Commit Graph

154 Commits

Author SHA1 Message Date
Lincoln Stein
af8c7c7d29 model manager rewritten to use model_cache; API changed! 2023-05-05 19:32:28 -04:00
Lincoln Stein
a4e36bc02a when model is forcibly moved into RAM update loaded_models set 2023-05-04 23:28:03 -04:00
Lincoln Stein
68bc0112fa implement lazy GPU offloading and ref counting 2023-05-04 23:15:32 -04:00
Lincoln Stein
a273bdbdc1
Merge branch 'main' into lstein/new-model-manager 2023-05-03 18:09:29 -04:00
Lincoln Stein
e1fed52c66 work on model cache and its regression test finished 2023-05-03 12:38:18 -04:00
Lincoln Stein
bb959448c1 implement hashing for local & remote models 2023-05-02 16:52:27 -04:00
Lincoln Stein
2e2abf6ea6 caching of subparts working 2023-05-01 22:57:30 -04:00
Lincoln Stein
974841926d logger is a interchangeable service 2023-04-29 10:48:50 -04:00
Lincoln Stein
8db20e0d95 rename log to logger throughout 2023-04-29 09:43:40 -04:00
Lincoln Stein
6b79e2b407 Merge branch 'main' into enhance/invokeai-logs
- resolve conflicts
- remove unused code identified by pyflakes
2023-04-28 10:09:46 -04:00
Lincoln Stein
956ad6bcf5 add redesigned model cache for diffusers & transformers 2023-04-28 00:41:52 -04:00
Lincoln Stein
31a904b903
Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:28:45 +01:00
Lincoln Stein
4fa5c963a1
Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:10:51 +01:00
Lincoln Stein
b164330e3c replaced remaining print statements with log.*() 2023-04-18 20:49:00 -04:00
Lincoln Stein
69433c9f68
Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-18 19:21:53 -04:00
Lincoln Stein
bd8ffd36bf bump to diffusers 0.15.1, remove dangling module 2023-04-18 19:20:38 -04:00
Tim Cabbage
f6cdff2c5b
[bug] #3218 HuggingFace API off when --no-internet set
https://github.com/invoke-ai/InvokeAI/issues/3218

Huggingface API will not be queried if --no-internet flag is set
2023-04-17 16:53:31 +02:00
Lincoln Stein
aab262d991
Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-14 20:12:38 -04:00
Lincoln Stein
47b9910b48 update to diffusers 0.15 and fix code for name changes
- This is a port of #3184 to the main branch
2023-04-14 15:35:03 -04:00
Lincoln Stein
0b0e6fe448 convert remainder of print() to log.info() 2023-04-14 15:15:14 -04:00
Lincoln Stein
c132dbdefa change "ialog" to "log" 2023-04-11 18:48:20 -04:00
Lincoln Stein
f3081e7013 add module-level getLogger() method 2023-04-11 12:23:13 -04:00
Lincoln Stein
f904f14f9e add missing module-level methods 2023-04-11 11:10:43 -04:00
Lincoln Stein
8917a6d99b add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)

This style logs everything through a single logging object and is
identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus
to logging:

  import invokeai.backend.util.logging as ialog

  ialog.debug('this is a debugging message')
  ialog.info('this is a informational message')
  ialog.log(level=logging.CRITICAL, 'get out of dodge')
  ialog.disable(level=logging.INFO)
  ialog.basicConfig(filename='/var/log/invokeai.log')

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add the additional
message decorations.

For more control, the logging module's object-oriented logging style
is also supported. The API is identical to the vanilla logging
usage. In fact, the only thing that has changed is that the
getLogger() method adds a custom formatter to the log messages.

 import logging
 from invokeai.backend.util.logging import InvokeAILogger

 logger = InvokeAILogger.getLogger(__name__)
 fh = logging.FileHandler('/var/invokeai.log')
 logger.addHandler(fh)
 logger.critical('this will be logged to both the console and the log file')
2023-04-11 10:46:38 -04:00
Lincoln Stein
5a4765046e add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)
2023-04-11 09:33:28 -04:00
AbdBarho
de189f2db6
Increase chunk size when computing SHAs 2023-04-09 21:53:59 +02:00
Lincoln Stein
8334757af9
Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-07 18:55:54 -04:00
Lincoln Stein
d1b2b99226
Merge branch 'main' into bugfix/remove-autoimport-dead-code 2023-04-07 09:59:58 -04:00
Lincoln Stein
4c339dd4b0 refactor get_submodels() into individual methods 2023-04-06 17:08:23 -04:00
Lincoln Stein
d44151d6ff add a new method to model_manager that retrieves individual pipeline parts
- New method is ModelManager.get_sub_model(model_name:str,model_part:SDModelComponent)

To use:

```
from invokeai.backend import ModelManager, SDModelComponent as sdmc
manager = ModelManager('/path/to/models.yaml')
vae = manager.get_sub_model('stable-diffusion-1.5', sdmc.vae)
```
2023-04-05 17:25:42 -04:00
Lincoln Stein
1f89cf3343 remove vestiges of non-functional autoimport code for legacy checkpoints
- Closes #3075
2023-03-31 04:27:03 -04:00
Lincoln Stein
b9df9e26f2
Merge branch 'main' into enhance/support-another-embedding-format-main 2023-03-30 07:51:23 -04:00
Lincoln Stein
e11c1d66ab handle multiple tokens and embeddings in single file 2023-03-29 22:05:06 -04:00
Lincoln Stein
3c4b6d5735
Merge branch 'main' into enhance/heuristic-import-improvements 2023-03-29 16:54:43 -04:00
Lincoln Stein
9a7580dedd fix bugs in online ckpt conversion of 2.0 models
This commit fixes bugs related to the on-the-fly conversion and loading of
legacy checkpoint models built on SD-2.0 base.

- When legacy checkpoints built on SD-2.0 models were converted
  on-the-fly using --ckpt_convert, generation would crash with a
  precision incompatibility error.
2023-03-28 00:17:20 -04:00
Lincoln Stein
fe5d9ad171 improve importation and conversion of legacy checkpoint files
A long-standing issue with importing legacy checkpoints (both ckpt and
safetensors) is that the user has to identify the correct config file,
either by providing its path or by selecting which type of model the
checkpoint is (e.g. "v1 inpainting"). In addition, some users wish to
provide custom VAEs for use with the model. Currently this is done in
the WebUI by importing the model, editing it, and then typing in the
path to the VAE.

To improve the user experience, the model manager's
`heuristic_import()` method has been enhanced as follows:

1. When initially called, the caller can pass a config file path, in
which case it will be used.

2. If no config file provided, the method looks for a .yaml file in the
same directory as the model which bears the same basename. e.g.
```
   my-new-model.safetensors
   my-new-model.yaml
```
   The yaml file is then used as the configuration file for
   importation and conversion.

3. If no such file is found, then the method opens up the checkpoint
   and probes it to determine whether it is V1, V1-inpaint or V2.
   If it is a V1 format, then the appropriate v1-inference.yaml config
   file is used. Unfortunately there are two V2 variants that cannot be
   distinguished by introspection.

4. If the probe algorithm is unable to determine the model type, then its
   last-ditch effort is to execute an optional callback function that can
   be provided by the caller. This callback, named `config_file_callback`
   receives the path to the legacy checkpoint and returns the path to the
   config file to use. The CLI uses to put up a multiple choice prompt to
   the user. The WebUI **could** use this to prompt the user to choose
   from a radio-button selection.

5. If the config file cannot be determined, then the import is abandoned.

The user can attach a custom VAE to the imported and converted model
by copying the desired VAE into the same directory as the file to be
imported, and giving it the same basename. E.g.:

```
    my-new-model.safetensors
    my-new-model.vae.pt
```

For this to work, the VAE must end with ".vae.pt", ".vae.ckpt", or
".vae.safetensors". The indicated VAE will be converted into diffusers
format and stored with the converted models file, so the ".pt" file
can be deleted after conversion.

No facility is currently provided to swap a diffusers VAE at import
time, but this can be done after the fact using the WebUI and CLI's
model editing functions.
2023-03-27 11:27:45 -04:00
Lincoln Stein
abe4dc8ac1 Add support for yet another textual inversion embedding format
- This PR adds support for embedding files that contain a single key
  "emb_params". The only example I know of this format is the
  "EasyNegative" embedding on HuggingFace, but there are certainly
  others.

- This PR also adds support for loading embedding files that have been
  saved in safetensors format.

- It also cleans up the code so that the logic of probing for and
  selecting the right format parser is clear.
2023-03-27 09:39:03 -04:00
psychedelicious
5fe38f7c88 fix(backend): simple typing fixes 2023-03-26 17:07:03 +11:00
Lincoln Stein
dac3c158a5 Merge branch 'main' into feat/preview_predicted_x0
- resolve conflicts with generate.py invocation
- remove unused symbols that pyflakes complains about
- add **untested** code for passing intermediate latent image to the
  step callback in the format expected.
2023-03-25 16:07:18 -04:00
Lincoln Stein
501924bc60 do not reexport PipelineIntermediateState 2023-03-25 13:57:09 -04:00
Lincoln Stein
d117251747 make step_callback work again in generate() call
This PR fixes #2951 and restores the step_callback argument in the
refactored generate() method. Note that this issue states that
"something is still wrong because steps and step are zero." However,
I think this is confusion over the call signature of the callback, which
since the diffusers merge has been `callback(state:PipelineIntermediateState)`

This is the test script that I used to determine that `step` is being passed
correctly:

```

from pathlib import Path
from invokeai.backend import ModelManager, PipelineIntermediateState
from invokeai.backend.globals import global_config_dir
from invokeai.backend.generator import Txt2Img

def my_callback(state:PipelineIntermediateState, total_steps:int):
    print(f'callback(step={state.step}/{total_steps})')

def main():
    manager = ModelManager(Path(global_config_dir()) / "models.yaml")
    model = manager.get_model('stable-diffusion-1.5')
    print ('=== TXT2IMG TEST ===')
    steps=30
    output = next(Txt2Img(model).generate(prompt='banana sushi',
                                          iterations=None,
                                          steps=steps,
                                          step_callback=lambda x: my_callback(x,steps)
                                          )
                  )
    print(f'image={output.image}, seed={output.seed}, steps={output.params.steps}')

if __name__=='__main__':
    main()
```
2023-03-25 13:57:09 -04:00
Lincoln Stein
5ac0316c62 fix issue with embeddings being loaded twice
- as noted by JPPhoto
2023-03-25 10:45:03 -04:00
Lincoln Stein
9ceec40b76
Merge branch 'main' into feat/use-custom-vaes 2023-03-24 17:45:02 -04:00
Lincoln Stein
85b2822f5e
Merge branch 'main' into security/scan-ckpt-files-main 2023-03-24 08:39:59 -04:00
Lincoln Stein
6e7dbf99f3
Merge branch 'main' into bugfix/dreambooth_ema 2023-03-23 23:24:15 -04:00
Lincoln Stein
deeff36e16
Merge branch 'main' into security/scan-ckpt-files-main 2023-03-23 23:20:52 -04:00
Lincoln Stein
92721a1d45 do not reexport PipelineIntermediateState 2023-03-24 09:32:47 +11:00
Lincoln Stein
f329fddab9 make step_callback work again in generate() call
This PR fixes #2951 and restores the step_callback argument in the
refactored generate() method. Note that this issue states that
"something is still wrong because steps and step are zero." However,
I think this is confusion over the call signature of the callback, which
since the diffusers merge has been `callback(state:PipelineIntermediateState)`

This is the test script that I used to determine that `step` is being passed
correctly:

```

from pathlib import Path
from invokeai.backend import ModelManager, PipelineIntermediateState
from invokeai.backend.globals import global_config_dir
from invokeai.backend.generator import Txt2Img

def my_callback(state:PipelineIntermediateState, total_steps:int):
    print(f'callback(step={state.step}/{total_steps})')

def main():
    manager = ModelManager(Path(global_config_dir()) / "models.yaml")
    model = manager.get_model('stable-diffusion-1.5')
    print ('=== TXT2IMG TEST ===')
    steps=30
    output = next(Txt2Img(model).generate(prompt='banana sushi',
                                          iterations=None,
                                          steps=steps,
                                          step_callback=lambda x: my_callback(x,steps)
                                          )
                  )
    print(f'image={output.image}, seed={output.seed}, steps={output.params.steps}')

if __name__=='__main__':
    main()
```
2023-03-24 09:32:47 +11:00
Lincoln Stein
f751dcd245 load embeddings after a ckpt legacy model is converted to diffusers
- Fixes #2954
- Also improves diagnostic reporting during embedding loading.
2023-03-23 15:21:58 -04:00
Lincoln Stein
a97107bd90 handle VAEs that do not have a "state_dict" key 2023-03-23 15:11:29 -04:00