Compare commits

...

182 Commits

Author SHA1 Message Date
fc52cab590 fix(nodes): fix metadata test 2023-04-21 18:37:52 +10:00
be0a033b90 feat(nodes): move metadata parsing to frontend 2023-04-21 17:46:41 +10:00
688d3a9453 feat(nodes): customise LatentsField schema 2023-04-21 14:13:38 +10:00
7f2dcbb66a fix(nodes): fix latents/image field parsing 2023-04-21 09:28:28 +10:00
5cadd74a81 fix(nodes): add metadata service to cli 2023-04-20 14:35:14 +10:00
db0bc47f67 fix(nodes): fix other tests 2023-04-20 12:19:11 +10:00
262126aaea feat(nodes): address feedback
- make metadata a service
- rip out pydantic validation, implement metadata parsing as simple functions
- update tests
- address other minor feedback items
2023-04-20 12:12:09 +10:00
1e12c9b21f fix(nodes): revert change to RandomRangeInvocation 2023-04-20 00:05:41 +10:00
162bcda49e feat(nodes): add metadata module + tests, thumbnails
- `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service`
- Handles loading/parsing/building metadata, and creating png info objects
- added tests for MetadataModule
- Lifted thumbnail stuff to util
2023-04-19 23:49:40 +10:00
2b53ce50e0 feat(nodes): fix broken upload 2023-04-19 00:09:01 +10:00
1933184ca7 feat(ui): move fonts to normal deps 2023-04-18 23:51:56 +10:00
cc1e6374a6 feat(ui): wip metadata viewer recall 2023-04-18 22:54:44 +10:00
a65ad1b42f feat(ui): improve invocation union types 2023-04-18 22:54:05 +10:00
16f39978e9 feat(ui): tidy misc 2023-04-18 22:22:40 +10:00
4e5ac85567 feat(ui): tidy graph builders 2023-04-18 22:22:03 +10:00
dffdca674e feat(ui): img2img/txt2img -> linear
- remove txt2img and img2img tabs
- add linear tab
- add initial image selection to linear parameters accordion
2023-04-18 18:22:04 +10:00
0ad0efcc44 Merge remote-tracking branch 'origin/main' into feat/ui/nodes-api 2023-04-18 13:41:11 +10:00
daaf41daab fix(nodes): fix image output schema customization 2023-04-18 13:40:55 +10:00
1a22d50269 feat(nodes): move GET images error handling to DiskImageStorage 2023-04-18 13:40:33 +10:00
53e3cf162a feat(nodes): move GET images error handling to DiskImageStorage 2023-04-18 13:26:07 +10:00
61cf59d4f6 feat(nodes): address feedback 2023-04-18 13:10:11 +10:00
ecb5bdaf7e [bug] #3218 HuggingFace API off when --no-internet set (#3219)
#3218 

Huggingface API will not be queried if --no-internet flag is set
2023-04-18 14:34:34 +12:00
f6cdff2c5b [bug] #3218 HuggingFace API off when --no-internet set
https://github.com/invoke-ai/InvokeAI/issues/3218

Huggingface API will not be queried if --no-internet flag is set
2023-04-17 16:53:31 +02:00
f600104e80 feat(nodes): add seeded rng to RandomRange 2023-04-18 00:04:19 +10:00
fff55bd991 feat(nodes): wip address metadata feedback 2023-04-17 21:56:15 +10:00
64f044a984 fix(backend): roll back changes to pngwriter 2023-04-17 21:12:38 +10:00
a15300ac8d Merge remote-tracking branch 'origin/main' into feat/ui/nodes-api 2023-04-17 18:58:18 +10:00
fb0ec1c8d0 fix(nodes): partially address feedback 2023-04-17 18:41:26 +10:00
ae172b74a4 feat(nodes): roll back sqlalchemy 2023-04-17 12:20:31 +10:00
63d10027a4 nodes: invocation queue item - make more pydantic 2023-04-16 09:39:33 -04:00
ef0773b8a3 nodes: set default for InvocationQueueItem.invoke_all 2023-04-16 09:39:33 -04:00
3daaddf15b nodes: remove duplicate LatentsToLatentsInvocation 2023-04-16 09:39:33 -04:00
570c3fe690 nodes: ensure Graph and GraphExecutionState ids are cast to str on instantiation 2023-04-16 09:39:33 -04:00
cbd1a7263a nodes: fix typing of GraphExecutionState.id 2023-04-16 09:39:33 -04:00
7fc5fbd4ce nodes: convert InvocationQueueItem to Pydantic class 2023-04-16 09:39:33 -04:00
6f6de402ad make InvocationQueueItem serializable 2023-04-16 09:39:33 -04:00
1284bab4af feat(ui): wip nodes etc 2023-04-16 23:36:50 +10:00
20bf47e9cd feat(nodes): make ImageField attrs optional 2023-04-16 22:41:08 +10:00
978bde315b feat(nodes): add title ui hint 2023-04-16 22:40:43 +10:00
caa1bf9d17 feat(nodes): fix LoadImageInvocation 2023-04-16 22:40:06 +10:00
50eb02f68b chore(ui): build 2023-04-15 20:45:17 +10:00
d73f3adc43 moving shouldHidePreview from gallery to ui slice. 2023-04-15 20:45:17 +10:00
116107f464 chore(ui): build 2023-04-15 20:45:17 +10:00
da44bb1707 rename setter 2023-04-15 20:45:17 +10:00
f43aed677e chore(ui): build 2023-04-15 20:45:17 +10:00
0d051aaae2 rename hidden variable to something more descriptive 2023-04-15 20:45:17 +10:00
e4e48ff995 i forgor to push the locale 2023-04-15 20:45:17 +10:00
442a6bffa4 feat: add "Hide Preview" Button 2023-04-15 20:45:17 +10:00
dfb934a2d4 tests(nodes): fix test instantiation of ImageField 2023-04-15 16:01:42 +10:00
f94d63ec94 feat(ui): export new type for invoke component 2023-04-14 16:47:36 -04:00
50357e8b4e fix(nodes): fix sqlite typing 2023-04-14 19:54:05 +10:00
b1240de669 feat(ui): wip range/iterate 2023-04-14 19:35:37 +10:00
75f433b9bd feat(ui, nodes): more metadata wip 2023-04-14 19:35:37 +10:00
53a1a3eb61 feat(ui, nodes): models 2023-04-14 19:35:37 +10:00
65f2a7ea31 feat(ui, nodes): metadata wip 2023-04-14 19:35:37 +10:00
49612d69d0 fix(ui): fix sqlalchemy dynamic model instantiation 2023-04-14 19:35:37 +10:00
77ceb950b9 feat(ui): rewrite SqliteItemStore in sqlalchemy 2023-04-14 19:35:37 +10:00
bffb860535 feat(ui): handle already-connected fields 2023-04-14 19:35:08 +10:00
8807089c5b feat(ui): add url host transformation 2023-04-14 19:35:08 +10:00
7cb3b2e56e add redux-dynamic-middlewares as a dependency 2023-04-14 19:35:08 +10:00
387e7f949a chore(ui): rebuild api, update types 2023-04-14 19:35:08 +10:00
cf562f140c feat(ui): wip node editor 2023-04-14 19:35:08 +10:00
ef890058b9 docs(ui): update nodes doc 2023-04-14 19:35:08 +10:00
442848598d feat(ui): validation connections w/ graphlib 2023-04-14 19:35:08 +10:00
80c555ef76 feat(ui): wip model handling and graph topology validation 2023-04-14 19:35:08 +10:00
d729d1c100 feat(ui): it blends 2023-04-14 19:35:08 +10:00
266ce200cc feat(ui): increase edge width 2023-04-14 19:35:08 +10:00
eb02acb22e feat(ui): add connection validation styling 2023-04-14 19:35:08 +10:00
f4e2928ac3 fix(ui): add basic node edges & connection validation 2023-04-14 19:35:08 +10:00
48677ac10b fix(ui): fix handle 2023-04-14 19:35:08 +10:00
7a4d9e18d8 feat(ui): hook up nodes to redux 2023-04-14 19:35:08 +10:00
e1279e63d1 feat(ui): cleanup nodes ui stuff 2023-04-14 19:35:08 +10:00
bab407fc65 feat(ui): nodes before deleting stuff 2023-04-14 19:35:08 +10:00
afb9a9589a feat(ui): remove extraneous field types 2023-04-14 19:35:08 +10:00
45bc2211c8 feat(ui): wip node editor 2023-04-14 19:35:08 +10:00
cb185f16bc fix(ui): disable event subscription
it is not fully baked just yet
2023-04-14 19:35:08 +10:00
3ab32aedc0 feat(ui): first steps to node editor ui 2023-04-14 19:35:08 +10:00
ea334aa92a feat(ui): "subscribe" to particular nodes
feels like a dirty hack but oh well it works
2023-04-14 19:35:08 +10:00
1ef2bf2d2d feat(ui): add hi-res functionality for txt2img generations 2023-04-14 19:35:08 +10:00
a165959ab5 feat(ui): update ModelSelect for nodes API 2023-04-14 19:35:08 +10:00
2386d5d786 feat(ui): generate iterations graph 2023-04-14 19:35:08 +10:00
18aa0c91da feat(ui): add exampleGraphs object w/ iterations example 2023-04-14 19:35:08 +10:00
3f5a443c0c fix(ui): fix middleware order for multi-node graphs 2023-04-14 19:35:08 +10:00
b771e9a190 feat(ui): increase StatusIndicator font size 2023-04-14 19:35:08 +10:00
0ffe2c67b0 feat(ui): improve InvocationCompleteEvent types 2023-04-14 19:35:08 +10:00
9560a2b890 chore(ui): regenerate api client 2023-04-14 19:35:08 +10:00
8fe49fdb55 fix(ui): fix img2img type 2023-04-14 19:35:08 +10:00
106420fba9 feat(ui): migrate cancelation
also updated action names to be event-like instead of declaration-like

sorry, i was scattered and this commit has a lot of unrelated stuff in it.
2023-04-14 19:35:08 +10:00
85f101cdc8 feat(ui): prep for socket jwt 2023-04-14 19:35:08 +10:00
7155360378 feat(ui): dynamic middleware loading 2023-04-14 19:35:08 +10:00
793a4ddbb2 feat(ui) working on making socket URL dynamic 2023-04-14 19:35:08 +10:00
b31b8d31ad feat(ui): export StatusIndicator and ModelSelect for header use 2023-04-14 19:35:08 +10:00
914a7f160b feat(ui): add optional token for auth 2023-04-14 19:35:08 +10:00
5819c32fb8 feat(ui): wip events, comments, and general refactoring 2023-04-14 19:35:08 +10:00
f118933467 lang(ui): add toast strings 2023-04-14 19:35:08 +10:00
e4e5409d32 docs(ui): organise and update docs 2023-04-14 19:35:08 +10:00
35021565ff feat(ui): add support to disableTabs 2023-04-14 19:35:08 +10:00
ff9c78cee7 disable panels when app mounts 2023-04-14 19:35:08 +10:00
d5b03408da feat(ui): invert logic to be disabled 2023-04-14 19:35:08 +10:00
97f764c7c5 feat(ui): disable panels based on app props 2023-04-14 19:35:08 +10:00
b565b6b2f5 feat(ui): wip refactor socket events 2023-04-14 19:35:08 +10:00
87a917b22b chore(ui): regenerate api 2023-04-14 19:35:08 +10:00
b1dbf5428e feat(ui): wip gallery migration 2023-04-14 19:35:08 +10:00
927a6e425d feat(ui): wip gallery migration 2023-04-14 19:35:08 +10:00
aa89be32f7 chore(ui): regenerate api 2023-04-14 19:35:08 +10:00
5c29af4883 feat(ui): patch api generation for headers access 2023-04-14 19:35:08 +10:00
85949bc5c8 fix(ui): restore removed type 2023-04-14 19:35:08 +10:00
85111e8d76 feat(ui): POST upload working 2023-04-14 19:35:08 +10:00
98ebba7ba4 fix(ui): separate thunk for initial gallery load so it properly gets index 0 2023-04-14 19:35:08 +10:00
891b067470 feat(ui): clean up & comment results slice 2023-04-14 19:35:08 +10:00
cb849995e4 feat(ui): begin migrating gallery to nodes
Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way.
2023-04-14 19:35:08 +10:00
156de26995 chore(ui): add typescript as dev dependency
I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue.
2023-04-14 19:35:08 +10:00
7436a9b35d chore(ui): regenerate api client 2023-04-14 19:35:08 +10:00
aa7eaaed45 docs(ui): update readme 2023-04-14 19:35:08 +10:00
1520a9e2fc chore(ui): bump redux-toolkit 2023-04-14 19:35:08 +10:00
1a21edf085 feat(ui): load images on socket connect
Rudimentary
2023-04-14 19:35:08 +10:00
8b66a737a7 feat(ui): add type guards for outputs 2023-04-14 19:35:08 +10:00
183a20cfd8 feat(ui): make thunk types more consistent 2023-04-14 19:35:08 +10:00
1260dfcacc feat(ui): fix parameters panel border color
This commit should be elsewhere but I don't want to break my flow
2023-04-14 19:35:08 +10:00
9ee5cb4395 feat(ui): disable NodeAPITest
This was polluting the network/socket logs.
2023-04-14 19:35:08 +10:00
3554d3568f feat(ui): add rtk action type guard 2023-04-14 19:35:08 +10:00
c2a92d1254 fix(ui): fix middleware types 2023-04-14 19:35:08 +10:00
efa6e89dc2 feat(ui): handle random seeds 2023-04-14 19:35:08 +10:00
ba500fc3cb feat(ui): add nodes mode script 2023-04-14 19:35:08 +10:00
8446c6cd1f chore(ui): add support for package mode 2023-04-14 19:35:08 +10:00
8e2350ec4c feat(ui): get intermediate images working but types are stubbed out 2023-04-14 19:35:08 +10:00
dd66b3bf25 feat(ui): img2img implementation 2023-04-14 19:35:08 +10:00
dfa69d815e feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node 2023-04-14 19:35:08 +10:00
bf8682fd4e feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation 2023-04-14 19:35:08 +10:00
64b02ead37 add optional apiUrl prop 2023-04-14 19:35:08 +10:00
afc2518c66 use reference to sampler_name 2023-04-14 19:35:08 +10:00
28b7b785b0 use reference to sampler_name 2023-04-14 19:35:08 +10:00
9cb592539a start building out node translations from frontend state and add notes about missing features 2023-04-14 19:35:08 +10:00
41a87406b3 feat(ui): wip nodes
- extract api client method arg types instead of manually declaring them
- update example to display images
- general tidy up
2023-04-14 19:35:08 +10:00
163c075b3d feat(ui): add socketio types 2023-04-14 19:35:08 +10:00
c84f689766 fix(ui): fix scrollbar styles typing and prop
just noticed the typo, and made the types stronger.
2023-04-14 19:35:08 +10:00
c38a712c0b fix(ui): disable OG web server socket connection 2023-04-14 19:35:08 +10:00
13de5edd70 chore(ui): regenerate api client 2023-04-14 19:35:08 +10:00
090f2a839e feat(ui): nodes cancel 2023-04-14 19:35:08 +10:00
e5cb04f309 feat(ui): more nodes api prototyping 2023-04-14 19:35:08 +10:00
d6faf6d5a1 feat(ui): generate object args for api client 2023-04-14 19:35:08 +10:00
b4ade3db3a feat(backend): fixes for nodes/generator 2023-04-14 19:35:08 +10:00
7647f8899d chore(ui): update openapi.json 2023-04-14 19:35:08 +10:00
c82d92bc82 chore(ui): update .eslintignore, .prettierignore 2023-04-14 19:35:08 +10:00
67b13c3b70 chore(ui): organize generated files 2023-04-14 19:35:08 +10:00
9b93d85746 fix(ui): update client & nodes test code w/ new Edge type 2023-04-14 19:35:08 +10:00
818c254cd4 feat(ui): add axios client generator and simple example 2023-04-14 19:35:08 +10:00
23d65e7162 [nodes] Add subgraph library, subgraph usage in CLI, and fix subgraph execution (#3180)
* Add latent to latent (img2img equivalent)
Fix a CLI bug with multiple links per node

* Using "latents" instead of "latent"

* [nodes] In-progress implementation of graph library

* Add linking to CLI for graph nodes (still broken)

* Fix subgraph execution, fix subgraph linking in CLI

* Fix LatentsToLatents
2023-04-14 06:41:06 +00:00
024fd54d0b Fixed a Typo. (#3190) 2023-04-14 14:33:31 +12:00
c44c19e911 Fixed a Typo. 2023-04-13 17:42:34 +02:00
d923d1d66b fix(nodes): fix naming of CvInvocationConfig 2023-04-11 12:13:53 +10:00
1f2c1e14db fix(nodes): move InvocationConfig to baseinvocation.py 2023-04-11 12:13:53 +10:00
07e3a0ec15 feat(nodes): add invocation schema customisation, add model selection
- add invocation schema customisation

done via fastapi's `Config` class and `schema_extra`. when using `Config`, inherit from `InvocationConfig` to get type hints.

where it makes sense - like for all math invocations - define a `MathInvocationConfig` class and have all invocations inherit from it.

this customisation can provide any arbitrary additional data to the UI. currently it provides tags and field type hints.

this is necessary for `model` type fields, which are actually string fields. without something like this, we can't reliably differentiate  `model` fields from normal `string` fields.

can also be used for future field types.

all invocations now have tags, and all `model` fields have ui type hints.

- fix model handling for invocations

added a helper to fall back to the default model if an invalid model name is chosen. model names in graphs now work.

- fix latents progress callback

noticed this wasn't correct while working on everything else.
2023-04-11 12:13:53 +10:00
427db7c7e2 feat(nodes): fix typo in PasteImageInvocation 2023-04-10 21:33:08 +10:00
dad3a7f263 fix(nodes): sampler_name --> scheduler
the name of this was changed at some point. nodes still used the old name, so scheduler selection did nothing. simple fix.
2023-04-10 19:54:09 +10:00
5bd0bb637f fix(nodes): add missing type to ImageField 2023-04-10 19:33:15 +10:00
f05095770c Increase chunk size when computing diffusers SHAs (#3159)
When running this app first time in WSL2 environment, which is
notoriously slow when it comes to IO, computing the SHAs of the models
takes an eternity.

Computing shas for sd2.1
```
| Calculating sha256 hash of model files
| sha256 = 1e4ce085102fe6590d41ec1ab6623a18c07127e2eca3e94a34736b36b57b9c5e (49 files hashed in 510.87s)
```

I increased the chunk size to 16MB reduce the number of round trips for
loading the data. New results:

```
| Calculating sha256 hash of model files
| sha256 = 1e4ce085102fe6590d41ec1ab6623a18c07127e2eca3e94a34736b36b57b9c5e (49 files hashed in 59.89s)
```

Higher values don't seem to make an impact.
2023-04-09 22:29:43 -04:00
de189f2db6 Increase chunk size when computing SHAs 2023-04-09 21:53:59 +02:00
4463124bdd feat(nodes): mark ImageField properties required, add docs 2023-04-09 22:53:17 +10:00
34402cc46a feat(nodes): add list_images endpoint
- add `list_images` endpoint at `GET api/v1/images`
- extend `ImageStorageBase` with `list()` method, implemented it for `DiskImageStorage`
- add `ImageReponse` class to for image responses, which includes urls, metadata
- add `ImageMetadata` class (basically a stub at the moment)
- uploaded images now named `"{uuid}_{timestamp}.png"`
- add `models` modules. besides separating concerns more clearly, this helps to mitigate circular dependencies
- improve thumbnail handling
2023-04-09 13:48:44 +10:00
54d9833db0 Else. 2023-04-08 12:08:51 -04:00
5fe8cb56fc Correct response note 2023-04-08 12:08:51 -04:00
7919d81fb1 Update to address feedback 2023-04-08 12:08:51 -04:00
9d80b28a4f Begin Convert Work 2023-04-08 12:08:51 -04:00
1fcd91bcc5 Add/Update and Delete Models 2023-04-08 12:08:51 -04:00
e456e2e63a fix typo (#3147)
fix typo.

reference:
21f79e5919/invokeai/configs/INITIAL_MODELS.yaml (L21-L25)
2023-04-08 20:25:31 +12:00
ee41b99049 Update 050_INSTALLING_MODELS.md
fix typo
2023-04-08 17:02:47 +09:00
111d674e71 fix(nodes): use correct torch device in NoiseInvocation 2023-04-08 12:32:03 +10:00
8f048cfbd9 Add python-multipart, which is needed by nodes (#3141)
I'm not quite sure why this isn't being installed by fastapi's
dependencies, but running without it installed yields:

```
root@gnubert:/srv/ssdtank/docker/invokeai/git/InvokeAI# docker run --gpus all -p 9989:9090 -v /srv/ssdtank/docker/invokeai/data:/data -v /srv/ssdtank/docker/invokeai/git/InvokeAI/static/dream_web/:/static/dream_web --rm -ti -u root --entrypoint /bin/bash ghcr.io/cmsj/invokeai-nodes@sha256:426ebc414936cb67e02f5f64d963196500a77b2f485df8122a2d462797293938
root@7a77b56a5771:/usr/src# /invoke-new.py --web
Form data requires "python-multipart" to be installed.
You can install "python-multipart" with:

pip install python-multipart

╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /invoke-new.py:22 in <module>                                                                    │
│                                                                                                  │
│   19                                                                                             │
│   20                                                                                             │
│   21 if __name__ == '__main__':                                                                  │
│ ❱ 22 │   main()                                                                                  │
│   23                                                                                             │
│                                                                                                  │
│ /invoke-new.py:13 in main                                                                        │
│                                                                                                  │
│   10 │   os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))                │
│   11 │                                                                                           │
│   12 │   if '--web' in sys.argv:                                                                 │
│ ❱ 13 │   │   from invokeai.app.api_app import invoke_api                                         │
│   14 │   │   invoke_api()                                                                        │
│   15 │   else:                                                                                   │
│   16 │   │   # TODO: Parse some top-level args here.                                             │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/invokeai/app/api_app.py:17 in <module>            │
│                                                                                                  │
│    14                                                                                            │
│    15 from ..backend import Args                                                                 │
│    16 from .api.dependencies import ApiDependencies                                              │
│ ❱  17 from .api.routers import images, sessions, models                                          │
│    18 from .api.sockets import SocketIO                                                          │
│    19 from .invocations import *                                                                 │
│    20 from .invocations.baseinvocation import BaseInvocation                                     │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/invokeai/app/api/routers/images.py:45 in <module> │
│                                                                                                  │
│   42 │   │   404: {"description": "Session not found"},                                          │
│   43 │   },                                                                                      │
│   44 )                                                                                           │
│ ❱ 45 async def upload_image(file: UploadFile, request: Request):                                 │
│   46 │   if not file.content_type.startswith("image"):                                           │
│   47 │   │   return Response(status_code=415)                                                    │
│   48                                                                                             │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/routing.py:630 in decorator               │
│                                                                                                  │
│    627 │   │   ),                                                                                │
│    628 │   ) -> Callable[[DecoratedCallable], DecoratedCallable]:                                │
│    629 │   │   def decorator(func: DecoratedCallable) -> DecoratedCallable:                      │
│ ❱  630 │   │   │   self.add_api_route(                                                           │
│    631 │   │   │   │   path,                                                                     │
│    632 │   │   │   │   func,                                                                     │
│    633 │   │   │   │   response_model=response_model,                                            │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/routing.py:569 in add_api_route           │
│                                                                                                  │
│    566 │   │   current_generate_unique_id = get_value_or_default(                                │
│    567 │   │   │   generate_unique_id_function, self.generate_unique_id_function                 │
│    568 │   │   )                                                                                 │
│ ❱  569 │   │   route = route_class(                                                              │
│    570 │   │   │   self.prefix + path,                                                           │
│    571 │   │   │   endpoint=endpoint,                                                            │
│    572 │   │   │   response_model=response_model,                                                │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/routing.py:444 in __init__                │
│                                                                                                  │
│    441 │   │   │   │   0,                                                                        │
│    442 │   │   │   │   get_parameterless_sub_dependant(depends=depends, path=self.path_format),  │
│    443 │   │   │   )                                                                             │
│ ❱  444 │   │   self.body_field = get_body_field(dependant=self.dependant, name=self.unique_id)   │
│    445 │   │   self.app = request_response(self.get_route_handler())                             │
│    446 │                                                                                         │
│    447 │   def get_route_handler(self) -> Callable[[Request], Coroutine[Any, Any, Response]]:    │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/dependencies/utils.py:756 in              │
│ get_body_field                                                                                   │
│                                                                                                  │
│   753 │   │   alias="body",                                                                      │
│   754 │   │   field_info=BodyFieldInfo(**BodyFieldInfo_kwargs),                                  │
│   755 │   )                                                                                      │
│ ❱ 756 │   check_file_field(final_field)                                                          │
│   757 │   return final_field                                                                     │
│   758                                                                                            │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/dependencies/utils.py:111 in              │
│ check_file_field                                                                                 │
│                                                                                                  │
│   108 │   │   │   │   raise RuntimeError(multipart_incorrect_install_error) from None            │
│   109 │   │   except ImportError:                                                                │
│   110 │   │   │   logger.error(multipart_not_installed_error)                                    │
│ ❱ 111 │   │   │   raise RuntimeError(multipart_not_installed_error) from None                    │
│   112                                                                                            │
│   113                                                                                            │
│   114 def get_param_sub_dependant(                                                               │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: Form data requires "python-multipart" to be installed.
You can install "python-multipart" with:

pip install python-multipart
```
2023-04-07 19:17:37 -04:00
7103ac6a32 Add python-multipart, which is needed by nodes 2023-04-07 19:43:42 +01:00
f6b131e706 remove vestiges of non-functional autoimport code for legacy checkpoints (#3076)
- the functionality to automatically import and run legacy checkpoint
files in a designated folder has been removed from the backend but there
are vestiges of the code remaining in the frontend that are causing
crashes.
- This fixes the problem.

- Closes #3075
2023-04-08 02:21:23 +12:00
d1b2b99226 Merge branch 'main' into bugfix/remove-autoimport-dead-code 2023-04-07 09:59:58 -04:00
e356f2511b chore: configure stale bot 2023-04-07 20:45:08 +10:00
e5f8b22a43 add a new method to model_manager that retrieves individual pipeline components (#3120)
This PR introduces a new set of ModelManager methods that enables you to
retrieve the individual parts of a stable diffusion pipeline model,
including the vae, text_encoder, unet, tokenizer, etc.

To use:

```
from invokeai.backend import ModelManager

manager = ModelManager('/path/to/models.yaml')

# get the VAE
vae = manager.get_model_vae('stable-diffusion-1.5')

# get the unet
unet = manager.get_model_unet('stable-diffusion-1.5')

# get the tokenizer
tokenizer = manager.get_model_tokenizer('stable-diffusion-1.5')

# etc etc
feature_extractor = manager.get_model_feature_extractor('stable-diffusion-1.5')
scheduler = manager.get_model_scheduler('stable-diffusion-1.5')
text_encoder = manager.get_model_text_encoder('stable-diffusion-1.5')

# if no model provided, then defaults to the one currently in GPU, if any
vae = manager.get_model_vae()
```
2023-04-07 01:39:57 -04:00
45b84fb4bb Merge branch 'main' into bugfix/remove-autoimport-dead-code 2023-04-07 17:07:25 +12:00
f022c89249 Merge branch 'main' into feat/return-submodels 2023-04-06 22:03:31 -04:00
ab05144716 Change where !replay looks for its infile (#3129)
!fetch puts its output file into the output directory; it may be
beneficial to have !replay look in the output directory as well.
2023-04-06 22:02:06 -04:00
aeb4914e67 Merge branch 'main' into replay-file_path 2023-04-06 21:45:23 -04:00
4c339dd4b0 refactor get_submodels() into individual methods 2023-04-06 17:08:23 -04:00
7268131f57 change where !replay looks for its infile
!fetch puts its output file into the output directory; it may be beneficial to have !replay look in the output directory as well.
2023-04-06 08:14:11 -04:00
d44151d6ff add a new method to model_manager that retrieves individual pipeline parts
- New method is ModelManager.get_sub_model(model_name:str,model_part:SDModelComponent)

To use:

```
from invokeai.backend import ModelManager, SDModelComponent as sdmc
manager = ModelManager('/path/to/models.yaml')
vae = manager.get_sub_model('stable-diffusion-1.5', sdmc.vae)
```
2023-04-05 17:25:42 -04:00
1f89cf3343 remove vestiges of non-functional autoimport code for legacy checkpoints
- Closes #3075
2023-03-31 04:27:03 -04:00
370 changed files with 14504 additions and 2005 deletions

19
.github/stale.yaml vendored Normal file
View File

@ -0,0 +1,19 @@
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 28
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 14
# Issues with these labels will never be considered stale
exemptLabels:
- pinned
- security
# Label to use when marking an issue as stale
staleLabel: stale
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Please
update the ticket if this is still a problem on the latest release.
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: >
Due to inactivity, this issue has been automatically closed. If this is
still a problem on the latest release, please recreate the issue.

View File

@ -84,7 +84,7 @@ installing lots of models.
6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generaiton models.
select a set of starting image generation models.
7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this

View File

@ -1,10 +1,18 @@
# Invocations
Invocations represent a single operation, its inputs, and its outputs. These operations and their outputs can be chained together to generate and modify images.
Invocations represent a single operation, its inputs, and its outputs. These
operations and their outputs can be chained together to generate and modify
images.
## Creating a new invocation
To create a new invocation, either find the appropriate module file in `/ldm/invoke/app/invocations` to add your invocation to, or create a new one in that folder. All invocations in that folder will be discovered and made available to the CLI and API automatically. Invocations make use of [typing](https://docs.python.org/3/library/typing.html) and [pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration into the CLI and API.
To create a new invocation, either find the appropriate module file in
`/ldm/invoke/app/invocations` to add your invocation to, or create a new one in
that folder. All invocations in that folder will be discovered and made
available to the CLI and API automatically. Invocations make use of
[typing](https://docs.python.org/3/library/typing.html) and
[pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration
into the CLI and API.
An invocation looks like this:
@ -41,34 +49,54 @@ class UpscaleInvocation(BaseInvocation):
Each portion is important to implement correctly.
### Class definition and type
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
type: Literal['upscale'] = 'upscale'
```
All invocations must derive from `BaseInvocation`. They should have a docstring that declares what they do in a single, short line. They should also have a `type` with a type hint that's `Literal["command_name"]`, where `command_name` is what the user will type on the CLI or use in the API to create this invocation. The `command_name` must be unique. The `type` must be assigned to the value of the literal in the type hint.
All invocations must derive from `BaseInvocation`. They should have a docstring
that declares what they do in a single, short line. They should also have a
`type` with a type hint that's `Literal["command_name"]`, where `command_name`
is what the user will type on the CLI or use in the API to create this
invocation. The `command_name` must be unique. The `type` must be assigned to
the value of the literal in the type hint.
### Inputs
```py
# Inputs
image: Union[ImageField,None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2,4] = Field(default=2, description="The upscale level")
```
Inputs consist of three parts: a name, a type hint, and a `Field` with default, description, and validation information. For example:
| Part | Value | Description |
| ---- | ----- | ----------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this field to be parsed with `None` as a value, which enables linking to previous invocations. All fields should either provide a default value or allow `None` as a value, so that they can be overwritten with a linked output from another invocation.
Inputs consist of three parts: a name, a type hint, and a `Field` with default,
description, and validation information. For example:
The special type `ImageField` is also used here. All images are passed as `ImageField`, which protects them from pydantic validation errors (since images only ever come from links).
| Part | Value | Description |
| --------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Finally, note that for all linking, the `type` of the linked fields must match. If the `name` also matches, then the field can be **automatically linked** to a previous invocation by name and matching.
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this
field to be parsed with `None` as a value, which enables linking to previous
invocations. All fields should either provide a default value or allow `None` as
a value, so that they can be overwritten with a linked output from another
invocation.
The special type `ImageField` is also used here. All images are passed as
`ImageField`, which protects them from pydantic validation errors (since images
only ever come from links).
Finally, note that for all linking, the `type` of the linked fields must match.
If the `name` also matches, then the field can be **automatically linked** to a
previous invocation by name and matching.
### Invoke Function
```py
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
@ -88,13 +116,22 @@ Finally, note that for all linking, the `type` of the linked fields must match.
image = ImageField(image_type = image_type, image_name = image_name)
)
```
The `invoke` function is the last portion of an invocation. It is provided an `InvocationContext` which contains services to perform work as well as a `session_id` for use as needed. It should return a class with output values that derives from `BaseInvocationOutput`.
Before being called, the invocation will have all of its fields set from defaults, inputs, and finally links (overriding in that order).
The `invoke` function is the last portion of an invocation. It is provided an
`InvocationContext` which contains services to perform work as well as a
`session_id` for use as needed. It should return a class with output values that
derives from `BaseInvocationOutput`.
Assume that this invocation may be running simultaneously with other invocations, may be running on another machine, or in other interesting scenarios. If you need functionality, please provide it as a service in the `InvocationServices` class, and make sure it can be overridden.
Before being called, the invocation will have all of its fields set from
defaults, inputs, and finally links (overriding in that order).
Assume that this invocation may be running simultaneously with other
invocations, may be running on another machine, or in other interesting
scenarios. If you need functionality, please provide it as a service in the
`InvocationServices` class, and make sure it can be overridden.
### Outputs
```py
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
@ -102,4 +139,64 @@ class ImageOutput(BaseInvocationOutput):
image: ImageField = Field(default=None, description="The output image")
```
Output classes look like an invocation class without the invoke method. Prefer to use an existing output class if available, and prefer to name inputs the same as outputs when possible, to promote automatic invocation linking.
Output classes look like an invocation class without the invoke method. Prefer
to use an existing output class if available, and prefer to name inputs the same
as outputs when possible, to promote automatic invocation linking.
## Schema Generation
Invocation, output and related classes are used to generate an OpenAPI schema.
### Required Properties
The schema generation treat all properties with default values as optional. This
makes sense internally, but when when using these classes via the generated
schema, we end up with e.g. the `ImageOutput` class having its `image` property
marked as optional.
We know that this property will always be present, so the additional logic
needed to always check if the property exists adds a lot of extraneous cruft.
To fix this, we can leverage `pydantic`'s
[schema customisation](https://docs.pydantic.dev/usage/schema/#schema-customization)
to mark properties that we know will always be present as required.
Here's that `ImageOutput` class, without the needed schema customisation:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
```
The generated OpenAPI schema, and all clients/types generated from it, will have
the `type` and `image` properties marked as optional, even though we know they
will always have a value by the time we can interact with them via the API.
Here's the same class, but with the schema customisation added:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
class Config:
schema_extra = {
'required': [
'type',
'image',
]
}
```
The resultant schema (and any API client or types generated from it) will now
have see `type` as string literal `"image"` and `image` as an `ImageField`
object.
See this `pydantic` issue for discussion on this solution:
<https://github.com/pydantic/pydantic/discussions/4577>

View File

@ -50,7 +50,7 @@ subset that are currently installed are found in
|stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting |
|stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-inpainting|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-inpainting |
|analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion |
|deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate |
|d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion |

View File

@ -3,12 +3,16 @@
import os
from argparse import Namespace
from invokeai.app.services.metadata import PngMetadataService, MetadataServiceBase
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState
from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.image_storage import DiskImageStorage
from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
@ -58,7 +62,9 @@ class ApiDependencies:
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
images = DiskImageStorage(f'{output_folder}/images')
metadata = PngMetadataService()
images = DiskImageStorage(f'{output_folder}/images', metadata_service=metadata)
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
@ -68,7 +74,11 @@ class ApiDependencies:
events=events,
latents=latents,
images=images,
metadata=metadata,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
@ -76,6 +86,8 @@ class ApiDependencies:
restoration=RestorationServices(config),
)
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services)
@staticmethod

View File

@ -0,0 +1,34 @@
from typing import Optional
from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import InvokeAIMetadata
class ImageResponseMetadata(BaseModel):
"""An image's metadata. Used only in HTTP responses."""
created: int = Field(description="The creation timestamp of the image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
invokeai: Optional[InvokeAIMetadata] = Field(
description="The image's InvokeAI-specific metadata"
)
class ImageResponse(BaseModel):
"""The response type for images"""
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
image_url: str = Field(description="The url of the image")
thumbnail_url: str = Field(description="The url of the image's thumbnail")
metadata: ImageResponseMetadata = Field(description="The image's metadata")
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")

View File

@ -1,11 +1,18 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import io
from datetime import datetime, timezone
import json
import os
from typing import Any
import uuid
from fastapi import Path, Request, UploadFile
from fastapi import HTTPException, Path, Query, Request, UploadFile
from fastapi.responses import FileResponse, Response
from fastapi.routing import APIRouter
from PIL import Image
from invokeai.app.api.models.images import ImageResponse, ImageResponseMetadata
from invokeai.app.services.metadata import InvokeAIMetadata
from invokeai.app.services.item_storage import PaginatedResults
from ...services.image_storage import ImageType
from ..dependencies import ApiDependencies
@ -17,50 +24,105 @@ images_router = APIRouter(prefix="/v1/images", tags=["images"])
async def get_image(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
) -> FileResponse | Response:
"""Gets a result"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, image_name)
return FileResponse(filename)
@images_router.get("/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail")
path = ApiDependencies.invoker.services.images.get_path(
image_type=image_type, image_name=image_name
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail"
)
async def get_thumbnail(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
) -> FileResponse | Response:
"""Gets a thumbnail"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, 'thumbnails/' + image_name)
return FileResponse(filename)
path = ApiDependencies.invoker.services.images.get_path(
image_type=image_type, image_name=image_name, is_thumbnail=True
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.post(
"/uploads/",
operation_id="upload_image",
responses={
201: {"description": "The image was uploaded successfully"},
404: {"description": "Session not found"},
201: {
"description": "The image was uploaded successfully",
"model": ImageResponse,
},
415: {"description": "Image upload failed"},
},
status_code=201,
)
async def upload_image(file: UploadFile, request: Request):
async def upload_image(
file: UploadFile, request: Request, response: Response
) -> ImageResponse:
if not file.content_type.startswith("image"):
return Response(status_code=415)
raise HTTPException(status_code=415, detail="Not an image")
contents = await file.read()
try:
im = Image.open(contents)
img = Image.open(io.BytesIO(contents))
except:
# Error opening the image
return Response(status_code=415)
raise HTTPException(status_code=415, detail="Failed to read image")
filename = f"{str(int(datetime.now(timezone.utc).timestamp()))}.png"
ApiDependencies.invoker.services.images.save(ImageType.UPLOAD, filename, im)
filename = f"{uuid.uuid4()}_{str(int(datetime.now(timezone.utc).timestamp()))}.png"
return Response(
status_code=201,
headers={
"Location": request.url_for(
"get_image", image_type=ImageType.UPLOAD, image_name=filename
)
},
(image_path, thumbnail_path, ctime) = ApiDependencies.invoker.services.images.save(
ImageType.UPLOAD, filename, img
)
invokeai_metadata = ApiDependencies.invoker.services.metadata.get_metadata(img)
res = ImageResponse(
image_type=ImageType.UPLOAD,
image_name=filename,
image_url=f"api/v1/images/{ImageType.UPLOAD.value}/{filename}",
thumbnail_url=f"api/v1/images/{ImageType.UPLOAD.value}/thumbnails/{os.path.splitext(filename)[0]}.webp",
metadata=ImageResponseMetadata(
created=ctime,
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
response.status_code = 201
response.headers["Location"] = request.url_for(
"get_image", image_type=ImageType.UPLOAD.value, image_name=filename
)
return res
@images_router.get(
"/",
operation_id="list_images",
responses={200: {"model": PaginatedResults[ImageResponse]}},
)
async def list_images(
image_type: ImageType = Query(
default=ImageType.RESULT, description="The type of images to get"
),
page: int = Query(default=0, description="The page of images to get"),
per_page: int = Query(default=10, description="The number of images per page"),
) -> PaginatedResults[ImageResponse]:
"""Gets a list of images"""
result = ApiDependencies.invoker.services.images.list(image_type, page, per_page)
return result

View File

@ -1,11 +1,17 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
import shutil
import asyncio
from typing import Annotated, Any, List, Literal, Optional, Union
from fastapi.routing import APIRouter
from fastapi.routing import APIRouter, HTTPException
from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path
from ..dependencies import ApiDependencies
from invokeai.backend.globals import Globals, global_converted_ckpts_dir
from invokeai.backend.args import Args
models_router = APIRouter(prefix="/v1/models", tags=["models"])
@ -15,11 +21,9 @@ class VaeRepo(BaseModel):
path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
@ -29,7 +33,6 @@ class CkptModelInfo(ModelInfo):
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
@ -37,12 +40,29 @@ class DiffusersModelInfo(ModelInfo):
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class CreateModelRequest(BaseModel):
name: str = Field(description="The name of the model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
class CreateModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
status: str = Field(description="The status of the API response")
class ConversionRequest(BaseModel):
name: str = Field(description="The name of the new model")
info: CkptModelInfo = Field(description="The converted model info")
save_location: str = Field(description="The path to save the converted model weights")
class ConvertedModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: DiffusersModelInfo = Field(description="The converted model info")
class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
@models_router.get(
"/",
operation_id="list_models",
@ -54,108 +74,61 @@ async def list_models() -> ModelsList:
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
# @socketio.on("requestSystemConfig")
# def handle_request_capabilities():
# print(">> System config requested")
# config = self.get_system_config()
# config["model_list"] = self.generate.model_manager.list_models()
# config["infill_methods"] = infill_methods()
# socketio.emit("systemConfig", config)
# @socketio.on("searchForModels")
# def handle_search_models(search_folder: str):
# try:
# if not search_folder:
# socketio.emit(
# "foundModels",
# {"search_folder": None, "found_models": None},
# )
# else:
# (
# search_folder,
# found_models,
# ) = self.generate.model_manager.search_models(search_folder)
# socketio.emit(
# "foundModels",
# {"search_folder": search_folder, "found_models": found_models},
# )
# except Exception as e:
# self.handle_exceptions(e)
# print("\n")
@models_router.post(
"/",
operation_id="update_model",
responses={200: {"status": "success"}},
)
async def update_model(
model_request: CreateModelRequest
) -> CreateModelResponse:
""" Add Model """
model_request_info = model_request.info
info_dict = model_request_info.dict()
model_response = CreateModelResponse(name=model_request.name, info=model_request.info, status="success")
# @socketio.on("addNewModel")
# def handle_add_model(new_model_config: dict):
# try:
# model_name = new_model_config["name"]
# del new_model_config["name"]
# model_attributes = new_model_config
# if len(model_attributes["vae"]) == 0:
# del model_attributes["vae"]
# update = False
# current_model_list = self.generate.model_manager.list_models()
# if model_name in current_model_list:
# update = True
ApiDependencies.invoker.services.model_manager.add_model(
model_name=model_request.name,
model_attributes=info_dict,
clobber=True,
)
# print(f">> Adding New Model: {model_name}")
return model_response
# self.generate.model_manager.add_model(
# model_name=model_name,
# model_attributes=model_attributes,
# clobber=True,
# )
# self.generate.model_manager.commit(opt.conf)
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "newModelAdded",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": update,
# },
# )
# print(f">> New Model Added: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
@models_router.delete(
"/{model_name}",
operation_id="del_model",
responses={
204: {
"description": "Model deleted successfully"
},
404: {
"description": "Model not found"
}
},
)
async def delete_model(model_name: str) -> None:
"""Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names()
model_exists = model_name in model_names
# @socketio.on("deleteModel")
# def handle_delete_model(model_name: str):
# try:
# print(f">> Deleting Model: {model_name}")
# self.generate.model_manager.del_model(model_name)
# self.generate.model_manager.commit(opt.conf)
# updated_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelDeleted",
# {
# "deleted_model_name": model_name,
# "model_list": updated_model_list,
# },
# )
# print(f">> Model Deleted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# check if model exists
print(f">> Checking for model {model_name}...")
if model_exists:
print(f">> Deleting Model: {model_name}")
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
print(f">> Model Deleted: {model_name}")
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
else:
print(f">> Model not found")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
# @socketio.on("requestModelChange")
# def handle_set_model(model_name: str):
# try:
# print(f">> Model change requested: {model_name}")
# model = self.generate.set_model(model_name)
# model_list = self.generate.model_manager.list_models()
# if model is None:
# socketio.emit(
# "modelChangeFailed",
# {"model_name": model_name, "model_list": model_list},
# )
# else:
# socketio.emit(
# "modelChanged",
# {"model_name": model_name, "model_list": model_list},
# )
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("convertToDiffusers")
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
@ -275,5 +248,4 @@ async def list_models() -> ModelsList:
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:
# self.handle_exceptions(e)
# except Exception as e:

View File

@ -6,11 +6,41 @@ from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_t
from pydantic import BaseModel, Field
import networkx as nx
import matplotlib.pyplot as plt
from ..invocations.baseinvocation import BaseInvocation
from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState
from ..services.graph import GraphExecutionState, LibraryGraph, GraphInvocation, Edge
from ..services.invoker import Invoker
def add_field_argument(command_parser, name: str, field, default_override = None):
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
help=field.field_info.description,
)
def add_parsers(
subparsers,
commands: list[type],
@ -35,30 +65,26 @@ def add_parsers(
if name in exclude_fields:
continue
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
add_field_argument(command_parser, name, field)
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=field.default if field.default_factory is None else field.default_factory(),
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=field.default if field.default_factory is None else field.default_factory(),
help=field.field_info.description,
)
def add_graph_parsers(
subparsers,
graphs: list[LibraryGraph],
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
):
for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description)
if add_arguments is not None:
add_arguments(command_parser)
# Add arguments for inputs
for exposed_input in graph.exposed_inputs:
node = graph.graph.get_node(exposed_input.node_path)
field = node.__fields__[exposed_input.field]
default_override = getattr(node, exposed_input.field)
add_field_argument(command_parser, exposed_input.alias, field, default_override)
class CliContext:
@ -66,17 +92,38 @@ class CliContext:
session: GraphExecutionState
parser: argparse.ArgumentParser
defaults: dict[str, Any]
graph_nodes: dict[str, str]
nodes_added: list[str]
def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser):
self.invoker = invoker
self.session = session
self.parser = parser
self.defaults = dict()
self.graph_nodes = dict()
self.nodes_added = list()
def get_session(self):
self.session = self.invoker.services.graph_execution_manager.get(self.session.id)
return self.session
def reset(self):
self.session = self.invoker.create_execution_state()
self.graph_nodes = dict()
self.nodes_added = list()
# Leave defaults unchanged
def add_node(self, node: BaseInvocation):
self.get_session()
self.session.graph.add_node(node)
self.nodes_added.append(node.id)
self.invoker.services.graph_execution_manager.set(self.session)
def add_edge(self, edge: Edge):
self.get_session()
self.session.add_edge(edge)
self.invoker.services.graph_execution_manager.set(self.session)
class ExitCli(Exception):
"""Exception to exit the CLI"""

View File

@ -13,17 +13,22 @@ from typing import (
from pydantic import BaseModel
from pydantic.fields import Field
from invokeai.app.services.metadata import PngMetadataService
from .services.default_graphs import create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, get_graph_execution_history
from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState, are_connection_types_compatible
from .services.graph import Edge, EdgeConnection, ExposedNodeInput, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
@ -58,7 +63,7 @@ def add_invocation_args(command_parser):
)
def get_command_parser() -> argparse.ArgumentParser:
def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
# Create invocation parser
parser = argparse.ArgumentParser()
@ -76,20 +81,72 @@ def get_command_parser() -> argparse.ArgumentParser:
commands = BaseCommand.get_all_subclasses()
add_parsers(subparsers, commands, exclude_fields=["type"])
# Create subparsers for exposed CLI graphs
# TODO: add a way to identify these graphs
text_to_image = services.graph_library.get(default_text_to_image_graph_id)
add_graph_parsers(subparsers, [text_to_image], add_arguments=add_invocation_args)
return parser
class NodeField():
alias: str
node_path: str
field: str
field_type: type
def __init__(self, alias: str, node_path: str, field: str, field_type: type):
self.alias = alias
self.node_path = node_path
self.field = field
self.field_type = field_type
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str,NodeField]:
return {k:NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_input.node_path))
return NodeField(alias=exposed_input.alias, node_path=f'{node_id}.{exposed_input.node_path}', field=exposed_input.field, field_type=get_type_hints(node_type)[exposed_input.field])
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_output.node_path))
node_output_type = node_type.get_output_type()
return NodeField(alias=exposed_output.alias, node_path=f'{node_id}.{exposed_output.node_path}', field=exposed_output.field, field_type=get_type_hints(node_output_type)[exposed_output.field])
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the inputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_input_field(graph, e.alias, invocation.id) for e in graph.exposed_inputs}
def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the outputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type.get_output_type()), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
def generate_matching_edges(
a: BaseInvocation, b: BaseInvocation
a: BaseInvocation, b: BaseInvocation, context: CliContext
) -> list[Edge]:
"""Generates all possible edges between two invocations"""
atype = type(a)
btype = type(b)
aoutputtype = atype.get_output_type()
afields = get_type_hints(aoutputtype)
bfields = get_type_hints(btype)
afields = get_node_outputs(a, context)
bfields = get_node_inputs(b, context)
matching_fields = set(afields.keys()).intersection(bfields.keys())
@ -98,14 +155,14 @@ def generate_matching_edges(
matching_fields = matching_fields.difference(invalid_fields)
# Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f], bfields[f])]
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)]
edges = [
Edge(
source=EdgeConnection(node_id=a.id, field=field),
destination=EdgeConnection(node_id=b.id, field=field)
source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field),
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field)
)
for field in matching_fields
for alias in matching_fields
]
return edges
@ -145,6 +202,8 @@ def invoke_cli():
events = EventServiceBase()
metadata = PngMetadataService()
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs")
)
@ -156,8 +215,12 @@ def invoke_cli():
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images'),
images=DiskImageStorage(f'{output_folder}/images', metadata_service=metadata),
metadata=metadata,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
@ -165,9 +228,12 @@ def invoke_cli():
restoration=RestorationServices(config),
)
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser()
parser = get_command_parser(services)
re_negid = re.compile('^-[0-9]+$')
@ -185,11 +251,12 @@ def invoke_cli():
try:
# Refresh the state of the session
history = list(get_graph_execution_history(context.session))
#history = list(get_graph_execution_history(context.session))
history = list(reversed(context.nodes_added))
# Split the command for piping
cmds = cmd_input.split("|")
start_id = len(history)
start_id = len(context.nodes_added)
current_id = start_id
new_invocations = list()
for cmd in cmds:
@ -205,8 +272,24 @@ def invoke_cli():
args[field_name] = field_default
# Parse invocation
args["id"] = current_id
command = CliCommand(command=args)
command: CliCommand = None # type:ignore
system_graph: LibraryGraph|None = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
for exposed_input in system_graph.exposed_inputs:
if exposed_input.alias in args:
node = invocation.graph.get_node(exposed_input.node_path)
field = exposed_input.field
setattr(node, field, args[exposed_input.alias])
command = CliCommand(command = invocation)
context.graph_nodes[invocation.id] = system_graph.id
else:
args["id"] = current_id
command = CliCommand(command=args)
if command is None:
continue
# Run any CLI commands immediately
if isinstance(command.command, BaseCommand):
@ -217,6 +300,7 @@ def invoke_cli():
command.command.run(context)
continue
# TODO: handle linking with library graphs
# Pipe previous command output (if there was a previous command)
edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id:
@ -229,7 +313,7 @@ def invoke_cli():
else context.session.graph.get_node(from_id)
)
matching_edges = generate_matching_edges(
from_node, command.command
from_node, command.command, context
)
edges.extend(matching_edges)
@ -242,7 +326,7 @@ def invoke_cli():
link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges(
link_node, command.command
link_node, command.command, context
)
matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations]
@ -256,12 +340,14 @@ def invoke_cli():
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
# TODO: handle missing input/output
node_output = get_node_outputs(context.session.graph.get_node(node_id), context)[link[1]]
node_input = get_node_inputs(command.command, context)[link[2]]
edges.append(
Edge(
source=EdgeConnection(node_id=node_id, field=link[1]),
destination=EdgeConnection(
node_id=command.command.id, field=link[2]
)
source=EdgeConnection(node_id=node_output.node_path, field=node_output.field),
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field)
)
)
@ -270,10 +356,10 @@ def invoke_cli():
current_id = current_id + 1
# Add the node to the session
context.session.add_node(command.command)
context.add_node(command.command)
for edge in edges:
print(edge)
context.session.add_edge(edge)
context.add_edge(edge)
# Execute all remaining nodes
invoke_all(context)
@ -285,7 +371,7 @@ def invoke_cli():
except SessionError:
# Start a new session
print("Session error: creating a new session")
context.session = context.invoker.create_execution_state()
context.reset()
except ExitCli:
break

View File

@ -2,7 +2,7 @@
from abc import ABC, abstractmethod
from inspect import signature
from typing import get_args, get_type_hints
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict
from pydantic import BaseModel, Field
@ -76,3 +76,56 @@ class BaseInvocation(ABC, BaseModel):
#fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
#fmt: on
# TODO: figure out a better way to provide these hints
# TODO: when we can upgrade to python 3.11, we can use the`NotRequired` type instead of `total=False`
class UIConfig(TypedDict, total=False):
type_hints: Dict[
str,
Literal[
"integer",
"float",
"boolean",
"string",
"enum",
"image",
"latents",
"model",
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
class InvocationConfig(BaseModel.Config):
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.
`tags`
- A list of strings, used to categorise invocations.
`type_hints`
- A dict of field types which override the types in the invocation definition.
- Each key should be the name of one of the invocation's fields.
- Each value should be one of the valid types:
- `integer`, `float`, `boolean`, `string`, `enum`, `image`, `latents`, `model`
```python
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"initial_image": "image",
},
},
}
```
"""
schema_extra: CustomisedSchemaExtra

View File

@ -1,16 +1,17 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from typing import Literal, Optional
import cv2 as cv
import numpy as np
import numpy.random
from PIL import Image, ImageOps
from pydantic import Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext, BaseInvocationOutput
from .image import ImageField, ImageOutput
from .baseinvocation import (
BaseInvocation,
InvocationConfig,
InvocationContext,
BaseInvocationOutput,
)
class IntCollectionOutput(BaseInvocationOutput):
@ -33,7 +34,9 @@ class RangeInvocation(BaseInvocation):
step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
return IntCollectionOutput(
collection=list(range(self.start, self.stop, self.step))
)
class RandomRangeInvocation(BaseInvocation):
@ -43,8 +46,19 @@ class RandomRangeInvocation(BaseInvocation):
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
size: int = Field(default=1, description="The number of values to generate")
seed: Optional[int] = Field(
ge=0,
le=np.iinfo(np.int32).max,
description="The seed for the RNG",
default_factory=lambda: numpy.random.randint(0, np.iinfo(np.int32).max),
)
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(numpy.random.randint(self.low, self.high, size=self.size)))
rng = np.random.default_rng(self.seed)
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)

View File

@ -5,14 +5,26 @@ from typing import Literal
import cv2 as cv
import numpy
from PIL import Image, ImageOps
from pydantic import Field
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
class CvInpaintInvocation(BaseInvocation):
class CvInvocationConfig(BaseModel):
"""Helper class to provide all OpenCV invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["cv", "image"],
},
}
class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
"""Simple inpaint using opencv."""
#fmt: off
type: Literal["cv_inpaint"] = "cv_inpaint"
@ -44,7 +56,14 @@ class CvInpaintInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_inpainted)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_inpainted, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_inpainted,
)

View File

@ -6,21 +6,36 @@ from typing import Literal, Optional, Union
import numpy as np
from torch import Tensor
from pydantic import Field
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageField, ImageType
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.util import diffusers_step_callback_adapter, CanceledException
from ..util.step_callback import stable_diffusion_step_callback
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
class SDImageInvocation(BaseModel):
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"model": "model",
},
},
}
SAMPLER_NAME_VALUES = Literal[
tuple(InvokeAIGenerator.schedulers())
]
# Text to image
class TextToImageInvocation(BaseInvocation):
class TextToImageInvocation(BaseInvocation, SDImageInvocation):
"""Generates an image using text2img."""
type: Literal["txt2img"] = "txt2img"
@ -34,7 +49,7 @@ class TextToImageInvocation(BaseInvocation):
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
@ -42,35 +57,31 @@ class TextToImageInvocation(BaseInvocation):
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
# def step_callback(state: PipelineIntermediateState):
# if (context.services.queue.is_canceled(context.graph_execution_state_id)):
# raise CanceledException
# self.dispatch_progress(context, state.latents, state.step)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
# (right now uses whatever current model is set in model manager)
model= context.services.model_manager.get_model()
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Txt2Img(model).generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context),
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually
@ -86,9 +97,18 @@ class TextToImageInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, generate_output.image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(
image_type, image_name, generate_output.image, metadata
)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=generate_output.image,
)
@ -108,20 +128,17 @@ class ImageToImageInvocation(TextToImageInvocation):
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
@ -134,18 +151,23 @@ class ImageToImageInvocation(TextToImageInvocation):
mask = None
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
@ -160,11 +182,19 @@ class ImageToImageInvocation(TextToImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
@ -180,20 +210,17 @@ class InpaintInvocation(ImageToImageInvocation):
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
@ -210,18 +237,23 @@ class InpaintInvocation(ImageToImageInvocation):
)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
@ -236,7 +268,14 @@ class InpaintInvocation(ImageToImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)

View File

@ -1,70 +1,97 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from ..models.image import ImageField, ImageType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
image_type: str = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
#fmt: off
# fmt: off
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
#fmt: on
width: Optional[int] = Field(default=None, description="The width of the image in pixels")
height: Optional[int] = Field(default=None, description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {
'required': [
'type',
'image',
]
"required": ["type", "image", "width", "height", "mode"]
}
def build_image_output(
image_type: ImageType, image_name: str, image: Image.Image
) -> ImageOutput:
"""Builds an ImageOutput and its ImageField"""
image_field = ImageField(
image_name=image_name,
image_type=image_type,
)
return ImageOutput(
image=image_field,
width=image.width,
height=image.height,
mode=image.mode,
)
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
#fmt: off
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
#fmt: on
# fmt: on
class Config:
schema_extra = {
'required': [
'type',
'mask',
"required": [
"type",
"mask",
]
}
# TODO: this isn't really necessary anymore
class LoadImageInvocation(BaseInvocation):
"""Load an image from a filename and provide it as output."""
#fmt: off
"""Load an image and provide it as output."""
# fmt: off
type: Literal["load_image"] = "load_image"
# Inputs
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
return ImageOutput(
image=ImageField(image_type=self.image_type, image_name=self.image_name)
image = context.services.images.get(self.image_type, self.image_name)
return build_image_output(
image_type=self.image_type,
image_name=self.image_name,
image=image,
)
@ -85,16 +112,17 @@ class ShowImageInvocation(BaseInvocation):
# TODO: how to handle failure?
return ImageOutput(
image=ImageField(
image_type=self.image.image_type, image_name=self.image.image_name
)
return build_image_output(
image_type=self.image.image_type,
image_name=self.image.image_name,
image=image,
)
class CropImageInvocation(BaseInvocation):
class CropImageInvocation(BaseInvocation, PILInvocationConfig):
"""Crops an image to a specified box. The box can be outside of the image."""
#fmt: off
# fmt: off
type: Literal["crop"] = "crop"
# Inputs
@ -103,7 +131,7 @@ class CropImageInvocation(BaseInvocation):
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
@ -119,15 +147,23 @@ class CropImageInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_crop)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_crop, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_crop,
)
class PasteImageInvocation(BaseInvocation):
class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
"""Pastes an image into another image."""
#fmt: off
# fmt: off
type: Literal["paste"] = "paste"
# Inputs
@ -136,7 +172,7 @@ class PasteImageInvocation(BaseInvocation):
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get(
@ -149,7 +185,7 @@ class PasteImageInvocation(BaseInvocation):
None
if self.mask is None
else ImageOps.invert(
services.images.get(self.mask.image_type, self.mask.image_name)
context.services.images.get(self.mask.image_type, self.mask.image_name)
)
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
@ -169,21 +205,29 @@ class PasteImageInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, new_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, new_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=new_image,
)
class MaskFromAlphaInvocation(BaseInvocation):
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
"""Extracts the alpha channel of an image as a mask."""
#fmt: off
# fmt: off
type: Literal["tomask"] = "tomask"
# Inputs
image: ImageField = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get(
@ -198,22 +242,27 @@ class MaskFromAlphaInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_mask)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_mask, metadata)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class BlurInvocation(BaseInvocation):
class BlurInvocation(BaseInvocation, PILInvocationConfig):
"""Blurs an image"""
#fmt: off
# fmt: off
type: Literal["blur"] = "blur"
# Inputs
image: ImageField = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -230,22 +279,28 @@ class BlurInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, blur_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, blur_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=blur_image
)
class LerpInvocation(BaseInvocation):
class LerpInvocation(BaseInvocation, PILInvocationConfig):
"""Linear interpolation of all pixels of an image"""
#fmt: off
# fmt: off
type: Literal["lerp"] = "lerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
@ -261,23 +316,29 @@ class LerpInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, lerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, lerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=lerp_image
)
class InverseLerpInvocation(BaseInvocation):
class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Inverse linear interpolation of all pixels of an image"""
#fmt: off
# fmt: off
type: Literal["ilerp"] = "ilerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -297,7 +358,12 @@ class InverseLerpInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, ilerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, ilerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=ilerp_image
)

View File

@ -1,25 +1,26 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
from typing import Literal, Optional
from pydantic import BaseModel, Field
from torch import Tensor
import torch
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import CUDA_DEVICE, torch_dtype
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from accelerate.utils import set_seed
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from ...backend.generator import Generator
from .image import ImageField, ImageOutput, build_image_output
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util.util import image_to_dataURL
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline
@ -30,6 +31,8 @@ class LatentsField(BaseModel):
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
@ -99,18 +102,31 @@ def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_c
return x
def random_seed():
return random.randint(0, np.iinfo(np.uint32).max)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(default=0, ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", )
seed: int = Field(ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", default_factory=random_seed)
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(CUDA_DEVICE)
device = torch.device(choose_torch_device())
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
@ -136,48 +152,45 @@ class TextToLatentsInvocation(BaseInvocation):
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, sample: Tensor, step: int
) -> None:
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
self.id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
self.steps,
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = model_manager.get_model(self.model)
model_info = choose_model(model_manager, self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.sampler_name
scheduler_name=self.scheduler
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
@ -213,8 +226,12 @@ class TextToLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
@ -244,6 +261,17 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
type: Literal["l2l"] = "l2l"
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model"
}
},
}
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.5, description="The strength of the latents to use")
@ -252,8 +280,12 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
@ -263,7 +295,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
timesteps, _ = model.get_img2img_timesteps(
self.steps,
self.strength,
@ -299,12 +331,23 @@ class LatentsToImageInvocation(BaseInvocation):
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = context.services.model_manager.get_model(self.model)
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
with torch.inference_mode():
@ -315,7 +358,14 @@ class LatentsToImageInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image
)

View File

@ -1,15 +1,22 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
from typing import Literal
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
class MathInvocationConfig(BaseModel):
"""Helper class to provide all math invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["math"],
}
}
class IntOutput(BaseInvocationOutput):
@ -20,7 +27,7 @@ class IntOutput(BaseInvocationOutput):
#fmt: on
class AddInvocation(BaseInvocation):
class AddInvocation(BaseInvocation, MathInvocationConfig):
"""Adds two numbers"""
#fmt: off
type: Literal["add"] = "add"
@ -32,7 +39,7 @@ class AddInvocation(BaseInvocation):
return IntOutput(a=self.a + self.b)
class SubtractInvocation(BaseInvocation):
class SubtractInvocation(BaseInvocation, MathInvocationConfig):
"""Subtracts two numbers"""
#fmt: off
type: Literal["sub"] = "sub"
@ -44,7 +51,7 @@ class SubtractInvocation(BaseInvocation):
return IntOutput(a=self.a - self.b)
class MultiplyInvocation(BaseInvocation):
class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
"""Multiplies two numbers"""
#fmt: off
type: Literal["mul"] = "mul"
@ -56,7 +63,7 @@ class MultiplyInvocation(BaseInvocation):
return IntOutput(a=self.a * self.b)
class DivideInvocation(BaseInvocation):
class DivideInvocation(BaseInvocation, MathInvocationConfig):
"""Divides two numbers"""
#fmt: off
type: Literal["div"] = "div"

View File

@ -0,0 +1,18 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .math import IntOutput
# Pass-through parameter nodes - used by subgraphs
class ParamIntInvocation(BaseInvocation):
"""An integer parameter"""
#fmt: off
type: Literal["param_int"] = "param_int"
a: int = Field(default=0, description="The integer value")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a)

View File

@ -1,12 +1,11 @@
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image."""
@ -18,6 +17,14 @@ class RestoreFaceInvocation(BaseInvocation):
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
#fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["restoration", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -36,7 +43,14 @@ class RestoreFaceInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@ -1,14 +1,12 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
class UpscaleInvocation(BaseInvocation):
@ -22,6 +20,15 @@ class UpscaleInvocation(BaseInvocation):
level: Literal[2, 4] = Field(default=2, description="The upscale level")
#fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -40,7 +47,14 @@ class UpscaleInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@ -0,0 +1,14 @@
from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
if model_manager.valid_model(model_name):
model = model_manager.get_model(model_name)
else:
model = model_manager.get_model()
print(
f"* Warning: '{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead."
)
return model

View File

View File

@ -0,0 +1,3 @@
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@ -0,0 +1,29 @@
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field
class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
def is_image_type(obj):
try:
ImageType(obj)
except ValueError:
return False
return True
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_type: ImageType = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_type", "image_name"]}

View File

@ -0,0 +1,56 @@
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
default_text_to_image_graph_id = '539b2af5-2b4d-4d8c-8071-e54a3255fc74'
def create_text_to_image() -> LibraryGraph:
return LibraryGraph(
id=default_text_to_image_graph_id,
name='t2i',
description='Converts text to an image',
graph=Graph(
nodes={
'width': ParamIntInvocation(id='width', a=512),
'height': ParamIntInvocation(id='height', a=512),
'3': NoiseInvocation(id='3'),
'4': TextToLatentsInvocation(id='4'),
'5': LatentsToImageInvocation(id='5')
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='4', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='4', field='height')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='4', field='noise')),
Edge(source=EdgeConnection(node_id='4', field='latents'), destination=EdgeConnection(node_id='5', field='latents')),
]
),
exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='prompt'),
ExposedNodeInput(node_path='width', field='a', alias='width'),
ExposedNodeInput(node_path='height', field='a', alias='height')
],
exposed_outputs=[
ExposedNodeOutput(node_path='5', field='image', alias='image')
])
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
graphs: list[LibraryGraph] = list()
text_to_image = graph_library.get(default_text_to_image_graph_id)
# TODO: Check if the graph is the same as the default one, and if not, update it
#if text_to_image is None:
text_to_image = create_text_to_image()
graph_library.set(text_to_image)
graphs.append(text_to_image)
return graphs

View File

@ -1,10 +1,9 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, TypedDict
from typing import Any
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.util.misc import get_timestamp
ProgressImage = TypedDict(
"ProgressImage", {"dataURL": str, "width": int, "height": int}
)
class EventServiceBase:
session_event: str = "session_event"
@ -14,7 +13,8 @@ class EventServiceBase:
def dispatch(self, event_name: str, payload: Any) -> None:
pass
def __emit_session_event(self, event_name: str, payload: Dict) -> None:
def __emit_session_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.session_event,
payload=dict(event=event_name, data=payload),
@ -25,7 +25,8 @@ class EventServiceBase:
def emit_generator_progress(
self,
graph_execution_state_id: str,
invocation_id: str,
node: dict,
source_node_id: str,
progress_image: ProgressImage | None,
step: int,
total_steps: int,
@ -35,48 +36,60 @@ class EventServiceBase:
event_name="generator_progress",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
progress_image=progress_image,
node=node,
source_node_id=source_node_id,
progress_image=progress_image.dict() if progress_image is not None else None,
step=step,
total_steps=total_steps,
),
)
def emit_invocation_complete(
self, graph_execution_state_id: str, invocation_id: str, result: Dict
self,
graph_execution_state_id: str,
result: dict,
node: dict,
source_node_id: str,
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_complete",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
result=result,
),
)
def emit_invocation_error(
self, graph_execution_state_id: str, invocation_id: str, error: str
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
error: str,
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
error=error,
),
)
def emit_invocation_started(
self, graph_execution_state_id: str, invocation_id: str
self, graph_execution_state_id: str, node: dict, source_node_id: str
) -> None:
"""Emitted when an invocation has started"""
self.__emit_session_event(
event_name="invocation_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
),
)
@ -84,5 +97,7 @@ class EventServiceBase:
"""Emitted when a session has completed all invocations"""
self.__emit_session_event(
event_name="graph_execution_state_complete",
payload=dict(graph_execution_state_id=graph_execution_state_id),
payload=dict(
graph_execution_state_id=graph_execution_state_id,
),
)

View File

@ -2,7 +2,6 @@
import copy
import itertools
import traceback
import uuid
from types import NoneType
from typing import (
@ -17,7 +16,7 @@ from typing import (
)
import networkx as nx
from pydantic import BaseModel, validator
from pydantic import BaseModel, root_validator, validator
from pydantic.fields import Field
from ..invocations import *
@ -26,7 +25,6 @@ from ..invocations.baseinvocation import (
BaseInvocationOutput,
InvocationContext,
)
from .invocation_services import InvocationServices
class EdgeConnection(BaseModel):
@ -215,7 +213,7 @@ InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()]
class Graph(BaseModel):
id: str = Field(description="The id of this graph", default_factory=uuid.uuid4)
id: str = Field(description="The id of this graph", default_factory=lambda: uuid.uuid4().__str__())
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field(
description="The nodes in this graph", default_factory=dict
@ -283,7 +281,8 @@ class Graph(BaseModel):
:raises InvalidEdgeError: the provided edge is invalid.
"""
if self._is_edge_valid(edge) and edge not in self.edges:
self._validate_edge(edge)
if edge not in self.edges:
self.edges.append(edge)
else:
raise InvalidEdgeError()
@ -354,7 +353,7 @@ class Graph(BaseModel):
return True
def _is_edge_valid(self, edge: Edge) -> bool:
def _validate_edge(self, edge: Edge):
"""Validates that a new edge doesn't create a cycle in the graph"""
# Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly)
@ -362,54 +361,53 @@ class Graph(BaseModel):
from_node = self.get_node(edge.source.node_id)
to_node = self.get_node(edge.destination.node_id)
except NodeNotFoundError:
return False
raise InvalidEdgeError("One or both nodes don't exist")
# Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
return False
raise InvalidEdgeError(f'Edge to node {edge.destination.node_id} field {edge.destination.field} already exists')
# Validate that no cycles would be created
g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g):
return False
raise InvalidEdgeError(f'Edge creates a cycle in the graph')
# Validate that the field types are compatible
if not are_connections_compatible(
from_node, edge.source.field, to_node, edge.destination.field
):
return False
raise InvalidEdgeError(f'Fields are incompatible')
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid(
edge.destination.node_id, new_input=edge.source
):
return False
raise InvalidEdgeError(f'Iterator input type does not match iterator output type')
# Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid(
edge.source.node_id, new_output=edge.destination
):
return False
raise InvalidEdgeError(f'Iterator output type does not match iterator input type')
# Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid(
edge.destination.node_id, new_input=edge.source
):
return False
raise InvalidEdgeError(f'Collector output type does not match collector input type')
# Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid(
edge.source.node_id, new_output=edge.destination
):
return False
raise InvalidEdgeError(f'Collector input type does not match collector output type')
return True
def has_node(self, node_path: str) -> bool:
"""Determines whether or not a node exists in the graph."""
@ -733,7 +731,7 @@ class Graph(BaseModel):
for sgn in (
gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)
):
sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
g = sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
# TODO: figure out if iteration nodes need to be expanded
@ -750,9 +748,7 @@ class Graph(BaseModel):
class GraphExecutionState(BaseModel):
"""Tracks the state of a graph execution"""
id: str = Field(
description="The id of the execution state", default_factory=uuid.uuid4
)
id: str = Field(description="The id of the execution state", default_factory=lambda: uuid.uuid4().__str__())
# TODO: Store a reference to the graph instead of the actual graph?
graph: Graph = Field(description="The graph being executed")
@ -794,9 +790,6 @@ class GraphExecutionState(BaseModel):
default_factory=dict,
)
# Declare all fields as required; necessary for OpenAPI schema generation build.
# Technically only fields without a `default_factory` need to be listed here.
# See: https://github.com/pydantic/pydantic/discussions/4577
class Config:
schema_extra = {
'required': [
@ -861,7 +854,8 @@ class GraphExecutionState(BaseModel):
def is_complete(self) -> bool:
"""Returns true if the graph is complete"""
return self.has_error() or all((k in self.executed for k in self.graph.nodes))
node_ids = set(self.graph.nx_graph_flat().nodes)
return self.has_error() or all((k in self.executed for k in node_ids))
def has_error(self) -> bool:
"""Returns true if the graph has any errors"""
@ -949,11 +943,11 @@ class GraphExecutionState(BaseModel):
def _iterator_graph(self) -> nx.DiGraph:
"""Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node"""
g = self.graph.nx_graph()
g = self.graph.nx_graph_flat()
collectors = (
n
for n in self.graph.nodes
if isinstance(self.graph.nodes[n], CollectInvocation)
if isinstance(self.graph.get_node(n), CollectInvocation)
)
for c in collectors:
g.remove_edges_from(list(g.in_edges(c)))
@ -965,7 +959,7 @@ class GraphExecutionState(BaseModel):
iterators = [
n
for n in nx.ancestors(g, node_id)
if isinstance(self.graph.nodes[n], IterateInvocation)
if isinstance(self.graph.get_node(n), IterateInvocation)
]
return iterators
@ -1101,7 +1095,9 @@ class GraphExecutionState(BaseModel):
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
def _is_edge_valid(self, edge: Edge) -> bool:
if not self._is_edge_valid(edge):
try:
self.graph._validate_edge(edge)
except InvalidEdgeError:
return False
# Invalid if destination has already been prepared or executed
@ -1147,4 +1143,52 @@ class GraphExecutionState(BaseModel):
self.graph.delete_edge(edge)
class ExposedNodeInput(BaseModel):
node_path: str = Field(description="The node path to the node with the input")
field: str = Field(description="The field name of the input")
alias: str = Field(description="The alias of the input")
class ExposedNodeOutput(BaseModel):
node_path: str = Field(description="The node path to the node with the output")
field: str = Field(description="The field name of the output")
alias: str = Field(description="The alias of the output")
class LibraryGraph(BaseModel):
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4)
graph: Graph = Field(description="The graph")
name: str = Field(description="The name of the graph")
description: str = Field(description="The description of the graph")
exposed_inputs: list[ExposedNodeInput] = Field(description="The inputs exposed by this graph", default_factory=list)
exposed_outputs: list[ExposedNodeOutput] = Field(description="The outputs exposed by this graph", default_factory=list)
@validator('exposed_inputs', 'exposed_outputs')
def validate_exposed_aliases(cls, v):
if len(v) != len(set(i.alias for i in v)):
raise ValueError("Duplicate exposed alias")
return v
@root_validator
def validate_exposed_nodes(cls, values):
graph = values['graph']
# Validate exposed inputs
for exposed_input in values['exposed_inputs']:
if not graph.has_node(exposed_input.node_path):
raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist")
node = graph.get_node(exposed_input.node_path)
if get_input_field(node, exposed_input.field) is None:
raise ValueError(f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}")
# Validate exposed outputs
for exposed_output in values['exposed_outputs']:
if not graph.has_node(exposed_output.node_path):
raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist")
node = graph.get_node(exposed_output.node_path)
if get_output_field(node, exposed_output.field) is None:
raise ValueError(f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}")
return values
GraphInvocation.update_forward_refs()

View File

@ -1,23 +1,24 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import datetime
import os
from glob import glob
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from queue import Queue
from typing import Dict
from typing import Dict, List, Tuple
from PIL.Image import Image
from invokeai.app.util.save_thumbnail import save_thumbnail
from invokeai.backend.image_util import PngWriter
class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
import PIL.Image as PILImage
from invokeai.app.api.models.images import ImageResponse, ImageResponseMetadata
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import (
InvokeAIMetadata,
MetadataServiceBase,
build_invokeai_metadata_pnginfo,
)
from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.util.misc import get_timestamp
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class ImageStorageBase(ABC):
@ -25,40 +26,66 @@ class ImageStorageBase(ABC):
@abstractmethod
def get(self, image_type: ImageType, image_name: str) -> Image:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
"""Gets a paginated list of images."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_path(self, image_type: ImageType, image_name: str) -> str:
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the path to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image path."""
pass
@abstractmethod
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> Tuple[str, str, int]:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image path, thumbnail path, and created timestamp."""
pass
@abstractmethod
def delete(self, image_type: ImageType, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
def create_name(self, context_id: str, node_id: str) -> str:
return f"{context_id}_{node_id}_{str(int(datetime.datetime.now(datetime.timezone.utc).timestamp()))}.png"
"""Creates a unique contextual image filename."""
return f"{context_id}_{node_id}_{str(get_timestamp())}.png"
class DiskImageStorage(ImageStorageBase):
"""Stores images on disk"""
__output_folder: str
__pngWriter: PngWriter
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, Image]
__max_cache_size: int
__metadata_service: MetadataServiceBase
def __init__(self, output_folder: str):
def __init__(self, output_folder: str, metadata_service: MetadataServiceBase):
self.__output_folder = output_folder
self.__pngWriter = PngWriter(output_folder)
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__metadata_service = metadata_service
Path(output_folder).mkdir(parents=True, exist_ok=True)
@ -71,42 +98,132 @@ class DiskImageStorage(ImageStorageBase):
parents=True, exist_ok=True
)
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
dir_path = os.path.join(self.__output_folder, image_type)
image_paths = glob(f"{dir_path}/*.png")
count = len(image_paths)
sorted_image_paths = sorted(
glob(f"{dir_path}/*.png"), key=os.path.getctime, reverse=True
)
page_of_image_paths = sorted_image_paths[
page * per_page : (page + 1) * per_page
]
page_of_images: List[ImageResponse] = []
for path in page_of_image_paths:
filename = os.path.basename(path)
img = PILImage.open(path)
invokeai_metadata = self.__metadata_service.get_metadata(img)
page_of_images.append(
ImageResponse(
image_type=image_type.value,
image_name=filename,
# TODO: DiskImageStorage should not be building URLs...?
image_url=f"api/v1/images/{image_type.value}/{filename}",
thumbnail_url=f"api/v1/images/{image_type.value}/thumbnails/{os.path.splitext(filename)[0]}.webp",
# TODO: Creation of this object should happen elsewhere (?), just making it fit here so it works
metadata=ImageResponseMetadata(
created=int(os.path.getctime(path)),
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
)
page_count_trunc = int(count / per_page)
page_count_mod = count % per_page
page_count = page_count_trunc if page_count_mod == 0 else page_count_trunc + 1
return PaginatedResults[ImageResponse](
items=page_of_images,
page=page,
pages=page_count,
per_page=per_page,
total=count,
)
def get(self, image_type: ImageType, image_name: str) -> Image:
image_path = self.get_path(image_type, image_name)
cache_item = self.__get_cache(image_path)
if cache_item:
return cache_item
image = Image.open(image_path)
image = PILImage.open(image_path)
self.__set_cache(image_path, image)
return image
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(self, image_type: ImageType, image_name: str) -> str:
path = os.path.join(self.__output_folder, image_type, image_name)
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
if is_thumbnail:
path = os.path.join(
self.__output_folder, image_type, "thumbnails", basename
)
else:
path = os.path.join(self.__output_folder, image_type, basename)
return path
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
image_subpath = os.path.join(image_type, image_name)
self.__pngWriter.save_image_and_prompt_to_png(
image, "", image_subpath, None
) # TODO: just pass full path to png writer
save_thumbnail(
image=image,
filename=image_name,
path=os.path.join(self.__output_folder, image_type, "thumbnails"),
)
def validate_path(self, path: str) -> bool:
try:
os.stat(path)
return True
except Exception:
return False
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> Tuple[str, str, int]:
image_path = self.get_path(image_type, image_name)
# TODO: Reading the image and then saving it strips the metadata...
if metadata:
pnginfo = build_invokeai_metadata_pnginfo(metadata=metadata)
image.save(image_path, "PNG", pnginfo=pnginfo)
else:
image.save(image_path) # this saved image has an empty info
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, is_thumbnail=True)
thumbnail_image = make_thumbnail(image)
thumbnail_image.save(thumbnail_path)
self.__set_cache(image_path, image)
self.__set_cache(thumbnail_path, thumbnail_image)
return (image_path, thumbnail_path, int(os.path.getctime(image_path)))
def delete(self, image_type: ImageType, image_name: str) -> None:
image_path = self.get_path(image_type, image_name)
thumbnail_path = self.get_path(image_type, image_name, True)
if os.path.exists(image_path):
os.remove(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
if os.path.exists(thumbnail_path):
os.remove(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
def __get_cache(self, image_name: str) -> Image:
return None if image_name not in self.__cache else self.__cache[image_name]

View File

@ -1,30 +1,17 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from abc import ABC, abstractmethod
from queue import Queue
import time
from pydantic import BaseModel, Field
# TODO: make this serializable
class InvocationQueueItem:
# session_id: str
graph_execution_state_id: str
invocation_id: str
invoke_all: bool
timestamp: float
def __init__(
self,
# session_id: str,
graph_execution_state_id: str,
invocation_id: str,
invoke_all: bool = False,
):
# self.session_id = session_id
self.graph_execution_state_id = graph_execution_state_id
self.invocation_id = invocation_id
self.invoke_all = invoke_all
self.timestamp = time.time()
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)
class InvocationQueueABC(ABC):

View File

@ -1,4 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.backend import ModelManager
from .events import EventServiceBase
@ -14,11 +15,13 @@ class InvocationServices:
events: EventServiceBase
latents: LatentsStorageBase
images: ImageStorageBase
metadata: MetadataServiceBase
queue: InvocationQueueABC
model_manager: ModelManager
restoration: RestorationServices
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_library: ItemStorageABC["LibraryGraph"]
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
processor: "InvocationProcessorABC"
@ -28,7 +31,9 @@ class InvocationServices:
events: EventServiceBase,
latents: LatentsStorageBase,
images: ImageStorageBase,
metadata: MetadataServiceBase,
queue: InvocationQueueABC,
graph_library: ItemStorageABC["LibraryGraph"],
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: RestorationServices,
@ -37,7 +42,9 @@ class InvocationServices:
self.events = events
self.latents = latents
self.images = images
self.metadata = metadata
self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager
self.processor = processor
self.restoration = restoration

View File

@ -0,0 +1,96 @@
import json
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, TypedDict
from PIL import Image, PngImagePlugin
from pydantic import BaseModel
from invokeai.app.models.image import ImageType, is_image_type
class MetadataImageField(TypedDict):
"""Pydantic-less ImageField, used for metadata parsing."""
image_type: ImageType
image_name: str
class MetadataLatentsField(TypedDict):
"""Pydantic-less LatentsField, used for metadata parsing."""
latents_name: str
# TODO: This is a placeholder for `InvocationsUnion` pending resolution of circular imports
NodeMetadata = Dict[
str, str | int | float | bool | MetadataImageField | MetadataLatentsField
]
class InvokeAIMetadata(TypedDict, total=False):
"""InvokeAI-specific metadata format."""
session_id: Optional[str]
node: Optional[NodeMetadata]
def build_invokeai_metadata_pnginfo(
metadata: InvokeAIMetadata | None,
) -> PngImagePlugin.PngInfo:
"""Builds a PngInfo object with key `"invokeai"` and value `metadata`"""
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai", json.dumps(metadata))
return pnginfo
class MetadataServiceBase(ABC):
@abstractmethod
def get_metadata(self, image: Image.Image) -> InvokeAIMetadata | None:
"""Gets the InvokeAI metadata from a PIL Image, skipping invalid values"""
pass
@abstractmethod
def build_metadata(
self, session_id: str, node: BaseModel
) -> InvokeAIMetadata | None:
"""Builds an InvokeAIMetadata object"""
pass
class PngMetadataService(MetadataServiceBase):
"""Handles loading and building metadata for images."""
# TODO: Use `InvocationsUnion` to **validate** metadata as representing a fully-functioning node
def _load_metadata(self, image: Image.Image) -> dict | None:
"""Loads a specific info entry from a PIL Image."""
try:
info = image.info.get("invokeai")
if type(info) is not str:
return None
loaded_metadata = json.loads(info)
if type(loaded_metadata) is not dict:
return None
if len(loaded_metadata.items()) == 0:
return None
return loaded_metadata
except:
return None
def get_metadata(self, image: Image.Image) -> dict | None:
"""Retrieves an image's metadata as a dict"""
loaded_metadata = self._load_metadata(image)
return loaded_metadata
def build_metadata(self, session_id: str, node: BaseModel) -> InvokeAIMetadata:
metadata = InvokeAIMetadata(session_id=session_id, node=node.dict())
return metadata

View File

@ -4,7 +4,7 @@ from threading import Event, Thread
from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem
from .invoker import InvocationProcessorABC, Invoker
from ..util.util import CanceledException
from ..models.exceptions import CanceledException
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
@ -43,10 +43,14 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item.invocation_id
)
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
# Send starting event
self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id
)
# Invoke
@ -75,7 +79,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(),
)
@ -99,7 +104,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send error event
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id,
error=error,
)

View File

View File

@ -0,0 +1,5 @@
import datetime
def get_timestamp():
return int(datetime.datetime.now(datetime.timezone.utc).timestamp())

View File

@ -1,25 +0,0 @@
import os
from PIL import Image
def save_thumbnail(
image: Image.Image,
filename: str,
path: str,
size: int = 256,
) -> str:
"""
Saves a thumbnail of an image, returning its path.
"""
base_filename = os.path.splitext(filename)[0]
thumbnail_path = os.path.join(path, base_filename + ".webp")
if os.path.exists(thumbnail_path):
return thumbnail_path
image_copy = image.copy()
image_copy.thumbnail(size=(size, size))
image_copy.save(thumbnail_path, "WEBP")
return thumbnail_path

View File

@ -0,0 +1,55 @@
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.models.exceptions import CanceledException
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
def stable_diffusion_step_callback(
context: InvocationContext,
intermediate_state: PipelineIntermediateState,
node: dict,
source_node_id: str,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be. Use
# that estimate if it is available.
if intermediate_state.predicted_original is not None:
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
# TODO: This does not seem to be needed any more?
# # txt2img provides a Tensor in the step_callback
# # img2img provides a PipelineIntermediateState
# if isinstance(sample, PipelineIntermediateState):
# # this was an img2img
# print('img2img')
# latents = sample.latents
# step = sample.step
# else:
# print('txt2img')
# latents = sample
# step = intermediate_state.step
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
graph_execution_state_id=context.graph_execution_state_id,
node=node,
source_node_id=source_node_id,
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=intermediate_state.step,
total_steps=node["steps"],
)

View File

@ -0,0 +1,15 @@
import os
from PIL import Image
def get_thumbnail_name(image_name: str) -> str:
"""Formats given an image name, returns the appropriate thumbnail image name"""
thumbnail_name = os.path.splitext(image_name)[0] + ".webp"
return thumbnail_name
def make_thumbnail(image: Image.Image, size: int = 256) -> Image.Image:
"""Makes a thumbnail from a PIL Image"""
thumbnail = image.copy()
thumbnail.thumbnail(size=(size, size))
return thumbnail

View File

@ -1,42 +0,0 @@
import torch
from PIL import Image
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
class CanceledException(Exception):
pass
def fast_latents_step_callback(sample: torch.Tensor, step: int, steps: int, id: str, context: InvocationContext, ):
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
steps,
)
def diffusers_step_callback_adapter(*cb_args, **kwargs):
"""
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
This adapter grabs the needed data and passes it along to the callback function.
"""
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return fast_latents_step_callback(progress_state.latents, progress_state.step, **kwargs)
else:
return fast_latents_step_callback(*cb_args, **kwargs)

View File

@ -561,7 +561,7 @@ class Args(object):
"--autoimport",
default=None,
type=str,
help="Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly",
help="(DEPRECATED - NONFUNCTIONAL). Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly",
)
model_group.add_argument(
"--autoconvert",

View File

@ -67,7 +67,6 @@ def install_requested_models(
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
convert_to_diffusers: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
@ -113,7 +112,6 @@ def install_requested_models(
try:
model_manager.heuristic_import(
path_url_or_repo,
convert=convert_to_diffusers,
commit_to_conf=config_file_path,
)
except KeyboardInterrupt:
@ -122,7 +120,7 @@ def install_requested_models(
pass
if scan_at_startup and scan_directory.is_dir():
argument = "--autoconvert" if convert_to_diffusers else "--autoimport"
argument = "--autoconvert"
initfile = Path(Globals.root, Globals.initfile)
replacement = Path(Globals.root, f"{Globals.initfile}.new")
directory = str(scan_directory).replace("\\", "/")

View File

@ -7,3 +7,4 @@ from .convert_ckpt_to_diffusers import (
)
from .model_manager import ModelManager

View File

@ -1,4 +1,4 @@
"""
"""enum
Manage a cache of Stable Diffusion model files for fast switching.
They are moved between GPU and CPU as necessary. If CPU memory falls
below a preset minimum, the least recently used model will be
@ -15,7 +15,7 @@ import sys
import textwrap
import time
import warnings
from enum import Enum
from enum import Enum, auto
from pathlib import Path
from shutil import move, rmtree
from typing import Any, Optional, Union, Callable
@ -24,8 +24,12 @@ import safetensors
import safetensors.torch
import torch
import transformers
from diffusers import AutoencoderKL
from diffusers import logging as dlogging
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
SchedulerMixin,
logging as dlogging,
)
from huggingface_hub import scan_cache_dir
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
@ -33,37 +37,58 @@ from picklescan.scanner import scan_file_path
from invokeai.backend.globals import Globals, global_cache_dir
from ..stable_diffusion import StableDiffusionGeneratorPipeline
from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPFeatureExtractor,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from ..stable_diffusion import (
StableDiffusionGeneratorPipeline,
)
from ..util import CUDA_DEVICE, ask_user, download_with_resume
class SDLegacyType(Enum):
V1 = 1
V1_INPAINT = 2
V2 = 3
V2_e = 4
V2_v = 5
UNKNOWN = 99
class SDLegacyType(Enum):
V1 = auto()
V1_INPAINT = auto()
V2 = auto()
V2_e = auto()
V2_v = auto()
UNKNOWN = auto()
class SDModelComponent(Enum):
vae="vae"
text_encoder="text_encoder"
tokenizer="tokenizer"
unet="unet"
scheduler="scheduler"
safety_checker="safety_checker"
feature_extractor="feature_extractor"
DEFAULT_MAX_MODELS = 2
class ModelManager(object):
'''
"""
Model manager handles loading, caching, importing, deleting, converting, and editing models.
'''
"""
def __init__(
self,
config: OmegaConf|Path,
device_type: torch.device = CUDA_DEVICE,
precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
embedding_path: Path=None,
self,
config: OmegaConf | Path,
device_type: torch.device = CUDA_DEVICE,
precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
embedding_path: Path = None,
):
"""
Initialize with the path to the models.yaml config file or
an initialized OmegaConf dictionary. Optional parameters
are the torch device type, precision, max_loaded_models,
and sequential_offload boolean. Note that the default device
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
# prevent nasty-looking CLIP log message
@ -87,15 +112,25 @@ class ModelManager(object):
"""
return model_name in self.config
def get_model(self, model_name: str=None)->dict:
"""
Given a model named identified in models.yaml, return
the model object. If in RAM will load into GPU VRAM.
If on disk, will load from there.
def get_model(self, model_name: str = None) -> dict:
"""Given a model named identified in models.yaml, return a dict
containing the model object and some of its key features. If
in RAM will load into GPU VRAM. If on disk, will load from
there.
The dict has the following keys:
'model': The StableDiffusionGeneratorPipeline object
'model_name': The name of the model in models.yaml
'width': The width of images trained by this model
'height': The height of images trained by this model
'hash': A unique hash of this model's files on disk.
"""
if not model_name:
return self.get_model(self.current_model) if self.current_model else self.get_model(self.default_model())
return (
self.get_model(self.current_model)
if self.current_model
else self.get_model(self.default_model())
)
if not self.valid_model(model_name):
print(
f'** "{model_name}" is not a known model name. Please check your models.yaml file'
@ -135,6 +170,81 @@ class ModelManager(object):
"hash": hash,
}
def get_model_vae(self, model_name: str=None)->AutoencoderKL:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned VAE as an
AutoencoderKL object. If no model name is provided, return the
vae from the model currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.vae)
def get_model_tokenizer(self, model_name: str=None)->CLIPTokenizer:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTokenizer. If no
model name is provided, return the tokenizer from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.tokenizer)
def get_model_unet(self, model_name: str=None)->UNet2DConditionModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned UNet2DConditionModel. If no model
name is provided, return the UNet from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.unet)
def get_model_text_encoder(self, model_name: str=None)->CLIPTextModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTextModel. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.text_encoder)
def get_model_feature_extractor(self, model_name: str=None)->CLIPFeatureExtractor:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPFeatureExtractor. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.feature_extractor)
def get_model_scheduler(self, model_name: str=None)->SchedulerMixin:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned scheduler. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.scheduler)
def _get_sub_model(
self,
model_name: str=None,
model_part: SDModelComponent=SDModelComponent.vae,
) -> Union[
AutoencoderKL,
CLIPTokenizer,
CLIPFeatureExtractor,
UNet2DConditionModel,
CLIPTextModel,
StableDiffusionSafetyChecker,
]:
"""Given a model name identified in models.yaml, and the part of the
model you wish to retrieve, return that part. Parts are in an Enum
class named SDModelComponent, and consist of:
SDModelComponent.vae
SDModelComponent.text_encoder
SDModelComponent.tokenizer
SDModelComponent.unet
SDModelComponent.scheduler
SDModelComponent.safety_checker
SDModelComponent.feature_extractor
"""
model_dict = self.get_model(model_name)
model = model_dict["model"]
return getattr(model, model_part.value)
def default_model(self) -> str | None:
"""
Returns the name of the default model, or None
@ -360,7 +470,7 @@ class ModelManager(object):
f"Unknown model format {model_name}: {model_format}"
)
self._add_embeddings_to_model(model)
# usage statistics
toc = time.time()
print(">> Model loaded in", "%4.2fs" % (toc - tic))
@ -433,7 +543,7 @@ class ModelManager(object):
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
height = width
print(f" | Default image dimensions = {width} x {height}")
return pipeline, width, height, model_hash
def _load_ckpt_model(self, model_name, mconfig):
@ -454,14 +564,18 @@ class ModelManager(object):
from . import load_pipeline_from_original_stable_diffusion_ckpt
try:
if self.list_models()[self.current_model]['status'] == 'active':
if self.list_models()[self.current_model]["status"] == "active":
self.offload_model(self.current_model)
except Exception as e:
pass
vae_path = None
if vae:
vae_path = vae if os.path.isabs(vae) else os.path.normpath(os.path.join(Globals.root, vae))
vae_path = (
vae
if os.path.isabs(vae)
else os.path.normpath(os.path.join(Globals.root, vae))
)
if self._has_cuda():
torch.cuda.empty_cache()
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
@ -571,9 +685,7 @@ class ModelManager(object):
models.yaml file.
"""
model_name = model_name or Path(repo_or_path).stem
model_description = (
description or f"Imported diffusers model {model_name}"
)
model_description = description or f"Imported diffusers model {model_name}"
new_config = dict(
description=model_description,
vae=vae,
@ -602,7 +714,7 @@ class ModelManager(object):
SDLegacyType.V2_v (V2 using 'v_prediction' prediction type)
SDLegacyType.UNKNOWN
"""
global_step = checkpoint.get('global_step')
global_step = checkpoint.get("global_step")
state_dict = checkpoint.get("state_dict") or checkpoint
try:
@ -628,13 +740,13 @@ class ModelManager(object):
return SDLegacyType.UNKNOWN
def heuristic_import(
self,
path_url_or_repo: str,
model_name: str = None,
description: str = None,
model_config_file: Path = None,
commit_to_conf: Path = None,
config_file_callback: Callable[[Path], Path] = None,
self,
path_url_or_repo: str,
model_name: str = None,
description: str = None,
model_config_file: Path = None,
commit_to_conf: Path = None,
config_file_callback: Callable[[Path], Path] = None,
) -> str:
"""Accept a string which could be:
- a HF diffusers repo_id
@ -738,8 +850,8 @@ class ModelManager(object):
# another round of heuristics to guess the correct config file.
checkpoint = None
if model_path.suffix in [".ckpt",".pt"]:
self.scan_model(model_path,model_path)
if model_path.suffix in [".ckpt", ".pt"]:
self.scan_model(model_path, model_path)
checkpoint = torch.load(model_path)
else:
checkpoint = safetensors.torch.load_file(model_path)
@ -761,19 +873,16 @@ class ModelManager(object):
elif model_type == SDLegacyType.V1_INPAINT:
print(" | SD-v1 inpainting model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml"
Globals.root,
"configs/stable-diffusion/v1-inpainting-inference.yaml",
)
elif model_type == SDLegacyType.V2_v:
print(
" | SD-v2-v model detected"
)
print(" | SD-v2-v model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
)
elif model_type == SDLegacyType.V2_e:
print(
" | SD-v2-e model detected"
)
print(" | SD-v2-e model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference.yaml"
)
@ -820,16 +929,16 @@ class ModelManager(object):
return model_name
def convert_and_import(
self,
ckpt_path: Path,
diffusers_path: Path,
model_name=None,
model_description=None,
vae:dict=None,
vae_path:Path=None,
original_config_file: Path = None,
commit_to_conf: Path = None,
scan_needed: bool=True,
self,
ckpt_path: Path,
diffusers_path: Path,
model_name=None,
model_description=None,
vae: dict = None,
vae_path: Path = None,
original_config_file: Path = None,
commit_to_conf: Path = None,
scan_needed: bool = True,
) -> str:
"""
Convert a legacy ckpt weights file to diffuser model and import
@ -857,10 +966,10 @@ class ModelManager(object):
try:
# By passing the specified VAE to the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file
vae_model=None
vae_model = None
if vae:
vae_model=self._load_vae(vae)
vae_path=None
vae_model = self._load_vae(vae)
vae_path = None
convert_ckpt_to_diffusers(
ckpt_path,
diffusers_path,
@ -976,16 +1085,16 @@ class ModelManager(object):
legacy_locations = [
Path(
models_dir,
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker",
),
Path(models_dir, "bert-base-uncased/models--bert-base-uncased"),
Path(
models_dir,
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14",
),
]
legacy_locations.extend(list(global_cache_dir("diffusers").glob('*')))
legacy_locations.extend(list(global_cache_dir("diffusers").glob("*")))
legacy_layout = False
for model in legacy_locations:
legacy_layout = legacy_layout or model.exists()
@ -1003,7 +1112,7 @@ class ModelManager(object):
>> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready.
>> Otherwise press <enter> to continue."""
)
input('continue> ')
input("continue> ")
# transformer files get moved into the hub directory
if cls._is_huggingface_hub_directory_present():
@ -1090,12 +1199,12 @@ class ModelManager(object):
print(
f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
)
def _has_cuda(self) -> bool:
return self.device.type == "cuda"
def _diffuser_sha256(
self, name_or_path: Union[str, Path], chunksize=4096
self, name_or_path: Union[str, Path], chunksize=16777216
) -> Union[str, bytes]:
path = None
if isinstance(name_or_path, Path):

View File

@ -57,7 +57,7 @@ class HuggingFaceConceptsLibrary(object):
self.concept_list.extend(list(local_concepts_to_add))
return self.concept_list
return self.concept_list
else:
elif Globals.internet_available is True:
try:
models = self.hf_api.list_models(
filter=ModelFilter(model_name="sd-concepts-library/")
@ -73,6 +73,8 @@ class HuggingFaceConceptsLibrary(object):
" ** You may load .bin and .pt file(s) manually using the --embedding_directory argument."
)
return self.concept_list
else:
return self.concept_list
def get_concept_model_path(self, concept_name: str) -> str:
"""

View File

@ -158,14 +158,9 @@ def main():
report_model_error(opt, e)
# try to autoconvert new models
if path := opt.autoimport:
gen.model_manager.heuristic_import(
str(path), convert=False, commit_to_conf=opt.conf
)
if path := opt.autoconvert:
gen.model_manager.heuristic_import(
str(path), convert=True, commit_to_conf=opt.conf
str(path), commit_to_conf=opt.conf
)
# web server loops forever
@ -581,6 +576,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!replay"):
file_path = command.replace("!replay", "", 1).strip()
file_path = os.path.join(opt.outdir, file_path)
if infile is None and os.path.isfile(file_path):
infile = open(file_path, "r", encoding="utf-8")
completer.add_history(command)

View File

@ -199,17 +199,6 @@ class addModelsForm(npyscreen.FormMultiPage):
relx=4,
scroll_exit=True,
)
self.nextrely += 1
self.convert_models = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="== CONVERT IMPORTED MODELS INTO DIFFUSERS==",
values=["Keep original format", "Convert to diffusers"],
value=0,
begin_entry_at=4,
max_height=4,
hidden=True, # will appear when imported models box is edited
scroll_exit=True,
)
self.cancel = self.add_widget_intelligent(
npyscreen.ButtonPress,
name="CANCEL",
@ -244,8 +233,6 @@ class addModelsForm(npyscreen.FormMultiPage):
self.show_directory_fields.addVisibleWhenSelected(i)
self.show_directory_fields.when_value_edited = self._clear_scan_directory
self.import_model_paths.when_value_edited = self._show_hide_convert
self.autoload_directory.when_value_edited = self._show_hide_convert
def resize(self):
super().resize()
@ -256,13 +243,6 @@ class addModelsForm(npyscreen.FormMultiPage):
if not self.show_directory_fields.value:
self.autoload_directory.value = ""
def _show_hide_convert(self):
model_paths = self.import_model_paths.value or ""
autoload_directory = self.autoload_directory.value or ""
self.convert_models.hidden = (
len(model_paths) == 0 and len(autoload_directory) == 0
)
def _get_starter_model_labels(self) -> List[str]:
window_width, window_height = get_terminal_size()
label_width = 25
@ -322,7 +302,6 @@ class addModelsForm(npyscreen.FormMultiPage):
.scan_directory: Path to a directory of models to scan and import
.autoscan_on_startup: True if invokeai should scan and import at startup time
.import_model_paths: list of URLs, repo_ids and file paths to import
.convert_to_diffusers: if True, convert legacy checkpoints into diffusers
"""
# we're using a global here rather than storing the result in the parentapp
# due to some bug in npyscreen that is causing attributes to be lost
@ -359,7 +338,6 @@ class addModelsForm(npyscreen.FormMultiPage):
# URLs and the like
selections.import_model_paths = self.import_model_paths.value.split()
selections.convert_to_diffusers = self.convert_models.value[0] == 1
class AddModelApplication(npyscreen.NPSAppManaged):
@ -372,7 +350,6 @@ class AddModelApplication(npyscreen.NPSAppManaged):
scan_directory=None,
autoscan_on_startup=None,
import_model_paths=None,
convert_to_diffusers=None,
)
def onStart(self):
@ -393,7 +370,6 @@ def process_and_execute(opt: Namespace, selections: Namespace):
directory_to_scan = selections.scan_directory
scan_at_startup = selections.autoscan_on_startup
potential_models_to_install = selections.import_model_paths
convert_to_diffusers = selections.convert_to_diffusers
install_requested_models(
install_initial_models=models_to_install,
@ -401,7 +377,6 @@ def process_and_execute(opt: Namespace, selections: Namespace):
scan_directory=Path(directory_to_scan) if directory_to_scan else None,
external_models=potential_models_to_install,
scan_at_startup=scan_at_startup,
convert_to_diffusers=convert_to_diffusers,
precision="float32"
if opt.full_precision
else choose_precision(torch.device(choose_torch_device())),

View File

@ -6,3 +6,5 @@ stats.html
index.html
.yarn/
*.scss
src/services/api/
src/services/fixtures/*

View File

@ -3,4 +3,8 @@ dist/
node_modules/
patches/
stats.html
index.html
.yarn/
*.scss
src/services/api/
src/services/fixtures/*

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,4 +1,4 @@
import{j as y,cN as Ie,r as _,cO as bt,q as Lr,cP as o,cQ as b,cR as v,cS as S,cT as Vr,cU as ut,cV as vt,cM as ft,cW as mt,n as gt,cX as ht,E as pt}from"./index-f7f41e1f.js";import{d as yt,i as St,T as xt,j as $t,h as kt}from"./storeHooks-eaf47ae3.js";var Or=`
import{j as y,cO as Ie,r as _,cP as bt,q as Lr,cQ as o,cR as b,cS as v,cT as S,cU as Vr,cV as ut,cW as vt,cN as ft,cX as mt,n as gt,cY as ht,E as pt}from"./index-e53e8108.js";import{d as yt,i as St,T as xt,j as $t,h as kt}from"./storeHooks-5cde7d31.js";var Or=`
:root {
--chakra-vh: 100vh;
}

View File

@ -12,7 +12,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-f7f41e1f.js"></script>
<script type="module" crossorigin src="./assets/index-e53e8108.js"></script>
<link rel="stylesheet" href="./assets/index-5483945c.css">
</head>

View File

@ -8,7 +8,6 @@
"darkTheme": "داكن",
"lightTheme": "فاتح",
"greenTheme": "أخضر",
"text2img": "نص إلى صورة",
"img2img": "صورة إلى صورة",
"unifiedCanvas": "لوحة موحدة",
"nodes": "عقد",

View File

@ -7,7 +7,6 @@
"darkTheme": "Dunkel",
"lightTheme": "Hell",
"greenTheme": "Grün",
"text2img": "Text zu Bild",
"img2img": "Bild zu Bild",
"nodes": "Knoten",
"langGerman": "Deutsch",

View File

@ -505,7 +505,9 @@
"info": "Info",
"deleteImage": "Delete Image",
"initialImage": "Initial Image",
"showOptionsPanel": "Show Options Panel"
"showOptionsPanel": "Show Options Panel",
"hidePreview": "Hide Preview",
"showPreview": "Show Preview"
},
"settings": {
"models": "Models",

View File

@ -8,7 +8,6 @@
"darkTheme": "Oscuro",
"lightTheme": "Claro",
"greenTheme": "Verde",
"text2img": "Texto a Imagen",
"img2img": "Imagen a Imagen",
"unifiedCanvas": "Lienzo Unificado",
"nodes": "Nodos",
@ -70,7 +69,11 @@
"langHebrew": "Hebreo",
"pinOptionsPanel": "Pin del panel de opciones",
"loading": "Cargando",
"loadingInvokeAI": "Cargando invocar a la IA"
"loadingInvokeAI": "Cargando invocar a la IA",
"postprocessing": "Tratamiento posterior",
"txt2img": "De texto a imagen",
"accept": "Aceptar",
"cancel": "Cancelar"
},
"gallery": {
"generations": "Generaciones",
@ -404,7 +407,8 @@
"none": "ninguno",
"pickModelType": "Elige el tipo de modelo",
"v2_768": "v2 (768px)",
"addDifference": "Añadir una diferencia"
"addDifference": "Añadir una diferencia",
"scanForModels": "Buscar modelos"
},
"parameters": {
"images": "Imágenes",
@ -574,7 +578,7 @@
"autoSaveToGallery": "Guardar automáticamente en galería",
"saveBoxRegionOnly": "Guardar solo región dentro de la caja",
"limitStrokesToBox": "Limitar trazos a la caja",
"showCanvasDebugInfo": "Mostrar información de depuración de lienzo",
"showCanvasDebugInfo": "Mostrar la información adicional del lienzo",
"clearCanvasHistory": "Limpiar historial de lienzo",
"clearHistory": "Limpiar historial",
"clearCanvasHistoryMessage": "Limpiar el historial de lienzo también restablece completamente el lienzo unificado. Esto incluye todo el historial de deshacer/rehacer, las imágenes en el área de preparación y la capa base del lienzo.",

View File

@ -8,7 +8,6 @@
"darkTheme": "Sombre",
"lightTheme": "Clair",
"greenTheme": "Vert",
"text2img": "Texte en image",
"img2img": "Image en image",
"unifiedCanvas": "Canvas unifié",
"nodes": "Nœuds",
@ -47,7 +46,19 @@
"statusLoadingModel": "Chargement du modèle",
"statusModelChanged": "Modèle changé",
"discordLabel": "Discord",
"githubLabel": "Github"
"githubLabel": "Github",
"accept": "Accepter",
"statusMergingModels": "Mélange des modèles",
"loadingInvokeAI": "Chargement de Invoke AI",
"cancel": "Annuler",
"langEnglish": "Anglais",
"statusConvertingModel": "Conversion du modèle",
"statusModelConverted": "Modèle converti",
"loading": "Chargement",
"pinOptionsPanel": "Épingler la page d'options",
"statusMergedModels": "Modèles mélangés",
"txt2img": "Texte vers image",
"postprocessing": "Post-Traitement"
},
"gallery": {
"generations": "Générations",
@ -518,5 +529,15 @@
"betaDarkenOutside": "Assombrir à l'extérieur",
"betaLimitToBox": "Limiter à la boîte",
"betaPreserveMasked": "Conserver masqué"
},
"accessibility": {
"uploadImage": "Charger une image",
"reset": "Réinitialiser",
"nextImage": "Image suivante",
"previousImage": "Image précédente",
"useThisParameter": "Utiliser ce paramètre",
"zoomIn": "Zoom avant",
"zoomOut": "Zoom arrière",
"showOptionsPanel": "Montrer la page d'options"
}
}

View File

@ -125,7 +125,6 @@
"langSimplifiedChinese": "סינית",
"langUkranian": "אוקראינית",
"langSpanish": "ספרדית",
"text2img": "טקסט לתמונה",
"img2img": "תמונה לתמונה",
"unifiedCanvas": "קנבס מאוחד",
"nodes": "צמתים",

View File

@ -8,7 +8,6 @@
"darkTheme": "Scuro",
"lightTheme": "Chiaro",
"greenTheme": "Verde",
"text2img": "Testo a Immagine",
"img2img": "Immagine a Immagine",
"unifiedCanvas": "Tela unificata",
"nodes": "Nodi",
@ -70,7 +69,11 @@
"loading": "Caricamento in corso",
"oceanTheme": "Oceano",
"langHebrew": "Ebraico",
"loadingInvokeAI": "Caricamento Invoke AI"
"loadingInvokeAI": "Caricamento Invoke AI",
"postprocessing": "Post Elaborazione",
"txt2img": "Testo a Immagine",
"accept": "Accetta",
"cancel": "Annulla"
},
"gallery": {
"generations": "Generazioni",
@ -404,7 +407,8 @@
"v2_768": "v2 (768px)",
"none": "niente",
"addDifference": "Aggiungi differenza",
"pickModelType": "Scegli il tipo di modello"
"pickModelType": "Scegli il tipo di modello",
"scanForModels": "Cerca modelli"
},
"parameters": {
"images": "Immagini",
@ -574,7 +578,7 @@
"autoSaveToGallery": "Salvataggio automatico nella Galleria",
"saveBoxRegionOnly": "Salva solo l'area di selezione",
"limitStrokesToBox": "Limita i tratti all'area di selezione",
"showCanvasDebugInfo": "Mostra informazioni di debug della Tela",
"showCanvasDebugInfo": "Mostra ulteriori informazioni sulla Tela",
"clearCanvasHistory": "Cancella cronologia Tela",
"clearHistory": "Cancella la cronologia",
"clearCanvasHistoryMessage": "La cancellazione della cronologia della tela lascia intatta la tela corrente, ma cancella in modo irreversibile la cronologia degli annullamenti e dei ripristini.",
@ -612,7 +616,7 @@
"copyMetadataJson": "Copia i metadati JSON",
"exitViewer": "Esci dal visualizzatore",
"zoomIn": "Zoom avanti",
"zoomOut": "Zoom Indietro",
"zoomOut": "Zoom indietro",
"rotateCounterClockwise": "Ruotare in senso antiorario",
"rotateClockwise": "Ruotare in senso orario",
"flipHorizontally": "Capovolgi orizzontalmente",

View File

@ -11,7 +11,6 @@
"langArabic": "العربية",
"langEnglish": "English",
"langDutch": "Nederlands",
"text2img": "텍스트->이미지",
"unifiedCanvas": "통합 캔버스",
"langFrench": "Français",
"langGerman": "Deutsch",

View File

@ -8,7 +8,6 @@
"darkTheme": "Donker",
"lightTheme": "Licht",
"greenTheme": "Groen",
"text2img": "Tekst naar afbeelding",
"img2img": "Afbeelding naar afbeelding",
"unifiedCanvas": "Centraal canvas",
"nodes": "Knooppunten",

View File

@ -8,7 +8,6 @@
"darkTheme": "Ciemny",
"lightTheme": "Jasny",
"greenTheme": "Zielony",
"text2img": "Tekst na obraz",
"img2img": "Obraz na obraz",
"unifiedCanvas": "Tryb uniwersalny",
"nodes": "Węzły",

View File

@ -20,7 +20,6 @@
"langSpanish": "Espanhol",
"langRussian": "Русский",
"langUkranian": "Украї́нська",
"text2img": "Texto para Imagem",
"img2img": "Imagem para Imagem",
"unifiedCanvas": "Tela Unificada",
"nodes": "Nós",

View File

@ -8,7 +8,6 @@
"darkTheme": "Noite",
"lightTheme": "Dia",
"greenTheme": "Verde",
"text2img": "Texto Para Imagem",
"img2img": "Imagem Para Imagem",
"unifiedCanvas": "Tela Unificada",
"nodes": "Nódulos",

View File

@ -8,7 +8,6 @@
"darkTheme": "Темная",
"lightTheme": "Светлая",
"greenTheme": "Зеленая",
"text2img": "Изображение из текста (text2img)",
"img2img": "Изображение в изображение (img2img)",
"unifiedCanvas": "Универсальный холст",
"nodes": "Ноды",

View File

@ -8,7 +8,6 @@
"darkTheme": "Темна",
"lightTheme": "Світла",
"greenTheme": "Зелена",
"text2img": "Зображення із тексту (text2img)",
"img2img": "Зображення із зображення (img2img)",
"unifiedCanvas": "Універсальне полотно",
"nodes": "Вузли",

View File

@ -8,7 +8,6 @@
"darkTheme": "暗色",
"lightTheme": "亮色",
"greenTheme": "绿色",
"text2img": "文字到图像",
"img2img": "图像到图像",
"unifiedCanvas": "统一画布",
"nodes": "节点",

View File

@ -33,7 +33,6 @@
"langBrPortuguese": "巴西葡萄牙語",
"langRussian": "俄語",
"langSpanish": "西班牙語",
"text2img": "文字到圖像",
"unifiedCanvas": "統一畫布"
}
}

View File

@ -0,0 +1,87 @@
# Generated axios API client
- [Generated axios API client](#generated-axios-api-client)
- [Generation](#generation)
- [Generate the API client from the nodes web server](#generate-the-api-client-from-the-nodes-web-server)
- [Generate the API client from JSON](#generate-the-api-client-from-json)
- [Getting the JSON from the nodes web server](#getting-the-json-from-the-nodes-web-server)
- [Getting the JSON with a python script](#getting-the-json-with-a-python-script)
- [Generate the API client](#generate-the-api-client)
- [The generated client](#the-generated-client)
- [API client customisation](#api-client-customisation)
This API client is generated by an [openapi code generator](https://github.com/ferdikoomen/openapi-typescript-codegen).
All files in `invokeai/frontend/web/src/services/api/` are made by the generator.
## Generation
The axios client may be generated by from the OpenAPI schema from the nodes web server, or from JSON.
### Generate the API client from the nodes web server
We need to start the nodes web server, which serves the OpenAPI schema to the generator.
1. Start the nodes web server.
```bash
# from the repo root
python scripts/invoke-new.py --web
```
2. Generate the API client.
```bash
# from invokeai/frontend/web/
yarn api:web
```
### Generate the API client from JSON
The JSON can be acquired from the nodes web server, or with a python script.
#### Getting the JSON from the nodes web server
Start the nodes web server as described above, then download the file.
```bash
# from invokeai/frontend/web/
curl http://localhost:9090/openapi.json -o openapi.json
```
#### Getting the JSON with a python script
Run this python script from the repo root, so it can access the nodes server modules.
The script will output `openapi.json` in the repo root. Then we need to move it to `invokeai/frontend/web/`.
```bash
# from the repo root
python invokeai/app/util/generate_openapi_json.py
mv invokeai/app/util/openapi.json invokeai/frontend/web/services/fixtures/
```
#### Generate the API client
Now we can generate the API client from the JSON.
```bash
# from invokeai/frontend/web/
yarn api:file
```
## The generated client
The client will be written to `invokeai/frontend/web/services/api/`:
- `axios` client
- TS types
- An easily parseable schema, which we can use to generate UI
## API client customisation
The generator has a default `request.ts` file that implements a base `axios` client. The generated client uses this base client.
One shortcoming of this is base client is it does not provide response headers unless the response body is empty. To fix this, we provide our own lightly-patched `request.ts`.
To access the headers, call `getHeaders(response)` on any response from the generated api client. This function is exported from `invokeai/frontend/web/src/services/util/getHeaders.ts`.

View File

@ -0,0 +1,21 @@
# Events
Events via `socket.io`
## `actions.ts`
Redux actions for all socket events. Payloads all include a timestamp, and optionally some other data.
Any reducer (or middleware) can respond to the actions.
## `middleware.ts`
Redux middleware for events.
Handles dispatching the event actions. Only put logic here if it can't really go anywhere else.
For example, on connect we want to load images to the gallery if it's not populated. This requires dispatching a thunk, so we need to directly dispatch this in the middleware.
## `types.ts`
Hand-written types for the socket events. Cannot generate these from the server, but fortunately they are few and simple.

View File

@ -0,0 +1,17 @@
# Node Editor Design
WIP
nodes
everything in `src/features/nodes/`
have a look at `state.nodes.invocation`
- on socket connect, if no schema saved, fetch `localhost:9090/openapi.json`, save JSON to `state.nodes.schema`
- on fulfilled schema fetch, `parseSchema()` the schema. this outputs a `Record<string, Invocation>` which is saved to `state.nodes.invocations` - `Invocation` is like a template for the node
- when you add a node, the the `Invocation` template is passed to `InvocationComponent.tsx` to build the UI component for that node
- inputs/outputs have field types - and each field type gets an `FieldComponent` which includes a dispatcher to write state changes to redux `nodesSlice`
- `reactflow` sends changes to nodes/edges to redux
- to invoke, `buildNodesGraph()` state, then send this
- changed onClick Invoke button actions to build the schema, then when schema builds it dispatches the actual network request to create the session - see `session.ts`

View File

@ -0,0 +1,29 @@
# Package Scripts
WIP walkthrough of `package.json` scripts.
## `theme` & `theme:watch`
These run the Chakra CLI to generate types for the theme, or watch for code change and re-generate the types.
The CLI essentially monkeypatches Chakra's files in `node_modules`.
## `postinstall`
The `postinstall` script patches a few packages and runs the Chakra CLI to generate types for the theme.
### Patch `@chakra-ui/cli`
See: <https://github.com/chakra-ui/chakra-ui/issues/7394>
### Patch `redux-persist`
We want to persist the canvas state to `localStorage` but many canvas operations change data very quickly, so we need to debounce the writes to `localStorage`.
`redux-persist` is unfortunately unmaintained. The repo's current code is nonfunctional, but the last release's code depends on a package that was removed from `npm` for being malware, so we cannot just fork it.
So, we have to patch it directly. Perhaps a better way would be to write a debounced storage adapter, but I couldn't figure out how to do that.
### Patch `redux-deep-persist`
This package makes blacklisting and whitelisting persist configs very simple, but we have to patch it to match `redux-persist` for the types to work.

View File

@ -1,10 +1,16 @@
# InvokeAI Web UI
- [InvokeAI Web UI](#invokeai-web-ui)
- [Stack](#stack)
- [Contributing](#contributing)
- [Dev Environment](#dev-environment)
- [Production builds](#production-builds)
The UI is a fairly straightforward Typescript React app. The only really fancy stuff is the Unified Canvas.
Code in `invokeai/frontend/web/` if you want to have a look.
## Details
## Stack
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a custom redux middleware to help).
@ -32,7 +38,7 @@ Start everything in dev mode:
1. Start the dev server: `yarn dev`
2. Start the InvokeAI UI per usual: `invokeai --web`
3. Point your browser to the dev server address e.g. `http://localhost:5173/`
3. Point your browser to the dev server address e.g. <http://localhost:5173/>
### Production builds

View File

@ -1,6 +1,7 @@
import React, { PropsWithChildren } from 'react';
import { IAIPopoverProps } from '../web/src/common/components/IAIPopover';
import { IAIIconButtonProps } from '../web/src/common/components/IAIIconButton';
import { InvokeTabName } from 'features/ui/store/tabMap';
export {};
@ -64,9 +65,25 @@ declare module '@invoke-ai/invoke-ai-ui' {
declare class SettingsModal extends React.Component<SettingsModalProps> {
public constructor(props: SettingsModalProps);
}
declare class StatusIndicator extends React.Component<StatusIndicatorProps> {
public constructor(props: StatusIndicatorProps);
}
declare class ModelSelect extends React.Component<ModelSelectProps> {
public constructor(props: ModelSelectProps);
}
}
declare function Invoke(props: PropsWithChildren): JSX.Element;
interface InvokeProps extends PropsWithChildren {
apiUrl?: string;
disabledPanels?: string[];
disabledTabs?: InvokeTabName[];
token?: string;
shouldTransformUrls?: boolean;
}
declare function Invoke(props: InvokeProps): JSX.Element;
export {
ThemeChanger,
@ -74,5 +91,7 @@ export {
IAIPopover,
IAIIconButton,
SettingsModal,
StatusIndicator,
ModelSelect,
};
export = Invoke;

View File

@ -5,7 +5,10 @@
"scripts": {
"prepare": "cd ../../../ && husky install invokeai/frontend/web/.husky",
"dev": "concurrently \"vite dev\" \"yarn run theme:watch\"",
"dev:nodes": "concurrently \"vite dev --mode nodes\" \"yarn run theme:watch\"",
"build": "yarn run lint && vite build",
"api:web": "openapi -i http://localhost:9090/openapi.json -o src/services/api --client axios --useOptions --useUnionTypes --exportSchemas true --indent 2 --request src/services/fixtures/request.ts",
"api:file": "openapi -i src/services/fixtures/openapi.json -o src/services/api --client axios --useOptions --useUnionTypes --exportSchemas true --indent 2 --request src/services/fixtures/request.ts",
"preview": "vite preview",
"lint:madge": "madge --circular src/main.tsx",
"lint:eslint": "eslint --max-warnings=0 .",
@ -41,9 +44,11 @@
"@chakra-ui/react": "^2.5.1",
"@chakra-ui/styled-system": "^2.6.1",
"@chakra-ui/theme-tools": "^2.0.16",
"@dagrejs/graphlib": "^2.1.12",
"@emotion/react": "^11.10.6",
"@emotion/styled": "^11.10.6",
"@reduxjs/toolkit": "^1.9.2",
"@fontsource/inter": "^4.5.15",
"@reduxjs/toolkit": "^1.9.3",
"chakra-ui-contextmenu": "^1.0.5",
"dateformat": "^5.0.3",
"formik": "^2.2.9",
@ -67,15 +72,17 @@
"react-redux": "^8.0.5",
"react-transition-group": "^4.4.5",
"react-zoom-pan-pinch": "^2.6.1",
"reactflow": "^11.7.0",
"redux-deep-persist": "^1.0.7",
"redux-dynamic-middlewares": "^2.2.0",
"redux-persist": "^6.0.0",
"socket.io-client": "^4.6.0",
"use-image": "^1.1.0",
"uuid": "^9.0.0"
},
"devDependencies": {
"@fontsource/inter": "^4.5.15",
"@types/dateformat": "^5.0.0",
"@types/lodash": "^4.14.194",
"@types/react": "^18.0.28",
"@types/react-dom": "^18.0.11",
"@types/react-transition-group": "^4.4.5",
@ -83,6 +90,7 @@
"@typescript-eslint/eslint-plugin": "^5.52.0",
"@typescript-eslint/parser": "^5.52.0",
"@vitejs/plugin-react-swc": "^3.2.0",
"axios": "^1.3.4",
"babel-plugin-transform-imports": "^2.0.0",
"concurrently": "^7.6.0",
"eslint": "^8.34.0",
@ -90,13 +98,17 @@
"eslint-plugin-prettier": "^4.2.1",
"eslint-plugin-react": "^7.32.2",
"eslint-plugin-react-hooks": "^4.6.0",
"form-data": "^4.0.0",
"husky": "^8.0.3",
"lint-staged": "^13.1.2",
"madge": "^6.0.0",
"openapi-types": "^12.1.0",
"openapi-typescript-codegen": "^0.23.0",
"postinstall-postinstall": "^2.1.0",
"prettier": "^2.8.4",
"rollup-plugin-visualizer": "^5.9.0",
"terser": "^5.16.4",
"typescript": "4.9.5",
"vite": "^4.1.2",
"vite-plugin-eslint": "^1.8.1",
"vite-tsconfig-paths": "^4.0.5",

View File

@ -52,6 +52,7 @@
"txt2img": "Text To Image",
"img2img": "Image To Image",
"unifiedCanvas": "Unified Canvas",
"linear": "Linear",
"nodes": "Nodes",
"postprocessing": "Post Processing",
"nodesDesc": "A node based system for the generation of images is under development currently. Stay tuned for updates about this amazing feature.",
@ -505,7 +506,9 @@
"info": "Info",
"deleteImage": "Delete Image",
"initialImage": "Initial Image",
"showOptionsPanel": "Show Options Panel"
"showOptionsPanel": "Show Options Panel",
"hidePreview": "Hide Preview",
"showPreview": "Show Preview"
},
"settings": {
"models": "Models",
@ -522,6 +525,10 @@
"resetComplete": "Web UI has been reset. Refresh the page to reload."
},
"toast": {
"serverError": "Server Error",
"disconnected": "Disconnected from Server",
"connected": "Connected to Server",
"canceled": "Processing Canceled",
"tempFoldersEmptied": "Temp Folder Emptied",
"uploadFailed": "Upload failed",
"uploadFailedMultipleImagesDesc": "Multiple images pasted, may only upload one image at a time",

View File

@ -13,16 +13,42 @@ import { Box, Flex, Grid, Portal, useColorMode } from '@chakra-ui/react';
import { APP_HEIGHT, APP_WIDTH } from 'theme/util/constants';
import ImageGalleryPanel from 'features/gallery/components/ImageGalleryPanel';
import Lightbox from 'features/lightbox/components/Lightbox';
import { useAppSelector } from './storeHooks';
import { useAppDispatch, useAppSelector } from './storeHooks';
import { PropsWithChildren, useEffect } from 'react';
import { setDisabledPanels, setDisabledTabs } from 'features/ui/store/uiSlice';
import { InvokeTabName } from 'features/ui/store/tabMap';
import { shouldTransformUrlsChanged } from 'features/system/store/systemSlice';
keepGUIAlive();
const App = (props: PropsWithChildren) => {
interface Props extends PropsWithChildren {
options: {
disabledPanels: string[];
disabledTabs: InvokeTabName[];
shouldTransformUrls?: boolean;
};
}
const App = (props: Props) => {
useToastWatcher();
const currentTheme = useAppSelector((state) => state.ui.currentTheme);
const { setColorMode } = useColorMode();
const dispatch = useAppDispatch();
useEffect(() => {
dispatch(setDisabledPanels(props.options.disabledPanels));
}, [dispatch, props.options.disabledPanels]);
useEffect(() => {
dispatch(setDisabledTabs(props.options.disabledTabs));
}, [dispatch, props.options.disabledTabs]);
useEffect(() => {
dispatch(
shouldTransformUrlsChanged(Boolean(props.options.shouldTransformUrls))
);
}, [dispatch, props.options.shouldTransformUrls]);
useEffect(() => {
setColorMode(['light'].includes(currentTheme) ? 'light' : 'dark');

View File

@ -14,6 +14,8 @@
import { InvokeTabName } from 'features/ui/store/tabMap';
import { IRect } from 'konva/lib/types';
import { ImageMetadata, ImageType } from 'services/api';
import { AnyInvocation } from 'services/events/types';
/**
* TODO:
@ -113,7 +115,7 @@ export declare type Metadata = SystemGenerationMetadata & {
};
// An Image has a UUID, url, modified timestamp, width, height and maybe metadata
export declare type Image = {
export declare type _Image = {
uuid: string;
url: string;
thumbnail: string;
@ -124,11 +126,23 @@ export declare type Image = {
category: GalleryCategory;
isBase64?: boolean;
dreamPrompt?: 'string';
name?: string;
};
/**
* ResultImage
*/
export declare type Image = {
name: string;
type: ImageType;
url: string;
thumbnail: string;
metadata: ImageMetadata;
};
// GalleryImages is an array of Image.
export declare type GalleryImages = {
images: Array<Image>;
images: Array<_Image>;
};
/**
@ -275,7 +289,7 @@ export declare type SystemStatusResponse = SystemStatus;
export declare type SystemConfigResponse = SystemConfig;
export declare type ImageResultResponse = Omit<Image, 'uuid'> & {
export declare type ImageResultResponse = Omit<_Image, 'uuid'> & {
boundingBox?: IRect;
generationMode: InvokeTabName;
};
@ -296,7 +310,7 @@ export declare type ErrorResponse = {
};
export declare type GalleryImagesResponse = {
images: Array<Omit<Image, 'uuid'>>;
images: Array<Omit<_Image, 'uuid'>>;
areMoreImagesAvailable: boolean;
category: GalleryCategory;
};

View File

@ -20,6 +20,7 @@ export const readinessSelector = createSelector(
seedWeights,
initialImage,
seed,
isImageToImageEnabled,
} = generation;
const { isProcessing, isConnected } = system;
@ -33,7 +34,7 @@ export const readinessSelector = createSelector(
reasonsWhyNotReady.push('Missing prompt');
}
if (activeTabName === 'img2img' && !initialImage) {
if (isImageToImageEnabled && !initialImage) {
isReady = false;
reasonsWhyNotReady.push('No initial image selected');
}

View File

@ -13,9 +13,13 @@ import { InvokeTabName } from 'features/ui/store/tabMap';
export const generateImage = createAction<InvokeTabName>(
'socketio/generateImage'
);
export const runESRGAN = createAction<InvokeAI.Image>('socketio/runESRGAN');
export const runFacetool = createAction<InvokeAI.Image>('socketio/runFacetool');
export const deleteImage = createAction<InvokeAI.Image>('socketio/deleteImage');
export const runESRGAN = createAction<InvokeAI._Image>('socketio/runESRGAN');
export const runFacetool = createAction<InvokeAI._Image>(
'socketio/runFacetool'
);
export const deleteImage = createAction<InvokeAI._Image>(
'socketio/deleteImage'
);
export const requestImages = createAction<GalleryCategory>(
'socketio/requestImages'
);

View File

@ -91,7 +91,7 @@ const makeSocketIOEmitters = (
})
);
},
emitRunESRGAN: (imageToProcess: InvokeAI.Image) => {
emitRunESRGAN: (imageToProcess: InvokeAI._Image) => {
dispatch(setIsProcessing(true));
const {
@ -119,7 +119,7 @@ const makeSocketIOEmitters = (
})
);
},
emitRunFacetool: (imageToProcess: InvokeAI.Image) => {
emitRunFacetool: (imageToProcess: InvokeAI._Image) => {
dispatch(setIsProcessing(true));
const {
@ -150,7 +150,7 @@ const makeSocketIOEmitters = (
})
);
},
emitDeleteImage: (imageToDelete: InvokeAI.Image) => {
emitDeleteImage: (imageToDelete: InvokeAI._Image) => {
const { url, uuid, category, thumbnail } = imageToDelete;
dispatch(removeImage(imageToDelete));
socketio.emit('deleteImage', url, thumbnail, uuid, category);

View File

@ -34,8 +34,9 @@ import type { RootState } from 'app/store';
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
import {
clearInitialImage,
initialImageSelected,
setInfillMethod,
setInitialImage,
// setInitialImage,
setMaskPath,
} from 'features/parameters/store/generationSlice';
import { tabMap } from 'features/ui/store/tabMap';
@ -142,15 +143,17 @@ const makeSocketIOListeners = (
}
}
if (shouldLoopback) {
const activeTabName = tabMap[activeTab];
switch (activeTabName) {
case 'img2img': {
dispatch(setInitialImage(newImage));
break;
}
}
}
// TODO: fix
// if (shouldLoopback) {
// const activeTabName = tabMap[activeTab];
// switch (activeTabName) {
// case 'img2img': {
// dispatch(initialImageSelected(newImage.uuid));
// // dispatch(setInitialImage(newImage));
// break;
// }
// }
// }
dispatch(clearIntermediateImage());
@ -262,7 +265,7 @@ const makeSocketIOListeners = (
*/
// Generate a UUID for each image
const preparedImages = images.map((image): InvokeAI.Image => {
const preparedImages = images.map((image): InvokeAI._Image => {
return {
uuid: uuidv4(),
...image,
@ -334,7 +337,7 @@ const makeSocketIOListeners = (
if (
initialImage === url ||
(initialImage as InvokeAI.Image)?.url === url
(initialImage as InvokeAI._Image)?.url === url
) {
dispatch(clearInitialImage());
}

View File

@ -29,6 +29,8 @@ export const socketioMiddleware = () => {
path: `${window.location.pathname}socket.io`,
});
socketio.disconnect();
let areListenersSet = false;
const middleware: Middleware = (store) => (next) => (action) => {

View File

@ -2,18 +2,32 @@ import { combineReducers, configureStore } from '@reduxjs/toolkit';
import { persistReducer } from 'redux-persist';
import storage from 'redux-persist/lib/storage'; // defaults to localStorage for web
import dynamicMiddlewares from 'redux-dynamic-middlewares';
import { getPersistConfig } from 'redux-deep-persist';
import canvasReducer from 'features/canvas/store/canvasSlice';
import galleryReducer from 'features/gallery/store/gallerySlice';
import resultsReducer from 'features/gallery/store/resultsSlice';
import uploadsReducer from 'features/gallery/store/uploadsSlice';
import lightboxReducer from 'features/lightbox/store/lightboxSlice';
import generationReducer from 'features/parameters/store/generationSlice';
import postprocessingReducer from 'features/parameters/store/postprocessingSlice';
import systemReducer from 'features/system/store/systemSlice';
import uiReducer from 'features/ui/store/uiSlice';
import modelsReducer from 'features/system/store/modelSlice';
import nodesReducer from 'features/nodes/store/nodesSlice';
import { socketioMiddleware } from './socketio/middleware';
import { socketMiddleware } from 'services/events/middleware';
import { canvasBlacklist } from 'features/canvas/store/canvasPersistBlacklist';
import { galleryBlacklist } from 'features/gallery/store/galleryPersistBlacklist';
import { generationBlacklist } from 'features/parameters/store/generationPersistBlacklist';
import { lightboxBlacklist } from 'features/lightbox/store/lightboxPersistBlacklist';
import { modelsBlacklist } from 'features/system/store/modelsPersistBlacklist';
import { nodesBlacklist } from 'features/nodes/store/nodesPersistBlacklist';
import { postprocessingBlacklist } from 'features/parameters/store/postprocessingPersistBlacklist';
import { systemBlacklist } from 'features/system/store/systemPersistsBlacklist';
import { uiBlacklist } from 'features/ui/store/uiPersistBlacklist';
/**
* redux-persist provides an easy and reliable way to persist state across reloads.
@ -29,49 +43,18 @@ import { socketioMiddleware } from './socketio/middleware';
* The necesssary nested persistors with blacklists are configured below.
*/
const canvasBlacklist = [
'cursorPosition',
'isCanvasInitialized',
'doesCanvasNeedScaling',
].map((blacklistItem) => `canvas.${blacklistItem}`);
const systemBlacklist = [
'currentIteration',
'currentStatus',
'currentStep',
'isCancelable',
'isConnected',
'isESRGANAvailable',
'isGFPGANAvailable',
'isProcessing',
'socketId',
'totalIterations',
'totalSteps',
'openModel',
'cancelOptions.cancelAfter',
].map((blacklistItem) => `system.${blacklistItem}`);
const galleryBlacklist = [
'categories',
'currentCategory',
'currentImage',
'currentImageUuid',
'shouldAutoSwitchToNewImages',
'intermediateImage',
].map((blacklistItem) => `gallery.${blacklistItem}`);
const lightboxBlacklist = ['isLightboxOpen'].map(
(blacklistItem) => `lightbox.${blacklistItem}`
);
const rootReducer = combineReducers({
generation: generationReducer,
postprocessing: postprocessingReducer,
gallery: galleryReducer,
system: systemReducer,
canvas: canvasReducer,
ui: uiReducer,
gallery: galleryReducer,
generation: generationReducer,
lightbox: lightboxReducer,
models: modelsReducer,
nodes: nodesReducer,
postprocessing: postprocessingReducer,
results: resultsReducer,
system: systemReducer,
ui: uiReducer,
uploads: uploadsReducer,
});
const rootPersistConfig = getPersistConfig({
@ -80,23 +63,40 @@ const rootPersistConfig = getPersistConfig({
rootReducer,
blacklist: [
...canvasBlacklist,
...systemBlacklist,
...galleryBlacklist,
...generationBlacklist,
...lightboxBlacklist,
...modelsBlacklist,
...nodesBlacklist,
...postprocessingBlacklist,
// ...resultsBlacklist,
'results',
...systemBlacklist,
...uiBlacklist,
// ...uploadsBlacklist,
'uploads',
],
debounce: 300,
});
const persistedReducer = persistReducer(rootPersistConfig, rootReducer);
// Continue with store setup
// TODO: rip the old middleware out when nodes is complete
export function buildMiddleware() {
if (import.meta.env.MODE === 'nodes' || import.meta.env.MODE === 'package') {
return socketMiddleware();
} else {
return socketioMiddleware();
}
}
export const store = configureStore({
reducer: persistedReducer,
middleware: (getDefaultMiddleware) =>
getDefaultMiddleware({
immutableCheck: false,
serializableCheck: false,
}).concat(socketioMiddleware()),
}).concat(dynamicMiddlewares),
devTools: {
// Uncommenting these very rapidly called actions makes the redux dev tools output much more readable
actionsDenylist: [

View File

@ -0,0 +1,8 @@
import { createAsyncThunk } from '@reduxjs/toolkit';
import { AppDispatch, RootState } from './store';
// https://redux-toolkit.js.org/usage/usage-with-typescript#defining-a-pre-typed-createasyncthunk
export const createAppAsyncThunk = createAsyncThunk.withTypes<{
state: RootState;
dispatch: AppDispatch;
}>();

View File

@ -44,12 +44,10 @@ export type IAIFullSliderProps = {
inputReadOnly?: boolean;
withReset?: boolean;
handleReset?: () => void;
isResetDisabled?: boolean;
isSliderDisabled?: boolean;
isInputDisabled?: boolean;
tooltipSuffix?: string;
hideTooltip?: boolean;
isCompact?: boolean;
isDisabled?: boolean;
sliderFormControlProps?: FormControlProps;
sliderFormLabelProps?: FormLabelProps;
sliderMarkProps?: Omit<SliderMarkProps, 'value'>;
@ -80,10 +78,8 @@ const IAISlider = (props: IAIFullSliderProps) => {
withReset = false,
hideTooltip = false,
isCompact = false,
isDisabled = false,
handleReset,
isResetDisabled,
isSliderDisabled,
isInputDisabled,
sliderFormControlProps,
sliderFormLabelProps,
sliderMarkProps,
@ -149,6 +145,7 @@ const IAISlider = (props: IAIFullSliderProps) => {
}
: {}
}
isDisabled={isDisabled}
{...sliderFormControlProps}
>
<FormLabel {...sliderFormLabelProps} mb={-1}>
@ -166,15 +163,13 @@ const IAISlider = (props: IAIFullSliderProps) => {
onMouseEnter={() => setShowTooltip(true)}
onMouseLeave={() => setShowTooltip(false)}
focusThumbOnChange={false}
isDisabled={isSliderDisabled}
// width={width}
isDisabled={isDisabled}
{...rest}
>
{withSliderMarks && (
<>
<SliderMark
value={min}
// insetInlineStart={0}
sx={{
insetInlineStart: '0 !important',
insetInlineEnd: 'unset !important',
@ -185,7 +180,6 @@ const IAISlider = (props: IAIFullSliderProps) => {
</SliderMark>
<SliderMark
value={max}
// insetInlineEnd={0}
sx={{
insetInlineStart: 'unset !important',
insetInlineEnd: '0 !important',
@ -221,7 +215,6 @@ const IAISlider = (props: IAIFullSliderProps) => {
value={localInputValue}
onChange={handleInputChange}
onBlur={handleInputBlur}
isDisabled={isInputDisabled}
{...sliderNumberInputProps}
>
<NumberInputField
@ -246,8 +239,8 @@ const IAISlider = (props: IAIFullSliderProps) => {
aria-label={t('accessibility.reset')}
tooltip="Reset"
icon={<BiReset />}
isDisabled={isDisabled}
onClick={handleResetDisable}
isDisabled={isResetDisabled}
{...sliderIAIIconButtonProps}
/>
)}

View File

@ -0,0 +1,79 @@
import { Badge, Box, ButtonGroup, Flex } from '@chakra-ui/react';
import { RootState } from 'app/store';
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { useCallback } from 'react';
import IAIIconButton from 'common/components/IAIIconButton';
import { FaUndo, FaUpload } from 'react-icons/fa';
import { useTranslation } from 'react-i18next';
import { Image } from 'app/invokeai';
type ImageToImageOverlayProps = {
setIsLoaded: (isLoaded: boolean) => void;
image: Image;
};
const ImageToImageOverlay = ({
setIsLoaded,
image,
}: ImageToImageOverlayProps) => {
const isImageToImageEnabled = useAppSelector(
(state: RootState) => state.generation.isImageToImageEnabled
);
const dispatch = useAppDispatch();
const { t } = useTranslation();
const handleResetInitialImage = useCallback(() => {
dispatch(clearInitialImage());
setIsLoaded(false);
}, [dispatch, setIsLoaded]);
return (
<Box
sx={{
top: 0,
left: 0,
w: 'full',
h: 'full',
position: 'absolute',
}}
>
<ButtonGroup
sx={{
position: 'absolute',
top: 0,
right: 0,
p: 2,
}}
>
<IAIIconButton
size="sm"
isDisabled={!isImageToImageEnabled}
icon={<FaUndo />}
aria-label={t('accessibility.reset')}
onClick={handleResetInitialImage}
/>
<IAIIconButton
size="sm"
isDisabled={!isImageToImageEnabled}
icon={<FaUpload />}
aria-label={t('common.upload')}
/>
</ButtonGroup>
<Flex
sx={{
position: 'absolute',
bottom: 0,
left: 0,
p: 2,
alignItems: 'flex-start',
}}
>
<Badge variant="solid" colorScheme="base">
{image.metadata?.width} × {image.metadata?.height}
</Badge>
</Flex>
</Box>
);
};
export default ImageToImageOverlay;

View File

@ -2,7 +2,6 @@ import { Box, useToast } from '@chakra-ui/react';
import { ImageUploaderTriggerContext } from 'app/contexts/ImageUploaderTriggerContext';
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
import useImageUploader from 'common/hooks/useImageUploader';
import { uploadImage } from 'features/gallery/store/thunks/uploadImage';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { ResourceKey } from 'i18next';
import {
@ -15,6 +14,7 @@ import {
} from 'react';
import { FileRejection, useDropzone } from 'react-dropzone';
import { useTranslation } from 'react-i18next';
import { imageUploaded } from 'services/thunks/image';
import ImageUploadOverlay from './ImageUploadOverlay';
type ImageUploaderProps = {
@ -49,7 +49,7 @@ const ImageUploader = (props: ImageUploaderProps) => {
const fileAcceptedCallback = useCallback(
async (file: File) => {
dispatch(uploadImage({ imageFile: file }));
dispatch(imageUploaded({ formData: { file } }));
},
[dispatch]
);
@ -124,7 +124,7 @@ const ImageUploader = (props: ImageUploaderProps) => {
return;
}
dispatch(uploadImage({ imageFile: file }));
dispatch(imageUploaded({ formData: { file } }));
};
document.addEventListener('paste', pasteImageListener);
return () => {

View File

@ -0,0 +1,12 @@
import { Flex, Icon } from '@chakra-ui/react';
import { FaImage } from 'react-icons/fa';
const SelectImagePlaceholder = () => {
return (
<Flex sx={{ h: 36, alignItems: 'center', justifyContent: 'center' }}>
<Icon color="base.400" boxSize={32} as={FaImage}></Icon>
</Flex>
);
};
export default SelectImagePlaceholder;

View File

@ -1,27 +1,160 @@
import { Flex, Heading, Text, VStack } from '@chakra-ui/react';
import { useTranslation } from 'react-i18next';
import WorkInProgress from './WorkInProgress';
// import WorkInProgress from './WorkInProgress';
// import ReactFlow, {
// applyEdgeChanges,
// applyNodeChanges,
// Background,
// Controls,
// Edge,
// Handle,
// Node,
// NodeTypes,
// OnEdgesChange,
// OnNodesChange,
// Position,
// } from 'reactflow';
export default function NodesWIP() {
const { t } = useTranslation();
return (
<WorkInProgress>
<Flex
sx={{
flexDirection: 'column',
alignItems: 'center',
justifyContent: 'center',
w: '100%',
h: '100%',
gap: 4,
textAlign: 'center',
}}
>
<Heading>{t('common.nodes')}</Heading>
<VStack maxW="50rem" gap={4}>
<Text>{t('common.nodesDesc')}</Text>
</VStack>
</Flex>
</WorkInProgress>
);
}
// import 'reactflow/dist/style.css';
// import {
// Fragment,
// FunctionComponent,
// ReactNode,
// useCallback,
// useMemo,
// useState,
// } from 'react';
// import { OpenAPIV3 } from 'openapi-types';
// import { filter, map, reduce } from 'lodash';
// import {
// Box,
// Flex,
// FormControl,
// FormLabel,
// Input,
// Select,
// Switch,
// Text,
// NumberInput,
// NumberInputField,
// NumberInputStepper,
// NumberIncrementStepper,
// NumberDecrementStepper,
// Tooltip,
// chakra,
// Badge,
// Heading,
// VStack,
// HStack,
// Menu,
// MenuButton,
// MenuList,
// MenuItem,
// MenuItemOption,
// MenuGroup,
// MenuOptionGroup,
// MenuDivider,
// IconButton,
// } from '@chakra-ui/react';
// import { FaPlus } from 'react-icons/fa';
// import {
// FIELD_NAMES as FIELD_NAMES,
// FIELDS,
// INVOCATION_NAMES as INVOCATION_NAMES,
// INVOCATIONS,
// } from 'features/nodeEditor/constants';
// console.log('invocations', INVOCATIONS);
// const nodeTypes = reduce(
// INVOCATIONS,
// (acc, val, key) => {
// acc[key] = val.component;
// return acc;
// },
// {} as NodeTypes
// );
// console.log('nodeTypes', nodeTypes);
// // make initial nodes one of every node for now
// let n = 0;
// const initialNodes = map(INVOCATIONS, (i) => ({
// id: i.type,
// type: i.title,
// position: { x: (n += 20), y: (n += 20) },
// data: {},
// }));
// console.log('initialNodes', initialNodes);
// export default function NodesWIP() {
// const [nodes, setNodes] = useState<Node[]>([]);
// const [edges, setEdges] = useState<Edge[]>([]);
// const onNodesChange: OnNodesChange = useCallback(
// (changes) => setNodes((nds) => applyNodeChanges(changes, nds)),
// []
// );
// const onEdgesChange: OnEdgesChange = useCallback(
// (changes) => setEdges((eds: Edge[]) => applyEdgeChanges(changes, eds)),
// []
// );
// return (
// <Box
// sx={{
// position: 'relative',
// width: 'full',
// height: 'full',
// borderRadius: 'md',
// }}
// >
// <ReactFlow
// nodeTypes={nodeTypes}
// nodes={nodes}
// edges={edges}
// onNodesChange={onNodesChange}
// onEdgesChange={onEdgesChange}
// >
// <Background />
// <Controls />
// </ReactFlow>
// <HStack sx={{ position: 'absolute', top: 2, right: 2 }}>
// {FIELD_NAMES.map((field) => (
// <Badge
// key={field}
// colorScheme={FIELDS[field].color}
// sx={{ userSelect: 'none' }}
// >
// {field}
// </Badge>
// ))}
// </HStack>
// <Menu>
// <MenuButton
// as={IconButton}
// aria-label="Options"
// icon={<FaPlus />}
// sx={{ position: 'absolute', top: 2, left: 2 }}
// />
// <MenuList>
// {INVOCATION_NAMES.map((name) => {
// const invocation = INVOCATIONS[name];
// return (
// <Tooltip
// key={name}
// label={invocation.description}
// placement="end"
// hasArrow
// >
// <MenuItem>{invocation.title}</MenuItem>
// </Tooltip>
// );
// })}
// </MenuList>
// </Menu>
// </Box>
// );
// }
export default {};

View File

@ -14,6 +14,8 @@ const WorkInProgress = (props: WorkInProgressProps) => {
width: '100%',
height: '100%',
bg: 'base.850',
borderRadius: 'base',
position: 'relative',
}}
>
{children}

View File

@ -0,0 +1,119 @@
/**
* PARTIAL ZOD IMPLEMENTATION
*
* doesn't work well bc like most validators, zod is not built to skip invalid values.
* it mostly works but just seems clearer and simpler to manually parse for now.
*
* in the future it would be really nice if we could use zod for some things:
* - zodios (axios + zod): https://github.com/ecyrbe/zodios
* - openapi to zodios: https://github.com/astahmer/openapi-zod-client
*/
// import { z } from 'zod';
// const zMetadataStringField = z.string();
// export type MetadataStringField = z.infer<typeof zMetadataStringField>;
// const zMetadataIntegerField = z.number().int();
// export type MetadataIntegerField = z.infer<typeof zMetadataIntegerField>;
// const zMetadataFloatField = z.number();
// export type MetadataFloatField = z.infer<typeof zMetadataFloatField>;
// const zMetadataBooleanField = z.boolean();
// export type MetadataBooleanField = z.infer<typeof zMetadataBooleanField>;
// const zMetadataImageField = z.object({
// image_type: z.union([
// z.literal('results'),
// z.literal('uploads'),
// z.literal('intermediates'),
// ]),
// image_name: z.string().min(1),
// });
// export type MetadataImageField = z.infer<typeof zMetadataImageField>;
// const zMetadataLatentsField = z.object({
// latents_name: z.string().min(1),
// });
// export type MetadataLatentsField = z.infer<typeof zMetadataLatentsField>;
// /**
// * zod Schema for any node field. Use a `transform()` to manually parse, skipping invalid values.
// */
// const zAnyMetadataField = z.any().transform((val, ctx) => {
// // Grab the field name from the path
// const fieldName = String(ctx.path[ctx.path.length - 1]);
// // `id` and `type` must be strings if they exist
// if (['id', 'type'].includes(fieldName)) {
// const reservedStringPropertyResult = zMetadataStringField.safeParse(val);
// if (reservedStringPropertyResult.success) {
// return reservedStringPropertyResult.data;
// }
// return;
// }
// // Parse the rest of the fields, only returning the data if the parsing is successful
// const stringFieldResult = zMetadataStringField.safeParse(val);
// if (stringFieldResult.success) {
// return stringFieldResult.data;
// }
// const integerFieldResult = zMetadataIntegerField.safeParse(val);
// if (integerFieldResult.success) {
// return integerFieldResult.data;
// }
// const floatFieldResult = zMetadataFloatField.safeParse(val);
// if (floatFieldResult.success) {
// return floatFieldResult.data;
// }
// const booleanFieldResult = zMetadataBooleanField.safeParse(val);
// if (booleanFieldResult.success) {
// return booleanFieldResult.data;
// }
// const imageFieldResult = zMetadataImageField.safeParse(val);
// if (imageFieldResult.success) {
// return imageFieldResult.data;
// }
// const latentsFieldResult = zMetadataImageField.safeParse(val);
// if (latentsFieldResult.success) {
// return latentsFieldResult.data;
// }
// });
// /**
// * The node metadata schema.
// */
// const zNodeMetadata = z.object({
// session_id: z.string().min(1).optional(),
// node: z.record(z.string().min(1), zAnyMetadataField).optional(),
// });
// export type NodeMetadata = z.infer<typeof zNodeMetadata>;
// const zMetadata = z.object({
// invokeai: zNodeMetadata.optional(),
// 'sd-metadata': z.record(z.string().min(1), z.any()).optional(),
// });
// export type Metadata = z.infer<typeof zMetadata>;
// export const parseMetadata = (
// metadata: Record<string, any>
// ): Metadata | undefined => {
// const result = zMetadata.safeParse(metadata);
// if (!result.success) {
// console.log(result.error.issues);
// return;
// }
// return result.data;
// };
export default {};

View File

@ -0,0 +1,6 @@
import dateFormat from 'dateformat';
/**
* Get a `now` timestamp with 1s precision, formatted as ISO datetime.
*/
export const getTimestamp = () => dateFormat(new Date(), 'isoDateTime');

View File

@ -0,0 +1,28 @@
import { RootState } from 'app/store';
import { useAppSelector } from 'app/storeHooks';
import { OpenAPI } from 'services/api';
export const getUrlAlt = (url: string, shouldTransformUrls: boolean) => {
if (OpenAPI.BASE && shouldTransformUrls) {
return [OpenAPI.BASE, url].join('/');
}
return url;
};
export const useGetUrl = () => {
const shouldTransformUrls = useAppSelector(
(state: RootState) => state.system.shouldTransformUrls
);
return {
shouldTransformUrls,
getUrl: (url?: string) => {
if (OpenAPI.BASE && shouldTransformUrls) {
return [OpenAPI.BASE, url].join('/');
}
return url;
},
};
};

View File

@ -0,0 +1,169 @@
import { forEach, size } from 'lodash';
import { ImageField, LatentsField } from 'services/api';
const OBJECT_TYPESTRING = '[object Object]';
const STRING_TYPESTRING = '[object String]';
const NUMBER_TYPESTRING = '[object Number]';
const BOOLEAN_TYPESTRING = '[object Boolean]';
const ARRAY_TYPESTRING = '[object Array]';
const isObject = (obj: unknown): obj is Record<string | number, any> =>
Object.prototype.toString.call(obj) === OBJECT_TYPESTRING;
const isString = (obj: unknown): obj is string =>
Object.prototype.toString.call(obj) === STRING_TYPESTRING;
const isNumber = (obj: unknown): obj is number =>
Object.prototype.toString.call(obj) === NUMBER_TYPESTRING;
const isBoolean = (obj: unknown): obj is boolean =>
Object.prototype.toString.call(obj) === BOOLEAN_TYPESTRING;
const isArray = (obj: unknown): obj is Array<any> =>
Object.prototype.toString.call(obj) === ARRAY_TYPESTRING;
const parseImageField = (imageField: unknown): ImageField | undefined => {
// Must be an object
if (!isObject(imageField)) {
return;
}
// An ImageField must have both `image_name` and `image_type`
if (!('image_name' in imageField && 'image_type' in imageField)) {
return;
}
// An ImageField's `image_type` must be one of the allowed values
if (
!['results', 'uploads', 'intermediates'].includes(imageField.image_type)
) {
return;
}
// An ImageField's `image_name` must be a string
if (typeof imageField.image_name !== 'string') {
return;
}
// Build a valid ImageField
return {
image_type: imageField.image_type,
image_name: imageField.image_name,
};
};
const parseLatentsField = (latentsField: unknown): LatentsField | undefined => {
// Must be an object
if (!isObject(latentsField)) {
return;
}
// A LatentsField must have a `latents_name`
if (!('latents_name' in latentsField)) {
return;
}
// A LatentsField's `latents_name` must be a string
if (typeof latentsField.latents_name !== 'string') {
return;
}
// Build a valid LatentsField
return {
latents_name: latentsField.latents_name,
};
};
type NodeMetadata = {
[key: string]: string | number | boolean | ImageField | LatentsField;
};
type InvokeAIMetadata = {
session_id?: string;
node?: NodeMetadata;
};
export const parseNodeMetadata = (
nodeMetadata: Record<string | number, any>
): NodeMetadata | undefined => {
if (!isObject(nodeMetadata)) {
return;
}
const parsed: NodeMetadata = {};
forEach(nodeMetadata, (nodeItem, nodeKey) => {
// `id` and `type` must be strings if they are present
if (['id', 'type'].includes(nodeKey)) {
if (isString(nodeItem)) {
parsed[nodeKey] = nodeItem;
}
return;
}
// the only valid object types are ImageField and LatentsField
if (isObject(nodeItem)) {
if ('image_name' in nodeItem || 'image_type' in nodeItem) {
const imageField = parseImageField(nodeItem);
if (imageField) {
parsed[nodeKey] = imageField;
}
return;
}
if ('latents_name' in nodeItem) {
const latentsField = parseLatentsField(nodeItem);
if (latentsField) {
parsed[nodeKey] = latentsField;
}
return;
}
}
// otherwise we accept any string, number or boolean
if (isString(nodeItem) || isNumber(nodeItem) || isBoolean(nodeItem)) {
parsed[nodeKey] = nodeItem;
return;
}
});
if (size(parsed) === 0) {
return;
}
return parsed;
};
export const parseInvokeAIMetadata = (
metadata: Record<string | number, any> | undefined
): InvokeAIMetadata | undefined => {
if (metadata === undefined) {
return;
}
if (!isObject(metadata)) {
return;
}
const parsed: InvokeAIMetadata = {};
forEach(metadata, (item, key) => {
if (key === 'session_id' && isString(item)) {
parsed['session_id'] = item;
}
if (key === 'node' && isObject(item)) {
const nodeMetadata = parseNodeMetadata(item);
if (nodeMetadata) {
parsed['node'] = nodeMetadata;
}
}
});
if (size(parsed) === 0) {
return;
}
return parsed;
};

View File

@ -1,8 +1,10 @@
import React, { lazy, PropsWithChildren } from 'react';
import React, { lazy, PropsWithChildren, useEffect, useState } from 'react';
import { Provider } from 'react-redux';
import { PersistGate } from 'redux-persist/integration/react';
import { store } from './app/store';
import { buildMiddleware, store } from './app/store';
import { persistor } from './persistor';
import { OpenAPI } from 'services/api';
import { InvokeTabName } from 'features/ui/store/tabMap';
import '@fontsource/inter/100.css';
import '@fontsource/inter/200.css';
import '@fontsource/inter/300.css';
@ -17,18 +19,61 @@ import Loading from './Loading';
// Localization
import './i18n';
import { addMiddleware, resetMiddlewares } from 'redux-dynamic-middlewares';
const App = lazy(() => import('./app/App'));
const ThemeLocaleProvider = lazy(() => import('./app/ThemeLocaleProvider'));
export default function Component(props: PropsWithChildren) {
interface Props extends PropsWithChildren {
apiUrl?: string;
disabledPanels?: string[];
disabledTabs?: InvokeTabName[];
token?: string;
shouldTransformUrls?: boolean;
}
export default function Component({
apiUrl,
disabledPanels = [],
disabledTabs = [],
token,
children,
shouldTransformUrls,
}: Props) {
useEffect(() => {
// configure API client token
if (token) {
OpenAPI.TOKEN = token;
}
// configure API client base url
if (apiUrl) {
OpenAPI.BASE = apiUrl;
}
// reset dynamically added middlewares
resetMiddlewares();
// TODO: at this point, after resetting the middleware, we really ought to clean up the socket
// stuff by calling `dispatch(socketReset())`. but we cannot dispatch from here as we are
// outside the provider. it's not needed until there is the possibility that we will change
// the `apiUrl`/`token` dynamically.
// rebuild socket middleware with token and apiUrl
addMiddleware(buildMiddleware());
}, [apiUrl, token]);
return (
<React.StrictMode>
<Provider store={store}>
<PersistGate loading={<Loading />} persistor={persistor}>
<React.Suspense fallback={<Loading showText />}>
<ThemeLocaleProvider>
<App>{props.children}</App>
<App
options={{ disabledPanels, disabledTabs, shouldTransformUrls }}
>
{children}
</App>
</ThemeLocaleProvider>
</React.Suspense>
</PersistGate>

View File

@ -5,6 +5,8 @@ import ThemeChanger from './features/system/components/ThemeChanger';
import IAIPopover from './common/components/IAIPopover';
import IAIIconButton from './common/components/IAIIconButton';
import SettingsModal from './features/system/components/SettingsModal/SettingsModal';
import StatusIndicator from './features/system/components/StatusIndicator';
import ModelSelect from 'features/system/components/ModelSelect';
export default Component;
export {
@ -13,4 +15,6 @@ export {
IAIPopover,
IAIIconButton,
SettingsModal,
StatusIndicator,
ModelSelect,
};

View File

@ -1,6 +1,7 @@
import { createSelector } from '@reduxjs/toolkit';
import { RootState } from 'app/store';
import { useAppSelector } from 'app/storeHooks';
import { useGetUrl } from 'common/util/getUrl';
import { GalleryState } from 'features/gallery/store/gallerySlice';
import { ImageConfig } from 'konva/lib/shapes/Image';
import { isEqual } from 'lodash';
@ -25,7 +26,7 @@ type Props = Omit<ImageConfig, 'image'>;
const IAICanvasIntermediateImage = (props: Props) => {
const { ...rest } = props;
const intermediateImage = useAppSelector(selector);
const { getUrl } = useGetUrl();
const [loadedImageElement, setLoadedImageElement] =
useState<HTMLImageElement | null>(null);
@ -36,8 +37,8 @@ const IAICanvasIntermediateImage = (props: Props) => {
tempImage.onload = () => {
setLoadedImageElement(tempImage);
};
tempImage.src = intermediateImage.url;
}, [intermediateImage]);
tempImage.src = getUrl(intermediateImage.url);
}, [intermediateImage, getUrl]);
if (!intermediateImage?.boundingBox) return null;

View File

@ -1,5 +1,6 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/storeHooks';
import { useGetUrl } from 'common/util/getUrl';
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
import { rgbaColorToString } from 'features/canvas/util/colorToString';
import { isEqual } from 'lodash';
@ -32,6 +33,7 @@ const selector = createSelector(
const IAICanvasObjectRenderer = () => {
const { objects } = useAppSelector(selector);
const { getUrl } = useGetUrl();
if (!objects) return null;
@ -40,7 +42,12 @@ const IAICanvasObjectRenderer = () => {
{objects.map((obj, i) => {
if (isCanvasBaseImage(obj)) {
return (
<IAICanvasImage key={i} x={obj.x} y={obj.y} url={obj.image.url} />
<IAICanvasImage
key={i}
x={obj.x}
y={obj.y}
url={getUrl(obj.image.url)}
/>
);
} else if (isCanvasBaseLine(obj)) {
const line = (

Some files were not shown because too many files have changed in this diff Show More