remove redundant prediction_type and attention_upscaling flags

This commit is contained in:
Lincoln Stein 2023-06-23 16:54:52 -04:00
parent 466ec3ab5e
commit 539d1f3bde
3 changed files with 6 additions and 27 deletions

View File

@ -631,8 +631,8 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
}
)
)
with open(root / 'invokeai.yaml','w') as f:
f.write('#empty invokeai.yaml initialization file')
# with open(root / 'invokeai.yaml','w') as f:
# f.write('#empty invokeai.yaml initialization file')
# -------------------------------------
def run_console_ui(

View File

@ -3,8 +3,6 @@ Utility (backend) functions used by model_install.py
"""
import os
import shutil
import sys
import traceback
import warnings
from dataclasses import dataclass,field
from pathlib import Path
@ -12,10 +10,9 @@ from tempfile import TemporaryDirectory
from typing import List, Dict, Callable, Union, Set
import requests
from diffusers import AutoencoderKL, StableDiffusionPipeline
from diffusers import StableDiffusionPipeline
from huggingface_hub import hf_hub_url, HfFolder, HfApi
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from tqdm import tqdm
import invokeai.configs as configs
@ -24,7 +21,6 @@ from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType
from invokeai.backend.model_management.model_probe import ModelProbe, SchedulerPredictionType, ModelProbeInfo
from invokeai.backend.util import download_with_resume
from ..stable_diffusion import StableDiffusionGeneratorPipeline
from ..util.logging import InvokeAILogger
warnings.filterwarnings("ignore")
@ -290,7 +286,7 @@ class ModelInstall(object):
location = self._download_hf_model(repo_id, files, staging)
break
elif f'learned_embeds.{suffix}' in files:
location = self._download_hf_model(repo_id, [f'learned_embeds.suffix'], staging)
location = self._download_hf_model(repo_id, ['learned_embeds.suffix'], staging)
break
if not location:
logger.warning(f'Could not determine type of repo {repo_id}. Skipping install.')
@ -307,7 +303,6 @@ class ModelInstall(object):
self._install_path(dest, info)
def _make_attributes(self, path: Path, info: ModelProbeInfo)->dict:
# convoluted way to retrieve the description from datasets
description = f'{info.base_type.value} {info.model_type.value} model'
if key := self.reverse_paths.get(self.current_id):
@ -320,18 +315,7 @@ class ModelInstall(object):
model_format = info.format,
)
if info.model_type == ModelType.Pipeline:
attributes.update(
dict(
variant = info.variant_type,
)
)
if info.base_type == BaseModelType.StableDiffusion2:
attributes.update(
dict(
prediction_type = info.prediction_type,
upcast_attention = info.prediction_type == SchedulerPredictionType.VPrediction,
)
)
attributes.update(dict(variant = info.variant_type,))
if info.format=="checkpoint":
try:
legacy_conf = LEGACY_CONFIGS[info.base_type][info.variant_type][info.prediction_type] if info.base_type == BaseModelType.StableDiffusion2 \

View File

@ -131,17 +131,12 @@ class StableDiffusion2Model(DiffusersModel):
model_format: Literal[StableDiffusion2ModelFormat.Diffusers]
vae: Optional[str] = Field(None)
variant: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
class CheckpointConfig(ModelConfigBase):
model_format: Literal[StableDiffusion2ModelFormat.Checkpoint]
vae: Optional[str] = Field(None)
config: Optional[str] = Field(None)
config: str
variant: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion2