InvokeAI/invokeai/backend/ip_adapter/ip_adapter.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

215 lines
9.3 KiB
Python
Raw Normal View History

# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
# and modified as needed
from contextlib import contextmanager
from typing import Optional
import torch
from diffusers.models import UNet2DConditionModel
# FIXME: Getting errors when trying to use PyTorch 2.0 versions of IPAttnProcessor and AttnProcessor
# so for now falling back to the default versions
# from .utils import is_torch2_available
# if is_torch2_available:
# from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
# else:
# from .attention_processor import IPAttnProcessor, AttnProcessor
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
2023-09-04 23:54:28 +00:00
from .attention_processor import AttnProcessor, IPAttnProcessor
from .resampler import Resampler
class ImageProjModel(torch.nn.Module):
"""Image Projection Model"""
2023-09-04 23:37:12 +00:00
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
2023-09-04 23:37:12 +00:00
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class IPAdapter:
2023-09-08 19:46:10 +00:00
"""IP-Adapter: https://arxiv.org/pdf/2308.06721.pdf"""
def __init__(
self,
ip_adapter_ckpt_path: str,
device: torch.device,
dtype: torch.dtype = torch.float16,
num_tokens: int = 4,
):
self.device = device
self.dtype = dtype
self._ip_adapter_ckpt_path = ip_adapter_ckpt_path
self._num_tokens = num_tokens
self._clip_image_processor = CLIPImageProcessor()
# Fields to be initialized later in initialize().
self._unet = None
self._image_proj_model = None
self._attn_processors = None
self._state_dict = torch.load(self._ip_adapter_ckpt_path, map_location="cpu")
def is_initialized(self):
return self._unet is not None and self._image_proj_model is not None and self._attn_processors is not None
def initialize(self, unet: UNet2DConditionModel, image_encoder: CLIPVisionModelWithProjection):
"""Finish the model initialization process.
HACK: This is separate from __init__ for compatibility with the model manager. The full initialization requires
access to the UNet model to be patched, which can not easily be passed to __init__ by the model manager.
Args:
unet (UNet2DConditionModel): The UNet whose attention blocks will be patched by this IP-Adapter.
"""
if self.is_initialized():
raise Exception("IPAdapter has already been initialized.")
self._unet = unet
# TODO(ryand): Eliminate the need to pass the image_encoder to initialize(). It should be possible to infer the
# necessary information from the state_dict.
self._image_proj_model = self._init_image_proj_model(image_encoder)
self._attn_processors = self._prepare_attention_processors()
# Copy the weights from the _state_dict into the models.
self._image_proj_model.load_state_dict(self._state_dict["image_proj"])
ip_layers = torch.nn.ModuleList(self._attn_processors.values())
ip_layers.load_state_dict(self._state_dict["ip_adapter"])
self._state_dict = None
def to(self, device: torch.device, dtype: Optional[torch.dtype] = None):
self.device = device
if dtype is not None:
self.dtype = dtype
for model in [self._image_proj_model, self._attn_processors]:
# If this is called before initialize(), then some models will still be None. We just update the non-None
# models.
if model is not None:
model.to(device=self.device, dtype=self.dtype)
def _init_image_proj_model(self, image_encoder: CLIPVisionModelWithProjection):
image_proj_model = ImageProjModel(
cross_attention_dim=self._unet.config.cross_attention_dim,
clip_embeddings_dim=image_encoder.config.projection_dim,
clip_extra_context_tokens=self._num_tokens,
).to(self.device, dtype=self.dtype)
return image_proj_model
def _prepare_attention_processors(self):
"""Creates a dict of attention processors that can later be injected into `self.unet`, and loads the IP-Adapter
attention weights into them.
"""
attn_procs = {}
for name in self._unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else self._unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = self._unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self._unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self._unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor()
else:
2023-09-04 23:37:12 +00:00
attn_procs[name] = IPAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
).to(self.device, dtype=self.dtype)
return attn_procs
@contextmanager
def apply_ip_adapter_attention(self):
"""A context manager that patches `self._unet` with this IP-Adapter's attention processors while it is active.
Yields:
None
"""
if not self.is_initialized():
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.apply_ip_adapter_attention().")
orig_attn_processors = self._unet.attn_processors
# Make a (moderately-) shallow copy of the self._attn_processors dict, because set_attn_processor(...) actually
# pops elements from the passed dict.
ip_adapter_attn_processors = {k: v for k, v in self._attn_processors.items()}
try:
self._unet.set_attn_processor(ip_adapter_attn_processors)
yield None
finally:
self._unet.set_attn_processor(orig_attn_processors)
@torch.inference_mode()
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection):
if not self.is_initialized():
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.get_image_embeds().")
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image_embeds = image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
def set_scale(self, scale):
if not self.is_initialized():
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.set_scale().")
for attn_processor in self._attn_processors.values():
if isinstance(attn_processor, IPAttnProcessor):
attn_processor.scale = scale
class IPAdapterPlus(IPAdapter):
"""IP-Adapter with fine-grained features"""
def _init_image_proj_model(self, image_encoder: CLIPVisionModelWithProjection):
image_proj_model = Resampler(
dim=self._unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=self._num_tokens,
embedding_dim=image_encoder.config.hidden_size,
output_dim=self._unet.config.cross_attention_dim,
2023-09-04 23:37:12 +00:00
ff_mult=4,
).to(self.device, dtype=self.dtype)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection):
if not self.is_initialized():
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.get_image_embeds().")
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=self.dtype)
clip_image_embeds = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_clip_image_embeds = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
-2
]
uncond_image_prompt_embeds = self._image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds