Commit Graph

94 Commits

Author SHA1 Message Date
d4393e4170 chore: linter fixes 2024-04-13 12:14:45 +05:30
6ea183f0d4 wip: Initial Implementation IP Adapter Style & Comp Modes 2024-04-13 11:09:45 +05:30
f9af32a6d1 Fix the padding behavior when max-pooling regional IP-Adapter masks to mirror the downscaling behavior of SD and SDXL. Prior to this change, denoising with input latent dimensions that were not evenly divisible by 8 would raise an exception. 2024-04-09 16:50:43 -04:00
fba40eb1bd Fix the padding behavior when max-pooling regional prompt masks to mirror the downscaling behavior of SD and SDXL. Prior to this change, denoising with input latent dimensions that were not evenly divisible by 8 would raise an exception. 2024-04-09 16:50:43 -04:00
0c6dd32ece (minor) Fix IP-Adapter conditional logic in CustomAttnProcessor2_0. 2024-04-09 15:06:51 -04:00
0bdbfd4d1d Add support for IP-Adapter masks. 2024-04-09 15:06:51 -04:00
2e27ed5f3d Pass IP-Adapter scales through the cross_attn_kwargs pathway, since they are the same for all attention layers. This change also helps to prepare for adding IP-Adapter region masks. 2024-04-09 15:06:51 -04:00
4a828818da Remove support for Prompt-to-Prompt cross-attention control (aka .swap()). This feature is not widely used. It does not work with SDXL and is incompatible with IP-Adapter and regional prompting. The implementation is also intertwined with both text embedding and the UNet attention layers, resulting in a high maintenance burden. For all of these reasons, we have decided to drop support. 2024-04-09 10:57:02 -04:00
182810337c Add utility to_standard_float_mask(...) to convert various mask formats to a standardized format. 2024-04-09 08:12:12 -04:00
75ef473748 Pull the upstream changes from diffusers' AttnProcessor2_0 into CustomAttnProcessor2_0. This fixes a bug in CustomAttnProcessor2_0 that was being triggered when peft was not installed. The bug was present in a block of code that was previously copied from diffusers. The bug seems to have been introduced during diffusers' migration to PEFT for their LoRA handling. The upstream bug was fixed in 531e719163. 2024-04-09 08:12:12 -04:00
a78df8123f Update the diffusion logic to use the new regional prompting feature. 2024-04-09 08:12:12 -04:00
7ca677578e Create a UNetAttentionPatcher for patching UNet models with CustomAttnProcessor2_0 modules. 2024-04-09 08:12:12 -04:00
31c456c1e6 Update CustomAttention to support both IP-Adapters and regional prompting. 2024-04-09 08:12:12 -04:00
2ce79b61f5 Initialize a RegionalPromptAttnProcessor2_0 class by copying AttnProcessor2_0 from diffusers. 2024-04-09 08:12:12 -04:00
109e3f0e7f Add RegionalPromptData class for managing prompt region masks. 2024-04-09 08:12:12 -04:00
d1e45585d0 Add TextConditioningRegions to the TextConditioningData data structure. 2024-04-09 08:12:12 -04:00
aba023e0c5 Improve documentation of conditioning_data.py. 2024-04-09 08:12:12 -04:00
e354c29b52 Rename ConditioningData -> TextConditioningData. 2024-04-09 08:12:12 -04:00
a7f363e654 Split ip_adapter_conditioning out from ConditioningData. 2024-04-09 08:12:12 -04:00
9b2162e564 Remove scheduler_args from ConditioningData structure. 2024-04-09 08:12:12 -04:00
b378cfcb46 cleanup: remove unused scripts, cruft
App runs & tests pass.
2024-03-20 15:05:25 +11:00
897fe497dc fix(config): use new get_config across the app, use correct settings 2024-03-19 09:24:28 +11:00
145bb45858 Remove dead code related to an old symmetry feature. 2024-03-10 00:13:18 -06:00
cc45007dc4 Remove unused code for attention map saving. 2024-03-02 08:25:41 -05:00
73bec56c59 Delete unused functions from shared_invokeai_diffusion.py. 2024-03-02 08:25:41 -05:00
6935830f99 Remove unused constructor declared with typo in name: __int__. 2024-03-01 15:12:03 -05:00
7651eeea8d Merge sequential conditioning and cac conditioning logic to eliminate a bunch of duplication. 2024-03-01 15:12:03 -05:00
9bc4e7a593 Remove use of **kwargs in do_unet_step(...), where full parameter list is known and supported. 2024-03-01 15:12:03 -05:00
ad96857e0f Fix avoid storing extra conditioning info in two places. 2024-03-01 15:12:03 -05:00
dd9daf8efb chore: ruff 2024-03-01 10:42:33 +11:00
05fb485d33 feat(nodes): move ConditioningFieldData to conditioning_data.py 2024-03-01 10:42:33 +11:00
73a077956b Why did my IDE change the comment? 2024-02-01 20:40:28 -05:00
5e1e50bd47 Fix hopefully last import 2024-02-01 20:40:28 -05:00
0beb08686c Add CFG Rescale option for supporting zero-terminal SNR models (#4335)
* add support for CFG rescale

* fix typo

* move rescale position and tweak docs

* move input position

* implement suggestions from github and discord

* cleanup unused code

* add back dropped FieldDescription

* fix(ui): revert unrelated UI changes

* chore(nodes): bump denoise_latents version 1.4.0 -> 1.5.0

* feat(nodes): add cfg_rescale_multiplier to metadata node

* feat(ui): add cfg rescale multiplier to linear UI

- add param to state
- update graph builders
- add UI under advanced
- add metadata handling & recall
- regen types

* chore: black

* fix(backend): make `StableDiffusionGeneratorPipeline._rescale_cfg()` staticmethod

This doesn't need access to class.

* feat(backend): add docstring for `_rescale_cfg()` method

* feat(ui): update cfg rescale mult translation string

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-30 20:55:20 +11:00
6494e8e551 chore: ruff format 2023-11-11 10:55:40 +11:00
513fceac82 chore: ruff check - fix pycodestyle 2023-11-11 10:55:33 +11:00
99a8ebe3a0 chore: ruff check - fix flake8-bugbear 2023-11-11 10:55:28 +11:00
67f2616d5a Merge branch 'main' into revert-4923-revert-4914-feat/mix-cnet-t2iadapter 2023-11-06 07:34:51 -08:00
a078efc0f2 Merge branch 'main' into ryan/multi-image-ip 2023-10-18 08:59:12 -04:00
8afc47018b Revert "Revert "Cleaning up (removing diagnostic prints)""
This reverts commit 6e697b7b6f.
2023-10-17 11:59:19 -04:00
a97ec88e06 Revert "Revert "Changes to _apply_standard_conditioning_sequentially() and _apply_cross_attention_controlled_conditioning() to reflect changes to T2I-Adapter implementation to allow usage of T2I-Adapter and ControlNet at the same time.""
This reverts commit c04fb451ee.
2023-10-17 11:59:19 -04:00
c04fb451ee Revert "Changes to _apply_standard_conditioning_sequentially() and _apply_cross_attention_controlled_conditioning() to reflect changes to T2I-Adapter implementation to allow usage of T2I-Adapter and ControlNet at the same time."
This reverts commit 378689a519.
2023-10-17 11:59:11 -04:00
6e697b7b6f Revert "Cleaning up (removing diagnostic prints)"
This reverts commit 06f8a3276d.
2023-10-17 11:59:11 -04:00
06f8a3276d Cleaning up (removing diagnostic prints) 2023-10-17 19:42:06 +11:00
378689a519 Changes to _apply_standard_conditioning_sequentially() and _apply_cross_attention_controlled_conditioning() to reflect changes to T2I-Adapter implementation to allow usage of T2I-Adapter and ControlNet at the same time.
Also, the PREVIOUS commit (@8d3885d, which was already pushed to github repo) was wrongly commented, but too late to fix without a force push or other mucking that I'm reluctant to do. That commit is actually the one that has all the changes to diffusers_pipeline.py to use additional arg down_intrablock_additional_residuals (introduced in diffusers PR https://github.com/huggingface/diffusers/pull/5362) to detangle T2I-Adapter from ControlNet inputs to main UNet.
2023-10-17 19:42:06 +11:00
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00
8464450a53 Add support for multi-image IP-Adapter. 2023-10-14 12:50:33 -04:00
7ca456d674 Update IP-Adapter model to enable running multiple IP-Adapters at once. (Not tested yet.) 2023-10-06 20:43:43 -04:00
78828b6b9c WIP - Accept a list of IPAdapterFields in DenoiseLatents. 2023-10-06 20:43:43 -04:00
b57acb7353 Merge branch 'main' into feat/ip-adapter 2023-09-15 13:15:25 -04:00