Commit Graph

679 Commits

Author SHA1 Message Date
Lincoln Stein
b0835db47d improve swagger documentation 2024-03-01 10:42:33 +11:00
Lincoln Stein
3e330d7d9d fix a number of typechecking errors 2024-03-01 10:42:33 +11:00
Lincoln Stein
ff6e94f828 add route for model conversion from safetensors to diffusers
- Begin to add SwaggerUI documentation for AnyModelConfig and other
  discriminated Unions.
2024-03-01 10:42:33 +11:00
Lincoln Stein
a2cc4047f9 add a JIT download_and_cache() call to the model installer 2024-03-01 10:42:33 +11:00
Lincoln Stein
4027e845d4 add back the heuristic_import() method and extend repo_ids to arbitrary file paths 2024-03-01 10:42:33 +11:00
Lincoln Stein
a23dedd2ee make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-03-01 10:42:33 +11:00
Lincoln Stein
7956602b19 consolidate model manager parts into a single class 2024-03-01 10:42:33 +11:00
Lincoln Stein
db340bc253 fix invokeai_configure script to work with new mm; rename CLIs 2024-03-01 10:42:33 +11:00
Lincoln Stein
78ef946e01 BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings

- Finish implementation loaders for all models currently supported by
  InvokeAI.

- Move lora, textual_inversion, and model patching support into
  backend/embeddings.

- Restore support for model cache statistics collection (a little ugly,
  needs work).

- Fixed up invocations that load and patch models.

- Move seamless and silencewarnings utils into better location
2024-03-01 10:42:33 +11:00
Lincoln Stein
5745ce9c7d Multiple refinements on loaders:
- Cache stat collection enabled.
- Implemented ONNX loading.
- Add ability to specify the repo version variant in installer CLI.
- If caller asks for a repo version that doesn't exist, will fall back
  to empty version rather than raising an error.
2024-03-01 10:42:33 +11:00
Lincoln Stein
0d3addc69b added textual inversion and lora loaders 2024-03-01 10:42:33 +11:00
Lincoln Stein
67eb715093 loaders for main, controlnet, ip-adapter, clipvision and t2i 2024-03-01 10:42:33 +11:00
Lincoln Stein
8ba5360269 model loading and conversion implemented for vaes 2024-03-01 10:42:33 +11:00
psychedelicious
b845e890d1 chore(nodes): remove deprecation logic for nodes API 2024-03-01 10:42:33 +11:00
psychedelicious
0f8af643d1 chore(backend): rename ModelInfo -> LoadedModelInfo
We have two different classes named `ModelInfo` which might need to be used by API consumers. We need to export both but have to deal with this naming collision.

The `ModelInfo` I've renamed here is the one that is returned when a model is loaded. It's the object least likely to be used by API consumers.
2024-03-01 10:42:33 +11:00
psychedelicious
fece935438 feat(nodes): use TemporaryDirectory to handle ephemeral storage in ObjectSerializerDisk
Replace `delete_on_startup: bool` & associated logic with `ephemeral: bool` and `TemporaryDirectory`.

The temp dir is created inside of `output_dir`. For example, if `output_dir` is `invokeai/outputs/tensors/`, then the temp dir might be `invokeai/outputs/tensors/tmpvj35ht7b/`.

The temp dir is cleaned up when the service is stopped, or when it is GC'd if not properly stopped.

In the event of a catastrophic crash where the temp files are not cleaned up, the user can delete the tempdir themselves.

This situation may not occur in normal use, but if you kill the process, python cannot clean up the temp dir itself. This includes running the app in a debugger and killing the debugger process - something I do relatively often.

Tests updated.
2024-03-01 10:42:33 +11:00
psychedelicious
670f2f75e9 chore(nodes): update ObjectSerializerForwardCache docstring 2024-03-01 10:42:33 +11:00
psychedelicious
66d0ec3f6c chore(nodes): fix pyright ignore 2024-03-01 10:42:33 +11:00
psychedelicious
6087ace4f1 tidy(nodes): "latents" -> "obj" 2024-03-01 10:42:33 +11:00
psychedelicious
a9b1aad3d7 tidy(nodes): do not store unnecessarily store invoker 2024-03-01 10:42:33 +11:00
psychedelicious
9edb995647 feat(nodes): make delete on startup configurable for obj serializer
- The default is to not delete on startup - feels safer.
- The two services using this class _do_ delete on startup.
- The class has "ephemeral" removed from its name.
- Tests & app updated for this change.
2024-03-01 10:42:33 +11:00
psychedelicious
091f4cb583 fix(nodes): use metadata/board_id if provided by user, overriding WithMetadata/WithBoard-provided values 2024-03-01 10:42:33 +11:00
psychedelicious
1655061c96 tidy(nodes): clarify comment 2024-03-01 10:42:33 +11:00
psychedelicious
6d25789705 tests: fix broken tests 2024-03-01 10:42:33 +11:00
psychedelicious
aff44c0e58 tidy(nodes): minor spelling correction 2024-03-01 10:42:33 +11:00
psychedelicious
23de78ec9f feat(nodes): allow _delete_all in obj serializer to be called at any time
`_delete_all` logged how many items it deleted, and had to be called _after_ service start bc it needed access to logger.

Move the logger call to the startup method and return the the deleted stats from `_delete_all`. This lets `_delete_all` be called at any time.
2024-03-01 10:42:33 +11:00
psychedelicious
507aeac8a5 tidy(nodes): remove object serializer on_saved
It's unused.
2024-03-01 10:42:33 +11:00
psychedelicious
9f382419dc revert(nodes): revert making tensors/conditioning use item storage
Turns out they are just different enough in purpose that the implementations would be rather unintuitive. I've made a separate ObjectSerializer service to handle tensors and conditioning.

Refined the class a bit too.
2024-03-01 10:42:33 +11:00
psychedelicious
73d871116c feat(nodes): support custom exception in ephemeral disk storage 2024-03-01 10:42:33 +11:00
psychedelicious
ab58d34f9b feat(nodes): support custom save and load functions in ItemStorageEphemeralDisk 2024-03-01 10:42:33 +11:00
psychedelicious
9cda62c2a7 feat(nodes): create helper function to generate the item ID 2024-03-01 10:42:33 +11:00
psychedelicious
a50c7c1cd7 feat(nodes): use ItemStorageABC for tensors and conditioning
Turns out `ItemStorageABC` was almost identical to `PickleStorageBase`. Instead of maintaining separate classes, we can use `ItemStorageABC` for both.

There's only one change needed - the `ItemStorageABC.set` method must return the newly stored item's ID. This allows us to let the service handle the responsibility of naming the item, but still create the requisite output objects during node execution.

The naming implementation is improved here. It extracts the name of the generic and appends a UUID to that string when saving items.
2024-03-01 10:42:33 +11:00
psychedelicious
ca09bd63a3 tidy(nodes): do not refer to files as latents in PickleStorageTorch (again) 2024-03-01 10:42:33 +11:00
psychedelicious
c96f50cc9a feat(nodes): ItemStorageABC typevar no longer bound to pydantic.BaseModel
This bound is totally unnecessary. There's no requirement for any implementation of `ItemStorageABC` to work only on pydantic models.
2024-03-01 10:42:33 +11:00
psychedelicious
de63e888d6 fix(nodes): add super init to PickleStorageTorch 2024-03-01 10:42:33 +11:00
psychedelicious
5dd158a2d4 tidy(nodes): do not refer to files as latents in PickleStorageTorch 2024-03-01 10:42:33 +11:00
psychedelicious
0710fb3fb0 feat(nodes): replace latents service with tensors and conditioning services
- New generic class `PickleStorageBase`, implements the same API as `LatentsStorageBase`, use for storing non-serializable data via pickling
- Implementation `PickleStorageTorch` uses `torch.save` and `torch.load`, same as `LatentsStorageDisk`
- Add `tensors: PickleStorageBase[torch.Tensor]` to `InvocationServices`
- Add `conditioning: PickleStorageBase[ConditioningFieldData]` to `InvocationServices`
- Remove `latents` service and all `LatentsStorage` classes
- Update `InvocationContext` and all usage of old `latents` service to use the new services/context wrapper methods
2024-03-01 10:42:33 +11:00
psychedelicious
b386b1b8af tidy(nodes): remove unnecessary, shadowing class attr declarations 2024-03-01 10:42:33 +11:00
psychedelicious
7fbdfbf9e5 feat(nodes): add WithBoard field helper class
This class works the same way as `WithMetadata` - it simply adds a `board` field to the node. The context wrapper function is able to pull the board id from this. This allows image-outputting nodes to get a board field "for free", and have their outputs automatically saved to it.

This is a breaking change for node authors who may have a field called `board`, because it makes `board` a reserved field name. I'll look into how to avoid this - maybe by naming this invoke-managed field `_board` to avoid collisions?

Supporting changes:
- `WithBoard` is added to all image-outputting nodes, giving them the ability to save to board.
- Unused, duplicate `WithMetadata` and `WithWorkflow` classes are deleted from `baseinvocation.py`. The "real" versions are in `fields.py`.
- Remove `LinearUIOutputInvocation`. Now that all nodes that output images also have a `board` field by default, this node is no longer necessary. See comment here for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629
- Without `LinearUIOutputInvocation`, the `ImagesInferface.update` method is no longer needed, and removed.

Note: This commit does not bump all node versions. I will ensure that is done correctly before merging the PR of which this commit is a part.

Note: A followup commit will implement the frontend changes to support this change.
2024-03-01 10:42:33 +11:00
psychedelicious
e137071543 remove unused configdict import 2024-03-01 10:42:33 +11:00
psychedelicious
47d05fdd81 fix(nodes): do not freeze or cache config in context wrapper
- The config is already cached by the config class's `get_config()` method.
- The config mutates itself in its `root_path` property getter. Freezing the class makes any attempt to grab a path from the config error. Unfortunately this means we cannot easily freeze the class without fiddling with the inner workings of `InvokeAIAppConfig`, which is outside the scope here.
2024-03-01 10:42:33 +11:00
psychedelicious
958b80acdd feat(nodes): context.data -> context._data 2024-03-01 10:42:33 +11:00
psychedelicious
5730ae9b96 feat(nodes): context.__services -> context._services 2024-03-01 10:42:33 +11:00
psychedelicious
60e2eff94d feat(nodes): cache invocation interface config 2024-03-01 10:42:33 +11:00
psychedelicious
dcafbb9988 feat(nodes): do not hide services in invocation context interfaces 2024-03-01 10:42:33 +11:00
psychedelicious
cbf22d8a80 chore(nodes): add comments for ConfigInterface 2024-03-01 10:42:33 +11:00
psychedelicious
95dd5aad16 feat(nodes): add boards interface to invocation context 2024-03-01 10:42:33 +11:00
psychedelicious
4ce21087d3 fix(nodes): restore type annotations for InvocationContext 2024-03-01 10:42:33 +11:00
psychedelicious
281c334531 feat(nodes): do not freeze InvocationContextData, prevents it from being subclassesd 2024-03-01 10:42:33 +11:00
psychedelicious
05fb485d33 feat(nodes): move ConditioningFieldData to conditioning_data.py 2024-03-01 10:42:33 +11:00
psychedelicious
f612a96afd feat(nodes): restore previous invocation context methods with deprecation warnings 2024-03-01 10:42:33 +11:00
psychedelicious
1616974b48 feat(nodes): tidy invocation_context.py, improve comments 2024-03-01 10:42:33 +11:00
psychedelicious
8637c40661 feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.

Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
2024-03-01 10:42:33 +11:00
psychedelicious
3d98446d5d feat(nodes): restricts invocation context power
Creates a low-power `InvocationContext` with simplified methods and data.

See `invocation_context.py` for detailed comments.
2024-03-01 10:42:33 +11:00
psychedelicious
992b02aa65 tidy(nodes): move all field things to fields.py
Unfortunately, this is necessary to prevent circular imports at runtime.
2024-03-01 10:42:33 +11:00
psychedelicious
fc278c5cb1 fix(images_default): correct get_metadata error message
The error was misleading, indicating an issue with getting the image DTO, when it was actually an issue with getting metadata.
2024-02-14 16:21:39 -05:00
psychedelicious
3726293258 feat(nodes): improve types in graph.py
Methods `get_node` and `complete` were typed as returning a dynamically created unions `InvocationsUnion` and `InvocationOutputsUnion`, respectively.

Static type analysers cannot work with dynamic objects, so these methods end up as effectively un-annotated, returning `Unknown`.

They now return `BaseInvocation` and `BaseInvocationOutput`, respectively, which are the superclasses of all members of each union. This gives us the best type annotation that is possible.

Note: the return types of these methods are never introspected, so it doesn't really matter what they are at runtime.
2024-02-14 07:56:10 +11:00
psychedelicious
d20f98fb4f fix(nodes): deep copy graph inputs
The change to memory session storage brings a subtle behaviour change.

Previously, we serialized and deserialized everything (e.g. field state, invocation outputs, etc) constantly. The meant we were effectively working with deep-copied objects at all time. We could mutate objects freely without worrying about other references to the object.

With memory storage, objects are now passed around by reference, and we cannot handle them in the same way.

This is problematic for nodes that mutate their own inputs. There are two ways this causes a problem:

- An output is used as input for multiple nodes. If the first node mutates the output object while `invoke`ing, the next node will get the mutated object.
- The invocation cache stores live python objects. When a node mutates an output pulled from the cache, the next node that uses the cached object will get the mutated object.

The solution is to deep-copy a node's inputs as they are set, effectively reproducing the same behaviour as we had with the SQLite session storage. Nodes can safely mutate their inputs and those changes never leave the node's scope.

Closes  #5665
2024-02-09 21:17:32 +11:00
psychedelicious
79ae9c4e64 feat(nodes): move profiler/stats cleanup logic to function
Harder to miss something going forward.
2024-02-07 11:26:15 +11:00
psychedelicious
0dc6cb0535 feat(nodes): do not log stats errors
The stats service was logging error messages when attempting to retrieve stats for a graph that it wasn't tracking. This was rather noisy.

Instead of logging these errors within the service, we now will just raise the error and let the consumer of the service decide whether or not to log. Our usage of the service at this time is to suppress errors - we don't want to log anything to the console.

Note: With the improvements in the previous two commits, we shouldn't get these errors moving forward, but I still think this change is correct.
2024-02-07 11:26:15 +11:00
psychedelicious
810fc19e43 feat(nodes): log stats for canceled graphs
When an invocation is canceled, we consider the graph canceled. Log its graph's stats before resetting its graph's stats. No reason to not log these stats.

We also should stop the profiler at this point, because this graph is finished. If we don't stop it manually, it will stop itself and write the profile to disk when it is next started, but the resultant profile will include more than just its target graph.

Now we get both stats and profiles for canceled graphs.
2024-02-07 11:26:15 +11:00
psychedelicious
e0e106367d fix(nodes): do not clear invocation stats on invoke error
When an invocation errored, we clear the stats for the whole graph. Later on, we check the graph for errors and see the failed invocation, and we consider the graph failed. We then attempts to log the stats for the failed graph.

Except now the failed graph has no stats, and the stats raises an error.

The user sees, in the terminal:
- An invocation error
- A stats error (scary!)
- No stats for the failed graph (uninformative!)

What the user should see:
- An invocation error
- Graph stats

The fix is simple - don't reset the graph stats when an invocation has an error.
2024-02-07 11:26:15 +11:00
psychedelicious
0976ddba23 chore(invocation-stats): improve types in _prune_stale_stats 2024-02-03 07:34:06 -05:00
psychedelicious
3ebb806410 fix(invocation-stats): use appropriate method to get the type of an invocation 2024-02-03 07:34:06 -05:00
psychedelicious
9f274c79dc chore(item-storage): improve types
Provide type args to the generics.
2024-02-03 07:34:06 -05:00
psychedelicious
88c08bbfc7 fix(item-storage-memory): throw when requested item does not exist
- `ItemStorageMemory.get` now throws an `ItemNotFoundError` when the requested `item_id` is not found.
- Update docstrings in ABC and tests.

The new memory item storage implementation implemented the `get` method incorrectly, by returning `None` if the item didn't exist.

The ABC typed `get` as returning `T`, while the SQLite implementation typed `get` as returning `Optional[T]`. The SQLite implementation was referenced when writing the memory implementation.

This mismatched typing is a violation of the Liskov substitution principle, because the signature of the implementation of `get` in the implementation is wider than the abstract class's definition. Using `pyright` in strict mode catches this.

In `invocation_stats_default`, this introduced an error. The `_prune_stats` method calls `get`, expecting the method to throw if the item is not found. If the graph is no longer stored in the bounded item storage, we will call `is_complete()` on `None`, causing the error.

Note: This error condition never arose the SQLite implementation because it parsed the item with pydantic before returning it, which would throw if the item was not found. It implicitly threw, while the memory implementation did not.
2024-02-03 07:34:06 -05:00
Peanut
f972fe9836 pref: annotate 2024-02-03 10:18:26 +11:00
Peanut
dcfc883ab3 perf: remove TypeAdapter 2024-02-03 10:18:26 +11:00
Peanut
1d2bd6b8f7 perf: TypeAdapter instantiated once 2024-02-03 10:18:26 +11:00
Lincoln Stein
f2777f5096
Port the command-line tools to use model_manager2 (#5546)
* Port the command-line tools to use model_manager2

1.Reimplement the following:

  - invokeai-model-install
  - invokeai-merge
  - invokeai-ti

  To avoid breaking the original modeal manager, the udpated tools
  have been renamed invokeai-model-install2 and invokeai-merge2. The
  textual inversion training script should continue to work with
  existing installations. The "starter" models now live in
  `invokeai/configs/INITIAL_MODELS2.yaml`.

  When the full model manager 2 is in place and working, I'll rename
  these files and commands.

2. Add the `merge` route to the web API. This will merge two or three models,
   resulting a new one.

   - Note that because the model installer selectively installs the `fp16` variant
     of models (rather than both 16- and 32-bit versions as previous),
     the diffusers merge script will choke on any huggingface diffuserse models
     that were downloaded with the new installer. Previously-downloaded models
     should continue to merge correctly. I have a PR
     upstream https://github.com/huggingface/diffusers/pull/6670 to fix
     this.

3. (more important!)
  During implementation of the CLI tools, found and fixed a number of small
  runtime bugs in the model_manager2 implementation:

  - During model database migration, if a registered models file was
    not found on disk, the migration would be aborted. Now the
    offending model is skipped with a log warning.

  - Caught and fixed a condition in which the installer would download the
    entire diffusers repo when the user provided a single `.safetensors`
    file URL.

  - Caught and fixed a condition in which the installer would raise an
    exception and stop the app when a request for an unknown model's metadata
    was passed to Civitai. Now an error is logged and the installer continues.

  - Replaced the LoWRA starter LoRA with FlatColor. The former has been removed
    from Civitai.

* fix ruff issue

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-02-02 17:18:47 +00:00
psychedelicious
1ac85fd049 tidy(migrator): remove logic to check if graph_executions exists in migration 5
Initially I wanted to show how many sessions were being deleted. In hindsight, this is not great:
- It requires extra logic in the migrator, which should be as simple as possible.
- It may be alarming to see "Clearing 224591 old sessions".

The app still reports on freed space during the DB startup logic.
2024-02-02 09:20:41 +11:00
psychedelicious
ee6fc4ab1d chore(item_storage): excise SqliteItemStorage 2024-02-02 09:20:41 +11:00
psychedelicious
9f793bdae8 feat(item_storage): implement item_storage_memory with LRU eviction strategy
Implemented with OrderedDict.
2024-02-02 09:20:41 +11:00
psychedelicious
a0eecaecd0 feat(item_storage): implement item_storage_memory max_size
Implemented with unordered dict and set.
2024-02-02 09:20:41 +11:00
psychedelicious
d532073f5b fix(db): check for graph_executions table before dropping
This is needed to not fail tests; see comment in code.
2024-02-02 09:20:41 +11:00
psychedelicious
198e8c9d55 feat(db): add migration 5 to drop graph_executions table 2024-02-02 09:20:41 +11:00
psychedelicious
e73298aea2 tidy(item_storage): remove extraneous class attribute declarations 2024-02-02 09:20:41 +11:00
psychedelicious
59279851a3 tidy(item_storage): remove unused list and search methods 2024-02-02 09:20:41 +11:00
psychedelicious
2965357d99 feat(nodes): add ItemStorageMemory
The sqlite item storage class can be swapped for this eliminate costly network calls.
2024-02-02 09:20:41 +11:00
psychedelicious
8bd32ee142 feat(nodes): add delete method to ItemStorageABC 2024-02-02 09:20:41 +11:00
psychedelicious
a4f892dcfb tidy(nodes): remove unused get_raw method on ItemStorageABC 2024-02-02 09:20:41 +11:00
psychedelicious
e9558f97c4 perf(config): change default png_compress_level to 1
This substantially reduces the time spent encoding PNGs. In workflows with many image outputs, this is a drastic improvement.

For a tiled upscaling workflow going from 512x512 to a scale factor of 4, this can provide over 15% speed increase.
2024-02-02 00:32:00 +11:00
psychedelicious
4410ecf62c fix(stats): log errors at error level
They were erroneously at warning before.
2024-02-01 08:50:56 +11:00
psychedelicious
9f6b9d4d23 fix(stats): preserve stack when raising GESStatsNotFoundError 2024-02-01 08:50:56 +11:00
psychedelicious
b24e8dd829 feat(stats): refactor InvocationStatsService to output stats as dataclasses
This allows the stats to be written to disk as JSON and analyzed.

- Add dataclasses to hold stats.
- Move stats pretty-print logic to `__str__` of the new `InvocationStatsSummary` class.
- Add `get_stats` and `dump_stats` methods to `InvocationStatsServiceBase`.
- `InvocationStatsService` now throws if stats are requested for a session it doesn't know about. This avoids needing to do a lot of messy null checks.
- Update `DefaultInvocationProcessor` to use the new stats methods and suppresses the new errors.
2024-02-01 08:50:56 +11:00
Brandon Rising
522ff4a042 civit -> civitai 2024-01-31 07:16:14 -06:00
Brandon Rising
2c5ef92979 Move location of config property, comment for explanation of use 2024-01-31 07:16:14 -06:00
Brandon Rising
088e3420e6 Allow passing of civit api key via config 2024-01-31 07:16:14 -06:00
psychedelicious
4602efd598
feat: add profiler util (#5601)
* feat(config): add profiling config settings

- `profile_graphs` enables graph profiling with cProfile
- `profiles_dir` sets the output for profiles

* feat(nodes): add Profiler util

Simple wrapper around cProfile.

* feat(nodes): use Profiler in invocation processor

* scripts: add generate_profile_graphs.sh script

Helper to generate graphs for profiles.

* pkg: add snakeviz and gprof2dot to dev deps

These are useful for profiling.

* tests: add tests for profiler util

* fix(profiler): handle previous profile not stopped cleanly

* feat(profiler): add profile_prefix config setting

The prefix is used when writing profile output files. Useful to organise profiles into sessions.

* tidy(profiler): add `_` to private API

* feat(profiler): simplify API

* feat(profiler): use child logger for profiler logs

* chore(profiler): update docstrings

* feat(profiler): stop() returns output path

* chore(profiler): fix docstring

* tests(profiler): update tests

* chore: ruff
2024-01-31 10:51:57 +00:00
maryhipp
b7d19b8130 add project as category to back-end 2024-01-24 10:59:04 +11:00
Lincoln Stein
4536e4a8b6
Model Manager Refactor: Install remote models and store their tags and other metadata (#5361)
* add basic functionality for model metadata fetching from hf and civitai

* add storage

* start unit tests

* add unit tests and documentation

* add missing dependency for pytests

* remove redundant fetch; add modified/published dates; updated docs

* add code to select diffusers files based on the variant type

* implement Civitai installs

* make huggingface parallel downloading work

* add unit tests for model installation manager

- Fixed race condition on selection of download destination path
- Add fixtures common to several model_manager_2 unit tests
- Added dummy model files for testing diffusers and safetensors downloading/probing
- Refactored code for selecting proper variant from list of huggingface repo files
- Regrouped ordering of methods in model_install_default.py

* improve Civitai model downloading

- Provide a better error message when Civitai requires an access token (doesn't give a 403 forbidden, but redirects
  to the HTML of an authorization page -- arrgh)
- Handle case of Civitai providing a primary download link plus additional links for VAEs, config files, etc

* add routes for retrieving metadata and tags

* code tidying and documentation

* fix ruff errors

* add file needed to maintain test root diretory in repo for unit tests

* fix self->cls in classmethod

* add pydantic plugin for mypy

* use TestSession instead of requests.Session to prevent any internet activity

improve logging

fix error message formatting

fix logging again

fix forward vs reverse slash issue in Windows install tests

* Several fixes of problems detected during PR review:

- Implement cancel_model_install_job and get_model_install_job routes
  to allow for better control of model download and install.
- Fix thread deadlock that occurred after cancelling an install.
- Remove unneeded pytest_plugins section from tests/conftest.py
- Remove unused _in_terminal_state() from model_install_default.
- Remove outdated documentation from several spots.
- Add workaround for Civitai API results which don't return correct
  URL for the default model.

* fix docs and tests to match get_job_by_source() rather than get_job()

* Update invokeai/backend/model_manager/metadata/fetch/huggingface.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* Call CivitaiMetadata.model_validate_json() directly

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* Second round of revisions suggested by @ryanjdick:

- Fix type mismatch in `list_all_metadata()` route.
- Do not have a default value for the model install job id
- Remove static class variable declarations from non Pydantic classes
- Change `id` field to `model_id` for the sqlite3 `model_tags` table.
- Changed AFTER DELETE triggers to ON DELETE CASCADE for the metadata and tags tables.
- Made the `id` field of the `model_metadata` table into a primary key to achieve uniqueness.

* Code cleanup suggested in PR review:

- Narrowed the declaration of the `parts` attribute of the download progress event
- Removed auto-conversion of str to Url in Url-containing sources
- Fixed handling of `InvalidModelConfigException`
- Made unknown sources raise `NotImplementedError` rather than `Exception`
- Improved status reporting on cached HuggingFace access tokens

* Multiple fixes:

- `job.total_size` returns a valid size for locally installed models
- new route `list_models` returns a paged summary of model, name,
  description, tags and other essential info
- fix a few type errors

* consolidated all invokeai root pytest fixtures into a single location

* Update invokeai/backend/model_manager/metadata/metadata_store.py

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>

* Small tweaks in response to review comments:

- Remove flake8 configuration from pyproject.toml
- Use `id` rather than `modelId` for huggingface `ModelInfo` object
- Use `last_modified` rather than `LastModified` for huggingface `ModelInfo` object
- Add `sha256` field to file metadata downloaded from huggingface
- Add `Invoker` argument to the model installer `start()` and `stop()` routines
  (but made it optional in order to facilitate use of the service outside the API)
- Removed redundant `PRAGMA foreign_keys` from metadata store initialization code.

* Additional tweaks and minor bug fixes

- Fix calculation of aggregate diffusers model size to only count the
  size of files, not files + directories (which gives different unit test
  results on different filesystems).
- Refactor _get_metadata() and _get_download_urls() to have distinct code paths
  for Civitai, HuggingFace and URL sources.
- Forward the `inplace` flag from the source to the job and added unit test for this.
- Attach cached model metadata to the job rather than to the model install service.

* fix unit test that was breaking on windows due to CR/LF changing size of test json files

* fix ruff formatting

* a few last minor fixes before merging:

- Turn job `error` and `error_type` into properties derived from the exception.
- Add TODO comment about the reason for handling temporary directory destruction
  manually rather than using tempfile.tmpdir().

* add unit tests for reporting HTTP download errors

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-01-14 19:54:53 +00:00
Ryan Dick
296c861e7d Handle bad id in log_stats(...). 2024-01-13 15:19:57 -05:00
Ryan Dick
aa45d21fd2 Reduce the number of graph_execution_manager.get(...) calls from the InvocationStatsService. 2024-01-13 15:19:57 -05:00
Ryan Dick
ac42513da9 Remove unused reset_all_stats(...). 2024-01-13 15:19:57 -05:00
Ryan Dick
e2387546fe Rename GIG -> GB. And move it to where it's being used. 2024-01-13 15:19:57 -05:00
Ryan Dick
c8929b35f0 Refactor the invocation stats service for better readability and to support reporting the execution wall time. 2024-01-13 15:19:57 -05:00
Millun Atluri
b7b376103c Update default workflows 2024-01-12 14:59:44 -05:00
Millun Atluri
08d379bb29 Update default workflows 2024-01-12 14:58:21 -05:00
Millun Atluri
74e644c4ba
Allow bfloat16 to be configurable in invoke.yaml (#5469)
* feat: allow bfloat16 to be configurable in invoke.yaml

* fix: `torch_dtype()` util

- Use `choose_precision` to get the precision string
- Do not reference deprecated `config.full_precision` flat (why does this still exist?), if a user had this enabled it would override their actual precision setting and potentially cause a lot of confusion.

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-01-12 18:40:37 +00:00
psychedelicious
26b7aadd32 fix(db): fix workflows pagination math 2024-01-11 09:42:12 -05:00