Currently translated at 100.0% (526 of 526 strings)
translationBot(ui): update translation (Russian)
Currently translated at 100.0% (519 of 519 strings)
Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
Currently translated at 100.0% (526 of 526 strings)
translationBot(ui): update translation (Italian)
Currently translated at 100.0% (523 of 523 strings)
translationBot(ui): update translation (Italian)
Currently translated at 100.0% (519 of 519 strings)
translationBot(ui): update translation (Italian)
Currently translated at 100.0% (515 of 515 strings)
Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
Currently translated at 100.0% (526 of 526 strings)
translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (523 of 523 strings)
translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (519 of 519 strings)
translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (515 of 515 strings)
Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
* UI for bulk downloading boards or groups of images
* placeholder route for bulk downloads that does nothing
* lint
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
The canvas needs to be set to staging mode as soon as a canvas-destined batch is enqueued. If the batch is is fully canceled before an image is generated, we need to remove that batch from the canvas `batchIds` watchlist, else canvas gets stuck in staging mode with no way to exit.
The changes here allow the batch status to be tracked, and if a batch has all its items completed, we can remove it from the `batchIds` watchlist. The `batchIds` watchlist now accurately represents *incomplete* canvas batches, fixing this cause of soft lock.
The UI will always re-fetch queue and batch status on receiving this event, so we may as well jsut include that data in the event and save the extra network roundtrips.
- Update backend metadata for t2i adapter
- Fix typo in `T2IAdapterInvocation`: `ip_adapter_model` -> `t2i_adapter_model`
- Update linear graphs to use t2i adapter
- Add client metadata recall for t2i adapter
- Fix bug with controlnet metadata recall - processor should be set to 'none' when recalling a control adapter
Control adapters logic/state/ui is now generalized to hold controlnet, ip_adapter and t2i_adapter. In the future, other control adapter types can be added.
TODO:
- Limit IP adapter to 1
- Add T2I adapter to linear graphs
- Fix autoprocess
- T2I metadata saving & recall
- Improve on control adapters UI
* Bump diffusers to 0.21.2.
* Add T2IAdapterInvocation boilerplate.
* Add T2I-Adapter model to model-management.
* (minor) Tidy prepare_control_image(...).
* Add logic to run the T2I-Adapter models at the start of the DenoiseLatentsInvocation.
* Add logic for applying T2I-Adapter weights and accumulating.
* Add T2IAdapter to MODEL_CLASSES map.
* yarn typegen
* Add model probes for T2I-Adapter models.
* Add all of the frontend boilerplate required to use T2I-Adapter in the nodes editor.
* Add T2IAdapterModel.convert_if_required(...).
* Fix errors in T2I-Adapter input image sizing logic.
* Fix bug with handling of multiple T2I-Adapters.
* black / flake8
* Fix typo
* yarn build
* Add num_channels param to prepare_control_image(...).
* Link to upstream diffusers bugfix PR that currently requires a workaround.
* feat: Add Color Map Preprocessor
Needed for the color T2I Adapter
* feat: Add Color Map Preprocessor to Linear UI
* Revert "feat: Add Color Map Preprocessor"
This reverts commit a1119a00bf.
* Revert "feat: Add Color Map Preprocessor to Linear UI"
This reverts commit bd8a9b82d8.
* Fix T2I-Adapter field rendering in workflow editor.
* yarn build, yarn typegen
---------
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
When the processor has an error and it has a queue item, mark that item failed.
This addresses processor errors resulting in `in_progress` queue items, which create a soft lock of the processor, requiring the user to cancel the `in_progress` item before anything else processes.
Makes graph validation logic more rigorous, validating graphs when they are created as part of a session or batch.
`validate_self()` method added to `Graph` model. It does all the validation that `is_valid()` did, plus a few extras:
- unique `node.id` values across graph
- node ids match their key in `Graph.nodes`
- recursively validate subgraphs
- validate all edges
- validate graph is acyclical
The new method is required because `is_valid()` just returned a boolean. That behaviour is retained, but `validate_self()` now raises appropriate exceptions for validation errors. This are then surfaced to the client.
The function is named `validate_self()` because pydantic reserves `validate()`.
There are two main places where graphs are created - in batches and in sessions.
Field validators are added to each of these for their `graph` fields, which call the new validation logic.
**Closes #4744**
In this issue, a batch is enqueued with an invalid graph. The output field is typed as optional while the input field is required. The field types themselves are not relevant - this change addresses the case where an invalid graph was created.
The mismatched types problem is not noticed until we attempt to invoke the graph, because the graph was never *fully* validated. An error is raised during the call to `graph_execution_state.next()` in `invoker.py`. This function prepares the edges and validates them, raising an exception due to the mismatched types.
This exception is caught by the session processor, but it doesn't handle this situation well - the graph is not marked as having an error and the queue item status is never changed. The queue item is therefore forever `in_progress`, so no new queue items are popped - the app won't do anything until the queue item is canceled manually.
This commit addresses this by preventing invalid graphs from being created in the first place, addressing a substantial number of fail cases.
The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize
Closes#4786
This is fired when the dnd image is moved over the 'none' board. Weren't defaulting to 'none' for the image's board_id, resulting in it being possible to drag a 'none' image onto 'none'.
Selections were not being `uniqBy()`'d, or were `uniqBy()`'d without a proper iteratee. This results in duplicate images in selections in certain situations.
Add correct `uniqBy()` to the reducer to prevent this in the future.
This caused a crapload of network requests any time an image was generated.
The counts are necessary to handle the logic for inserting images into existing image list caches; we have to keep track of the counts.
Replace tag invalidation with manual cache updates in all cases, except the initial request (which is necessary to get the initial image counts).
One subtle change is to make the counts an object instead of a number. This is required for `immer` to handle draft states. This should be raised as a bug with RTK Query, as no error is thrown when attempting to update a primitive immer draft.
The helper function `generate_face_box_mask()` had a bug that prevented larger faces from being detected in some situations. This is resolved, and its dependent nodes (all the FaceTools nodes) have a patch version bump.