create small module for merge importation logic

This commit is contained in:
Lincoln Stein 2023-01-22 18:07:53 -05:00
parent f0fe483915
commit 6c31225d19
6 changed files with 91 additions and 52 deletions

View File

@ -29,6 +29,7 @@ else:
# Where to look for the initialization file
Globals.initfile = 'invokeai.init'
Globals.models_file = 'models.yaml'
Globals.models_dir = 'models'
Globals.config_dir = 'configs'
Globals.autoscan_dir = 'weights'
@ -49,6 +50,9 @@ Globals.disable_xformers = False
# whether we are forcing full precision
Globals.full_precision = False
def global_config_file()->Path:
return Path(Globals.root, Globals.config_dir, Globals.models_file)
def global_config_dir()->Path:
return Path(Globals.root, Globals.config_dir)

View File

@ -0,0 +1,59 @@
'''
ldm.invoke.merge_diffusers exports a single function call merge_diffusion_models()
used to merge 2-3 models together and create a new InvokeAI-registered diffusion model.
'''
import os
from typing import List
from diffusers import DiffusionPipeline
from ldm.invoke.globals import global_config_file, global_models_dir, global_cache_dir
from ldm.invoke.model_manager import ModelManager
from omegaconf import OmegaConf
def merge_diffusion_models(models:List['str'],
merged_model_name:str,
alpha:float=0.5,
interp:str=None,
force:bool=False,
**kwargs):
'''
models - up to three models, designated by their InvokeAI models.yaml model name
merged_model_name = name for new model
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
'''
config_file = global_config_file()
model_manager = ModelManager(OmegaConf.load(config_file))
model_ids_or_paths = [model_manager.model_name_or_path(x) for x in models]
pipe = DiffusionPipeline.from_pretrained(model_ids_or_paths[0],
cache_dir=kwargs.get('cache_dir',global_cache_dir()),
custom_pipeline='checkpoint_merger')
merged_pipe = pipe.merge(pretrained_model_name_or_path_list=model_ids_or_paths,
alpha=alpha,
interp=interp,
force=force,
**kwargs)
dump_path = global_models_dir() / 'merged_diffusers'
os.makedirs(dump_path,exist_ok=True)
dump_path = dump_path / merged_model_name
merged_pipe.save_pretrained (
dump_path,
safe_serialization=1
)
model_manager.import_diffuser_model(
dump_path,
model_name = merged_model_name,
description = f'Merge of models {", ".join(models)}'
)
print('REMINDER: When PR 2369 is merged, replace merge_diffusers.py line 56 with vae= argument to impormodel()')
if vae := model_manager.config[models[0]].get('vae',None):
print(f'>> Using configured VAE assigned to {models[0]}')
model_manager.config[merged_model_name]['vae'] = vae
model_manager.commit(config_file)

View File

@ -37,7 +37,11 @@ from ldm.util import instantiate_from_config, ask_user
DEFAULT_MAX_MODELS=2
class ModelManager(object):
def __init__(self, config:OmegaConf, device_type:str, precision:str, max_loaded_models=DEFAULT_MAX_MODELS):
def __init__(self,
config:OmegaConf,
device_type:str='cpu',
precision:str='float16',
max_loaded_models=DEFAULT_MAX_MODELS):
'''
Initialize with the path to the models.yaml config file,
the torch device type, and precision. The optional
@ -536,7 +540,7 @@ class ModelManager(object):
format='diffusers',
)
if isinstance(repo_or_path,Path) and repo_or_path.exists():
new_config.update(path=repo_or_path)
new_config.update(path=str(repo_or_path))
else:
new_config.update(repo_id=repo_or_path)

0
scripts/load_models.py Normal file → Executable file
View File

0
scripts/merge_embeddings.py Normal file → Executable file
View File

View File

@ -5,15 +5,12 @@ import os
import sys
import traceback
import argparse
import safetensors.torch
from ldm.invoke.globals import Globals, global_set_root, global_cache_dir
from ldm.invoke.globals import Globals, global_set_root, global_cache_dir, global_config_file
from ldm.invoke.model_manager import ModelManager
from omegaconf import OmegaConf
from pathlib import Path
from typing import List
CONFIG_FILE = None
class FloatSlider(npyscreen.Slider):
# this is supposed to adjust display precision, but doesn't
def translate_value(self):
@ -120,16 +117,16 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
self.merge_method.value=0
def on_ok(self):
if self.validate_field_values():
if self.validate_field_values() and self.check_for_overwrite():
self.parentApp.setNextForm(None)
self.editing = False
self.parentApp.merge_arguments = self.marshall_arguments()
npyscreen.notify('Starting the merge...')
import diffusers # this keeps the message up while diffusers loads
import ldm.invoke.merge_diffusers # this keeps the message up while diffusers loads
else:
self.editing = True
def ok_cancel(self):
def on_cancel(self):
sys.exit(0)
def marshall_arguments(self)->dict:
@ -141,18 +138,22 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
if self.model3.value[0] > 0:
models.append(model_names[self.model3.value[0]-1])
models = [self.model_manager.model_name_or_path(x) for x in models]
args = dict(
pretrained_model_name_or_path_list=models,
models=models,
alpha = self.alpha.value,
interp = self.interpolations[self.merge_method.value[0]],
force = self.force.value,
cache_dir = global_cache_dir('diffusers'),
merged_model_name = self.merged_model_name.value,
)
return args
def check_for_overwrite(self)->bool:
model_out = self.merged_model_name.value
if model_out not in self.model_names:
return True
else:
return npyscreen.notify_yes_no(f'The chosen merged model destination, {model_out}, is already in use. Overwrite?')
def validate_field_values(self)->bool:
bad_fields = []
model_names = self.model_names
@ -178,7 +179,7 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
class Mergeapp(npyscreen.NPSAppManaged):
def __init__(self):
super().__init__()
conf = OmegaConf.load(Path(Globals.root) / 'configs' / 'models.yaml')
conf = OmegaConf.load(global_config_file())
self.model_manager = ModelManager(conf,'cpu','float16') # precision doesn't really matter here
def onStart(self):
@ -195,51 +196,22 @@ if __name__ == '__main__':
)
args = parser.parse_args()
global_set_root(args.root_dir)
CONFIG_FILE = os.path.join(Globals.root,'configs/models.yaml')
os.environ['HF_HOME'] = str(global_cache_dir('diffusers'))
cache_dir = str(global_cache_dir('diffusers')) # because not clear the merge pipeline is honoring cache_dir
os.environ['HF_HOME'] = cache_dir
mergeapp = Mergeapp()
mergeapp.run()
from diffusers import DiffusionPipeline
args = mergeapp.merge_arguments
merged_model_name = args['merged_model_name']
merged_pipe = None
print(args)
args = mergeapp.merge_arguments
args.update(cache_dir = cache_dir)
from ldm.invoke.merge_diffusers import merge_diffusion_models
try:
print(f'DEBUG: {args["pretrained_model_name_or_path_list"][0]}')
pipe = DiffusionPipeline.from_pretrained(args['pretrained_model_name_or_path_list'][0],
custom_pipeline='checkpoint_merger'
)
merged_pipe = pipe.merge(**args)
dump_path = Path(Globals.root) / 'models' / 'merged_diffusers'
os.makedirs(dump_path,exist_ok=True)
dump_path = dump_path / merged_model_name
merged_pipe.save_pretrained (
dump_path,
safe_serialization=1
)
merge_diffusion_models(**args)
print(f'>> Models merged into new model: "{args["merged_model_name"]}".')
except Exception as e:
print(f'** An error occurred while merging the pipelines: {str(e)}')
print('** DETAILS:')
print(traceback.format_exc())
sys.exit(-1)
print(f'>> Merged model is saved to {dump_path}')
response = input('Import this model into InvokeAI? [y]').strip() or 'y'
if response.startswith(('y','Y')):
try:
mergeapp.model_manager.import_diffuser_model(
dump_path,
model_name = merged_model_name,
description = f'Merge of models {args["pretrained_model_name_or_path_list"]}'
)
mergeapp.model_manager.commit(CONFIG_FILE)
print('>> Merged model imported.')
except Exception as e:
print(f'** New model could not be committed to config.yaml: {str(e)}')
print('** DETAILS:')
print(traceback.format_exc())