mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
SwapCrossAttnProcessor working - tested on mac CPU (MPS doesn't work)
This commit is contained in:
parent
0c2a511671
commit
bffe199ad7
@ -24,9 +24,6 @@ from ...models.diffusion import cross_attention_control
|
||||
from ...models.diffusion.cross_attention_map_saving import AttentionMapSaver
|
||||
from ...modules.prompt_to_embeddings_converter import WeightedPromptFragmentsToEmbeddingsConverter
|
||||
|
||||
# monkeypatch diffusers CrossAttention 🙈
|
||||
# this is to make prompt2prompt and (future) attention maps work
|
||||
attention.CrossAttention = cross_attention_control.InvokeAIDiffusersCrossAttention
|
||||
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
@ -295,7 +292,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward, is_running_diffusers=True)
|
||||
use_full_precision = (precision == 'float32' or precision == 'autocast')
|
||||
self.textual_inversion_manager = TextualInversionManager(tokenizer=self.tokenizer,
|
||||
text_encoder=self.text_encoder,
|
||||
@ -389,6 +386,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
attention_map_saver: Optional[AttentionMapSaver] = None
|
||||
self.invokeai_diffuser.remove_attention_map_saving()
|
||||
|
||||
for i, t in enumerate(self.progress_bar(timesteps)):
|
||||
batched_t.fill_(t)
|
||||
step_output = self.step(batched_t, latents, conditioning_data,
|
||||
@ -447,7 +445,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
return step_output
|
||||
|
||||
def _unet_forward(self, latents, t, text_embeddings):
|
||||
def _unet_forward(self, latents, t, text_embeddings, cross_attention_kwargs: Optional[dict[str,Any]] = None):
|
||||
"""predict the noise residual"""
|
||||
if is_inpainting_model(self.unet) and latents.size(1) == 4:
|
||||
# Pad out normal non-inpainting inputs for an inpainting model.
|
||||
@ -460,7 +458,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
initial_image_latents=torch.zeros_like(latents[:1], device=latents.device, dtype=latents.dtype)
|
||||
).add_mask_channels(latents)
|
||||
|
||||
return self.unet(latents, t, encoder_hidden_states=text_embeddings).sample
|
||||
return self.unet(sample=latents,
|
||||
timestep=t,
|
||||
encoder_hidden_states=text_embeddings,
|
||||
cross_attention_kwargs=cross_attention_kwargs).sample
|
||||
|
||||
def img2img_from_embeddings(self,
|
||||
init_image: Union[torch.FloatTensor, PIL.Image.Image],
|
||||
|
@ -1,160 +0,0 @@
|
||||
|
||||
"""
|
||||
# base implementation
|
||||
|
||||
class CrossAttnProcessor:
|
||||
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
query = attn.head_to_batch_dim(query)
|
||||
|
||||
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
key = attn.head_to_batch_dim(key)
|
||||
value = attn.head_to_batch_dim(value)
|
||||
|
||||
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
||||
hidden_states = torch.bmm(attention_probs, value)
|
||||
hidden_states = attn.batch_to_head_dim(hidden_states)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
"""
|
||||
import enum
|
||||
from dataclasses import field, dataclass
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.models.cross_attention import CrossAttention, CrossAttnProcessor
|
||||
|
||||
class AttentionType(enum.Enum):
|
||||
SELF = 1
|
||||
TOKENS = 2
|
||||
|
||||
@dataclass
|
||||
class SwapCrossAttnContext:
|
||||
|
||||
cross_attention_types_to_do: list[AttentionType]
|
||||
modified_text_embeddings: torch.Tensor
|
||||
index_map: torch.Tensor # maps from original prompt token indices to the equivalent tokens in the modified prompt
|
||||
mask: torch.Tensor # in the target space of the index_map
|
||||
|
||||
def __int__(self,
|
||||
cac_types_to_do: [AttentionType],
|
||||
modified_text_embeddings: torch.Tensor,
|
||||
index_map: torch.Tensor,
|
||||
mask: torch.Tensor):
|
||||
self.cross_attention_types_to_do = cac_types_to_do
|
||||
self.modified_text_embeddings = modified_text_embeddings
|
||||
self.index_map = index_map
|
||||
self.mask = mask
|
||||
|
||||
def wants_cross_attention_control(self, attn_type: AttentionType) -> bool:
|
||||
return attn_type in self.cross_attention_types_to_do
|
||||
|
||||
|
||||
class SwapCrossAttnProcessor(CrossAttnProcessor):
|
||||
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None,
|
||||
# kwargs
|
||||
cross_attention_swap_context_provider: SwapCrossAttnContext=None):
|
||||
|
||||
if cross_attention_swap_context_provider is None:
|
||||
raise RuntimeError("a SwapCrossAttnContext instance must be passed via attention processor kwargs")
|
||||
|
||||
attention_type = AttentionType.SELF if encoder_hidden_states is None else AttentionType.TOKENS
|
||||
# if cross-attention control is not in play, just call through to the base implementation.
|
||||
if not cross_attention_swap_context_provider.wants_cross_attention_control(attention_type):
|
||||
return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask)
|
||||
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
query = attn.head_to_batch_dim(query)
|
||||
|
||||
# helper function
|
||||
def get_attention_probs(embeddings):
|
||||
this_key = attn.to_k(embeddings)
|
||||
this_key = attn.head_to_batch_dim(this_key)
|
||||
return attn.get_attention_scores(query, this_key, attention_mask)
|
||||
|
||||
if attention_type == AttentionType.SELF:
|
||||
# self attention has no remapping, it just bluntly copies the whole tensor
|
||||
attention_probs = get_attention_probs(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
else:
|
||||
# tokens (cross) attention
|
||||
# first, find attention probabilities for the "original" prompt
|
||||
original_text_embeddings = encoder_hidden_states
|
||||
original_attention_probs = get_attention_probs(original_text_embeddings)
|
||||
|
||||
# then, find attention probabilities for the "modified" prompt
|
||||
modified_text_embeddings = cross_attention_swap_context_provider.modified_text_embeddings
|
||||
modified_attention_probs = get_attention_probs(modified_text_embeddings)
|
||||
|
||||
# because the prompt modifications may result in token sequences shifted forwards or backwards,
|
||||
# the original attention probabilities must be remapped to account for token index changes in the
|
||||
# modified prompt
|
||||
remapped_original_attention_probs = torch.index_select(original_attention_probs, -1,
|
||||
cross_attention_swap_context_provider.index_map)
|
||||
|
||||
# only some tokens taken from the original attention probabilities. this is controlled by the mask.
|
||||
mask = cross_attention_swap_context_provider.mask
|
||||
inverse_mask = 1 - mask
|
||||
attention_probs = \
|
||||
remapped_original_attention_probs * mask + \
|
||||
modified_attention_probs * inverse_mask
|
||||
|
||||
# for the "value" just use the modified text embeddings.
|
||||
value = attn.to_v(modified_text_embeddings)
|
||||
|
||||
value = attn.head_to_batch_dim(value)
|
||||
|
||||
hidden_states = torch.bmm(attention_probs, value)
|
||||
hidden_states = attn.batch_to_head_dim(hidden_states)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class P2PCrossAttentionProc:
|
||||
|
||||
def __init__(self, head_size, upcast_attention, attn_maps_reweight):
|
||||
super().__init__(head_size=head_size, upcast_attention=upcast_attention)
|
||||
self.attn_maps_reweight = attn_maps_reweight
|
||||
|
||||
def __call__(self, hidden_states, query_proj, key_proj, value_proj, encoder_hidden_states, modified_text_embeddings):
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
query = query_proj(hidden_states)
|
||||
|
||||
context = context if context is not None else hidden_states
|
||||
attention_probs = []
|
||||
original_text_embeddings = encoder_hidden_states
|
||||
for context in [original_text_embeddings, modified_text_embeddings]:
|
||||
key = key_proj(original_text_embeddings)
|
||||
value = self.value_proj(original_text_embeddings)
|
||||
|
||||
query = self.head_to_batch_dim(query, self.head_size)
|
||||
key = self.head_to_batch_dim(key, self.head_size)
|
||||
value = self.head_to_batch_dim(value, self.head_size)
|
||||
|
||||
attention_probs.append(self.get_attention_scores(query, key))
|
||||
|
||||
merged_probs = self.attn_maps_reweight * torch.cat(attention_probs)
|
||||
hidden_states = torch.bmm(attention_probs, value)
|
||||
hidden_states = self.batch_to_head_dim(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
proc = P2PCrossAttentionProc(unet.config.head_size, unet.config.upcast_attention, 0.6)
|
@ -9,6 +9,7 @@ from torch import nn
|
||||
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
||||
from ldm.invoke.devices import torch_dtype
|
||||
|
||||
|
||||
# adapted from bloc97's CrossAttentionControl colab
|
||||
# https://github.com/bloc97/CrossAttentionControl
|
||||
|
||||
@ -304,11 +305,16 @@ class InvokeAICrossAttentionMixin:
|
||||
|
||||
|
||||
|
||||
def remove_cross_attention_control(model):
|
||||
remove_attention_function(model)
|
||||
def remove_cross_attention_control(model, is_running_diffusers: bool):
|
||||
if is_running_diffusers:
|
||||
unet = model
|
||||
print("** need to know what cross attn processor to use by default, None in the following line is wrong")
|
||||
unet.set_attn_processor(CrossAttnProcessor())
|
||||
else:
|
||||
remove_attention_function(model)
|
||||
|
||||
|
||||
def setup_cross_attention_control(model, context: Context):
|
||||
def setup_cross_attention_control(model, context: Context, is_running_diffusers = False):
|
||||
"""
|
||||
Inject attention parameters and functions into the passed in model to enable cross attention editing.
|
||||
|
||||
@ -333,10 +339,16 @@ def setup_cross_attention_control(model, context: Context):
|
||||
indices[b0:b1] = indices_target[a0:a1]
|
||||
mask[b0:b1] = 1
|
||||
|
||||
#context.register_cross_attention_modules(model)
|
||||
context.cross_attention_mask = mask.to(device)
|
||||
context.cross_attention_index_map = indices.to(device)
|
||||
#inject_attention_function(model, context)
|
||||
if is_running_diffusers:
|
||||
unet = model
|
||||
unet.set_attn_processor(SwapCrossAttnProcessor())
|
||||
else:
|
||||
context.register_cross_attention_modules(model)
|
||||
inject_attention_function(model, context)
|
||||
|
||||
|
||||
|
||||
|
||||
def get_cross_attention_modules(model, which: CrossAttentionType) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
|
||||
@ -461,3 +473,155 @@ class InvokeAIDiffusersCrossAttention(diffusers.models.attention.CrossAttention,
|
||||
hidden_states = self.reshape_batch_dim_to_heads(attention_result)
|
||||
return hidden_states
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## 🧨diffusers implementation follows
|
||||
|
||||
|
||||
"""
|
||||
# base implementation
|
||||
|
||||
class CrossAttnProcessor:
|
||||
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
query = attn.head_to_batch_dim(query)
|
||||
|
||||
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
key = attn.head_to_batch_dim(key)
|
||||
value = attn.head_to_batch_dim(value)
|
||||
|
||||
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
||||
hidden_states = torch.bmm(attention_probs, value)
|
||||
hidden_states = attn.batch_to_head_dim(hidden_states)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
"""
|
||||
import enum
|
||||
from dataclasses import field, dataclass
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.models.cross_attention import CrossAttention, CrossAttnProcessor
|
||||
from ldm.models.diffusion.cross_attention_control import CrossAttentionType
|
||||
|
||||
|
||||
@dataclass
|
||||
class SwapCrossAttnContext:
|
||||
modified_text_embeddings: torch.Tensor
|
||||
index_map: torch.Tensor # maps from original prompt token indices to the equivalent tokens in the modified prompt
|
||||
mask: torch.Tensor # in the target space of the index_map
|
||||
cross_attention_types_to_do: list[CrossAttentionType] = field(default_factory=[])
|
||||
|
||||
def __int__(self,
|
||||
cac_types_to_do: [CrossAttentionType],
|
||||
modified_text_embeddings: torch.Tensor,
|
||||
index_map: torch.Tensor,
|
||||
mask: torch.Tensor):
|
||||
self.cross_attention_types_to_do = cac_types_to_do
|
||||
self.modified_text_embeddings = modified_text_embeddings
|
||||
self.index_map = index_map
|
||||
self.mask = mask
|
||||
|
||||
def wants_cross_attention_control(self, attn_type: CrossAttentionType) -> bool:
|
||||
return attn_type in self.cross_attention_types_to_do
|
||||
|
||||
@classmethod
|
||||
def make_mask_and_index_map(cls, edit_opcodes: list[tuple[str, int, int, int, int]], max_length: int) \
|
||||
-> tuple[torch.Tensor, torch.Tensor]:
|
||||
|
||||
# mask=1 means use original prompt attention, mask=0 means use modified prompt attention
|
||||
mask = torch.zeros(max_length)
|
||||
indices_target = torch.arange(max_length, dtype=torch.long)
|
||||
indices = torch.arange(max_length, dtype=torch.long)
|
||||
for name, a0, a1, b0, b1 in edit_opcodes:
|
||||
if b0 < max_length:
|
||||
if name == "equal":
|
||||
# these tokens remain the same as in the original prompt
|
||||
indices[b0:b1] = indices_target[a0:a1]
|
||||
mask[b0:b1] = 1
|
||||
|
||||
return mask, indices
|
||||
|
||||
|
||||
class SwapCrossAttnProcessor(CrossAttnProcessor):
|
||||
|
||||
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None,
|
||||
# kwargs
|
||||
swap_cross_attn_context: SwapCrossAttnContext=None):
|
||||
|
||||
attention_type = CrossAttentionType.SELF if encoder_hidden_states is None else CrossAttentionType.TOKENS
|
||||
|
||||
# if cross-attention control is not in play, just call through to the base implementation.
|
||||
if swap_cross_attn_context is None or not swap_cross_attn_context.wants_cross_attention_control(attention_type):
|
||||
#print(f"SwapCrossAttnContext for {attention_type} not active - passing request to superclass")
|
||||
return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask)
|
||||
#else:
|
||||
# print(f"SwapCrossAttnContext for {attention_type} active")
|
||||
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
query = attn.head_to_batch_dim(query)
|
||||
|
||||
# helper function
|
||||
def get_attention_probs(embeddings):
|
||||
this_key = attn.to_k(embeddings)
|
||||
this_key = attn.head_to_batch_dim(this_key)
|
||||
return attn.get_attention_scores(query, this_key, attention_mask)
|
||||
|
||||
if attention_type == CrossAttentionType.SELF:
|
||||
# self attention has no remapping, it just bluntly copies the whole tensor
|
||||
attention_probs = get_attention_probs(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
else:
|
||||
# tokens (cross) attention
|
||||
# first, find attention probabilities for the "original" prompt
|
||||
original_text_embeddings = encoder_hidden_states
|
||||
original_attention_probs = get_attention_probs(original_text_embeddings)
|
||||
|
||||
# then, find attention probabilities for the "modified" prompt
|
||||
modified_text_embeddings = swap_cross_attn_context.modified_text_embeddings
|
||||
modified_attention_probs = get_attention_probs(modified_text_embeddings)
|
||||
|
||||
# because the prompt modifications may result in token sequences shifted forwards or backwards,
|
||||
# the original attention probabilities must be remapped to account for token index changes in the
|
||||
# modified prompt
|
||||
remapped_original_attention_probs = torch.index_select(original_attention_probs, -1,
|
||||
swap_cross_attn_context.index_map)
|
||||
|
||||
# only some tokens taken from the original attention probabilities. this is controlled by the mask.
|
||||
mask = swap_cross_attn_context.mask
|
||||
inverse_mask = 1 - mask
|
||||
attention_probs = \
|
||||
remapped_original_attention_probs * mask + \
|
||||
modified_attention_probs * inverse_mask
|
||||
|
||||
# for the "value" just use the modified text embeddings.
|
||||
value = attn.to_v(modified_text_embeddings)
|
||||
|
||||
value = attn.head_to_batch_dim(value)
|
||||
|
||||
hidden_states = torch.bmm(attention_probs, value)
|
||||
hidden_states = attn.batch_to_head_dim(hidden_states)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
@ -1,14 +1,14 @@
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from math import ceil
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional, Union, Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ldm.models.diffusion.cross_attention_control import Arguments, \
|
||||
remove_cross_attention_control, setup_cross_attention_control, Context, get_cross_attention_modules, \
|
||||
CrossAttentionType
|
||||
CrossAttentionType, SwapCrossAttnContext
|
||||
from ldm.models.diffusion.cross_attention_map_saving import AttentionMapSaver
|
||||
|
||||
|
||||
@ -30,24 +30,28 @@ class InvokeAIDiffuserComponent:
|
||||
debug_thresholding = False
|
||||
|
||||
|
||||
@dataclass
|
||||
class ExtraConditioningInfo:
|
||||
def __init__(self, tokens_count_including_eos_bos:int, cross_attention_control_args: Optional[Arguments]):
|
||||
self.tokens_count_including_eos_bos = tokens_count_including_eos_bos
|
||||
self.cross_attention_control_args = cross_attention_control_args
|
||||
|
||||
tokens_count_including_eos_bos: int
|
||||
cross_attention_control_args: Optional[Arguments] = None
|
||||
|
||||
@property
|
||||
def wants_cross_attention_control(self):
|
||||
return self.cross_attention_control_args is not None
|
||||
|
||||
|
||||
def __init__(self, model, model_forward_callback:
|
||||
Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
|
||||
):
|
||||
Callable[[torch.Tensor, torch.Tensor, torch.Tensor, Optional[dict[str,Any]]], torch.Tensor],
|
||||
is_running_diffusers: bool=False,
|
||||
):
|
||||
"""
|
||||
:param model: the unet model to pass through to cross attention control
|
||||
:param model_forward_callback: a lambda with arguments (x, sigma, conditioning_to_apply). will be called repeatedly. most likely, this should simply call model.forward(x, sigma, conditioning)
|
||||
"""
|
||||
self.conditioning = None
|
||||
self.model = model
|
||||
self.is_running_diffusers = is_running_diffusers
|
||||
self.model_forward_callback = model_forward_callback
|
||||
self.cross_attention_control_context = None
|
||||
|
||||
@ -57,12 +61,14 @@ class InvokeAIDiffuserComponent:
|
||||
arguments=self.conditioning.cross_attention_control_args,
|
||||
step_count=step_count
|
||||
)
|
||||
setup_cross_attention_control(self.model, self.cross_attention_control_context)
|
||||
setup_cross_attention_control(self.model,
|
||||
self.cross_attention_control_context,
|
||||
is_running_diffusers=self.is_running_diffusers)
|
||||
|
||||
def remove_cross_attention_control(self):
|
||||
self.conditioning = None
|
||||
self.cross_attention_control_context = None
|
||||
remove_cross_attention_control(self.model)
|
||||
remove_cross_attention_control(self.model, is_running_diffusers=self.is_running_diffusers)
|
||||
|
||||
def setup_attention_map_saving(self, saver: AttentionMapSaver):
|
||||
def callback(slice, dim, offset, slice_size, key):
|
||||
@ -168,7 +174,41 @@ class InvokeAIDiffuserComponent:
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
|
||||
def apply_cross_attention_controlled_conditioning(self, x:torch.Tensor, sigma, unconditioning, conditioning, cross_attention_control_types_to_do):
|
||||
def apply_cross_attention_controlled_conditioning(self,
|
||||
x: torch.Tensor,
|
||||
sigma,
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do):
|
||||
if self.is_running_diffusers:
|
||||
return self.apply_cross_attention_controlled_conditioning__diffusers(x, sigma, unconditioning, conditioning, cross_attention_control_types_to_do)
|
||||
else:
|
||||
return self.apply_cross_attention_controlled_conditioning__compvis(x, sigma, unconditioning, conditioning, cross_attention_control_types_to_do)
|
||||
|
||||
def apply_cross_attention_controlled_conditioning__diffusers(self,
|
||||
x: torch.Tensor,
|
||||
sigma,
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do):
|
||||
context: Context = self.cross_attention_control_context
|
||||
|
||||
cross_attn_processor_context = SwapCrossAttnContext(modified_text_embeddings=context.arguments.edited_conditioning,
|
||||
index_map=context.cross_attention_index_map,
|
||||
mask=context.cross_attention_mask,
|
||||
cross_attention_types_to_do=[])
|
||||
# no cross attention for unconditioning (negative prompt)
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning,
|
||||
{"swap_cross_attn_context": cross_attn_processor_context})
|
||||
|
||||
# do requested cross attention types for conditioning (positive prompt)
|
||||
cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do
|
||||
conditioned_next_x = self.model_forward_callback(x, sigma, conditioning,
|
||||
{"swap_cross_attn_context": cross_attn_processor_context})
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
|
||||
def apply_cross_attention_controlled_conditioning__compvis(self, x:torch.Tensor, sigma, unconditioning, conditioning, cross_attention_control_types_to_do):
|
||||
# print('pct', percent_through, ': doing cross attention control on', cross_attention_control_types_to_do)
|
||||
# slower non-batched path (20% slower on mac MPS)
|
||||
# We are only interested in using attention maps for conditioned_next_x, but batching them with generation of
|
||||
|
Loading…
Reference in New Issue
Block a user