This PR fixes the following scripts:
1) Scripts that can be executed within the repo's scripts directory.
Note that these are for development testing and are not intended
to be exposed to the user.
configure_invokeai.py - configuration
dream.py - the legacy CLI
images2prompt.py - legacy "dream prompt" retriever
invoke-new.py - new nodes-based CLI
invoke.py - the legacy CLI under another name
make_models_markdown_table.py - a utility used during the release/doc process
pypi_helper.py - another utility used during the release process
sd-metadata.py - retrieve JSON-formatted metadata from a PNG file
2) Scripts that are installed by pip install. They get placed into the venv's
PATH and are intended to be the official entry points:
invokeai-node-cli - new nodes-based CLI
invokeai-node-web - new nodes-based web server
invokeai - legacy CLI
invokeai-configure - install time configuration script
invokeai-merge - model merging script
invokeai-ti - textual inversion script
invokeai-model-install - model installer
invokeai-update - update script
invokeai-metadata" - retrieve JSON-formatted metadata from PNG files
This is the first phase of a big shifting of files and directories
in the source tree.
You will need to run `pip install -e .` before the code will work again!
Here's what's in the current commit:
1) Remove a lot of dead code that dealt with checkpoint and safetensor loading.
2) Entire ckpt_generator hierarchy is now gone!
3) ldm.invoke.generator.* => invokeai.generator.*
4) ldm.model.* => invokeai.model.*
5) ldm.invoke.model_manager => invokeai.model.model_manager
6) In addition, a number of frequently-accessed classes can be imported
from the invokeai.model and invokeai.generator modules:
from invokeai.generator import ( Generator, PipelineIntermediateState,
StableDiffusionGeneratorPipeline, infill_methods)
from invokeai.models import ( ModelManager, SDLegacyType
InvokeAIDiffuserComponent, AttentionMapSaver,
DDIMSampler, KSampler, PLMSSampler,
PostprocessingSettings )
This bug is related to the format in which we stored prompts for some time: an array of weighted subprompts.
This caused some strife when recalling a prompt if the prompt had colons in it, due to our recently introduced handling of negative prompts.
Currently there is no need to store a prompt as anything other than a string, so we revert to doing that.
Compatibility with structured prompts is maintained via helper hook.
- fix unused variables and f-strings found by pyflakes
- use global_converted_ckpts_dir() to find location of diffusers
- fixed bug in model_manager that was causing the description of converted
models to read "Optimized version of {model_name}'
Fixed a couple of bugs:
1. The original config file for the ckpt file is derived from the entry in
`models.yaml` rather than relying on the user to select. The implication
of this is that V2 ckpt models need to be assigned `v2-inference-v.yaml`
when they are first imported. Otherwise they won't convert right. Note
that currently V2 ckpts are imported with `v1-inference.yaml`, which
isn't right either.
2. Fixed a backslash in the output diffusers path, which was causing
load failures on Linux.
Remaining issues:
1. The radio buttons for selecting the model type are
nonfunctional. It feels to me like these should be moved into the
dialogue for importing ckpt/safetensors files, because this is
where the algorithm needs help from the user.
2. The output diffusers model is written into the same directory as
the input ckpt file. The CLI does it differently and stores the
diffusers model in `ROOTDIR/models/converted-ckpts`. We should
settle on one way or the other.
Converted the picker options to a Radio Group and also updated the backend to use the appropriate config if it is a v2 model that needs to be converted.
1) Downgrade numpy to avoid dependency conflict with numba
2) Move all non ldm/invoke files into `invokeai`. This includes assets, backend, frontend, and configs.
3) Fix up way that the backend finds the frontend and the generator finds the NSFW caution.png icon.