mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Fix total_steps in generation event, order field added
This commit is contained in:
parent
b4a74f6523
commit
e98f7eda2e
@ -35,6 +35,7 @@ class EventServiceBase:
|
||||
source_node_id: str,
|
||||
progress_image: Optional[ProgressImage],
|
||||
step: int,
|
||||
order: int,
|
||||
total_steps: int,
|
||||
) -> None:
|
||||
"""Emitted when there is generation progress"""
|
||||
@ -46,6 +47,7 @@ class EventServiceBase:
|
||||
source_node_id=source_node_id,
|
||||
progress_image=progress_image.dict() if progress_image is not None else None,
|
||||
step=step,
|
||||
order=order,
|
||||
total_steps=total_steps,
|
||||
),
|
||||
)
|
||||
|
@ -115,5 +115,6 @@ def stable_diffusion_step_callback(
|
||||
source_node_id=source_node_id,
|
||||
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
|
||||
step=intermediate_state.step,
|
||||
total_steps=node["steps"],
|
||||
order=intermediate_state.order,
|
||||
total_steps=intermediate_state.total_steps,
|
||||
)
|
||||
|
@ -6,6 +6,7 @@ import inspect
|
||||
from typing import Any, Callable, Generic, List, Optional, Type, TypeVar, Union
|
||||
from pydantic import Field
|
||||
|
||||
import math
|
||||
import einops
|
||||
import PIL.Image
|
||||
import numpy as np
|
||||
@ -42,6 +43,8 @@ from .diffusion import (
|
||||
@dataclass
|
||||
class PipelineIntermediateState:
|
||||
step: int
|
||||
order: int
|
||||
total_steps: int
|
||||
timestep: int
|
||||
latents: torch.Tensor
|
||||
predicted_original: Optional[torch.Tensor] = None
|
||||
@ -484,6 +487,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
yield PipelineIntermediateState(
|
||||
step=-1,
|
||||
order=self.scheduler.order,
|
||||
total_steps=len(timesteps),
|
||||
timestep=self.scheduler.config.num_train_timesteps,
|
||||
latents=latents,
|
||||
)
|
||||
@ -522,6 +527,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
yield PipelineIntermediateState(
|
||||
step=i,
|
||||
order=self.scheduler.order,
|
||||
total_steps=len(timesteps),
|
||||
timestep=int(t),
|
||||
latents=latents,
|
||||
predicted_original=predicted_original,
|
||||
|
Loading…
Reference in New Issue
Block a user