Commit Graph

10393 Commits

Author SHA1 Message Date
Brandon Rising
35e8a33dfd Remove references to model_records service, change submodel property on ModelInfo to submodel_type to support new params in model manager 2024-03-01 10:42:33 +11:00
Lincoln Stein
b0835db47d improve swagger documentation 2024-03-01 10:42:33 +11:00
Lincoln Stein
3e330d7d9d fix a number of typechecking errors 2024-03-01 10:42:33 +11:00
Lincoln Stein
ff6e94f828 add route for model conversion from safetensors to diffusers
- Begin to add SwaggerUI documentation for AnyModelConfig and other
  discriminated Unions.
2024-03-01 10:42:33 +11:00
Lincoln Stein
a2cc4047f9 add a JIT download_and_cache() call to the model installer 2024-03-01 10:42:33 +11:00
Lincoln Stein
4027e845d4 add back the heuristic_import() method and extend repo_ids to arbitrary file paths 2024-03-01 10:42:33 +11:00
Lincoln Stein
a23dedd2ee make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-03-01 10:42:33 +11:00
Lincoln Stein
7956602b19 consolidate model manager parts into a single class 2024-03-01 10:42:33 +11:00
Lincoln Stein
8db01ab1b3 probe for required encoder for IPAdapters and add to config 2024-03-01 10:42:33 +11:00
Lincoln Stein
db340bc253 fix invokeai_configure script to work with new mm; rename CLIs 2024-03-01 10:42:33 +11:00
Lincoln Stein
78ef946e01 BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings

- Finish implementation loaders for all models currently supported by
  InvokeAI.

- Move lora, textual_inversion, and model patching support into
  backend/embeddings.

- Restore support for model cache statistics collection (a little ugly,
  needs work).

- Fixed up invocations that load and patch models.

- Move seamless and silencewarnings utils into better location
2024-03-01 10:42:33 +11:00
Lincoln Stein
5745ce9c7d Multiple refinements on loaders:
- Cache stat collection enabled.
- Implemented ONNX loading.
- Add ability to specify the repo version variant in installer CLI.
- If caller asks for a repo version that doesn't exist, will fall back
  to empty version rather than raising an error.
2024-03-01 10:42:33 +11:00
Lincoln Stein
0d3addc69b added textual inversion and lora loaders 2024-03-01 10:42:33 +11:00
Lincoln Stein
67eb715093 loaders for main, controlnet, ip-adapter, clipvision and t2i 2024-03-01 10:42:33 +11:00
Lincoln Stein
8ba5360269 model loading and conversion implemented for vaes 2024-03-01 10:42:33 +11:00
Lincoln Stein
b8e875bb73 add ram cache module and support files 2024-03-01 10:42:33 +11:00
Lincoln Stein
010c4eae65 add concept of repo variant 2024-03-01 10:42:33 +11:00
psychedelicious
95453a22b1 tests(ui): add parseFieldType.test.ts 2024-03-01 10:42:33 +11:00
psychedelicious
30db708c4f feat(ui): add more types of FieldParseError
Unfortunately you cannot test for both a specific type of error and match its message. Splitting the error classes makes it easier to test expected error conditions.
2024-03-01 10:42:33 +11:00
psychedelicious
fe27af461a feat(ui): add vitest
- Add vitest.
- Consolidate vite configs into single file (easier to config everything based on env for testing)
2024-03-01 10:42:33 +11:00
psychedelicious
f8525837b2 feat(ui): workflow schema v3 (WIP)
The changes aim to deduplicate data between workflows and node templates, decoupling workflows from internal implementation details. A good amount of data that was needlessly duplicated from the node template to the workflow is removed.

These changes substantially reduce the file size of workflows (and therefore the images with embedded workflows):

- Default T2I SD1.5 workflow JSON is reduced from 23.7kb (798 lines) to 10.9kb (407 lines).
- Default tiled upscale workflow JSON is reduced from 102.7kb (3341 lines) to 51.9kb (1774 lines).

The trade-off is that we need to reference node templates to get things like the field type and other things. In practice, this is a non-issue, because we need a node template to do anything with a node anyways.

- Field types are not included in the workflow. They are always pulled from the node templates.

The field type is now properly an internal implementation detail and we can change it as needed. Previously this would require a migration for the workflow itself. With the v3 schema, the structure of a field type is an internal implementation detail that we are free to change as we see fit.

- Workflow nodes no long have an `outputs` property and there is no longer such a thing as a `FieldOutputInstance`. These are only on the templates.

These were never referenced at a time when we didn't also have the templates available, and there'd be no reason to do so.

- Node width and height are no longer stored in the node.

These weren't used. Also, per https://reactflow.dev/api-reference/types/node, we shouldn't be programmatically changing these properties. A future enhancement can properly add node resizing.

- `nodeTemplates` slice is merged back into `nodesSlice` as `nodes.templates`. Turns out it's just a hassle having these separate in separate slices.

- Workflow migration logic updated to support the new schema. V1 workflows migrate all the way to v3 now.

- Changes throughout the nodes code to accommodate the above changes.
2024-03-01 10:42:33 +11:00
psychedelicious
5fbfed30ac chore(ui): regen types 2024-03-01 10:42:33 +11:00
psychedelicious
7a2159beeb feat(nodes): add more missing exports to invocation_api
Crawled through a few custom nodes to figure out what I had missed.
2024-03-01 10:42:33 +11:00
psychedelicious
25f64d5b19 chore(nodes): "SAMPLER_NAME_VALUES" -> "SCHEDULER_NAME_VALUES"
This was named inaccurately.
2024-03-01 10:42:33 +11:00
psychedelicious
b845e890d1 chore(nodes): remove deprecation logic for nodes API 2024-03-01 10:42:33 +11:00
psychedelicious
6d31bc5326 chore(nodes): export model-related objects from invocation_api 2024-03-01 10:42:33 +11:00
psychedelicious
0f8af643d1 chore(backend): rename ModelInfo -> LoadedModelInfo
We have two different classes named `ModelInfo` which might need to be used by API consumers. We need to export both but have to deal with this naming collision.

The `ModelInfo` I've renamed here is the one that is returned when a model is loaded. It's the object least likely to be used by API consumers.
2024-03-01 10:42:33 +11:00
psychedelicious
e0694a2856 feat(nodes): use LATENT_SCALE_FACTOR in primitives.py, noise.py
- LatentsOutput.build
- NoiseOutput.build
- Noise.width, Noise.height multiple_of
2024-03-01 10:42:33 +11:00
psychedelicious
e5d8921cf2 feat(nodes): extract LATENT_SCALE_FACTOR to constants.py 2024-03-01 10:42:33 +11:00
psychedelicious
fece935438 feat(nodes): use TemporaryDirectory to handle ephemeral storage in ObjectSerializerDisk
Replace `delete_on_startup: bool` & associated logic with `ephemeral: bool` and `TemporaryDirectory`.

The temp dir is created inside of `output_dir`. For example, if `output_dir` is `invokeai/outputs/tensors/`, then the temp dir might be `invokeai/outputs/tensors/tmpvj35ht7b/`.

The temp dir is cleaned up when the service is stopped, or when it is GC'd if not properly stopped.

In the event of a catastrophic crash where the temp files are not cleaned up, the user can delete the tempdir themselves.

This situation may not occur in normal use, but if you kill the process, python cannot clean up the temp dir itself. This includes running the app in a debugger and killing the debugger process - something I do relatively often.

Tests updated.
2024-03-01 10:42:33 +11:00
psychedelicious
11f64dab38 tests: test ObjectSerializerDisk class name extraction 2024-03-01 10:42:33 +11:00
psychedelicious
670f2f75e9 chore(nodes): update ObjectSerializerForwardCache docstring 2024-03-01 10:42:33 +11:00
psychedelicious
66d0ec3f6c chore(nodes): fix pyright ignore 2024-03-01 10:42:33 +11:00
psychedelicious
6087ace4f1 tidy(nodes): "latents" -> "obj" 2024-03-01 10:42:33 +11:00
psychedelicious
a9b1aad3d7 tidy(nodes): do not store unnecessarily store invoker 2024-03-01 10:42:33 +11:00
psychedelicious
9edb995647 feat(nodes): make delete on startup configurable for obj serializer
- The default is to not delete on startup - feels safer.
- The two services using this class _do_ delete on startup.
- The class has "ephemeral" removed from its name.
- Tests & app updated for this change.
2024-03-01 10:42:33 +11:00
psychedelicious
091f4cb583 fix(nodes): use metadata/board_id if provided by user, overriding WithMetadata/WithBoard-provided values 2024-03-01 10:42:33 +11:00
psychedelicious
1655061c96 tidy(nodes): clarify comment 2024-03-01 10:42:33 +11:00
psychedelicious
220baae793 Revert "feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders"
This reverts commit ef18fc546560277302f3886e456da9a47e8edce0.
2024-03-01 10:42:33 +11:00
psychedelicious
e08f16763b feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders 2024-03-01 10:42:33 +11:00
psychedelicious
6d25789705 tests: fix broken tests 2024-03-01 10:42:33 +11:00
psychedelicious
aff44c0e58 tidy(nodes): minor spelling correction 2024-03-01 10:42:33 +11:00
psychedelicious
34d23366f4 tests: add object serializer tests
These test both object serializer and its forward cache implementation.
2024-03-01 10:42:33 +11:00
psychedelicious
23de78ec9f feat(nodes): allow _delete_all in obj serializer to be called at any time
`_delete_all` logged how many items it deleted, and had to be called _after_ service start bc it needed access to logger.

Move the logger call to the startup method and return the the deleted stats from `_delete_all`. This lets `_delete_all` be called at any time.
2024-03-01 10:42:33 +11:00
psychedelicious
507aeac8a5 tidy(nodes): remove object serializer on_saved
It's unused.
2024-03-01 10:42:33 +11:00
psychedelicious
9f382419dc revert(nodes): revert making tensors/conditioning use item storage
Turns out they are just different enough in purpose that the implementations would be rather unintuitive. I've made a separate ObjectSerializer service to handle tensors and conditioning.

Refined the class a bit too.
2024-03-01 10:42:33 +11:00
psychedelicious
73d871116c feat(nodes): support custom exception in ephemeral disk storage 2024-03-01 10:42:33 +11:00
psychedelicious
ab58d34f9b feat(nodes): support custom save and load functions in ItemStorageEphemeralDisk 2024-03-01 10:42:33 +11:00
psychedelicious
9cda62c2a7 feat(nodes): create helper function to generate the item ID 2024-03-01 10:42:33 +11:00
psychedelicious
a50c7c1cd7 feat(nodes): use ItemStorageABC for tensors and conditioning
Turns out `ItemStorageABC` was almost identical to `PickleStorageBase`. Instead of maintaining separate classes, we can use `ItemStorageABC` for both.

There's only one change needed - the `ItemStorageABC.set` method must return the newly stored item's ID. This allows us to let the service handle the responsibility of naming the item, but still create the requisite output objects during node execution.

The naming implementation is improved here. It extracts the name of the generic and appends a UUID to that string when saving items.
2024-03-01 10:42:33 +11:00