mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into mps-fp16-fixes
This commit is contained in:
commit
021e1eca8e
@ -9,6 +9,7 @@ from compel.prompt_parser import (Blend, Conjunction,
|
||||
FlattenedPrompt, Fragment)
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ...backend.model_management.models import ModelNotFoundException
|
||||
from ...backend.model_management import BaseModelType, ModelType, SubModelType
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
|
||||
@ -86,10 +87,10 @@ class CompelInvocation(BaseInvocation):
|
||||
model_type=ModelType.TextualInversion,
|
||||
).context.model
|
||||
)
|
||||
except Exception:
|
||||
except ModelNotFoundException:
|
||||
# print(e)
|
||||
#import traceback
|
||||
# print(traceback.format_exc())
|
||||
#print(traceback.format_exc())
|
||||
print(f"Warn: trigger: \"{trigger}\" not found")
|
||||
|
||||
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
|
||||
|
@ -223,11 +223,11 @@ class MigrateTo3(object):
|
||||
repo_id = 'openai/clip-vit-large-patch14'
|
||||
self._migrate_pretrained(CLIPTokenizer,
|
||||
repo_id= repo_id,
|
||||
dest= target_dir / 'clip-vit-large-patch14' / 'tokenizer',
|
||||
dest= target_dir / 'clip-vit-large-patch14',
|
||||
**kwargs)
|
||||
self._migrate_pretrained(CLIPTextModel,
|
||||
repo_id = repo_id,
|
||||
dest = target_dir / 'clip-vit-large-patch14' / 'text_encoder',
|
||||
dest = target_dir / 'clip-vit-large-patch14',
|
||||
**kwargs)
|
||||
|
||||
# sd-2
|
||||
|
@ -29,7 +29,7 @@ import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
|
||||
from .model_manager import ModelManager
|
||||
from .model_cache import ModelCache
|
||||
from picklescan.scanner import scan_file_path
|
||||
from .models import BaseModelType, ModelVariantType
|
||||
|
||||
try:
|
||||
@ -1014,7 +1014,10 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
checkpoint = load_file(checkpoint_path)
|
||||
else:
|
||||
if scan_needed:
|
||||
ModelCache.scan_model(checkpoint_path, checkpoint_path)
|
||||
# scan model
|
||||
scan_result = scan_file_path(checkpoint_path)
|
||||
if scan_result.infected_files != 0:
|
||||
raise "The model {checkpoint_path} is potentially infected by malware. Aborting import."
|
||||
checkpoint = torch.load(checkpoint_path)
|
||||
|
||||
# sometimes there is a state_dict key and sometimes not
|
||||
|
@ -655,6 +655,9 @@ class TextualInversionModel:
|
||||
else:
|
||||
result.embedding = next(iter(state_dict.values()))
|
||||
|
||||
if len(result.embedding.shape) == 1:
|
||||
result.embedding = result.embedding.unsqueeze(0)
|
||||
|
||||
if not isinstance(result.embedding, torch.Tensor):
|
||||
raise ValueError(f"Invalid embeddings file: {file_path.name}")
|
||||
|
||||
|
@ -249,7 +249,7 @@ from .model_cache import ModelCache, ModelLocker
|
||||
from .models import (
|
||||
BaseModelType, ModelType, SubModelType,
|
||||
ModelError, SchedulerPredictionType, MODEL_CLASSES,
|
||||
ModelConfigBase,
|
||||
ModelConfigBase, ModelNotFoundException,
|
||||
)
|
||||
|
||||
# We are only starting to number the config file with release 3.
|
||||
@ -409,7 +409,7 @@ class ModelManager(object):
|
||||
if model_key not in self.models:
|
||||
self.scan_models_directory(base_model=base_model, model_type=model_type)
|
||||
if model_key not in self.models:
|
||||
raise Exception(f"Model not found - {model_key}")
|
||||
raise ModelNotFoundException(f"Model not found - {model_key}")
|
||||
|
||||
model_config = self.models[model_key]
|
||||
model_path = self.app_config.root_path / model_config.path
|
||||
@ -421,7 +421,7 @@ class ModelManager(object):
|
||||
|
||||
else:
|
||||
self.models.pop(model_key, None)
|
||||
raise Exception(f"Model not found - {model_key}")
|
||||
raise ModelNotFoundException(f"Model not found - {model_key}")
|
||||
|
||||
# vae/movq override
|
||||
# TODO:
|
||||
|
@ -2,7 +2,7 @@ import inspect
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel
|
||||
from typing import Literal, get_origin
|
||||
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings
|
||||
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException
|
||||
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
|
||||
from .vae import VaeModel
|
||||
from .lora import LoRAModel
|
||||
|
@ -15,6 +15,9 @@ from contextlib import suppress
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
|
||||
|
||||
class ModelNotFoundException(Exception):
|
||||
pass
|
||||
|
||||
class BaseModelType(str, Enum):
|
||||
StableDiffusion1 = "sd-1"
|
||||
StableDiffusion2 = "sd-2"
|
||||
|
@ -8,6 +8,7 @@ from .base import (
|
||||
ModelType,
|
||||
SubModelType,
|
||||
classproperty,
|
||||
ModelNotFoundException,
|
||||
)
|
||||
# TODO: naming
|
||||
from ..lora import TextualInversionModel as TextualInversionModelRaw
|
||||
@ -37,8 +38,15 @@ class TextualInversionModel(ModelBase):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in textual inversion")
|
||||
|
||||
checkpoint_path = self.model_path
|
||||
if os.path.isdir(checkpoint_path):
|
||||
checkpoint_path = os.path.join(checkpoint_path, "learned_embeds.bin")
|
||||
|
||||
if not os.path.exists(checkpoint_path):
|
||||
raise ModelNotFoundException()
|
||||
|
||||
model = TextualInversionModelRaw.from_checkpoint(
|
||||
file_path=self.model_path,
|
||||
file_path=checkpoint_path,
|
||||
dtype=torch_dtype,
|
||||
)
|
||||
|
||||
|
@ -23,6 +23,7 @@ import { stateSelector } from 'app/store/store';
|
||||
import {
|
||||
imageDeletionConfirmed,
|
||||
imageToDeleteCleared,
|
||||
isModalOpenChanged,
|
||||
selectImageUsage,
|
||||
} from '../store/imageDeletionSlice';
|
||||
|
||||
@ -63,6 +64,7 @@ const DeleteImageModal = () => {
|
||||
|
||||
const handleClose = useCallback(() => {
|
||||
dispatch(imageToDeleteCleared());
|
||||
dispatch(isModalOpenChanged(false));
|
||||
}, [dispatch]);
|
||||
|
||||
const handleDelete = useCallback(() => {
|
||||
|
@ -31,6 +31,7 @@ const imageDeletion = createSlice({
|
||||
},
|
||||
imageToDeleteCleared: (state) => {
|
||||
state.imageToDelete = null;
|
||||
state.isModalOpen = false;
|
||||
},
|
||||
},
|
||||
});
|
||||
|
@ -1,7 +1,28 @@
|
||||
import { defineStyle, defineStyleConfig } from '@chakra-ui/react';
|
||||
import { getInputOutlineStyles } from '../util/getInputOutlineStyles';
|
||||
|
||||
const invokeAI = defineStyle((props) => getInputOutlineStyles(props));
|
||||
const invokeAI = defineStyle((props) => ({
|
||||
...getInputOutlineStyles(props),
|
||||
'::-webkit-scrollbar': {
|
||||
display: 'initial',
|
||||
},
|
||||
'::-webkit-resizer': {
|
||||
backgroundImage: `linear-gradient(135deg,
|
||||
var(--invokeai-colors-base-50) 0%,
|
||||
var(--invokeai-colors-base-50) 70%,
|
||||
var(--invokeai-colors-base-200) 70%,
|
||||
var(--invokeai-colors-base-200) 100%)`,
|
||||
},
|
||||
_dark: {
|
||||
'::-webkit-resizer': {
|
||||
backgroundImage: `linear-gradient(135deg,
|
||||
var(--invokeai-colors-base-900) 0%,
|
||||
var(--invokeai-colors-base-900) 70%,
|
||||
var(--invokeai-colors-base-800) 70%,
|
||||
var(--invokeai-colors-base-800) 100%)`,
|
||||
},
|
||||
},
|
||||
}));
|
||||
|
||||
export const textareaTheme = defineStyleConfig({
|
||||
variants: {
|
||||
|
Loading…
Reference in New Issue
Block a user