Commit Graph

17 Commits

Author SHA1 Message Date
Kent Keirsey
17d5f7bebd Critical Space Removal 2024-02-14 16:13:11 -05:00
Kent Keirsey
30dae0f5aa adding back skipped layer 2024-02-14 16:13:11 -05:00
psychedelicious
3339ad4df8 feat(nodes): seamless.py minor cleanup 2024-02-13 13:34:48 +11:00
Kent Keirsey
c3b2a8cb27 Quick Seamless Fixes 2024-02-13 13:34:48 +11:00
psychedelicious
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00
blessedcoolant
cfee8d9804 chore: seamless print statement cleanup 2023-08-29 13:09:30 +12:00
blessedcoolant
605e13eac0 chore: black fix 2023-08-29 07:50:17 +12:00
Kent Keirsey
2a1d7342a7 Seamless Patch from Stalker 2023-08-28 15:48:05 -04:00
blessedcoolant
99475ab800 chore: pyflake lint fixes 2023-08-29 05:16:23 +12:00
Sergey Borisov
bb085c5fba Move monkeypatch for diffusers/torch bug to hotfixes.py 2023-08-28 18:29:49 +03:00
Kent Keirsey
421f5b7d75 Seamless Updates 2023-08-28 08:43:08 -04:00
blessedcoolant
3ef36707a8 chore: Black lint 2023-08-28 23:10:00 +12:00
Kent Keirsey
1f476692da Seamless fixes 2023-08-28 00:10:46 -04:00
Kent Keirsey
5fdd25501b updates per stalkers comments 2023-08-27 22:54:53 -04:00
Kent Keirsey
ea40a7844a add VAE 2023-08-27 14:53:57 -04:00
Kent Keirsey
0d2e194213 Fixed dict error 2023-08-27 14:21:56 -04:00
Kent Keirsey
3de45af734 updates 2023-08-27 14:13:00 -04:00