There was no check at all to see if the canvas had a valid model already selected. The first model in the list was selected every time.
Now, we check if its valid. If not, we go through the logic to try and pick the first valid model.
If there are no valid models, or there was a problem listing models, the model selection is cleared.
## What type of PR is this? (check all applicable)
- [X ] Feature
## Have you discussed this change with the InvokeAI team?
- [X] Yes
## Have you updated all relevant documentation?
- [X] Yes
## Description
This PR adds the `invokeai-import-images` script, which imports a
directory of 2.*.* -generated images into the current InvokeAI root
directory, preserving and converting their metadata. The script also
handles 3.* images.
Many thanks to @techjedi for writing this. This version differs from the
original in two minor respects:
1. It is installed as an `invokeai-import-images` command.
2. The prompts for image and database paths use file completion provided
by the `prompt_toolkit` library.
## To Test
1. Activate the virtual environment for the destination root to import
INTO
2. Run `invokeai-import-images`
3. Follow the prompts
## Related Tickets & Documents
This is a frequently-requested feature on Discord, but I couldn't find
an Issue.
## QA Instructions, Screenshots, Recordings
<!--
Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Added/updated tests?
- [ ] Yes
- [X] No : but should in the future
## What type of PR is this? (check all applicable)
- [X ] Feature
## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No - will be in release notes
## Description
On CUDA systems, this PR adds a new slider to the install-time configure
script for adjusting the VRAM cache and suggests a good starting value
based on the user's max VRAM (this is subject to verification).
On non-CUDA systems this slider is suppressed.
Please test on both CUDA and non-CUDA systems using:
```
invokeai-configure --root ~/invokeai-main/ --skip-sd --skip-support
```
To see and test the default values, move `invokeai.yaml` out of the way
before running.
**Note added 8 August 2023**
This PR also fixes the configure and model install scripts so that if
the window is too small to fit the user interface, the user will be
prompted to interactively resize the window and/or change font size
(with the option to give up). This will prevent `npyscreen` from
generating its horrible tracebacks.
## Related Tickets & Documents
<!--
For pull requests that relate or close an issue, please include them
below.
For example having the text: "closes #1234" would connect the current
pull
request to issue 1234. And when we merge the pull request, Github will
automatically close the issue.
-->
- Related Issue #
- Closes #
## QA Instructions, Screenshots, Recordings
<!--
Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Added/updated tests?
- [ ] Yes
- [ ] No : _please replace this line with details on why tests
have not been included_
## [optional] Are there any post deployment tasks we need to perform?
## What type of PR is this? (check all applicable)
- [X] Bug Fix
## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:
## Have you updated all relevant documentation?
- [X Yes
- [ ] No
## Description
If `models.yaml` is cleared out for some reason, the model manager will
repopulate it by scanning `models`. However, this would fail with a
pydantic validation error if any SDXL checkpoint models were present
because the lack of logic to pick the correct configuration file. This
has now been added.
## What type of PR is this? (check all applicable)
- [X] Bug Fix
## Have you discussed this change with the InvokeAI team?
- [X No, because small fix
## Have you updated all relevant documentation?
- [X] Yes
## Description
A logic bug was introduced in PR #4109 that caused Web-based model
updates to fail with a pydantic validation error. This corrects the
problem.
## Related Tickets & Documents
PR #4109