Commit Graph

92 Commits

Author SHA1 Message Date
43b300498f Remove explicit gc.collect() after transferring models from device to CPU. I'm not sure why this was there in the first place, but it was taking a significant amount of time (up to ~1sec in my tests). 2023-11-03 13:50:40 -07:00
3781e56e57 Add log_memory_usage param to ModelCache. 2023-11-02 19:20:37 -07:00
40f9e49b5e Demote model cache logs from warning to debug based on the conversation here: https://discord.com/channels/1020123559063990373/1049495067846524939/1161647290189090816 2023-10-11 12:02:46 -04:00
58b56e9b1e Add a skip_torch_weight_init() context manager to improve model load times (from disk). 2023-10-09 14:12:56 -04:00
2479a59e5e Re-enable garbage collection in model cache MemorySnapshots. 2023-10-03 15:18:47 -04:00
22a84930f6 Disable garbage collection in ModelCache calls to MemorySnapshot in order minimize snapshot overhead. 2023-10-03 14:25:34 -04:00
5915a4a51c Minor fixes. 2023-10-03 14:25:34 -04:00
4580ba0d87 Remove logic to update model cache size estimates dynamically. 2023-10-03 14:25:34 -04:00
b9fd2e9e76 Improve get_pretty_snapshot_diff(...) message formatting. 2023-10-03 14:25:34 -04:00
2a3c0ab5d2 Move MemorySnapshot to its own file. 2023-10-03 14:25:34 -04:00
7d65555a5a Fix type error in torch device comparison. 2023-10-03 14:25:34 -04:00
123f2b2dbc Update cache model size estimates based on changes in VRAM when moving models to/from CUDA. 2023-10-03 14:25:34 -04:00
1e4e42556e Update model cache device comparison to treat 'cuda' and 'cuda:0' as the same device type. 2023-10-03 14:25:34 -04:00
1f6699ac43 Consolidate all model.to(...) calls in the model cache to use a utility function with better logging. 2023-10-03 14:25:34 -04:00
ace8665411 Add warning log if moving a model from cuda to cpu causes unexpected change in VRAM usage. 2023-10-03 14:25:34 -04:00
7fa5bae8fd Add warning log if moving model from RAM to VRAM causes an unexpected change in VRAM usage. 2023-10-03 14:25:34 -04:00
f9faca7c91 Add warning log if model mis-reports its required cache memory before load from disk. 2023-10-03 14:25:34 -04:00
594fd3ba6d Add debug logging of changes in RAM and VRAM for all model cache operations. 2023-10-03 14:25:34 -04:00
44d68f5ed5 Auto-format model_cache.py. 2023-10-03 14:25:34 -04:00
2f5e923008 Removed duplicate import in model_cache.py 2023-09-13 19:33:43 -04:00
b7296000e4 made MPS calls conditional on MPS actually being the chosen device with backend available 2023-09-13 19:33:43 -04:00
fab055995e Add empty_cache() for MPS hardware. 2023-09-13 19:33:43 -04:00
e88d7c242f isort wip 3 2023-09-12 13:01:58 -04:00
537ae2f901 Resolving merge conflicts for flake8 2023-08-18 15:52:04 +10:00
bb1b8ceaa8 Update invokeai/backend/model_management/model_cache.py
Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>
2023-08-16 08:48:44 -04:00
f9958de6be added memory used to load models 2023-08-15 21:56:19 -04:00
ec10aca91e report RAM and RAM cache statistics 2023-08-15 21:00:30 -04:00
6ad565d84c folded in changes from 4099 2023-08-04 18:24:47 -04:00
1ac14a1e43 add sdxl lora support 2023-08-04 11:44:56 -04:00
f5ac73b091 Merge branch 'main' into feat/onnx 2023-07-31 10:58:40 -04:00
e20c4dc1e8 blackified 2023-07-30 08:17:10 -04:00
844578ab88 fix lora loading crash 2023-07-30 07:57:10 -04:00
99daa97978 more refactoring; fixed place where rel conversion missed 2023-07-29 13:00:07 -04:00
da751da3dd Merge branch 'main' into feat/onnx 2023-07-28 09:59:35 -04:00
2b7b3dd4ba Run python black 2023-07-28 09:46:44 -04:00
bfdc8c80f3 Testing caching onnx sessions 2023-07-27 14:13:29 -04:00
218b6d0546 Apply black 2023-07-27 10:54:01 -04:00
bda0000acd Cleanup vram after models offloading, tweak to cleanup local variable references on ram offload 2023-07-18 23:21:18 +03:00
bc11296a5e Disable lazy offloading on disabled vram cache, move resulted tensors to cpu(to not stack vram tensors in cache), fix - text encoder not freed(detach) 2023-07-18 16:20:25 +03:00
dab03fb646 rename gpu_mem_reserved to max_vram_cache_size
To be consistent with max_cache_size, the amount of memory to hold in
VRAM for model caching is now controlled by the max_vram_cache_size
configuration parameter.
2023-07-11 15:25:39 -04:00
d32f9f7cb0 reverse logic of gpu_mem_reserved
- gpu_mem_reserved now indicates the amount of VRAM that will be reserved
  for model caching (similar to max_cache_size).
2023-07-11 15:16:40 -04:00
5759a390f9 introduce gpu_mem_reserved configuration parameter 2023-07-09 18:35:04 -04:00
8d7dba937d fix undefined variable 2023-07-09 14:37:45 -04:00
d6cb0e54b3 don't unload models from GPU until the space is needed 2023-07-09 14:26:30 -04:00
0a6dccd607 expose max_cache_size to invokeai-configure interface 2023-07-05 20:59:14 -04:00
6935858ef3 add debugging messages to aid in memory leak tracking 2023-07-02 13:34:53 -04:00
0f02915012 remove hardcoded cuda device in model manager init 2023-07-01 21:15:42 -04:00
740c05a0bb Save models on rescan, uncache model on edit/delete, fixes 2023-06-14 03:12:12 +03:00
e7db6d8120 Fix ckpt and vae conversion, migrate script, remove sd2-base 2023-06-13 18:05:12 +03:00
36eb1bd893 Fixes 2023-06-12 16:14:09 +03:00