:32:54 +00:00
) -> ImportModelResponse:
""" Add a model using its local path, repo_id, or remote URL """
items_to_import = {location}
prediction_types = { x.value: x for x in SchedulerPredictionType }
logger = ApiDependencies.invoker.services.logger
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import = items_to_import,
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
)
info = installed_models.get(location)
2023-07-05 10:08:47 +00:00
if not info:
logger.error("Import failed")
raise HTTPException(status_code=424)
logger.info(f'Successfully imported {location}, got {info}')
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name,
base_model=info.base_model,
model_type=info.model_type
2023-07-03 23:32:54 +00:00
)
return parse_obj_as(ImportModelResponse, model_raw)
except KeyError as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
2023-04-06 19:17:48 +00:00
@models_router.delete(
2023-07-04 14:40:32 +00:00
"/{base_model}/{model_type}/{model_name}",
2023-04-06 19:17:48 +00:00
operation_id="del_model",
responses={
204: {
2023-04-07 02:25:18 +00:00
"description": "Model deleted successfully"
2023-04-06 19:17:48 +00:00
},
404: {
"description": "Model not found"
}
},
)
2023-07-04 14:40:32 +00:00
async def delete_model(
2023-07-05 10:08:47 +00:00
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> Response:
2023-04-06 19:17:48 +00:00
"""Delete Model"""
2023-04-29 14:48:50 +00:00
logger = ApiDependencies.invoker.services.logger
2023-04-06 19:17:48 +00:00
2023-07-04 14:40:32 +00:00
try:
ApiDependencies.invoker.services.model_manager.del_model(model_name,
base_model = base_model,
model_type = model_type
)
logger.info(f"Deleted model: {model_name}")
2023-07-05 10:08:47 +00:00
return Response(status_code=204)
2023-07-04 14:40:32 +00:00
except KeyError:
logger.error(f"Model not found: {model_name}")
2023-04-07 02:25:18 +00:00
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
2023-04-06 20:23:09 +00:00
@models_router.put(
2023-07-05 19:13:21 +00:00
"/convert/{base_model}/{model_type}/{model_name}",
operation_id="convert_model",
responses={
200: { "description": "Model converted successfully" },
400: {"description" : "Bad request" },
404: { "description": "Model not found" },
},
status_code = 200,
2023-07-06 17:15:15 +00:00
response_model = ConvertModelResponse,
2023-07-05 19:13:21 +00:00
)
async def convert_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> ConvertModelResponse:
2023-07-05 19:13:21 +00:00
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Converting model: {model_name}")
ApiDependencies.invoker.services.model_manager.convert_model(model_name,
base_model = base_model,
model_type = model_type
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(model_name,
2023-07-05 19:13:21 +00:00
base_model = base_model,
model_type = model_type)
response = parse_obj_as(ConvertModelResponse, model_raw)
2023-07-05 19:13:21 +00:00
except KeyError:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response
2023-07-14 15:14:33 +00:00
@models_router.get(
"/search",
operation_id="search_for_models",
responses={
200: { "description": "Directory searched successfully" },
404: { "description": "Invalid directory path" },
},
status_code = 200,
response_model = List[pathlib.Path]
)
async def search_for_models(
search_path: pathlib.Path = Query(description="Directory path to search for models")
)->List[pathlib.Path]:
if not search_path.is_dir():
raise HTTPException(status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory")
return ApiDependencies.invoker.services.model_manager.search_for_models([search_path])
2023-07-05 19:13:21 +00:00
2023-07-06 17:15:15 +00:00
@models_router.put(
"/merge/{base_model}",
operation_id="merge_models",
responses={
200: { "description": "Model converted successfully" },
400: { "description": "Incompatible models" },
404: { "description": "One or more models not found" },
},
status_code = 200,
response_model = MergeModelResponse,
)
async def merge_models(
2023-07-06 19:12:34 +00:00
base_model: BaseModelType = Path(description="Base model"),
model_names: List[str] = Body(description="model name", min_items=2, max_items=3),
merged_model_name: Optional[str] = Body(description="Name of destination model"),
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(description="Force merging of models created with different versions of diffusers", default=False),
2023-07-06 17:15:15 +00:00
) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {model_names}")
result = ApiDependencies.invoker.services.model_manager.merge_models(model_names,
base_model,
merged_model_name or "+".join(model_names),
alpha,
interp,
force)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(result.name,
base_model = base_model,
model_type = ModelType.Main,
)
response = parse_obj_as(ConvertModelResponse, model_raw)
except KeyError:
raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found")
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response