Compare commits

...

1033 Commits

Author SHA1 Message Date
e4a45341c8 Controlnet implementation for sequential execution 2023-06-16 02:42:32 +03:00
4ca325e8e6 chore: Rebuild API 2023-06-15 03:20:49 +12:00
6b8e88ad7f Merge branch 'main' into feat/controlnet-control-modes 2023-06-15 03:18:41 +12:00
0497bea264 fix: add dynamicprompts to pyproject.toml 2023-06-15 01:05:16 +10:00
b8e32fa459 chore(ui): regen api client 2023-06-15 01:05:16 +10:00
34ebee67b7 fix(nodes): fix revert conflict 2023-06-15 01:05:16 +10:00
e0c998d192 Revert "feat(ui): add warning socket event handling"
This reverts commit e7a61e631a42190e4b64e0d5e22771c669c5b30c.
2023-06-15 01:05:16 +10:00
b51e9a6bdb Revert "feat(nodes): add warning socket event"
This reverts commit cefdd9d634e515239bd85666c872a0d64bb9d772.
2023-06-15 01:05:16 +10:00
09f396ce84 feat(ui): add warning socket event handling 2023-06-15 01:05:16 +10:00
abee37eab3 feat(nodes): add warning socket event 2023-06-15 01:05:16 +10:00
42e48b2bef feat(nodes): add dynamic prompt node 2023-06-15 01:05:16 +10:00
70ece4364c refactor(minor): Image & Latent File Storage (#3538)
- `DiskImageStorage` and `DiskLatentsStorage` have now both been updated
to exclusively work with `Path` objects and not rely on the `os` lib to
handle pathing related functions.
- We now also validate the existence of the required image output
folders and latent output folders to ensure that the app does not break
in case the required folders get tampered with mid-session.
- Just overall general cleanup.

Tested it. Don't seem to be any thing breaking.
2023-06-15 02:43:27 +12:00
f9d5f9d52c fix(nodes): minor fixes for folder validation
- fix type for `__output_folder`
- prefix `validate_storage_folders()` with `__` to indicate private method
2023-06-15 00:40:39 +10:00
587297878a refactor(minor): Latent Disk Storage 2023-06-15 02:21:49 +12:00
b4c998a9ae refactor(minor): Image File Storage 2023-06-15 01:58:58 +12:00
88e8e3977b feat(ui): update UI to not use image_origin
see commit `8ad8de8: feat(nodes): remove `image_origin` from most places` for details.
2023-06-14 23:08:27 +10:00
24b86cffe9 chore(ui): regen api client & types 2023-06-14 23:08:27 +10:00
a1773197e9 feat(nodes): remove image_origin from most places
- remove `image_origin` from most places where we interact with images
- consolidate image file storage into a single `images/` dir

Images have an `image_origin` attribute but it is not actually used when retrieving images, nor will it ever be. It is still used when creating images and helps to differentiate between internally generated images and uploads.

It was included in eg API routes and image service methods as a holdover from the previous app implementation where images were not managed in a database. Now that we have images in a db, we can do away with this and simplify basically everything that touches images.

The one potentially controversial change is to no longer separate internal and external images on disk. If we retain this separation, we have to keep `image_origin` around in a number of spots and it getting image paths on disk painful.

So, I am have gotten rid of this organisation. Images are now all stored in `images`, regardless of their origin. As we improve the image management features, this change will hopefully become transparent.
2023-06-14 23:08:27 +10:00
6c53abc034 feat: Add ControlMode to Linear UI 2023-06-14 20:01:17 +12:00
eb7047b21d chore: Rebuild WebAPI 2023-06-14 19:26:02 +12:00
43419ac761 Merge branch 'main' into feat/controlnet-control-modes 2023-06-14 19:04:42 +12:00
5cd0e90816 Renamed ControlNet control_mode option "even_more_control" to "unbalanced" 2023-06-13 22:30:17 -07:00
cfd49e3921 Removing vestigial comments. 2023-06-13 21:33:15 -07:00
a8e0490133 Merge branch 'feat/controlnet-control-modes' of https://github.com/invoke-ai/InvokeAI into feat/controlnet-control-modes 2023-06-13 21:21:13 -07:00
1e08d865c9 chore: dummy commit to trigger actions 2023-06-14 14:14:24 +10:00
f8bb650cc1 revert: IAIScrollArea 2023-06-14 14:14:24 +10:00
2cee8bebb2 fix(ui): revert offset scrollbars
The wonky padding is too janky. Just overlay for now.
2023-06-14 14:14:24 +10:00
ade4ec5fd8 fix(ui): fix crash when toggling pinned parameters panel 2023-06-14 14:14:24 +10:00
70ffd6b03f fix(ui): fix controlnet selects data types 2023-06-14 14:14:24 +10:00
6c551df311 fix(ui): fix rebase conflicts 2023-06-14 14:14:24 +10:00
24f605629e cleanup: Remove OverlayScrollable component 2023-06-14 14:14:24 +10:00
2af1ec9d02 fix: Minor padding issue in unpinned drawer 2023-06-14 14:14:24 +10:00
79d53341de fix: Stretch scroll area so it retains parent width 2023-06-14 14:14:24 +10:00
e40b3506c4 fix: Options squishing on accordion collapse 2023-06-14 14:14:24 +10:00
33912382e3 feat: Introduce Mantine's ScrollArea 2023-06-14 14:14:24 +10:00
d282810e53 cleanup: Remove IAICustomSelect and port types 2023-06-14 14:14:24 +10:00
9df502fc77 fix(ui): fix mantine select props 2023-06-14 14:14:24 +10:00
705573f0a8 feat(ui): even more pedantic mantine select theming 2023-06-14 14:14:24 +10:00
1878ea94f6 feat: Port Canvas Layer Select to IAIMantineSelect 2023-06-14 14:14:24 +10:00
4ba5086b9a feat(ui): add tooltip to IAIMantineSelect 2023-06-14 14:14:24 +10:00
4a991b4daa feat(ui): more pedantic mantine select theming 2023-06-14 14:14:24 +10:00
80474d26f9 feat(ui): mantine scrollbar theming 2023-06-14 14:14:24 +10:00
9a77bd9140 feat: Port IAISelect's to IAIMantineSelect's
Ported everything except Model Manager selects and the Canvas Layer Select (this needs tooltip support)
2023-06-14 14:14:24 +10:00
14cdc800c3 feat(ui): pedantic mantine select theming 2023-06-14 14:14:24 +10:00
9cfbea4c25 feat: Match styling of Mantine Select with InvokeAI 2023-06-14 14:14:24 +10:00
5fe674e223 feat: Standardize IAIMantineSelect Component 2023-06-14 14:14:24 +10:00
32200efce8 feat: Change default font to Inter 2023-06-14 14:14:24 +10:00
68a02da990 feat: Use Mantine Select for Scheduler 2023-06-14 14:14:24 +10:00
5b20766ea3 chore: Move Mantine Theme Override to own file 2023-06-14 14:14:24 +10:00
9a914250a0 feat: Change Model Select To Mantine 2023-06-14 14:14:24 +10:00
0e3106f631 feat: Add Mantine Support 2023-06-14 14:14:24 +10:00
de3e6cdb02 Switched over to ControlNet control_mode with 4 options: balanced, more_prompt, more_control, even_more_control. Based on True/False combinations of internal booleans cfg_injection and soft_injection 2023-06-13 21:08:34 -07:00
8495764d45 Moving from ControlNet guess_mode to separate booleans for cfg_injection and soft_injection for testing control modes 2023-06-13 00:41:36 -07:00
8b7fac75ed First pass at ControlNet "guess mode" implementation. 2023-06-13 00:41:36 -07:00
9e0e26f4c4 Moving from ControlNet guess_mode to separate booleans for cfg_injection and soft_injection for testing control modes 2023-06-12 23:57:57 -07:00
46cac6468e Upgrade to Diffusers 0.17.0 (#3514)
Diffusers is due for an update soon. #3512

Opening up a PR now with the required changes for when the new version
is live.

I've tested it out on Windows and nothing has broken from what I could
tell. I'd like someone to run some tests on Linux / Mac just to make
sure. Refer to the PR above on how to test it or install the release
branch.

```
pip install diffusers[torch]==0.17.0
```

Feel free to push any other changes to this PR you see fit.
2023-06-13 07:11:02 +12:00
2a814d886b Merge branch 'main' into diffusers-upgrade 2023-06-13 05:29:15 +12:00
60a2fbec41 feat(ui): improve controlnet-related config types 2023-06-13 00:04:21 +10:00
f15a328b80 fix(ui): allow controlnet with preprocessed control image 2023-06-13 00:04:21 +10:00
811d9ab55a fix(ui): disable shouldAutoConfig switch while processing 2023-06-13 00:04:21 +10:00
e00fed5c46 feat(ui): support disabling controlnet models & processors 2023-06-13 00:04:21 +10:00
a3fa38b353 fix(ui): revert IAICustomSelect usage to IAISelect
There are some bugs with it that I cannot figure out related to `floating-ui` and `downshift`'s handling of refs.

Will need to revisit this component in the future.
2023-06-13 00:04:21 +10:00
2e42a4bdd9 feat(ui): disable controlnets during processing 2023-06-13 00:04:21 +10:00
36f72b5a49 fix(ui): check for valid controlnets before adding to graph 2023-06-13 00:04:21 +10:00
af42d7d347 feat(ui): support negative controlnet weights 2023-06-13 00:04:21 +10:00
8607b1994c fix(ui): fix crash when controlnet enabled but no controlnets added 2023-06-13 00:04:21 +10:00
e051c450ed fix: git stash (#3528) 2023-06-12 08:55:36 +12:00
50135b726e fix: git stash 2023-06-12 08:53:09 +12:00
fd715026a7 First pass at ControlNet "guess mode" implementation. 2023-06-11 02:00:39 -07:00
c647056287 Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.

* Adding first attempt at float param easing node, using Penner easing functions.

* Core implementation of ControlNet and MultiControlNet.

* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.

* Added example of using ControlNet with legacy Txt2Img generator

* Resolving rebase conflict

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Resolving conflicts in rebase to origin/main

* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())

* changes to base class for controlnet nodes

* Added HED, LineArt, and OpenPose ControlNet nodes

* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* More rebase repair.

* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port  ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...

* Fixed use of ControlNet control_weight parameter

* Fixed lint-ish formatting error

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Refactored controlnet node to output ControlField that bundles control info.

* changes to base class for controlnet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Cleaning up TextToLatent arg testing

* Cleaning up mistakes after rebase.

* Removed last bits of dtype and and device hardwiring from controlnet section

* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.

* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)

* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.

* Added dependency on controlnet-aux v0.0.3

* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.

* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.

* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.

* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.

* Cleaning up after ControlNet refactor in TextToLatentsInvocation

* Extended node-based ControlNet support to LatentsToLatentsInvocation.

* chore(ui): regen api client

* fix(ui): add value to conditioning field

* fix(ui): add control field type

* fix(ui): fix node ui type hints

* fix(nodes): controlnet input accepts list or single controlnet

* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml  had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Switching to ControlField for output from controlnet nodes.

* Resolving conflicts in rebase to origin/main

* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())

* changes to base class for controlnet nodes

* Added HED, LineArt, and OpenPose ControlNet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port  ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...

* Fixed use of ControlNet control_weight parameter

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Refactored controlnet node to output ControlField that bundles control info.

* changes to base class for controlnet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Cleaning up TextToLatent arg testing

* Cleaning up mistakes after rebase.

* Removed last bits of dtype and and device hardwiring from controlnet section

* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.

* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)

* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.

* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.

* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.

* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.

* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.

* Cleaning up after ControlNet refactor in TextToLatentsInvocation

* Extended node-based ControlNet support to LatentsToLatentsInvocation.

* chore(ui): regen api client

* fix(ui): fix node ui type hints

* fix(nodes): controlnet input accepts list or single controlnet

* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.

* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.

* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.

* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.

* Added float to FIELD_TYPE_MAP ins constants.ts

* Progress toward improvement in fieldTemplateBuilder.ts  getFieldType()

* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.

* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP

* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale

* Fixed math for per-step param easing.

* Added option to show plot of param value at each step

* Just cleaning up after adding param easing plot option, removing vestigial code.

* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.

* Added more informative error message when _validat_edge() throws an error.

* Just improving parm easing bar chart title to include easing type.

* Added requirement for easing-functions package

* Taking out some diagnostic prints.

* Added option to use both easing function and mirror of easing function together.

* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 16:27:44 +10:00
30f20b55d5 fix logger behavior so that it is initialized after command line parsed (#3509)
In some cases the command-line was getting parsed before the logger was
initialized, causing the logger not to pick up custom logging
instructions from `--log_handlers`. This PR fixes the issue.
2023-06-09 08:24:47 -07:00
1bca32ed16 Merge branch 'main' into lstein/fix-logger-reconfiguration 2023-06-09 06:27:26 -07:00
7f91139e21 fix(ui): fix crash when using dropdown on certain device resolutions 2023-06-09 22:19:30 +10:00
c53b7c7389 ui: misc fixes (#3525)
[fix(ui): blur tab on
click](93f3658a4a)

Fixes issue where after clicking a tab, using the arrow keys changes tab
instead of changing selected image

[fix(ui): fix canvas not filling screen on first
load](68be95acbb)

[feat(ui): remove clear temp folder canvas
button](813f79f0f9)

This button is nonfunctional.

Soon we will introduce a different way to handle clearing out
intermediate images (likely automated).
2023-06-09 23:44:21 +12:00
93f3658a4a fix(ui): blur tab on click
Fixes issue where after clicking a tab, using the arrow keys changes tab instead of changing selected image
2023-06-09 18:20:52 +10:00
68be95acbb fix(ui): fix canvas not filling screen on first load 2023-06-09 17:55:11 +10:00
813f79f0f9 feat(ui): remove clear temp folder canvas button
This button is nonfunctional.

Soon we will introduce a different way to handle clearing out intermediate images (likely automated).
2023-06-09 17:33:17 +10:00
c3ec86bc70 feat(ui): enhance IAICustomSelect (#3523)
Now accepts an array of strings or array of `IAICustomSelectOption`s.
This supports custom labels and tooltips within the select component.
2023-06-09 18:26:20 +12:00
05a19753c6 feat(ui): remove controlnet model descriptions
These are not yet exposed on the UI - somebody who understands what they do better can add them when we have a place to expose them
2023-06-09 16:20:30 +10:00
a33327c651 feat(ui): enhance IAICustomSelect
Now accepts an array of strings or array of `IAICustomSelectOption`s. This supports custom labels and tooltips within the select component.
2023-06-09 16:00:17 +10:00
6ad7cc4f2a feat(ui): decrease delay on dnd to 150ms (#3522) 2023-06-09 17:54:24 +12:00
c506355b8b feat(ui): decrease delay on dnd to 150ms 2023-06-09 15:53:17 +10:00
d54168b8fb feat(nodes): add tests for depth-first execution 2023-06-09 14:53:45 +10:00
c91b071c47 fix(nodes): use DFS with preorder traversal 2023-06-09 14:53:45 +10:00
9c57b18008 fix(nodes): update Invoker.invoke() docstring 2023-06-09 14:53:45 +10:00
69539a0472 feat(nodes): depth-first execution
There was an issue where for graphs w/ iterations, your images were output all at once, at the very end of processing. So if you canceled halfway through an execution of 10 nodes, you wouldn't get any images - even though you'd completed 5 images' worth of inference.

## Cause

Because graphs executed breadth-first (i.e. depth-by-depth), leaf nodes were necessarily processed last. For image generation graphs, your `LatentsToImage` will be leaf nodes, and be the last depth to be executed.

For example, a `TextToLatents` graph w/ 3 iterations would execute all 3 `TextToLatents` nodes fully before moving to the next depth, where the `LatentsToImage` nodes produce output images, resulting in a node execution order like this:

1. TextToLatents
2. TextToLatents
3. TextToLatents
4. LatentsToImage
5. LatentsToImage
6. LatentsToImage

## Solution

This PR makes a two changes to graph execution to execute as deeply as it can along each branch of the graph.

### Eager node preparation

We now prepare as many nodes as possible, instead of just a single node at a time.

We also need to change the conditions in which nodes are prepared. Previously, nodes were prepared only when all of their direct ancestors were executed.

The updated logic prepares nodes that:
- are *not* `Iterate` nodes whose inputs have *not* been executed
- do *not* have any unexecuted `Iterate` ancestor nodes

This results in graphs always being maximally prepared.

### Always execute the deepest prepared node

We now choose the next node to execute by traversing from the bottom of the graph instead of the top, choosing the first node whose inputs are all executed.

This means we always execute the deepest node possible.

## Result

Graphs now execute depth-first, so instead of an execution order like this:

1. TextToLatents
2. TextToLatents
3. TextToLatents
4. LatentsToImage
5. LatentsToImage
6. LatentsToImage

... we get an execution order like this:

1. TextToLatents
2. LatentsToImage
3. TextToLatents
4. LatentsToImage
5. TextToLatents
6. LatentsToImage

Immediately after inference, the image is decoded and sent to the gallery.

fixes #3400
2023-06-09 14:53:45 +10:00
7bce455d16 Merge branch 'main' into diffusers-upgrade 2023-06-09 16:27:52 +12:00
3f45294c61 feat(ui): restore reset button for init image (#3521) 2023-06-09 16:02:26 +12:00
fd03c7eebe feat(ui): restore reset button for init image 2023-06-09 14:00:23 +10:00
07c49a5726 feat(ui): skip resize on img2img if not needed (#3520) 2023-06-09 15:56:22 +12:00
8c688f8e29 feat(ui): skip resize on img2img if not needed 2023-06-09 13:54:23 +10:00
3d13167d32 Merge branch 'main' into lstein/fix-logger-reconfiguration 2023-06-08 13:41:24 -07:00
f2bb507ebb allow logger to be reconfigured after startup 2023-06-08 09:23:11 -04:00
fe8f3381fc create databases directory on startup (#3518)
This PR creates the databases directory at app startup time. It also
removes a couple of debugging statements that were inadvertently left in
the model manager.
2023-06-08 23:40:32 +12:00
2a6d11e645 create databases directory on startup 2023-06-08 07:17:54 -04:00
01f46d3c7d Merge branch 'main' into lstein/fix-logger-reconfiguration 2023-06-07 19:50:44 -07:00
5f76b62553 Update installer support for main (#3448)
#  Make InvokeAI package installable by mere mortals
    
This commit makes InvokeAI 3.0 to be installable via PyPi.org and/or the
installer script. The install process is now pretty much identical to
the 2.3 process, including creating launcher scripts `invoke.sh` and
`invoke.bat`.
    
Main changes:
    
1. Moved static web pages into `invokeai/frontend/web` and modified the
API to look for them there. This allows pip to copy the files into the
distribution directory so that user no longer has to be in repo root to
launch, and enables PyPi installations with `pip install invokeai`
    
2. Update invoke.sh and invoke.bat to launch the new web application
properly. This also changes the wording for launching the CLI from
"generate images" to "explore the InvokeAI node system," since I would
not recommend using the CLI to generate images routinely.
    
3. Fix a bug in the checkpoint converter script that was identified
during testing.
    
4. Better error reporting when checkpoint converter fails.
    
5. Rebuild front end.

# Major improvements to the model installer.

1. The text user interface for `invokeai-model-install` has been
expanded to allow the user to install controlnet, LoRA, textual
inversion, diffusers and checkpoint models. The user can install
interactively (without leaving the TUI), or in batch mode after exiting
the application.
 

![image](https://github.com/invoke-ai/InvokeAI/assets/111189/f8f7ac23-3e18-4973-b7fe-729864c703a0)

2. The `invokeai-model-install` command now lets you list, add and
delete models from the command line:

## Listing models
```
$ invokeai-model-install --list diffusers
Diffuser models:
analog-diffusion-1.0      not loaded  diffusers  An SD-1.5 model trained on diverse analog photographs (2.13 GB)
d&d-diffusion-1.0         not loaded  diffusers  Dungeons & Dragons characters (2.13 GB)
deliberate-1.0            not loaded  diffusers  Versatile model that produces detailed images up to 768px (4.27 GB)
DreamShaper               not loaded  diffusers  Imported diffusers model DreamShaper
sd-inpainting-1.5         not loaded  diffusers  RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
sd-inpainting-2.0         not loaded  diffusers  Stable Diffusion version 2.0 inpainting model (5.21 GB)
stable-diffusion-1.5      not loaded  diffusers  Stable Diffusion version 1.5 diffusers model (4.27 GB)
stable-diffusion-2.1      not loaded  diffusers  Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
```

```
$ invokeai-model-install --list tis
Loading Python libraries...

Installed Textual Inversion Embeddings:
   EasyNegative
   ahx-beta-453407d
```

## Installing models

(this example shows correct handling of a server side error at Civitai)
```
$ invokeai-model-install --diffusers https://civitai.com/api/download/models/46259 Linaqruf/anything-v3.0
Loading Python libraries...

[2023-06-05 22:17:23,556]::[InvokeAI]::INFO --> INSTALLING EXTERNAL MODELS
[2023-06-05 22:17:23,557]::[InvokeAI]::INFO --> Probing https://civitai.com/api/download/models/46259 for import
[2023-06-05 22:17:23,557]::[InvokeAI]::INFO --> https://civitai.com/api/download/models/46259 appears to be a URL
[2023-06-05 22:17:23,763]::[InvokeAI]::ERROR --> An error occurred during downloading /home/lstein/invokeai-test/models/ldm/stable-diffusion-v1/46259: Internal Server Error
[2023-06-05 22:17:23,763]::[InvokeAI]::ERROR --> ERROR DOWNLOADING https://civitai.com/api/download/models/46259: {"error":"Invalid database operation","cause":{"clientVersion":"4.12.0"}}
[2023-06-05 22:17:23,764]::[InvokeAI]::INFO --> Probing Linaqruf/anything-v3.0 for import
[2023-06-05 22:17:23,764]::[InvokeAI]::DEBUG --> Linaqruf/anything-v3.0 appears to be a HuggingFace diffusers repo_id
[2023-06-05 22:17:23,768]::[InvokeAI]::INFO --> Loading diffusers model from Linaqruf/anything-v3.0
[2023-06-05 22:17:23,769]::[InvokeAI]::DEBUG --> Using faster float16 precision
[2023-06-05 22:17:23,883]::[InvokeAI]::ERROR --> An unexpected error occurred while downloading the model: 404 Client Error. (Request ID: Root=1-647e9733-1b0ee3af67d6ac3456b1ebfc)

Revision Not Found for url: https://huggingface.co/Linaqruf/anything-v3.0/resolve/fp16/model_index.json.
Invalid rev id: fp16)
Downloading (…)ain/model_index.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 511/511 [00:00<00:00, 2.57MB/s]
Downloading (…)cial_tokens_map.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 472/472 [00:00<00:00, 6.13MB/s]
Downloading (…)cheduler_config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 341/341 [00:00<00:00, 3.30MB/s]
Downloading (…)okenizer_config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 807/807 [00:00<00:00, 11.3MB/s]
```

## Deleting models

```
 invokeai-model-install --delete --diffusers anything-v3
Loading Python libraries...

[2023-06-05 22:19:45,927]::[InvokeAI]::INFO --> Processing requested deletions
[2023-06-05 22:19:45,927]::[InvokeAI]::INFO --> anything-v3...
[2023-06-05 22:19:45,927]::[InvokeAI]::INFO --> Deleting the cached model directory for Linaqruf/anything-v3.0
[2023-06-05 22:19:45,948]::[InvokeAI]::WARNING --> Deletion of this model is expected to free 4.3G

```
2023-06-07 19:25:07 -07:00
4bbe3b0d00 Merge branch 'main' into release/make-web-dist-startable 2023-06-07 19:21:01 -07:00
9ed86a08f1 multiple small fixes
1. Contents of autoscan directory field are restored after doing an installation.
2. Activate dialogue to choose V2 parameterization when importing from a directory.
3. Remove autoscan directory from init file when its checkbox is unselected.
4. Add widget cycling behavior to install models form.
2023-06-07 17:32:00 -04:00
68405910ba Upgrade to Diffusers 0.17.0 2023-06-08 04:42:52 +12:00
0a50e2638c fix(ui): default controlnet autoprocess to true (#3513)
I had accidentally defaulted it to false
2023-06-08 01:56:53 +12:00
fc7c5da4dd fix(ui): default controlnet autoprocess to true
I had accidentally defaulted it to false
2023-06-07 23:55:24 +10:00
a3357e073c refactor exception handling 2023-06-07 07:35:34 -04:00
d114833a12 pause after printing exception 2023-06-07 07:26:14 -04:00
96038bd075 print exception on TUI crash 2023-06-07 07:23:14 -04:00
2f383c2598 docs(nodes): update INVOCATIONS.md (#3511) 2023-06-07 20:47:57 +12:00
702a8d1f72 docs(nodes): update INVOCATIONS.md 2023-06-07 18:44:43 +10:00
0a8390356f feat(ui): enhance autoprocessing
The processor is automatically selected when model is changed.

But if the user manually changes the processor, processor settings, or disables the new `Auto configure processor` switch, auto processing is disabled.

The user can enable auto configure by turning the switch back on.

When auto configure is enabled, a small dot is overlaid on the expand button to remind the user that the system is not auto configuring the processor for them.

If auto configure is enabled, the processor settings are reset to the default for the selected model.
2023-06-07 18:25:30 +10:00
844058c0a5 feat(ui): make prompt not required
- also change the placeholder text
2023-06-07 18:25:30 +10:00
7d74cbe29c fix(ui): make progress image not draggable 2023-06-07 18:25:30 +10:00
62ac0ed2dc feat(ui): tweak cnet model change
If there is no control image, and the model does not have a default processor, set the processor to `none`.
2023-06-07 18:25:30 +10:00
ae14adec2a feat(ui): add reset button for control image 2023-06-07 18:25:30 +10:00
6c2b39d1df feat(ui): improve controlnet image style
css is terrible
2023-06-07 18:25:30 +10:00
0843028e6e fix(ui): improve dragging activation
- delay of 250ms
- prevent gallery images from accidentally activating native drag and drop
2023-06-07 18:25:30 +10:00
de0fd87035 fix(ui): when a session errors, reset controlnet processing spinner 2023-06-07 18:25:30 +10:00
8b6c0be259 feat(ui): fix IAIDndImage button styles when upload disabled 2023-06-07 18:25:30 +10:00
58fec84858 feat(ui): add upload to IAIDndImage
Add uploading to IAIDndImage
- add `postUploadAction` arg to `imageUploaded` thunk, with several current valid options (set control image, set init, set nodes image, set canvas, or toast)
- updated IAIDndImage to optionally allow click to upload
2023-06-07 18:25:30 +10:00
f223ad7776 fix(ui): only show loading indicator on processing control images 2023-06-07 18:25:30 +10:00
00eabf630d fix(ui): fix control image not used if processor type is none 2023-06-07 18:25:30 +10:00
6245a27650 feat(ui): auto-select controlnet processor
- when the controlnet model is changed, if there is a default processor for the model set, the processor is changed.
- once a control image is selected (and processed), changing the model does not change the processor - must be manually changed
2023-06-07 18:25:30 +10:00
fa1ac57c90 Graph overlay was expanding off the screen to the size of the prompt line (#3510)
sure this isn't really important at the moment

just limited the size of the width and gave it a shadow

![image](https://github.com/invoke-ai/InvokeAI/assets/115216705/96e2db0a-9edb-48b8-9040-56ce054b5ecf)
2023-06-07 18:01:35 +12:00
0f16b1c98d Remove Shadow 2023-06-07 15:51:37 +10:00
08e66c5451 Update NodeGraphOverlay.tsx
Graph overlay was expanding off the screen to the size of the prompt
2023-06-07 14:49:03 +10:00
563bf70c95 fix CI failure in configure non-interactive mode; merged with main 2023-06-06 23:24:40 -04:00
49d29420c4 Merge branch 'main' into release/make-web-dist-startable 2023-06-06 23:24:16 -04:00
ae9d0c6c1b fix logger behavior so that it is initialized after command line parsed 2023-06-06 23:19:10 -04:00
d8d11f9bbb quench fp16 rev id not found warning 2023-06-06 22:01:05 -04:00
13fa0d3bc0 make log message textbox deeper 2023-06-06 17:23:13 -04:00
5eeb4b8e06 allow user to abort conversion of V2 models from within TUI 2023-06-06 17:21:50 -04:00
f5044c290d fix crash during model conversion 2023-06-06 17:05:29 -04:00
1b43276e5d make widget selection wrap around 2023-06-06 13:53:11 -07:00
294f086857 configure/install working correctly on windows11 2023-06-06 12:51:34 -07:00
e5024bf5e9 fix conhost launch-with args 2023-06-06 15:17:15 -04:00
79198b4bba feat(ui): fix bugs with image deletion (#3506)
- `imageUsage` object was always stale due to react component lifecycle,
fixed this
- cleaned up the deletion listener and context
2023-06-07 05:33:05 +12:00
1a2f0984db Merge branch 'main' into feat/ui/fix-stale-imageUsage 2023-06-07 04:35:16 +12:00
454683e6eb feat(ui): update image urls on connect (#3507)
* feat(ui): update image urls on connect

Add `updateImageUrlsOnConnect` RTK listener:
- requests URLs for *every* image the app knows about, on connect: gallery, selectedImage, initialImage, canvas images, nodes images, controlnet images
- only fires when `shouldUpdateImagesOnConnect` config is enabled

* remove prop

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-06-06 10:23:51 -04:00
bbb2a08e8f feat(ui): fix bugs with image deletion
- `imageUsage` object was always stale due to react component lifecycle, fixed this
- cleaned up the deletion listener and context
2023-06-06 20:01:27 +10:00
bf116927e1 feat(ui): clear features if image used by them is deleted
This handles the case when an image is deleted but is still in use in as eg an init image on canvas, or a control image. If we just delete the image, canvas/controlnet/etc may break (the image would just fail to load).

When an image is deleted, the app checks to see if it is in use in:
- Image to Image
- ControlNet
- Unified Canvas
- Node Editor

The delete dialog will always open if the image is in use anywhere, and the user is advised that deleting the image will reset the feature(s).

Even if the user has ticked the box to not confirm on delete, the dialog will still show if the image is in use somewhere.
2023-06-06 14:35:07 +10:00
3d249c4fa3 feat(ui): refactor image deletion
Add `DeleteImageContext`:
- provide a single function to delete an image
- opens the modal or immediately deletes, if confirm is off
2023-06-06 14:35:07 +10:00
fa338ddb6a feat(ui): add useGetIsImageInUse
Checks if an image is currently being used eg in canvas, nodes, controlnet, init image.
2023-06-06 14:35:07 +10:00
b200451330 feat(ui): add nodesSelector 2023-06-06 14:35:07 +10:00
8283d23b74 feat(ui): remove shouldTransformUrls
This is no longer used.
2023-06-06 14:35:07 +10:00
2fc0a4d53b feat(ui): improve handling for urls/metadata received
Update images everywhere when urls or metadata is received:
- control images
- init images
- canvas
- nodes
- init image

Also renamed the variable.
2023-06-06 14:35:07 +10:00
3ff732d583 feat(ui): clear controlnet image when image deleted 2023-06-06 14:35:07 +10:00
840c632c0a feat(ui): sort images by updated_at instead of created_at
fixes issue where saved staging area images are sorted as expected in gallery.
2023-06-06 14:30:53 +10:00
40d6e4f287 fix(ui): fix canvas auto-save not working 2023-06-06 14:30:53 +10:00
fc5f9c30a6 fix(ui): fix metadata viewer not working for canvas images 2023-06-06 14:30:53 +10:00
229de2dbb8 feat(ui): fix canvas saving
- fix "bounding box region only" not being respected when saving
- add toasts for each action
- improve workflow `take()` predicates to use the requestId
2023-06-06 14:30:53 +10:00
cc22427f25 feat(ui): improve UI on smaller screens
- responsive changes were causing a lot of weird layout issues, had to remove the rest of them
- canvas (non-beta) toolbar now wraps
- reduces minH for prompt boxes a bit
2023-06-06 14:29:57 +10:00
90333c0074 merge with main 2023-06-05 22:03:44 -04:00
54e5301b35 Multiple fixes
1. Model installer works correctly under Windows 11 Terminal
2. Fixed crash when configure script hands control off to installer
3. Kill install subprocess on keyboard interrupt
4. Command-line functionality for --yes configuration and model installation
   restored.
5. New command-line features:
   - install/delete lists of diffusers, LoRAS, controlnets and textual inversions
     using repo ids, paths or URLs.

Help:

```
usage: invokeai-model-install [-h] [--diffusers [DIFFUSERS ...]] [--loras [LORAS ...]] [--controlnets [CONTROLNETS ...]] [--textual-inversions [TEXTUAL_INVERSIONS ...]] [--delete] [--full-precision | --no-full-precision]
                              [--yes] [--default_only] [--list-models {diffusers,loras,controlnets,tis}] [--config_file CONFIG_FILE] [--root_dir ROOT]

InvokeAI model downloader

options:
  -h, --help            show this help message and exit
  --diffusers [DIFFUSERS ...]
                        List of URLs or repo_ids of diffusers to install/delete
  --loras [LORAS ...]   List of URLs or repo_ids of LoRA/LyCORIS models to install/delete
  --controlnets [CONTROLNETS ...]
                        List of URLs or repo_ids of controlnet models to install/delete
  --textual-inversions [TEXTUAL_INVERSIONS ...]
                        List of URLs or repo_ids of textual inversion embeddings to install/delete
  --delete              Delete models listed on command line rather than installing them
  --full-precision, --no-full-precision
                        use 32-bit weights instead of faster 16-bit weights (default: False)
  --yes, -y             answer "yes" to all prompts
  --default_only        only install the default model
  --list-models {diffusers,loras,controlnets,tis}
                        list installed models
  --config_file CONFIG_FILE, -c CONFIG_FILE
                        path to configuration file to create
  --root_dir ROOT       path to root of install directory
```
2023-06-05 21:45:35 -04:00
b31fc43bfa Fix potential race condition in config system (#3466)
There was a potential gotcha in the config system that was previously
merged with main. The `InvokeAIAppConfig` object was configuring itself
from the command line and configuration file within its initialization
routine. However, this could cause it to read `argv` from the command
line at unexpected times. This PR fixes the object so that it only reads
from the init file and command line when its `parse_args()` method is
explicitly called, which should be done at startup time in any top level
script that uses it.

In addition, using the `get_invokeai_config()` function to get a global
version of the config object didn't feel pythonic to me, so I have
changed this to `InvokeAIAppConfig.get_config()` throughout.

## Updated Usage

In the main script, at startup time, do the following:

```
from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig.get_config()
config.parse_args()
```

In non-main scripts, it is not necessary (or recommended) to call
`parse_args()`:
```
from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig.get_config()
```

The configuration object properties can be overridden when
`get_config()` is called by passing initialization values in the usual
way. If a property is set this way, then it will not be changed by
subsequent calls to `parse_args()`, but can only be changed by
explicitly setting the property.

```
config = InvokeAIAppConfig.get_config(nsfw_checker=True)
config.parse_args(argv=['--no-nsfw_checker'])
config.nsfw_checker
# True
```

You may specify alternative argv lists and configuration files in
`parse_args()`:

```
config.parse_args(argv=['--no-nsfw_checker'],
                             conf = OmegaConf.load('/tmp/test.yaml')
)
```

For backward compatibility, the `get_invokeai_config()` function is
still available from the module, but has been removed from the rest of
the source tree.
2023-06-05 15:26:50 -07:00
9bcf0b2251 Merge branch 'main' into lstein/config-management-fixes 2023-06-05 15:10:33 -07:00
d4bc98c383 revert to conhost method 2023-06-05 11:46:01 -07:00
bc892c535c feat(ui): fix image fit (#3501)
- Prevent init, current & control images from overflowing
2023-06-05 20:48:55 +12:00
099e1e7c08 feat(ui): fix image fit
- Prevent init, current & control images from overflowing
2023-06-05 17:16:30 +10:00
b1000e30c1 feat(ui): disable keyboard dnd
Need to fix a bug w/ collision detection before enabling it. Will pursue later.
2023-06-05 15:24:24 +10:00
7bd94eac0e feat(ui): support image dnd to canvas 2023-06-05 15:24:24 +10:00
2c77563dcc feat(ui): move DropOverlay into its own IAIDropOverlay component 2023-06-05 15:24:24 +10:00
603c9a587e open Windows Terminal maximized 2023-06-05 00:24:13 -04:00
1a5a2dfda9 increased window size 2023-06-04 23:54:52 -04:00
090b7eeaf3 workaround to get adequate window size on Windows Terminal 2023-06-04 23:44:07 -04:00
117536324c the "restore" env variable in .bat launcher confuses pydantic 2023-06-04 22:53:46 -04:00
999c092b6a fix mouse and window resizing issues 2023-06-04 22:00:11 -04:00
9e31b1f387 Merge branch 'main' into lstein/config-management-fixes 2023-06-04 18:17:43 -04:00
cb157ea530 fix crash when install-models launched from config script 2023-06-04 14:55:51 -04:00
5f6f38074d merge with main 2023-06-04 13:59:31 -04:00
25b8dd340a Prompting: enable long prompts and compel's new .and() concatenating feature (#3497)
this PR adds long prompt support and enables compel's new `.and()`
concatenation feature which improves image quality especially with SD2.1

example of a long prompt:
> a moist sloppy pindlesackboy sloppy hamblin' bogomadong, Clem Fandango
is pissed-off, Wario's Woods in background, making a noise like
ga-woink-a
![000075 6dfd7adf
466129594](https://github.com/invoke-ai/InvokeAI/assets/144366/051608b6-8d52-463b-af10-04b695cda9c1)

the same prompt broken into fragments and concatenated using `.and()`
(syntax works like `.blend()`):
```
("a moist sloppy pindlesackboy sloppy hamblin' bogomadong", 
"Clem Fandango is pissed-off", 
"Wario's Woods in background", 
"making a noise like ga-woink-a").and()
```
![000076 68b1c320
466129594](https://github.com/invoke-ai/InvokeAI/assets/144366/3fee291f-5562-40f9-9c3c-a73765fc893a)


and a less silly example:

> A dream of a distant galaxy, by Caspar David Friedrich, matte
painting, trending on artstation, HQ
![000129 1b33b559
2793529321](https://github.com/invoke-ai/InvokeAI/assets/144366/d4113756-ed0d-49cd-bb2e-a2fc4a09e0af)

the same prompt broken into two fragments and concatenated:
```
("A dream of a distant galaxy, by Caspar David Friedrich, matte painting", 
"trending on artstation, HQ").and()
```
![000128 b5d5cd62
2793529321](https://github.com/invoke-ai/InvokeAI/assets/144366/c373c009-05db-4c42-8a1d-c89fbdb334ec)

as with `.blend()` you can also weight the parts eg `("a man eating an
apple", "sitting on the roof of a car", "high quality, trending on
artstation, 8K UHD").and(1, 0.5, 0.5)` which will assign weight `1` to
`a man eating an apple` and `0.5` to `sitting on the roof of a car` and
`high quality, trending on artstation, 8K UHD`.
2023-06-05 04:53:08 +12:00
fb06f5b892 Merge branch 'main' into feat_compel_longprompts_and_concat 2023-06-05 04:34:39 +12:00
1a7fb601dc ask user for v2 variant when model manager can't infer it 2023-06-04 11:27:44 -04:00
cdcfda164d enable long prompts, upgrade compel to enable .and() (concatenating prompts) 2023-06-04 15:30:54 +02:00
966b154a1f Update web README.md (#3496) 2023-06-05 00:56:00 +12:00
95fa66661c dummy commit to make github actions run 2023-06-04 22:55:35 +10:00
6247b79111 docs(ui): update API_CLIENT 2023-06-04 22:46:53 +10:00
5831364f9c Update web README.md 2023-06-04 22:44:18 +10:00
919b81cff1 fix(ui): fix rebase issue 2023-06-04 22:34:58 +10:00
065fff7db5 fix(ui): fix wonkiness with image dnd 2023-06-04 22:34:58 +10:00
a664ee30a2 feat(ui): do not change images if the dropped image is the same image 2023-06-04 22:34:58 +10:00
03f3ad435a feat(ui): updated controlnet logic/ui 2023-06-04 22:34:58 +10:00
2270c270ef feat(ui): add tooltip to IAISwitch 2023-06-04 22:34:58 +10:00
4f7820719b feat(ui): add ellipsis direction to IAICustomSelect 2023-06-04 22:34:58 +10:00
fa285883ad feat(ui): make OverlayDragImage translucent 2023-06-04 22:34:58 +10:00
474fca8e6a feat(ui): add controlNetDenylist 2023-06-04 22:34:58 +10:00
5dc0250b00 feat(ui): ControlNet layout tweaks 2023-06-04 22:34:58 +10:00
f269377a01 feat(ui): "ProcessorOptionsContainer" -> "ProcessorWrapper", organise 2023-06-04 22:34:58 +10:00
d0406024e3 feat(ui): IAICustomSelect tweak styles 2023-06-04 22:34:58 +10:00
aa3a969bd2 feat: Update ControlNet Model List & Map 2023-06-04 22:34:58 +10:00
73a95973a8 wip: Add Wrapper Container for Preprocessor Options
For fast altering of the layout across all pre-preocessors.
2023-06-04 22:34:58 +10:00
bf4fe3c1ac wip: Fixing layout shifts with the ControlNet tab 2023-06-04 22:34:58 +10:00
d6c08ba469 feat(ui): add mini/advanced controlnet ui 2023-06-04 22:34:58 +10:00
69f0ba65f1 chore(ui): bump react-icons 2023-06-04 22:34:58 +10:00
828c86964d feat(ui): IAICustomSelect prevent label wrap 2023-06-04 22:34:58 +10:00
54b7ddd63f feat(ui): IAIDndImage cursor: 'grab' 2023-06-04 22:34:58 +10:00
a0dde66b5d feat(ui): more work on controlnet mini 2023-06-04 22:34:58 +10:00
b6b3b9f99c feat(ui): make scrollbar less bright 2023-06-04 22:34:58 +10:00
faa69f8a47 feat(ui): add alpha colors 2023-06-04 22:34:58 +10:00
d92c7f5483 feat(ui): organize IAIDndImage component 2023-06-04 22:34:58 +10:00
6b824eb112 feat(ui): initial mini controlnet UI, dnd improvements 2023-06-04 22:34:58 +10:00
72b4371804 feat(ui): control image auto-process 2023-06-04 22:34:58 +10:00
fa290aff8d feat(ui): add defaults for all processors 2023-06-04 22:34:58 +10:00
3d99d7ae8b feat(ui): update handling of inProgess, do not allow cnet process when processing 2023-06-04 22:34:58 +10:00
2eb367969c feat(ui): do not autoprocess control if invocation in progress 2023-06-04 22:34:58 +10:00
9cdad95f48 feat(ui): add rest of controlnet processors 2023-06-04 22:34:58 +10:00
707ed39300 chore(ui): regen api client 2023-06-04 22:34:58 +10:00
6bbb5f061a feat(nodes): update controlnet names/descriptions 2023-06-04 22:34:58 +10:00
6896e69e95 fix(ui): fix multiple controlnets 2023-06-04 22:34:58 +10:00
b17f4c1650 feat(ui): more tweaking controlnet ui 2023-06-04 22:34:58 +10:00
98493ed9e2 feat(ui): reorg parameter panel to make room for controlnet 2023-06-04 22:34:58 +10:00
94c953deab feat(ui): get processed images back into controlnet ui 2023-06-04 22:34:58 +10:00
fa4d88e163 feat(ui): improve drag and drop ux 2023-06-04 22:34:58 +10:00
b1e1e3efc7 fix(ui): fix IAISelectableImage fallback 2023-06-04 22:34:58 +10:00
3b9426eb72 feat(ui): controlnet/image dnd wip
Implement `dnd-kit` for image drag and drop
- vastly simplifies logic bc we can drag and drop non-serializable data (like an `ImageDTO`)
- also much prettier
- also will fix conflicts with file upload via OS drag and drop, bc `dnd-kit` does not use native HTML drag and drop API
- Implemented for Init image, controlnet, and node editor so far

More progress on the ControlNet UI
2023-06-04 22:34:58 +10:00
e2e07696fc feat(ui): wip controlnet ui 2023-06-04 22:34:58 +10:00
d6a959b000 feat(nodes): tidy controlnet processor nodes & improve descriptions 2023-06-04 22:34:58 +10:00
c3935d3849 feat(nodes): add separate scripts to launch cli and web (#3495) 2023-06-04 08:13:14 -04:00
383e3d77cb feat(nodes): add separate scripts to launch cli and web 2023-06-04 22:02:47 +10:00
31e97ead2a move invokeai.db to ~/invokeai/databases
- The invokeai.db database file has now been moved into
  `INVOKEAIROOT/databases`. Using plural here for possible
  future with more than one database file.

- Removed a few dangling debug messages that appeared during
  testing.

- Rebuilt frontend to test web.
2023-06-03 20:25:34 -04:00
0b49995659 merge with main 2023-06-03 20:06:27 -04:00
ff204db6b2 Add logging configuration (#3460)
This PR provides a number of options for controlling how InvokeAI logs
messages, including options to log to a file, syslog and a web server.
Several logging handlers can be configured simultaneously.

## Controlling How InvokeAI Logs Status Messages

InvokeAI logs status messages using a configurable logging system. You
can log to the terminal window, to a designated file on the local
machine, to the syslog facility on a Linux or Mac, or to a properly
configured web server. You can configure several logs at the same time,
and control the level of message logged and the logging format (to a
limited extent).

Three command-line options control logging:

### `--log_handlers <handler1> <handler2> ...`

This option activates one or more log handlers. Options are "console",
"file", "syslog" and "http". To specify more than one, separate them by
spaces:

```bash
invokeai-web --log_handlers console syslog=/dev/log file=C:\Users\fred\invokeai.log
```

The format of these options is described below.

### `--log_format {plain|color|legacy|syslog}`

This controls the format of log messages written to the console. Only
the "console" log handler is currently affected by this setting.

* "plain" provides formatted messages like this:

```bash

[2023-05-24 23:18:2[2023-05-24 23:18:50,352]::[InvokeAI]::DEBUG --> this is a debug message
[2023-05-24 23:18:50,352]::[InvokeAI]::INFO --> this is an informational messages
[2023-05-24 23:18:50,352]::[InvokeAI]::WARNING --> this is a warning
[2023-05-24 23:18:50,352]::[InvokeAI]::ERROR --> this is an error
[2023-05-24 23:18:50,352]::[InvokeAI]::CRITICAL --> this is a critical error
```

* "color" produces similar output, but the text will be color coded to
indicate the severity of the message.

* "legacy" produces output similar to InvokeAI versions 2.3 and earlier:

```bash
### this is a critical error
*** this is an error
** this is a warning
>> this is an informational messages
   | this is a debug message
```

* "syslog" produces messages suitable for syslog entries:

```bash
InvokeAI [2691178] <CRITICAL> this is a critical error
InvokeAI [2691178] <ERROR> this is an error
InvokeAI [2691178] <WARNING> this is a warning
InvokeAI [2691178] <INFO> this is an informational messages
InvokeAI [2691178] <DEBUG> this is a debug message
```

(note that the date, time and hostname will be added by the syslog
system)

### `--log_level {debug|info|warning|error|critical}`

Providing this command-line option will cause only messages at the
specified level or above to be emitted.

## Console logging

When "console" is provided to `--log_handlers`, messages will be written
to the command line window in which InvokeAI was launched. By default,
the color formatter will be used unless overridden by `--log_format`.

## File logging

When "file" is provided to `--log_handlers`, entries will be written to
the file indicated in the path argument. By default, the "plain" format
will be used:

```bash
invokeai-web --log_handlers file=/var/log/invokeai.log
```

## Syslog logging

When "syslog" is requested, entries will be sent to the syslog system.
There are a variety of ways to control where the log message is sent:

* Send to the local machine using the `/dev/log` socket:

```
invokeai-web --log_handlers syslog=/dev/log
```

* Send to the local machine using a UDP message:

```
invokeai-web --log_handlers syslog=localhost
```

* Send to the local machine using a UDP message on a nonstandard port:

```
invokeai-web --log_handlers syslog=localhost:512
```

* Send to a remote machine named "loghost" on the local LAN using
facility LOG_USER and UDP packets:

```
invokeai-web --log_handlers syslog=loghost,facility=LOG_USER,socktype=SOCK_DGRAM
```

This can be abbreviated `syslog=loghost`, as LOG_USER and SOCK_DGRAM are
defaults.

* Send to a remote machine named "loghost" using the facility LOCAL0 and
using a TCP socket:

```
invokeai-web --log_handlers syslog=loghost,facility=LOG_LOCAL0,socktype=SOCK_STREAM
```

If no arguments are specified (just a bare "syslog"), then the logging
system will look for a UNIX socket named `/dev/log`, and if not found
try to send a UDP message to `localhost`. The Macintosh OS used to
support logging to a socket named `/var/run/syslog`, but this feature
has since been disabled.

## Web logging

If you have access to a web server that is configured to log messages
when a particular URL is requested, you can log using the "http" method:

```
invokeai-web --log_handlers http=http://my.server/path/to/logger,method=POST
```

The optional [,method=] part can be used to specify whether the URL
accepts GET (default) or POST messages.

Currently password authentication and SSL are not supported.

## Using the configuration file

You can set and forget logging options by adding a "Logging" section to
`invokeai.yaml`:

```
InvokeAI:
  [... other settings...]
  Logging:
    log_handlers:
       - console
       - syslog=/dev/log
    log_level: info
    log_format: color
```
2023-06-03 20:03:40 -04:00
f74f3d6a3a many TUI improvements:
1. Separated the "starter models" and "more models" sections. This
   gives us room to list all installed diffuserse models, not just
   those that are on the starter list.

2. Support mouse-based paste into the textboxes with either middle
   or right mouse buttons.

3. Support terminal-style cursor movement:
     ^A to move to beginning of line
     ^E to move to end of line
     ^K kill text to right and put in killring
     ^Y yank text back

4. Internal code cleanup.
2023-06-03 16:17:53 -04:00
713fb061e8 Merge branch 'main' into release/make-web-dist-startable 2023-06-02 23:19:33 -04:00
77b7680b32 slight refactoring of code; configure --yes should work now 2023-06-02 23:19:14 -04:00
ff63433591 Merge branch 'main' into lstein/config-management-fixes 2023-06-02 22:56:43 -04:00
31281d7181 Merge branch 'main' into lstein/logging-improvements 2023-06-02 22:56:13 -04:00
72d1e4e404 fix bug in model_manager that prevented import of inpainting models 2023-06-02 22:39:26 -04:00
91918e648b dynamic display of log messages now working 2023-06-02 22:24:46 -04:00
1390b65a9c new TUI is fully functional; needs some polishing 2023-06-02 17:20:50 -04:00
82231369d3 Make Invoke Button also the progress bar (#3492)
Find on some screens the progress bar at top is hard to see, Bar should
only show when in progress


![Animation](https://github.com/invoke-ai/InvokeAI/assets/115216705/04f945d3-377b-4646-b125-1355e74b6b09)
2023-06-02 19:30:45 +12:00
7620bacc01 feat: Add temporary NodeInvokeButton 2023-06-02 17:55:15 +12:00
ea9cf04765 fix: Remove progress bg instead of altering button bg 2023-06-02 17:36:14 +12:00
47301e6f85 fix: Do the same without zIndex 2023-06-02 17:33:38 +12:00
f143fb7254 feat: Make Invoke Button also the progress bar 2023-06-02 17:24:40 +12:00
2bdb655375 Change to absolute 2023-06-02 14:59:10 +10:00
41f7758977 listing, downloading and deleting LoRAs working; TI support pending 2023-06-02 00:40:15 -04:00
8ae1eaaccc Add Progress bar under invoke Button
Find on some screens the progress bar at top of screen gets cut off
2023-06-02 14:19:02 +10:00
d66979073b add optional config for settings modal 2023-06-02 00:36:45 +10:00
c9e621093e fix(ui): fix looping gallery images fetch
The gallery could get in a state where it thought it had just reached the end of the list and endlessly fetches more images, if there are no more images to fetch (weird I know).

Add some logic to remove the `end reached` handler when there are no more images to load.
2023-06-02 00:34:03 +10:00
e06ba40795 fix(ui): do not allow dpmpp_2s to be used ever
it doesn't work for the img2img pipelines, but the implemented conditional display could break the scheduler selection dropdown.

simple fix until diffusers merges the fix - never use this scheduler.
2023-06-02 00:30:01 +10:00
6571e4c2fd feat(ui): refactor parameter recall
- use zod to validate parameters before recalling
- update recall params hook to handle all validation and UI feedback
2023-06-02 00:30:01 +10:00
ff9240b51d slight code cleanup 2023-06-01 00:45:07 -04:00
18466e01fd tab selection seems very natural; not wired to backend yet 2023-06-01 00:43:28 -04:00
e9821ab711 implemented tabbed model selection; not wired to backend yet 2023-06-01 00:31:46 -04:00
d6530df635 rename invokeai.backend.config to invokeai.backend.install 2023-05-31 21:34:20 -04:00
062b2cf46f fix(ui): fix width and height not working on txt2img tab
I missed a spot when working on the graph logic yesterday.
2023-05-30 18:41:09 -04:00
082ecf6f25 minor formatting improvements 2023-05-30 13:59:32 -04:00
1632ac6b9f add controlnet model downloading 2023-05-30 13:49:43 -04:00
877959b413 fix(ui): ensure download image opens in new tab 2023-05-30 09:22:54 -04:00
6e60f7517b feat(ui): add model description tooltips 2023-05-30 09:06:13 -04:00
296ee6b7ea feat(ui): tidy ParamScheduler component 2023-05-30 09:06:13 -04:00
7c7ffddb2b feat(ui): upgrade IAICustomSelect to optionally display tooltips for each item 2023-05-30 09:06:13 -04:00
e1ae7842ff feat(ui): add defaultModel to config 2023-05-30 09:06:13 -04:00
9687fe7bac fix(ui): set default model to first model (alpha sort) 2023-05-30 09:06:13 -04:00
a9a2bd90c2 fix(nodes): set min and max for l2l strength 2023-05-30 09:06:13 -04:00
47ca71a7eb fix(nodes): set cfg_scale min to 1 in latents 2023-05-30 09:06:13 -04:00
a9c47237b1 fix(ui): mark img2img resize node intermediate 2023-05-30 09:06:13 -04:00
33bbae2f47 fix(ui): fix missing init image when fit disabled 2023-05-30 09:06:13 -04:00
fab7a1d337 fix(ui): fix bug with staging bbox not resetting 2023-05-30 09:06:13 -04:00
cffcf80977 fix(ui): remove w/h from canvas params, add bbox w/h 2023-05-30 09:06:13 -04:00
1a3fd05b81 fix(ui): fix canvas bbox autoscale 2023-05-30 09:06:13 -04:00
c22c6ca135 fix(ui): fix img2img fit 2023-05-30 09:06:13 -04:00
3afb6a387f chore(ui): regen api 2023-05-30 09:06:13 -04:00
33e5ed7180 fix(ui): fix edge case in nodes graph building
Inputs with explicit values are validated by pydantic even if they also
have a connection (which is the actual value that is used).

Fix this by omitting explicit values for inputs that have a connection.
2023-05-30 09:06:13 -04:00
2067757fab feat(ui): enable progress images by default 2023-05-30 09:06:13 -04:00
b1b94a3d56 Fixed problem with inpainting after controlnet support added to main.
Problem was that controlnet support involved adding **kwargs to method calls down in denoising loop, and AddsMaskLatents didn't accept **kwarg arg. So just changed to accept and pass on **kwargs.
2023-05-30 08:01:21 -04:00
c9ee42450e added controlnet models to frontend; backend needs to be done 2023-05-30 00:38:37 -04:00
10fe31c2a1 Merge branch 'main' into lstein/config-management-fixes 2023-05-29 21:03:03 -04:00
dc54cbb1fc Merge branch 'main' into release/make-web-dist-startable 2023-05-29 14:16:10 -04:00
070218aba7 feat(ui): add progress image toggle to current image buttons 2023-05-29 09:07:46 -04:00
f1c226b171 fix(ui): remove console.log() 2023-05-29 09:07:46 -04:00
7004430380 feat(ui): gallery filter dropdown -> Images/Assets toggle 2023-05-29 09:07:46 -04:00
1ddc620192 feat(ui): only cancel on staging commit if processing 2023-05-29 09:07:46 -04:00
a7cebbd970 feat(ui): cancel session when staging image accepted 2023-05-29 09:07:46 -04:00
d97438b0b3 fix(ui): fix typo in actionsDenylist 2023-05-29 09:07:46 -04:00
4522f3f4c9 fix(ui): fix progress images in canvas 2023-05-29 09:07:46 -04:00
6fe28980b0 feat(ui): revert in-gallery progress
wasn't fully baked. will revisist in the future.
2023-05-29 09:07:46 -04:00
4aec5d8ffc fix(ui): typo 2023-05-29 09:07:46 -04:00
bbb4e8f5ef feat(nodes): add resize image and scale image nodes 2023-05-29 09:07:46 -04:00
bce33ea62e fix(ui): when session is complete, null out progress image
This may cause minor gallery jumpiness at the very end of processing, but is necessary to prevent the progress image from sticking around if the last node in a session did not have an image output.
2023-05-29 09:07:46 -04:00
e4705d5ce7 fix(ui): add additional socket event layer to gate handling socket events
Some socket events should not be handled by the slice reducers. For example generation progress should not be handled for a canceled session.

Added another layer of socket actions.

Example:
- `socketGeneratorProgress` is dispatched when the actual socket event is received
- Listener middleware exclusively handles this event and determines if the application should also handle it
- If so, it dispatches `appSocketGeneratorProgress`, which the slices can handle

Needed to fix issues related to canceling invocations.
2023-05-29 09:07:46 -04:00
6764b2a854 fix(ui): fix save to gallery without bounding box 2023-05-29 09:07:46 -04:00
970340cf62 fix(ui): infill and scaling options label 2023-05-29 09:07:46 -04:00
043f9d9ba4 fix(ui): fix auto-switch to new images 2023-05-29 09:07:46 -04:00
6f82801d07 fix(ui): fix canvas save to gallery incorrect is_intermediate flag 2023-05-28 20:19:56 -04:00
3e3dd39ae4 fix(nodes): fix images service update() for is_intermediate 2023-05-28 20:19:56 -04:00
89aa06e014 feat(ui): consolidate images slice
Now that images are in a database and we can make filtered queries, we can do away with the cumbersome `resultsSlice` and `uploadsSlice`.

- Remove `resultsSlice` and `uploadsSlice` entirely
- Add `imagesSlice` fills the same role
- Convert the application to use `imagesSlice`, reducing a lot of messy logic where we had to check which category was selected
- Add a simple filter popover to the gallery, which lets you select any number of image categories
2023-05-28 20:19:56 -04:00
6cc00ef4b7 chore(ui): regen api client 2023-05-28 20:19:56 -04:00
f31e62afad feat(nodes): make list images route use offset pagination
Because we dynamically insert images into the DB and UI's images state, `page`/`per_page` pagination makes loading the images awkward.

Using `offset`/`limit` pagination lets us query for images with an offset equal to the number of images already loaded (which match the query parameters).

The result is that we always get the correct next page of images when loading more.
2023-05-28 20:19:56 -04:00
38fd2ad45d fix(ui): fix metadata viewer crash 2023-05-28 20:19:56 -04:00
05b99b5377 fix(ui): fix erroneously displays is_intermediate field on nodes 2023-05-28 20:19:56 -04:00
08a14ee6d5 fix(nodes): fix conflicts with controlnet 2023-05-28 20:19:56 -04:00
29fcc92da9 feat(ui): handle new image origin/category setup
- Update all thunks & network related things
- Update gallery

What I have not done yet is rename the gallery tabs and the relevant slices, but I believe the functionality is all there.

Also I fixed several bugs along the way but couldn't really commit them separately bc I was refactoring. Can't remember what they were, but related to the gallery image switching.
2023-05-28 20:19:56 -04:00
d78e3572e3 chore(ui): regen api client 2023-05-28 20:19:56 -04:00
160267c71a feat(nodes): refactor image types
- Remove `ImageType` entirely, it is confusing
- Create `ResourceOrigin`, may be `internal` or `external`
- Revamp `ImageCategory`, may be `general`, `mask`, `control`, `user`, `other`. Expect to add more as time goes on
- Update images `list` route to accept `include_categories` OR `exclude_categories` query parameters to afford finer-grained querying. All services are updated to accomodate this change.

The new setup should account for our types of images, including the combinations we couldn't really handle until now:
- Canvas init and masks
- Canvas when saved-to-gallery or merged
2023-05-28 20:19:56 -04:00
fd47e70c92 feat(nodes): use higher precision timestamps in db 2023-05-28 20:19:56 -04:00
9317b42e5f feat(nodes, ui): wip image types 2023-05-28 20:19:56 -04:00
bdab73701f fix(ui): canvas images not added to staging 2023-05-28 20:19:56 -04:00
3ea5e78322 fix(nodes): fix list images route param descriptions 2023-05-28 20:19:56 -04:00
f609ee21a2 fix(ui): handle intermediates when fetching gallery 2023-05-28 20:19:56 -04:00
f51defeeb3 chore(ui): regen api client 2023-05-28 20:19:56 -04:00
ee0225f4ba fix(nodes): handle intermediates during images.get_many() 2023-05-28 20:19:56 -04:00
33a0af4637 feat(nodes): add nameservice
Currenly only used to make names for images, but when latents, conditioning, etc are managed in DB, will do the same for them.

Intended to eventually support custom naming schemes.
2023-05-28 20:19:56 -04:00
d37b08a7dd Merge branch 'main' into release/make-web-dist-startable 2023-05-28 19:46:09 -04:00
9a796364da Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. 2023-05-26 21:44:00 -04:00
1ad4eb3a7b Progress toward improvement in fieldTemplateBuilder.ts getFieldType() 2023-05-26 21:44:00 -04:00
3767a453bb Added float to FIELD_TYPE_MAP ins constants.ts 2023-05-26 21:44:00 -04:00
b0892d30a4 Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. 2023-05-26 21:44:00 -04:00
d9b1e4a98c Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. 2023-05-26 21:44:00 -04:00
a4dec8c1d6 Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. 2023-05-26 21:44:00 -04:00
8960ceb98b Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
2023-05-26 21:44:00 -04:00
be79d088c0 fix(nodes): controlnet input accepts list or single controlnet 2023-05-26 21:44:00 -04:00
009407ea3f fix(ui): fix node ui type hints 2023-05-26 21:44:00 -04:00
6999d28c7f chore(ui): regen api client 2023-05-26 21:44:00 -04:00
324e9eb74b Extended node-based ControlNet support to LatentsToLatentsInvocation. 2023-05-26 21:44:00 -04:00
56cff40362 Cleaning up after ControlNet refactor in TextToLatentsInvocation 2023-05-26 21:44:00 -04:00
2ba40c5e52 Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. 2023-05-26 21:44:00 -04:00
3ab147204c Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. 2023-05-26 21:44:00 -04:00
e4c89cba9c Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. 2023-05-26 21:44:00 -04:00
322ea84c4e Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. 2023-05-26 21:44:00 -04:00
f2b41c60ff Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. 2023-05-26 21:44:00 -04:00
754acec92f Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
2023-05-26 21:44:00 -04:00
11fc7e40a5 Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. 2023-05-26 21:44:00 -04:00
d15bb88eb2 Removed last bits of dtype and and device hardwiring from controlnet section 2023-05-26 21:44:00 -04:00
70ba36eefc Cleaning up mistakes after rebase. 2023-05-26 21:44:00 -04:00
7e70391c2b Cleaning up TextToLatent arg testing 2023-05-26 21:44:00 -04:00
e2a94be336 Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. 2023-05-26 21:44:00 -04:00
63a86eefb4 Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. 2023-05-26 21:44:00 -04:00
b0727b9d47 Prep for splitting pre-processor and controlnet nodes 2023-05-26 21:44:00 -04:00
d96e727dd5 Added more preprocessor nodes for:
MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
2023-05-26 21:44:00 -04:00
fe480886dc changes to base class for controlnet nodes 2023-05-26 21:44:00 -04:00
8031d1827b Refactored controlnet node to output ControlField that bundles control info. 2023-05-26 21:44:00 -04:00
b5acdb322d Switching to ControlField for output from controlnet nodes. 2023-05-26 21:44:00 -04:00
a4d1fe8819 Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node 2023-05-26 21:44:00 -04:00
10b7a58887 Added first controlnet preprocessor node for canny edge detection. 2023-05-26 21:44:00 -04:00
901a277959 Core implementation of ControlNet and MultiControlNet. 2023-05-26 21:44:00 -04:00
aaa093bef1 Fixed use of ControlNet control_weight parameter 2023-05-26 21:44:00 -04:00
bb96543d66 Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... 2023-05-26 21:44:00 -04:00
a2a2cfa765 Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. 2023-05-26 21:44:00 -04:00
18e6a2b410 Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. 2023-05-26 21:44:00 -04:00
db27263bc2 Prep for splitting pre-processor and controlnet nodes 2023-05-26 21:44:00 -04:00
0e027ec3ef Added more preprocessor nodes for:
MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
2023-05-26 21:44:00 -04:00
5acbbeecaa Added HED, LineArt, and OpenPose ControlNet nodes 2023-05-26 21:44:00 -04:00
6ef2168b67 changes to base class for controlnet nodes 2023-05-26 21:44:00 -04:00
6d958a214c Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) 2023-05-26 21:44:00 -04:00
4ae4bf4ff9 Resolving conflicts in rebase to origin/main 2023-05-26 21:44:00 -04:00
fdef53b2de Switching to ControlField for output from controlnet nodes. 2023-05-26 21:44:00 -04:00
11bd038b9d Added first controlnet preprocessor node for canny edge detection. 2023-05-26 21:44:00 -04:00
768cfe3aab Core implementation of ControlNet and MultiControlNet. 2023-05-26 21:44:00 -04:00
c4277b0662 Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. 2023-05-26 21:44:00 -04:00
020f3ccf07 fix(nodes): controlnet input accepts list or single controlnet 2023-05-26 21:44:00 -04:00
7467fa5e57 fix(ui): fix node ui type hints 2023-05-26 21:44:00 -04:00
e19ef7ed2f fix(ui): add control field type 2023-05-26 21:44:00 -04:00
71003be6b8 fix(ui): add value to conditioning field 2023-05-26 21:44:00 -04:00
c1dbafc2df chore(ui): regen api client 2023-05-26 21:44:00 -04:00
dcebd71381 Extended node-based ControlNet support to LatentsToLatentsInvocation. 2023-05-26 21:44:00 -04:00
d855a65e73 Cleaning up after ControlNet refactor in TextToLatentsInvocation 2023-05-26 21:44:00 -04:00
a9007c7e0f Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. 2023-05-26 21:44:00 -04:00
af60304f97 Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. 2023-05-26 21:44:00 -04:00
6de241eead Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. 2023-05-26 21:44:00 -04:00
51032dc0b2 Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. 2023-05-26 21:44:00 -04:00
9ec3d2bc0c Added dependency on controlnet-aux v0.0.3 2023-05-26 21:44:00 -04:00
297931f5d9 Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. 2023-05-26 21:44:00 -04:00
f613c073c1 Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
2023-05-26 21:44:00 -04:00
63d248622c Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. 2023-05-26 21:44:00 -04:00
48485fe92f Removed last bits of dtype and and device hardwiring from controlnet section 2023-05-26 21:44:00 -04:00
07726af703 Cleaning up mistakes after rebase. 2023-05-26 21:44:00 -04:00
ad1004b485 Cleaning up TextToLatent arg testing 2023-05-26 21:44:00 -04:00
0096fb2790 Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. 2023-05-26 21:44:00 -04:00
9c8c2e49d6 Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. 2023-05-26 21:44:00 -04:00
2005a96847 Prep for splitting pre-processor and controlnet nodes 2023-05-26 21:44:00 -04:00
00a8d60c1b Added more preprocessor nodes for:
MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
2023-05-26 21:44:00 -04:00
3aa182390a changes to base class for controlnet nodes 2023-05-26 21:44:00 -04:00
e44f1d6d4e Refactored controlnet node to output ControlField that bundles control info. 2023-05-26 21:44:00 -04:00
dfdf8e2ead Switching to ControlField for output from controlnet nodes. 2023-05-26 21:44:00 -04:00
3a645c4e80 Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node 2023-05-26 21:44:00 -04:00
113129daf9 Added first controlnet preprocessor node for canny edge detection. 2023-05-26 21:44:00 -04:00
940e3b6635 Core implementation of ControlNet and MultiControlNet. 2023-05-26 21:44:00 -04:00
7fb29dabff Fixed lint-ish formatting error 2023-05-26 21:44:00 -04:00
714ad6dbb8 Fixed use of ControlNet control_weight parameter 2023-05-26 21:44:00 -04:00
c0863fa20f Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... 2023-05-26 21:44:00 -04:00
78b0b37ba6 More rebase repair. 2023-05-26 21:44:00 -04:00
5d5cdc7716 Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. 2023-05-26 21:44:00 -04:00
93cd818f6a Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. 2023-05-26 21:44:00 -04:00
598a628790 Prep for splitting pre-processor and controlnet nodes 2023-05-26 21:44:00 -04:00
f3666eda63 Added more preprocessor nodes for:
MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
2023-05-26 21:44:00 -04:00
754017b59e Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node 2023-05-26 21:44:00 -04:00
21251ce12c Added HED, LineArt, and OpenPose ControlNet nodes 2023-05-26 21:44:00 -04:00
dc12fa6cd6 changes to base class for controlnet nodes 2023-05-26 21:44:00 -04:00
f2f4c37f19 Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) 2023-05-26 21:44:00 -04:00
0864fca641 Resolving conflicts in rebase to origin/main 2023-05-26 21:44:00 -04:00
5e4c0217c7 Switching to ControlField for output from controlnet nodes. 2023-05-26 21:44:00 -04:00
78cd106c23 Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node 2023-05-26 21:44:00 -04:00
6ed0efa938 Added first controlnet preprocessor node for canny edge detection. 2023-05-26 21:44:00 -04:00
ca0669c337 Resolving rebase conflict 2023-05-26 21:44:00 -04:00
b59a749627 Added example of using ControlNet with legacy Txt2Img generator 2023-05-26 21:44:00 -04:00
a91dee87d0 Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. 2023-05-26 21:44:00 -04:00
5ff98a4179 Core implementation of ControlNet and MultiControlNet. 2023-05-26 21:44:00 -04:00
36b2f12219 Merge branch 'main' into release/make-web-dist-startable 2023-05-26 12:56:24 -04:00
5569f205ee Update CODEOWNERS 2023-05-26 08:59:10 -04:00
a76cf8aab2 Update CODEOWNERS 2023-05-26 08:59:10 -04:00
5c0f0d1808 Merge branch 'main' into lstein/logging-improvements 2023-05-26 08:57:17 -04:00
951900a86a Merge branch 'main' into lstein/config-management-fixes 2023-05-26 08:56:41 -04:00
582f516fef Merge branch 'main' into release/make-web-dist-startable 2023-05-26 18:06:38 +10:00
a25bae2545 fix(ui): tweak log levels 2023-05-26 18:06:08 +10:00
0ea35b1e3d feat(ui): improve session canceled handling 2023-05-26 18:06:08 +10:00
c6f935bf1a feat(ui): improve gallery page handling 2023-05-26 18:06:08 +10:00
96b4d35d43 fix(ui): fix uploads not loading more images correctly after generation 2023-05-26 18:06:08 +10:00
7b0938e7e4 feat(ui): add comments for weird stuff 2023-05-26 18:06:08 +10:00
249522b568 fix(ui): fix gallery not loading more images correctly after generation 2023-05-26 18:06:08 +10:00
39088e42cc fix(ui): remove console logs 2023-05-26 18:06:08 +10:00
30e0033ebe fix(ui): fix results not added to gallery 2023-05-26 18:06:08 +10:00
b599c40099 feat(ui): improve session invoked handling 2023-05-26 18:06:08 +10:00
8f190169db feat(ui): improve session creation handling 2023-05-26 18:06:08 +10:00
1d4d705795 feat(ui): improve image urls handling 2023-05-26 18:06:08 +10:00
b3f71b3078 feat(ui): improve image metadata handling 2023-05-26 18:06:08 +10:00
6059db4f15 feat(ui): improve image delete handling 2023-05-26 18:06:08 +10:00
0d5f44b153 feat(ui): improve image upload handling 2023-05-26 18:06:08 +10:00
17164a37a8 fix(ui): fix gallery auto switch 2023-05-26 18:06:08 +10:00
f88ccabe30 fix(ui): gallery not loading on page load 2023-05-26 18:06:08 +10:00
e1c85f1234 Merge branch 'main' into release/make-web-dist-startable 2023-05-26 18:04:09 +10:00
57a3eb3652 feat(ui): unset progress image inside invocationComplete listener 2023-05-26 13:25:50 +10:00
82a8972bde create listener for imageMetdataReceived to swap our progressImage 2023-05-26 13:25:50 +10:00
497a885c85 Merge branch 'main' into release/make-web-dist-startable 2023-05-25 22:49:18 -04:00
4d9f55d0f6 replace deleted get_root() 2023-05-25 22:48:50 -04:00
0c3b4bb70d chore(ui): regen api client 2023-05-25 22:17:14 -04:00
33e13820fc feat(nodes): remove meta node field; use individual is_intermediate field instead
as suggested by @Kyle0654
2023-05-25 22:17:14 -04:00
43d991cfdb fix(ui): fix incorrect comment 2023-05-25 22:17:14 -04:00
291e9cf14b fix(nodes): add is_intermediate to all image-outputting nodes 2023-05-25 22:17:14 -04:00
a2de5c9963 feat(ui): change intermediates handling
- Update the canvas graph generation to flag its uploaded init and mask images as `intermediate`.
- During canvas setup, hit the update route to associate the uploaded images with the session id.
- Organize the socketio and RTK listener middlware better. Needed to facilitate the updated canvas logic.
- Add a new action `sessionReadyToInvoke`. The `sessionInvoked` action is *only* ever run in response to this event. This lets us do whatever complicated setup (eg canvas) and explicitly invoking. Previously, invoking was tied to the socket subscribe events.
- Some minor tidying.
2023-05-25 22:17:14 -04:00
5025f84627 chore(ui): regen api client 2023-05-25 22:17:14 -04:00
d2c8a53c55 feat(nodes): change intermediates handling
- `ImageType` is now restricted to `results` and `uploads`.
- Add a reserved `meta` field to nodes to hold the `is_intermediate` boolean. We can extend it in the future to support other node `meta`.
- Add a `is_intermediate` column to the `images` table to hold this. (When `latents`, `conditioning` etc are added to the DB, they will also have this column.)
- All nodes default to `*not* intermediate`. Nodes must explicitly be marked `intermediate` for their outputs to be `intermediate`.
- When building a graph, you can set `node.meta.is_intermediate=True` and it will be handled as an intermediate.
- Add a new `update()` method to the `ImageService`, and a route to call it. Updates have a strict model, currently only `session_id` and `image_category` may be updated.
- Add a new `update()` method to the `ImageRecordStorageService` to update the image record using the model.
2023-05-25 22:17:14 -04:00
5659d10778 remove unused function get_root() 2023-05-25 22:06:37 -04:00
46cab81d6f fix missing web_dir 2023-05-25 22:01:48 -04:00
dd157bce85 Merge branch 'main' into release/make-web-dist-startable 2023-05-25 21:52:05 -04:00
2f25dd7d0d Merge branch 'main' into lstein/config-management-fixes 2023-05-25 21:10:12 -04:00
e56965ad76 documentation tweaks; fixed initialization in a couple more places 2023-05-25 21:10:00 -04:00
2273b3a8c8 fix potential race condition in config system 2023-05-25 20:41:26 -04:00
05fb0ac2b2 Update latent.py 2023-05-26 10:27:33 +10:00
d4acd49ee3 Update generate.py 2023-05-26 10:27:33 +10:00
d98868e524 Update generationSlice.ts to change Default Scheduler 2023-05-26 10:27:33 +10:00
93bb27f2c7 fix gallery navigation 2023-05-26 10:01:06 +10:00
a4c44edf8d more use parameter fixes 2023-05-26 10:01:06 +10:00
1e94d7739a fix metadata references, add support for negative_conditioning syntax 2023-05-26 10:01:06 +10:00
9110838fe4 Merge branch 'main' into release/make-web-dist-startable 2023-05-25 19:06:09 -04:00
ca7b267326 raise error if syslogging requested and syslog lib not available 2023-05-25 10:10:46 -04:00
7f5992d6a5 Merge branch 'lstein/logging-improvements' of github.com:invoke-ai/InvokeAI into lstein/logging-improvements 2023-05-25 09:39:56 -04:00
88776fb2de get invokeai_configure working again 2023-05-25 09:39:45 -04:00
34f567abd4 Merge branch 'main' into lstein/logging-improvements 2023-05-25 08:48:47 -04:00
b87f3043ae add logging configuration 2023-05-24 23:57:15 -04:00
3829ffbe66 fix(tests): add --use_memory_db flag; use it in tests 2023-05-25 12:12:31 +10:00
ad619ae880 fix(tests): log db_location 2023-05-25 12:12:31 +10:00
d22ebe08be fix(tests): log db_location 2023-05-25 12:12:31 +10:00
ee0c6ad86e fix(cli): fix invocation services for cli 2023-05-25 12:12:31 +10:00
96adb56633 fix(tests): fix missing services in tests; fix ImageField instantiation 2023-05-25 12:12:31 +10:00
3000436121 chore(nodes): remove unused imports 2023-05-25 12:12:31 +10:00
37cdd91f5d fix(nodes): use forward declarations for InvocationServices
Also use `TYPE_CHECKING` to get IDE hints.
2023-05-25 12:12:31 +10:00
6f3c6ddf3f Update 020_INSTALL_MANUAL.md
Corrected a markdown formatting error (missing backtick).
2023-05-24 11:33:32 -04:00
0bfbda512d build(nodes): remove references to metadata service in tests 2023-05-24 11:30:47 -04:00
295b98a13c build(nodes): remove outdated metadata test
I will add tests for the new service soon
2023-05-24 11:30:47 -04:00
ff6b345d45 fix(nodes): rebase fixes 2023-05-24 11:30:47 -04:00
1fb307abf4 feat(nodes): restore canvas functionality (non-latents) 2023-05-24 11:30:47 -04:00
29c952dcf6 feat(ui): restore canvas functionality 2023-05-24 11:30:47 -04:00
010f63a50d feat(ui): misc tidy 2023-05-24 11:30:47 -04:00
068bbe3a39 fix(ui): fix uploads tab in gallery 2023-05-24 11:30:47 -04:00
ad39680feb feat(nodes): wip inpainting nodes prep 2023-05-24 11:30:47 -04:00
1e0ae8404c feat(nodes): comment out seamless
this will be a model config feature when model manager is ready
2023-05-24 11:30:47 -04:00
460d555a3d feat(nodes): add image mul, channel, convert nodes
also make img node names consistent
2023-05-24 11:30:47 -04:00
66ad04fcfc feat(nodes): add mask image category 2023-05-24 11:30:47 -04:00
c7c0836721 feat(ui): migrate linear workflows to latents 2023-05-24 11:30:47 -04:00
d2c223de8f feat(nodes): move fully* to new images service
* except i haven't rebuilt inpaint in latents
2023-05-24 11:30:47 -04:00
dd16f788ed fix(nodes): fix RangeOfSizeInvocation off-by-one error 2023-05-24 11:30:47 -04:00
b25c1af018 feat(nodes): add RangeOfSizeInvocation
The `RangeInvocation` is a simple wrapper around `range()`, but you must provide `stop > start`.

`RangeOfSizeInvocation` replaces the `stop` parameter with `size`, so that you can just provide the `start` and `step` and get a range of `size` length.
2023-05-24 11:30:47 -04:00
8f393b64b8 feat(nodes): add seed validator
If `seed>SEED_MAX`, we can still continue if we parse the seed as `seed % SEED_MAX`.
2023-05-24 11:30:47 -04:00
55b3193629 fix(nodes): add RangeInvocation validator
`stop` must be greater than `start`.
2023-05-24 11:30:47 -04:00
6f78c073ed fix(ui): fix uploads & other bugs 2023-05-24 11:30:47 -04:00
c406be6f4f fix(ui): fix image deletion 2023-05-24 11:30:47 -04:00
aeaf3737aa fix(ui): fix gallery bugs 2023-05-24 11:30:47 -04:00
23d9d58c08 fix(nodes): fix bugs with serving images
When returning a `FileResponse`, we must provide a valid path, else an exception is raised outside the route handler.

Add the `validate_path` method back to the service so we can validate paths before returning the file.

I don't like this but apparently this is just how `starlette` and `fastapi` works with `FileResponse`.
2023-05-24 11:30:47 -04:00
4c331a5d7e chore(ui): regen api client 2023-05-24 11:30:47 -04:00
035425ef24 feat(nodes): address feedback
- Address database feedback:
  - Remove all the extraneous tables. Only an `images` table now:
  - `image_type` and `image_category` are unrestricted strings. When creating images, the provided values are checked to ensure they are a valid type and category.
  - Add `updated_at` and `deleted_at` columns. `deleted_at` is currently unused.
  - Use SQLite's built-in timestamp features to populate these. Add a trigger to update `updated_at` when the row is updated. Currently no way to update a row.
  - Rename the `id` column in `images` to `image_name`
- Rename `ImageCategory.IMAGE` to `ImageCategory.GENERAL`
- Move all exceptions outside their base classes to make them more portable.
- Add `width` and `height` columns to the database. These store the actual dimensions of the image file, whereas the metadata's `width` and `height` refer to the respective generation parameters and are nullable.
- Make `deserialize_image_record` take a `dict` instead of `sqlite3.Row`
- Improve comments throughout
- Tidy up unused code/files and some minor organisation
2023-05-24 11:30:47 -04:00
021e5a2aa3 feat(nodes): improve metadata service comments 2023-05-24 11:30:47 -04:00
7a1de3887e feat(ui): wip update UI for migration 2023-05-24 11:30:47 -04:00
4a7a5234df fix(ui): fix image nodes losing image 2023-05-24 11:30:47 -04:00
6aebe1614d feat(ui): wip use new images service 2023-05-24 11:30:47 -04:00
74292eba28 chore(ui): regen api client 2023-05-24 11:30:47 -04:00
c31ff364ab fix(nodes): tidy images service 2023-05-24 11:30:47 -04:00
f310a39381 feat(nodes): finalize image routes 2023-05-24 11:30:47 -04:00
5a7e611e0a fix(nodes): fix image url 2023-05-24 11:30:47 -04:00
4e29a751d8 feat(ui): add POC image record fetching 2023-05-24 11:30:47 -04:00
3f94f81acd chore(ui): regen api client 2023-05-24 11:30:47 -04:00
5de3c41d19 feat(nodes): add metadata handling 2023-05-24 11:30:47 -04:00
f071b03ceb chore(ui): regen api client 2023-05-24 11:30:47 -04:00
b9375186a5 feat(nodes): consolidate image routers 2023-05-24 11:30:47 -04:00
11bd932cba feat(nodes): revert invocation_complete url hack 2023-05-24 11:30:47 -04:00
b77ccfaf32 chore(ui): regen api client 2023-05-24 11:30:47 -04:00
96653eebb6 build(ui): do not export schemas on api client generation 2023-05-24 11:30:47 -04:00
60d25f105f fix(nodes): restore metadata traverser 2023-05-24 11:30:47 -04:00
734b653a5f fix(nodes): add base images router 2023-05-24 11:30:47 -04:00
52c9e6ec91 feat(nodes): organise/tidy 2023-05-24 11:30:47 -04:00
c0f132e41a hack(nodes): hack to get image urls in the invocation complete event 2023-05-24 11:30:47 -04:00
cc1160a43a feat(nodes): streamline urlservice 2023-05-24 11:30:47 -04:00
adde8450bc fix(nodes): remove bad import 2023-05-24 11:30:47 -04:00
5bf9891553 feat(nodes): it works 2023-05-24 11:30:47 -04:00
22c34c343a feat(nodes): fix types for InvocationServices 2023-05-24 11:30:47 -04:00
f7804f6126 feat(nodes): add logger to images service 2023-05-24 11:30:47 -04:00
d14b02e93f feat(logger): fix logger type issues 2023-05-24 11:30:47 -04:00
1b75d899ae feat(nodes): wip image storage implementation 2023-05-24 11:30:47 -04:00
d4aa79acd7 fix(nodes): use save instead of set
`set` is a python builtin
2023-05-24 11:30:47 -04:00
33d199c007 feat(nodes): image records router 2023-05-24 11:30:47 -04:00
9c89d3452c feat(nodes): add high-level images service
feat(nodes): add ResultsServiceABC & SqliteResultsService

**Doesn't actually work bc of circular imports. Can't even test it.**

- add a base class for ResultsService and SQLite implementation
- use `graph_execution_manager` `on_changed` callback to keep `results` table in sync

fix(nodes): fix results service bugs

chore(ui): regen api

fix(ui): fix type guards

feat(nodes): add `result_type` to results table, fix types

fix(nodes): do not shadow `list` builtin

feat(nodes): add results router

It doesn't work due to circular imports still

fix(nodes): Result class should use outputs classes, not fields

feat(ui): crude results router

fix(ui): send to canvas in currentimagebuttons not working

feat(nodes): add core metadata builder

feat(nodes): add design doc

feat(nodes): wip latents db stuff

feat(nodes): images_db_service and resources router

feat(nodes): wip images db & router

feat(nodes): update image related names

feat(nodes): update urlservice

feat(nodes): add high-level images service
2023-05-24 11:30:47 -04:00
fb0b63c580 fix(nodes): fix seam painting
The problem was the same seed was getting used for the seam painting pass, causing the fried look.

Same issue as if you do img2img on a txt2img with the same seed/prompt.

Thanks to @hipsterusername for teaming up to debug this. We got pretty deep into the weeds.
2023-05-25 00:58:03 +10:00
bb2c6e5925 Merge branch 'main' into release/make-web-dist-startable 2023-05-24 10:55:51 -04:00
928caff2a6 fix: attempt to fix actions (#3454)
i think this conditional needs to be removed.
2023-05-25 02:37:39 +12:00
670c79f2c7 fix: attempt to fix actions
i think this conditional needs to be removed.
2023-05-25 00:31:48 +10:00
d6efb98953 build: fix test-invoke-pip.yml
- Restore conditional which ensures tests are only run on `main`
- Fix `yaml` syntax error
2023-05-24 21:48:12 +10:00
19da795274 fix(ui): send to canvas in currentimagebuttons not working 2023-05-24 21:46:58 +10:00
454ba9b893 add crossOrigin = anonymous attribute to konva image 2023-05-24 10:32:41 +10:00
d2dc1ed26f make InvokeAI package installable
This commit makes InvokeAI 3.0 to be installable via PyPi.org and the
installer script.

Main changes.

1. Move static web pages into `invokeai/frontend/web` and modify the
API to look for them there. This allows pip to copy the files into the
distribution directory so that user no longer has to be in repo root
to launch.

2. Update invoke.sh and invoke.bat to launch the new web application
properly. This also changes the wording for launching the CLI from
"generate images" to "explore the InvokeAI node system," since I would
not recommend using the CLI to generate images routinely.

3. Fix a bug in the checkpoint converter script that was identified
during testing.

4. Better error reporting when checkpoint converter fails.

5. Rebuild front end.
2023-05-22 17:51:47 -04:00
d4fb16825e move static into invokeai.frontend.web directory for dist install 2023-05-22 16:48:17 -04:00
650d69ef5b added optional middleware prop and new actions needed (#3437)
* added optional middleware prop and new actions needed

* accidental import

* make middleware an array

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-05-22 08:16:11 -04:00
ff0e79fa9a add id for invoke button 2023-05-19 21:44:31 +10:00
127b54f812 add some IDs 2023-05-19 21:44:31 +10:00
7025c00581 Add configuration system, remove legacy globals, args, generate and CLI (#3340)
# Application-wide configuration service

This PR creates a new `InvokeAIAppConfig` object that reads
application-wide settings from an init file, the environment, and the
command line.

Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has a top-level key of "InvokeAI" and subheadings for each of the
categories returned by `invokeai --help`.

The file looks like this:

[file: invokeai.yaml]
```
InvokeAI:
  Paths:
    root: /home/lstein/invokeai-main
    conf_path: configs/models.yaml
    legacy_conf_dir: configs/stable-diffusion
    outdir: outputs
    embedding_dir: embeddings
    lora_dir: loras
    autoconvert_dir: null
    gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth
  Models:
    model: stable-diffusion-1.5
    embeddings: true
  Memory/Performance:
    xformers_enabled: false
    sequential_guidance: false
    precision: float16
    max_loaded_models: 4
    always_use_cpu: false
    free_gpu_mem: false
  Features:
    nsfw_checker: true
    restore: true
    esrgan: true
    patchmatch: true
    internet_available: true
    log_tokenization: false
  Cross-Origin Resource Sharing:
    allow_origins: []
    allow_credentials: true
    allow_methods:
    - '*'
    allow_headers:
    - '*'
  Web Server:
    host: 127.0.0.1
    port: 8081

```

The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can use any OmegaConf dictionary by passing it to
the config object at initialization time:

```
 omegaconf = OmegaConf.load('/tmp/init.yaml')
 conf = InvokeAIAppConfig(conf=omegaconf)
```
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing
anyOmegaConf dictionary object initialization time:

```
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig(conf=omegaconf)
```

By default, InvokeAIAppConfig will parse the contents of `sys.argv` at
initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv:

```
conf = InvokeAIAppConfig(arg=['--xformers_enabled'])
```

It is also possible to set a value at initialization time. This value
has highest priority.
```
conf = InvokeAIAppConfig(xformers_enabled=True)
```
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<setting>", as in:

```
export INVOKEAI_port=8080
```

Order of precedence (from highest):
   1) initialization options
   2) command line options
   3) environment variable options
   4) config file options
   5) pydantic defaults

Typical usage:

```
from invokeai.app.services.config import InvokeAIAppConfig

# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig()
print(conf.nsfw_checker)
```
Finally, the configuration object is able to recreate its (modified)
yaml file, by calling its `to_yaml()` method:

```
conf = InvokeAIAppConfig(outdir='/tmp', port=8080)
print(conf.to_yaml())
```

# Legacy code removal and porting

This PR replaces Globals with the InvokeAIAppConfig system throughout,
and therefore removes the `globals.py` and `args.py` modules. It also
removes `generate` and the legacy CLI. ***The old CLI and web servers
are now gone.***

I have ported the functionality of the configuration script, the model
installer, and the merge and textual inversion scripts. The `invokeai`
command will now launch `invokeai-node-cli`, and `invokeai-web` will
launch the web server.

I have changed the continuous invocation tests to accommodate the new
command syntax in `invokeai-node-cli`. As a convenience function, you
can also pass invocations to `invokeai-node-cli` (or its alias
`invokeai`) on the command line as as standard input:

```
invokeai-node-cli "t2i --positive_prompt 'banana sushi' --seed 42"
invokeai < invocation_commands.txt
```
2023-05-18 13:37:09 -04:00
7ea995149e fixes to env parsing, textual inversion & help text
- Make environment variable settings case InSenSiTive:
  INVOKEAI_MAX_LOADED_MODELS and InvokeAI_Max_Loaded_Models
  environment variables will both set `max_loaded_models`

- Updated realesrgan to use new config system.

- Updated textual_inversion_training to use new config system.

- Discovered a race condition when InvokeAIAppConfig is created
  at module load time, which makes it impossible to customize
  or replace the help message produced with --help on the command
  line. To fix this, moved all instances of get_invokeai_config()
  from module load time to object initialization time. Makes code
  cleaner, too.

- Added `--from_file` argument to `invokeai-node-cli` and changed
  github action to match. CI tests will hopefully work now.
2023-05-18 10:48:23 -04:00
f9710dd6ed remove reference to legacy opt.hf_token, clean up whitespace in invokeai_configure 2023-05-17 20:39:00 -04:00
4e7dd7d3f6 ci: remove reference to Globals in a workflow 2023-05-17 20:26:26 -04:00
20ca9e1fc1 config: move 'CORS' settings to 'Web Server' in the docstring to match the actual category 2023-05-17 19:45:51 -04:00
8a8b09a953 api_app: rename web_config to app_config for consistency 2023-05-17 19:42:13 -04:00
9e4e386c9b web and formatting fixes
- remove non-existent import InvokeAIWebConfig
- fix workflow file formatting
- clean up whitespace
2023-05-17 19:12:03 -04:00
eca1e449a8 Merge branch 'lstein/global-configuration' of github.com:invoke-ai/InvokeAI into lstein/global-configuration 2023-05-17 15:23:21 -04:00
ffaadb9d05 reorder options in help text 2023-05-17 15:22:58 -04:00
8adff96e29 Merge branch 'main' into lstein/global-configuration 2023-05-17 14:37:09 -04:00
7593dc19d6 complete several steps needed to make 3.0 installable
- invokeai-configure updated to work with new config system
- migrate invokeai.init to invokeai.yaml during configure
- replace legacy invokeai with invokeai-node-cli
- add ability to run an invocation directly from invokeai-node-cli command line
- update CI tests to work with new invokeai syntax
2023-05-17 14:13:27 -04:00
b7c5a39685 make invokeai.yaml more hierarchical; fix list configuration bug 2023-05-17 12:19:19 -04:00
bd1b84f7d0 tell user to refresh page on image load error (#3425)
* refetch images list if error loading

* tell user to refresh instead of refetching

* unused import

* feat(ui): use `useAppToaster` to make toast

* fix(ui): clear selected/initial image on error

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-05-17 11:52:37 -04:00
eadfd239a8 update config script to work with new config system 2023-05-17 00:18:19 -04:00
8d75e50435 partial port of invokeai-configure 2023-05-16 01:50:01 -04:00
1d9c115225 feat(nodes): add low and high to RandomIntInvocation 2023-05-16 13:50:52 +10:00
30af20a056 ui: cleanup (#3418)
- tidy up a lot of cruft
- `sampler` --> `scheduler`
2023-05-16 15:27:12 +12:00
cc21fb216c chore(ui): clean up GalleryPanel 2023-05-16 10:43:26 +10:00
6fe62a2705 feat(ui): sampler --> scheduler 2023-05-16 10:40:26 +10:00
da87378713 chore(ui): regen api client 2023-05-16 10:39:40 +10:00
b6f5267385 chore(ui): clean up generationSlice 2023-05-16 10:21:18 +10:00
f9e78d3c64 chore(ui): clean up gallerySlice 2023-05-16 10:16:36 +10:00
b7b5bd1b46 chore(ui): clean up uiSlice 2023-05-16 09:57:19 +10:00
9a3727d3ad chore(ui): clean up systemSlice 2023-05-16 09:48:58 +10:00
d68c14516c chore(ui): clean up persist denylists 2023-05-16 09:46:03 +10:00
9f4d39aa42 chore(ui): clean up modelSlice 2023-05-16 09:45:49 +10:00
84b801d88f ui: restore canvas and upload functionality (#3414)
- refactor image uploading, fix init image upload button 
- refactor toast and hotkey hooks into logical components
- restore canvas save/download/copy/merge functionality
- clean up unused files and packages
- fix canvas rendering issue resulting from fractional stage coords
2023-05-16 02:23:39 +12:00
2fc70c509b Merge branch 'main' into feat/ui/fix-uploading 2023-05-16 02:20:59 +12:00
34fb1c4b19 make conditioning.py work with compel 1.1.5 (#3383)
This PR fixes the ValueError issue that was preventing all prompts from
working.
2023-05-15 09:46:04 -04:00
80bdd550cf Merge branch 'main' into lstein/bugfix/compel 2023-05-15 09:25:21 -04:00
7ef0d2aa35 merge with main 2023-05-15 09:07:17 -04:00
2359b92b46 chore(ui): tidy unused component ref 2023-05-15 22:58:15 +10:00
a404fb2d32 docs(ui): update PACKAGE_SCRIPTS.md 2023-05-15 22:49:28 +10:00
513eb11616 chore(ui): clean up unused files/packages 2023-05-15 22:48:06 +10:00
d2c9140e69 feat(ui): restore save/copy/download/merge functionality 2023-05-15 22:21:03 +10:00
d95fe5925a feat(ui): restore image post-upload actions
eg set init image if on img2img when uploading
2023-05-15 18:52:48 +10:00
835922ea8f fix(ui): floor canvas coords to prevent partial pixel offset rendering issues 2023-05-15 18:50:34 +10:00
e1e5266fc3 feat(ui): refactor base image uploading logic 2023-05-15 17:45:05 +10:00
5e4457445f feat(ui): make toast/hotkey into logical components 2023-05-15 15:25:27 +10:00
0221ca8f49 fix(ui): use cloned canvas for retrieving dataURL/Blobs 2023-05-15 13:54:30 +10:00
cf36e4029e fix(ui): fix syntax error in the logo component flexbox 2023-05-15 08:24:33 +10:00
c8a98a9a22 Merge branch 'main' into lstein/bugfix/compel 2023-05-14 14:43:18 -04:00
38ecca9362 Logging Improvements (#3401)
This PR improves the logging module a tad bit along with the
documentation.

**New Look:**


![WindowsTerminal_XaijwCqFpo](https://github.com/invoke-ai/InvokeAI/assets/54517381/49a97411-1927-4a49-80ff-f4d9665be55f)

## Usage

**General Logger**

InvokeAI has a module level logger. You can call it this way.

In this below example, you will use the default logger `InvokeAI` and
all your messages will be logged under that name.

```python

from invokeai.backend.util.logging import logger

logger.critical("CriticalMessage") // In Bold Red
logger.error("Info Message") // In Red
logger.warning("Info Message") // In Yellow
logger.info("Info Message") // In Grey 
logger.debug("Debug Message") // In Grey
```

Results:

```
[12-05-2023 20]::[InvokeAI]::CRITICAL --> This is an info message [In Bold Red]
[12-05-2023 20]::[InvokeAI]::ERROR --> This is an info message [In Red]
[12-05-2023 20]::[InvokeAI]::WARNING --> This is an info message [In Yellow]
[12-05-2023 20]::[InvokeAI]::INFO --> This is an info message [In Grey]
[12-05-2023 20]::[InvokeAI]::DEBUG --> This is an info message [In Grey]
```

**Custom Logger**

If you want to use a custom logger for your module, you can import it
the following way.

```python

from invokeai.backend.util.logging import logging
logger = logging.getLogger(name='Model Manager')

logger.critical("CriticalMessage") // In Bold Red
logger.error("Info Message") // In Red
logger.warning("Info Message") // In Yellow
logger.info("Info Message") // In Grey 
logger.debug("Debug Message") // In Grey
```

Results:

```
[12-05-2023 20]::[Model Manager]::CRITICAL --> This is an info message [In Bold Red]
[12-05-2023 20]::[Model Manager]::ERROR --> This is an info message [In Red]
[12-05-2023 20]::[Model Manager]::WARNING --> This is an info message [In Yellow]
[12-05-2023 20]::[Model Manager]::INFO --> This is an info message [In Grey]
[12-05-2023 20]::[Model Manager]::DEBUG --> This is an info message [In Grey]
```

**When to use custom logger?**

It is recommended to use a custom logger if your module is not a part of
base InvokeAI. For example: custom extensions / nodes.
2023-05-15 02:18:20 +12:00
c4681774a5 Merge branch 'main' into logging-facelift 2023-05-15 02:08:29 +12:00
050add58d2 fix getting conditionings 2023-05-14 12:20:54 +02:00
3d60c958c7 ui: commercial fixes (#3409)
minor commercial fixes
2023-05-14 20:44:06 +12:00
f5df150097 feat(ui): add callback to signal app is ready
needed for commercial
2023-05-14 18:42:15 +10:00
dac82adb5b fix(ui): make logo component non-selectable 2023-05-14 18:41:11 +10:00
b72c9787a9 Revert "comment out customer_attention_context"
This reverts commit 8f8cd90787.

Due to NameError: name 'options' is not defined
2023-05-14 00:37:55 -04:00
2623941d91 Merge branch 'main' into lstein/bugfix/compel 2023-05-13 22:23:59 -04:00
d3a7fea939 Revert "fix: Rework the layout of the parameters scrollbar"
This reverts commit 6f1fc397f7.
2023-05-14 11:45:08 +10:00
5a7b687c84 fix(ui): add missing packages 2023-05-14 11:45:08 +10:00
0020457fc7 fix(ui): tweak settings scheduler styling 2023-05-14 11:45:08 +10:00
658b556544 feat(ui): IAICustomSelect v2, implement for scheduler & model 2023-05-14 11:45:08 +10:00
37da0fc075 feat(ui): IAICustomSelect v1 2023-05-14 11:45:08 +10:00
6d3e8507cc fix(ui): fix "no image" fallbacks 2023-05-14 11:45:08 +10:00
0e9470503f fix: Rework the layout of the parameters scrollbar 2023-05-14 11:45:08 +10:00
d2ebc6741b feat: Add setting to hide / display schedulers 2023-05-14 11:45:08 +10:00
026d3260b4 Add Heun Karras Scheduler 2023-05-14 11:45:08 +10:00
1103ab2844 merge with main 2023-05-13 21:35:19 -04:00
11b2076b46 implement change to web_config suggested by ebr 2023-05-13 21:33:19 -04:00
78533714e3 Merge branch 'main' into logging-facelift 2023-05-14 09:07:51 +12:00
691e1bf829 Make debug messages cyan/blue 2023-05-14 09:06:57 +12:00
47a088d685 rehydrate selectedImage URL when results and uploads are fetched 2023-05-13 09:48:38 +10:00
63db3fc22f reduce queue check interval to 0.5s 2023-05-12 17:54:26 -04:00
ad0bb3f61a fix: queue error should not crash InvocationProcessor
1. if retrieving an item from the queue raises an exception, the
   InvocationProcessor thread crashes, but the API continues running in
   a non-functional state. This fixes the issue
2. when there are no items in the queue, sleep 1 second before checking
   again.
3. Also ensures the thread isn't crashed if an exception is raised from
   invoker, and emits the error event

Intentionally using base Exceptions because for now we don't know which
specific exception to expect.

Fixes (sort of)? #3222
2023-05-12 17:54:26 -04:00
8f8cd90787 comment out customer_attention_context 2023-05-12 13:59:00 -04:00
d796ea7bec feat: Logging Improvements 2023-05-13 02:13:49 +12:00
e5b7dd63e9 fix(nodes): temporarily disable librarygraphs
- Do not retrieve graph from DB until we resolve the issue of changing node schemas causing application to fail to start up due to invalid graphs
2023-05-12 22:33:49 +10:00
af060188bd Merge branch 'main' into lstein/bugfix/compel 2023-05-12 08:22:18 -04:00
4270e7ae25 Feat/ui/improve-language (#3399) 2023-05-12 23:32:50 +12:00
60a565d7de feat(ui): use chakra menu for theme changer 2023-05-12 20:04:29 +10:00
78cf70eaad fix(ui): tweak lang picker style 2023-05-12 20:04:10 +10:00
eebaa50710 fix(ui): fix language picker tooltip 2023-05-12 19:52:21 +10:00
7d582553f2 feat(ui): use chakra menu for language picker 2023-05-12 19:50:34 +10:00
4d6eea7e81 feat(ui): store language in redux 2023-05-12 19:35:03 +10:00
f44593331d ui: misc fixes (#3398)
- do not show canvas intermediates in gallery
- do not show progress image in uploads gallery category
- use custom dark mode `localStorage` key (prevents collision with
commercial)
- use variable font (reduce bundle size by factor of 10)
- change how custom headers are used
- use style injection for building package
- fix tab icon sizes
2023-05-12 21:00:47 +12:00
3d9ecbf3c7 fix(ui): add missing package 2023-05-12 18:55:59 +10:00
032aa1d59c fix(ui): excise most zIndexs
our stacking contexts are accurate, `zIndex` isn't needed
2023-05-12 18:50:54 +10:00
35e0863bdb fix(ui): fix tab icon sizes 2023-05-12 17:56:18 +10:00
14070d674e build(ui): add style injection plugin
when building for package, CSS is all in JS files. when used as a package, it is then injected into the page. bit of a hack to missing CSS in commercial product
2023-05-12 17:56:18 +10:00
108ce06c62 feat(ui): change custom header to be a prop instead of children 2023-05-12 17:56:18 +10:00
da364f3444 feat(ui): use variable font
reduces package build's CSS by an order of magnitude
2023-05-12 17:56:18 +10:00
df5ba75c14 feat(ui): use custom dark mode localStorage key 2023-05-12 17:56:18 +10:00
e4fb9cb33f chore(ui): regen api client 2023-05-12 17:56:18 +10:00
65b527eb20 fix(ui): do not show progress images in uploads gallery category 2023-05-12 17:56:18 +10:00
7dc9d18052 fix(ui): do not show intermediates uploads in gallery 2023-05-12 17:56:18 +10:00
5013a4b9f3 feat(ui): expand config options (#3393)
now may disable individual SD features eg Noise, Variation, etc - stuff
which is not ready for consumption in commercial.
2023-05-12 16:10:17 +12:00
f929359322 Merge branch 'main' into feat/ui/expand-config 2023-05-12 16:06:31 +12:00
6522c71971 feat(nodes): add RandomIntInvocation (#3390)
just outputs a single random int
2023-05-12 16:06:06 +12:00
9c1e65f3a3 Merge branch 'main' into feat/nodes/add-randomintinvocation 2023-05-12 15:56:41 +12:00
ebec200ba6 Remove unused import 2023-05-12 13:56:02 +10:00
e559730b6e feat(nodes): add w/h to latents outputs (#3389)
This reduces the number of nodes needed when working with latents (ie
fewer plain integer value nodes)

Also correct a few mistakes in the fields
2023-05-12 15:40:46 +12:00
0acb8ed85d Merge branch 'main' into feat/nodes/add-w-h-latentsoutput 2023-05-12 15:23:29 +12:00
8c1c9cd702 Merge branch 'main' into feat/nodes/add-randomintinvocation 2023-05-12 15:21:49 +12:00
0ece4686aa fix(nodes): remove Optionals on ImageOutputs (#3392) 2023-05-12 15:21:42 +12:00
af95cef7f9 Merge branch 'main' into fix/nodes/fix-imageoutput-optionals 2023-05-12 15:08:19 +12:00
1eca7a918a feat(ui): make core parameters layout consistent (#3394) 2023-05-12 15:08:07 +12:00
9e6b958023 Merge branch 'main' into feat/ui/consistent-param-layout 2023-05-12 15:06:16 +12:00
f7b99d93ae docs(ui): update ui readme (#3396) 2023-05-12 15:05:55 +12:00
85d03dcd90 Merge branch 'main' into docs/ui/update-ui-readme 2023-05-12 15:04:12 +12:00
032555bcfe fix(model manager): fix string formatting error on model checksum timer (#3397)
The error occurs when loading a model for the first time. (or after
removing its checksum file, probably.)
2023-05-12 15:04:01 +12:00
4caa1f19b2 fix(model manager): fix string formatting error on model checksum timer 2023-05-11 19:06:02 -07:00
95d4bd3012 Merge branch 'lstein/bugfix/compel' of github.com:invoke-ai/InvokeAI into lstein/bugfix/compel 2023-05-11 21:13:29 -04:00
037078c8ad make InvokeAIDiffuserComponent.custom_attention_control a classmethod 2023-05-11 21:13:18 -04:00
6de2f66b50 docs(ui): update ui readme 2023-05-12 11:11:59 +10:00
cd7b248eda Add UniPC / Euler Karras / DPMPP_2 Karras / DEIS / DDPM Schedulers (#3388)
**Features:**

- Add UniPC Scheduler
- Add Euler Karras Scheduler
- Add DPMPP_2 Karras Scheduler
- Add DEIS Scheduler
- Add DDPM Scheduler

**Other:**

- Renamed schedulers to their accurate names: _a = Ancestral, _k =
Karras
- Fix scheduler not defaulting correctly to DDIM.
- Code split SCHEDULER_MAP so its consistently loaded from the same
place.

**Known Bugs:**

- dpmpp_2s not working in img2img for denoising values < 0.8 ==> // This
seems to be an upstream bug. I've disabled it in img2img and canvas
until the upstream bug is fixed.
https://github.com/huggingface/diffusers/issues/1866
2023-05-12 09:06:22 +12:00
6d8c077f4e Merge branch 'main' into unipc-sched 2023-05-12 05:59:13 +12:00
97127e560e Disable dpmpp_2s in img2img & unifiedCanvas
... until upstream bug is fixed.
2023-05-12 04:51:58 +12:00
27dc07d95a Set zero eta by default(fix ddim scheduler error) 2023-05-11 18:49:27 +03:00
f7dc171c4f Rename default schedulers across the app 2023-05-12 03:44:20 +12:00
4b957edfec Add DDPM Scheduler 2023-05-12 03:18:34 +12:00
46ca7718d9 Add DEIS Scheduler 2023-05-12 03:10:30 +12:00
b928d7a6e6 Change scheduler names to be accurate
_a = Ancestral
_k = Karras
2023-05-12 02:59:43 +12:00
8a836247c8 Add DPMPP Single, Euler Karras and DPMPP2 Multi Karras Schedulers 2023-05-12 02:23:33 +12:00
95c3644564 fix it again 2023-05-12 00:10:39 +10:00
799cd07174 feat(ui): make core parameters layout consistent 2023-05-11 22:45:53 +10:00
9af385468d feat(ui): expand config options
now may disable individual SD features eg Noise, Variation, etc - stuff which is not ready for consumption in commercial.
2023-05-11 22:42:13 +10:00
3487388788 Merge branch 'unipc-sched' of https://github.com/blessedcoolant/InvokeAI into unipc-sched 2023-05-12 00:40:24 +12:00
9a383e456d Codesplit SCHEDULER_MAP for reusage 2023-05-12 00:40:03 +12:00
805f9f8f4a Merge branch 'main' into unipc-sched 2023-05-12 00:24:55 +12:00
52aa0c9bbd ui: miscellaneous fixes (#3386) 2023-05-12 00:21:29 +12:00
7f5f4689cc fix(ui): clear progress image on cancel 2023-05-11 22:20:37 +10:00
a3f81f4b98 fix(ui): fix results not displaying
- fix for commercial product
2023-05-11 22:20:37 +10:00
15c59e606f feat(ui): add spinner to gallery progress images
- otherwise you may think you can click it but you cannot
2023-05-11 22:20:37 +10:00
40d4cabecd feat(ui): improve image overlay 2023-05-11 22:20:37 +10:00
3493c8119b feat(ui): improve image preview css and fallback 2023-05-11 22:20:30 +10:00
c1e7460d39 Merge branch 'main' into unipc-sched 2023-05-12 00:11:09 +12:00
3ffff023b2 Add missing key to scheduler_map
It was breaking coz the sampler was not being reset. So needs a key on each. Will simplify this later.
2023-05-12 00:08:50 +12:00
f9384be59b fix(ui): fix init image causing overflow 2023-05-11 20:55:30 +10:00
6cf308004a fix(nodes): remove Optionals on ImageOutputs 2023-05-11 20:54:57 +10:00
d1029138d2 Default to DDIM if scheduler is missing 2023-05-11 22:54:35 +12:00
06b5800d28 Add UniPC Scheduler 2023-05-11 22:43:18 +12:00
483f2ccb56 feat(nodes): add RandomIntInvocation
just outputs a single random int
2023-05-11 20:33:32 +10:00
93ced0bec6 feat(nodes): add w/h to latents outputs
This reduces the number of nodes needed when working with latents (ie fewer plain integer value nodes)

Also correct a few mistakes in the fields
2023-05-11 20:32:55 +10:00
4333852c37 fix(nodes): fix missing context arg in LatentsToLatents 2023-05-11 19:28:42 +10:00
3baa230077 Merge branch 'main' into lstein/bugfix/compel 2023-05-11 00:50:45 -04:00
9e594f9018 pad conditioning tensors to same length
fixes crash when prompt length is greater than 75 tokens
2023-05-11 00:34:15 -04:00
b0c41b4828 filter our websocket errors (#3382)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-05-11 01:58:40 +00:00
e0d6946b6b fix(nodes): fix metadata test
- `progress_images` is no longer a parameter
- `seamless` needs to be reworked as a model config, removed as a param
2023-05-11 11:55:51 +10:00
bf7ea8309f fix(ui): change tab to img2img when selected initial image 2023-05-11 11:55:51 +10:00
54b65f725f fix(ui): rescale canvas on gallery resize 2023-05-11 11:55:51 +10:00
8ef49c2640 fix(ui): fix canvas img2img if no init image selected 2023-05-11 11:55:51 +10:00
f488b1a7f2 fix(nodes): fix usage of Optional 2023-05-11 11:55:51 +10:00
d2edb7c402 build(ui): add yalc to gitignore 2023-05-11 11:55:51 +10:00
f0a3f07b45 feat(ui): antialias progress images 2023-05-11 11:55:51 +10:00
b42b630583 fix(ui): h/w disabled bug 2023-05-11 11:55:51 +10:00
31a78d571b feat(ui): canvas antialiasing 2023-05-11 11:55:51 +10:00
fdc2232ea0 feat(ui): progress images in gallery and viewer 2023-05-11 11:55:51 +10:00
e94d0b2d40 fix(ui): fix janky gallery image delete 2023-05-11 11:55:51 +10:00
75ccbaee9c fix(ui): disable invoke button as soon as pressed 2023-05-11 11:55:51 +10:00
2848c8397c fix(ui): fix missing images on reload issue
- Mainly an issue for commercial due to incomplete metadata handling
2023-05-11 11:55:51 +10:00
fe8b5193de feat(ui): half-baked use all parameters
until we have a better system for metadata, this will remain half-baked
2023-05-11 11:55:51 +10:00
3d1470399c fix(ui): fix metadataviewer styling 2023-05-11 11:55:51 +10:00
fcf9c63049 fix(ui): fix copying image link 2023-05-11 11:55:51 +10:00
7bfb5640ad cleanup(ui): Remove unused vars + minor bug fixes 2023-05-11 11:55:51 +10:00
15e57e3a3d fix(ui): duplicate gallery in nodes editor 2023-05-11 11:55:51 +10:00
279468c0e8 feat(ui): restore tab names 2023-05-11 11:55:51 +10:00
c565812723 feat(ui): organize parameters panels 2023-05-11 11:55:51 +10:00
ec6c8e2a38 feat(ui): wip layout 2023-05-11 11:55:51 +10:00
77f2690711 fix(ui): remove duplicate gallery 2023-05-11 11:55:51 +10:00
c4b3a24ed7 feat(ui): revert tabs to txt2img/img2img 2023-05-11 11:55:51 +10:00
33c69359c2 feat(ui): add IAICollapse for parameters 2023-05-11 11:55:51 +10:00
864f4bb4af feat(ui): wip img2img layouting 2023-05-11 11:55:51 +10:00
5365f42a04 feat(ui): wip layouting 2023-05-11 11:55:51 +10:00
3dc60254b9 feat(ui): support collect nodes 2023-05-11 11:55:51 +10:00
027a8562d7 fix(ui): default node model selection 2023-05-11 11:55:51 +10:00
34f3a0f0e3 feat(nodes): improve default model choosing output 2023-05-11 11:55:51 +10:00
d0bac1675e fix(nodes): fix ImageOutput Config 2023-05-11 11:55:51 +10:00
4e56c962f4 fix(nodes): fix infill docstrings 2023-05-11 11:55:51 +10:00
4ef0e43759 fix(nodes): remove dataURL invocation 2023-05-11 11:55:51 +10:00
6945d10297 chore(ui): regen api client 2023-05-11 11:55:51 +10:00
4d6cef7ac8 fix(ui): fix types bug 2023-05-11 11:55:51 +10:00
a7786d5ff2 fix(nodes): restore seamless to TextToLatents 2023-05-11 11:55:51 +10:00
6c1de975d9 feat(nodes): add infill nodes 2023-05-11 11:55:51 +10:00
a1079e455a feat(nodes): cleanup unused params, seed generation 2023-05-11 11:55:51 +10:00
5457c7f069 fix(ui): use lodash-es instead of lodash 2023-05-11 11:55:51 +10:00
b8c1a3f96c chore(ui): remove unused babelrc & npm script 2023-05-11 11:55:51 +10:00
cee8e85f76 chore(ui): bump redux-remember 2023-05-11 11:55:51 +10:00
09f166577e feat(ui): migrate to redux-remember 2023-05-11 11:55:51 +10:00
bcc21531fb feat(ui): update for InfillInvocation 2023-05-11 11:55:51 +10:00
da4eacdffe feat(nodes): add InfillInvocation 2023-05-11 11:55:51 +10:00
6102e560ba feat(nodes): add LatentsToImage node (VAE encode) 2023-05-11 11:55:51 +10:00
ff3aa57117 feat(ui): fix endless gallery scroll for single col layout 2023-05-11 11:55:51 +10:00
49db6f4fac fix(nodes): fix trivial typing issues 2023-05-11 11:55:51 +10:00
20f6a597ab fix(nodes): add MetadataColorField 2023-05-11 11:55:51 +10:00
04c453721c feat(ui): tweak gallery loading indicator 2023-05-11 11:55:51 +10:00
350ffecc1f feat(ui): endless gallery scroll 2023-05-11 11:55:51 +10:00
b0557aa16b fix(ui): fix currentimagepreview not working for uploads 2023-05-11 11:55:51 +10:00
1c9429a6ea feat(ui): wip canvas 2023-05-11 11:55:51 +10:00
206e6b1730 feat(nodes): wip inpaint node 2023-05-11 11:55:51 +10:00
357cee2849 fix(nodes): fix cfg scale min value 2023-05-11 11:55:51 +10:00
0b49997bb6 feat(nodes): allow uploaded images to be any ImageType (eg intermediates) 2023-05-11 11:55:51 +10:00
5e09dd380d Revert "feat(nodes): free gpu mem after invocation"
This reverts commit 99cb33f477306d5dcc455efe04053ce41b8d85bd.
2023-05-11 11:55:51 +10:00
c7303adb0d feat(ui): fix generation mode logic 2023-05-11 11:55:51 +10:00
ed1f096a6f feat(ui): wip canvas migration 4 2023-05-11 11:55:51 +10:00
6ab5d28cf3 feat(ui): wip canvas migration, createListenerMiddleware 2023-05-11 11:55:51 +10:00
a75148cb16 feat(nodes): free gpu mem after invocation 2023-05-11 11:55:51 +10:00
f7bbc4004a feat(ui): wip canvas nodes migration 3 2023-05-11 11:55:51 +10:00
cee21ca082 feat(ui): wip canvas nodes migration 2 2023-05-11 11:55:51 +10:00
08ec12b391 feat(ui): wip canvas nodes migration 2023-05-11 11:55:51 +10:00
ff5e2a9a8c chore(ui): regen api client 2023-05-11 11:55:51 +10:00
e0b9b5cc6c feat(nodes): add dataURL to image node 2023-05-11 11:55:51 +10:00
aca4770481 fixed compel.py as requested 2023-05-10 21:40:44 -04:00
5d5157fc65 make conditioning.py work with compel 1.1.5 2023-05-10 18:08:33 -04:00
fb6ef61a4d change path for locale (#3381)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-05-10 10:30:17 -04:00
ee24ad7b13 fix(nodes): fix broken docs routes 2023-05-10 08:28:17 -04:00
f8e90ba3f0 feat(nodes): add ui build static route 2023-05-10 08:28:17 -04:00
ad0b70ca23 fix(nodes): fix #3306 (#3377)
Check if the cache has the object before deleting it.
2023-05-10 17:39:45 +12:00
7dfa135b2c fix(nodes): fix #3306
Check if the cache has the object before deleting it.
2023-05-10 15:29:10 +10:00
beeaa05658 Update dependencies to get deterministic image generation behavior (main branch) (#3354)
This PR updates to `xformers ~= 0.0.19` and `torch ~= 2.0.0`, which
together seem to solve the non-deterministic image generation issue that
was previously seen with earlier versions of `xformers`.
2023-05-10 00:10:51 -04:00
6b6d654f60 Merge branch 'main' into enhance/update-dependencies 2023-05-09 23:56:46 -04:00
853c83d0c2 surface detail field for 403 errors 2023-05-09 12:40:19 +10:00
1809990ed4 if backend returns an error, show it in toast 2023-05-09 11:09:36 +10:00
79d49853d2 use websocket transport first for socket.io 2023-05-09 11:01:02 +10:00
1f608d3743 add v2.3 branch to push trigger (#3363)
Update the push trigger with the branch which should deploy the docs,
also bring over the updates to the workflow from the v2.3 branch and:

- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method (`pip install ".[docs]"`)
2023-05-08 16:26:06 -04:00
df024dd982 bring changes from v2.3 branch over
- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method
2023-05-08 21:50:00 +02:00
45da85765c add v2.3 branch to push trigger 2023-05-08 21:10:20 +02:00
bd0ad59c27 bump compel version 2023-05-07 15:22:46 -04:00
cce40acba5 Merge branch 'enhance/update-dependencies' of github.com:invoke-ai/InvokeAI into enhance/update-dependencies 2023-05-07 15:22:31 -04:00
bc9491ab69 bump compel version 2023-05-07 15:21:24 -04:00
f28632980d Merge branch 'main' into lstein/global-configuration 2023-05-07 07:52:46 -04:00
b909bac0dc Merge branch 'main' into enhance/update-dependencies 2023-05-07 21:44:43 +12:00
8618e41b32 Deploy documentation from v2.3 branch rather than main (#3356)
This PR instructs github to deploy documentation pages from the v2.3
branch.
2023-05-07 21:43:44 +12:00
4687f94141 Merge branch 'main' into actions/mkdocs-deploy 2023-05-07 21:43:18 +12:00
440912dcff feat(ui): make base log level debug 2023-05-07 15:36:37 +10:00
8b87a26e7e feat(ui): support collect nodes 2023-05-07 15:36:37 +10:00
44ae93df3e Deploy documentation from v2.3 branch rather than main 2023-05-06 23:56:04 -04:00
42d938fda5 remove debugging statement 2023-05-06 23:54:11 -04:00
8f80ba9520 update dependencies to get deterministic image generation 2023-05-06 23:09:24 -04:00
25ce47c44f remove reference to globals in compel.py 2023-05-06 22:49:35 -04:00
afd2e32092 Merge branch 'main' into lstein/global-configuration 2023-05-06 21:20:25 -04:00
2b213da967 add -y to the automated install instructions (#3349)
hi there, love the project! i noticed a small typo when going over the
install process.

when copying the automated install instructions from the docs into a
terminal, the line to install the python packages failed as it was
missing the `-y` flag.
2023-05-06 13:34:37 -04:00
e91e1eb9aa Merge branch 'main' into patch-1 2023-05-06 13:34:12 -04:00
b24129fb3e Fix logger namespace clash in web server (#3344)
This PR fixes a bug that appeared in the legacy web server after the
logging PR was merged.

closes #3343
2023-05-06 08:35:13 -04:00
350b1421bb Merge branch 'main' into lstein/bugfix/logger-namespace 2023-05-06 08:14:44 -04:00
f01c79a94f add -y to the automated install instructions
when copying the automated install instructions from the docs into a terminal, the line to install the python packages failed as it was missing the `-y` flag.
2023-05-05 21:28:00 -04:00
463f6352ce Add compel node and conditioning field type (#3265)
Done as I said in title, but need to test(and understand) how cli works,
as previously it uses single prompt and now it's positive and negative.
2023-05-06 13:05:04 +12:00
a80fe05e23 Rename compel node 2023-05-05 21:30:16 +03:00
58d7833c5c Review changes 2023-05-05 21:09:29 +03:00
5012f61599 Separate conditionings back to positive and negative 2023-05-05 15:47:51 +03:00
85c33823c3 Merge branch 'main' into feat/compel_node 2023-05-05 14:41:45 +12:00
c83a112669 Fix inpaint node (#3284)
Seems like this is the only change needed for the existing inpaint code
to work as a node. Kyle said on Discord that inpaint shouldn't be a
node, so feel free to just reject this if this code is going to be gone
soon.
2023-05-05 14:41:13 +12:00
e04ada1319 Merge branch 'main' into patch-1 2023-05-05 10:38:45 +10:00
d866dcb3d2 close #3343 2023-05-04 20:30:59 -04:00
81ec476f3a Revert seed field addition 2023-05-04 21:50:40 +03:00
1e6adf0a06 Fix default graph and test 2023-05-04 21:14:31 +03:00
7d221e2518 Combine conditioning to one field(better fits for multiple type conditioning like perp-neg) 2023-05-04 20:14:22 +03:00
742ed19d66 add missing config module 2023-05-04 01:20:30 -04:00
29c2ada23c add test for the configuration module 2023-05-04 00:45:52 -04:00
e4196bbe5b adjust non-app modules to use new config system 2023-05-04 00:43:51 -04:00
15ffb53e59 remove globals, args, generate and the legacy CLI 2023-05-03 23:36:51 -04:00
90054ddf0d use InvokeAISettings for app-wide configuration 2023-05-03 22:30:30 -04:00
56d3cbead0 Merge branch 'main' into feat/compel_node 2023-05-04 00:28:33 +03:00
5e8c97f1ba [Enhancement] Regularize logging messages (#3176)
# Intro

This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions:

```
 ### A critical error
 *** A non-fatal error
 ** A warning
  >> Informational message
        | Debugging message
```

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add InvokeAI's
informational message decorations, while `ialog.error("foo")` will add
the decorations.
    
# Usage:

This is a thin wrapper around the standard Python logging module. It can
be used in several ways:


## Module-level logging style
 
This style logs everything through a single default logging object and
is identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus to
logging:
    
```
      import invokeai.backend.util.logging as logger
    
      logger.debug('this is a debugging message')
      logger.info('this is a informational message')
      logger.log(level=logging.CRITICAL, 'get out of dodge')

      logger.disable(level=logging.INFO)
      logger.basicConfig(filename='/var/log/invokeai.log')
      logger.error('this will be logged to console and to invokeai.log')
```    

Internally these functions all go through a custom logging object named
"invokeai". You can access it to perform additional customization in
either of these ways:

```
logger = logger.getLogger()
logger = logger.getLogger('invokeai')
```
    
## Object-oriented style

For more control, the logging module's object-oriented logging style is
also supported. The API is identical to the vanilla logging usage. In
fact, the only thing that has changed is that the getLogger() method
adds a custom formatter to the log messages.
    
```
     import logging
     from invokeai.backend.util.logging import InvokeAILogger
    
     logger = InvokeAILogger.getLogger(__name__)
     fh = logging.FileHandler('/var/invokeai.log')
     logger.addHandler(fh)
     logger.critical('this will be logged to both the console and the log file')
```

## Within the nodes API

From within the nodes API, the logger module is stored in the `logger`
slot of InvocationServices during dependency initialization. For
example, in a router, the idiom is:

```
from ..dependencies import ApiDependencies
logger = ApiDependencies.invoker.services.logger
logger.warning('uh oh')
```

Currently, to change the logger used by the API, one must change the
logging module passed to `ApiDependencies.initialize()` in `api_app.py`.
However, this will eventually be replaced with a method to select the
preferred logging module using the configuration file (dependent on
merging of PR #3221)
2023-05-03 15:00:05 -04:00
4687ad4ed6 Merge branch 'main' into enhance/invokeai-logs 2023-05-03 13:36:06 -04:00
994b247f8e feat(ui): do not persist gallery images
- I've sorted out the issues that make *not* persisting troublesome, these will be rolled out with canvas
- Also realized that persisting gallery images very quickly fills up localStorage, so we can't really do it anyways
2023-05-03 23:41:48 +10:00
0419f50ab0 chore(ui): bump react-virtuoso
- Resolves an issue with gallery not rendering all items
2023-05-02 20:15:29 +10:00
f9f40adcdc fix(nodes): fix t2i graph
Removed width and height edges.
2023-05-02 13:11:28 +10:00
3264d30b44 feat(nodes): allow multiples of 8 for dimensions 2023-05-02 12:01:52 +10:00
4d885653e9 feat(ui): tidy 2023-05-02 11:27:08 +10:00
475b6bef53 feat(ui): use windowing for gallery
vastly improves the gallery performance when many images are loaded.

- `react-virtuoso` to do the virtualized list
- `overlayscrollbars` for a scrollbar
2023-05-02 11:27:08 +10:00
d39de0ad38 fix(nodes): fix duplicate Invoker start/stop events 2023-05-01 18:24:37 -04:00
d14a7d756e nodes-api: enforce single thread for the processor
On hyperthreaded CPUs we get two threads operating on the queue by
default on each core. This cases two threads to process queue items.
This results in pytorch errors and sometimes generates garbage.

Locking this to single thread makes sense because we are bound by the
number of GPUs in the system, not by CPU cores. And to parallelize
across GPUs we should just start multiple processors (and use async
instead of threading)

Fixes #3289
2023-05-01 18:24:37 -04:00
b050c1bb8f use logger in ApiDependencies 2023-05-01 16:27:44 -04:00
276dfc591b feat(ui): disable w/h when img2img & not fit 2023-05-01 17:28:22 +10:00
b49d76ebee feat(nodes): fix image to image fit param
it was ignored previously.
2023-05-01 17:28:22 +10:00
a6be44789b fix(ui): progress image rerender, checkbox 2023-05-01 11:16:49 +10:00
a4313c26cb fix: Do not hide Preview button & color code it 2023-05-01 11:16:49 +10:00
d4b250d509 feat(ui): Add auto show progress previews setting 2023-05-01 11:16:49 +10:00
29743a9e02 fix(ui): next/prev image buttons 2023-05-01 11:16:49 +10:00
fecb77e344 feat(ui): dndkit --> rnd for draggable 2023-05-01 11:16:49 +10:00
779671753d feat(ui): tweak floating preview 2023-05-01 11:16:49 +10:00
d5e152b35e fix(ui): ignore events after canceling session 2023-05-01 11:16:49 +10:00
270657a62c feat(ui): gallery & progress image refactor 2023-05-01 11:16:49 +10:00
3601b9c860 feat(ui): revamp status indicator 2023-05-01 11:16:49 +10:00
c8fe12cd91 feat(ui): init image tweaks 2023-05-01 11:16:49 +10:00
deae5fbaec fix(ui): socket event types 2023-05-01 11:16:49 +10:00
5b558af2b3 fix(ui): fix metadata viewer scroll 2023-05-01 11:16:49 +10:00
4150d5306f chore(ui): regen api client 2023-05-01 11:16:49 +10:00
8c2e4700f9 feat(ui): persist gallery state 2023-05-01 11:16:49 +10:00
adaecada20 fix(ui): fix current image seed button 2023-05-01 11:16:49 +10:00
258895bcc9 feat(ui): being dismantling old sio stuff, fix recall seed/prompt/init
- still need to fix up metadataviewer's recall features
2023-05-01 11:16:49 +10:00
2eb7c25bae feat(ui): clean up and simplify socketio middleware 2023-05-01 11:16:49 +10:00
2e4e9434c1 fix(ui): fix initial image for uploads 2023-05-01 11:16:49 +10:00
0cad204e74 feat(ui): add error handling for linear graph generation 2023-05-01 11:16:49 +10:00
0bc2edc044 Merge branch 'main' into enhance/invokeai-logs 2023-04-29 11:00:18 -04:00
16488e7db8 fix tests 2023-04-29 10:59:50 -04:00
974841926d logger is a interchangeable service 2023-04-29 10:48:50 -04:00
8db20e0d95 rename log to logger throughout 2023-04-29 09:43:40 -04:00
d00d29d6b5 feat(ui): update settings modal 2023-04-29 18:28:19 +10:00
dc976cd665 feat(ui): add switch for logging 2023-04-29 18:28:19 +10:00
6d6b986a66 feat(ui): remove Console and redux logging state 2023-04-29 18:28:19 +10:00
bffdede0fa feat(ui): improve log messages 2023-04-29 18:28:19 +10:00
a4c258e9ec feat(ui): add roarr logger 2023-04-29 18:28:19 +10:00
8d837558ac fix(ui): fix spelling of systemPersistDenylist.ts 2023-04-29 18:28:19 +10:00
e673ed08ec fix(ui): restore missing chakra-cli package
(amending to try and get the workflow to run)
2023-04-29 12:21:11 +10:00
f0e07bff5a fix bad logging path in config script 2023-04-28 15:39:00 -04:00
3ec06a1fc3 Merge branch 'main' into enhance/invokeai-logs 2023-04-28 10:10:33 -04:00
6b79e2b407 Merge branch 'main' into enhance/invokeai-logs
- resolve conflicts
- remove unused code identified by pyflakes
2023-04-28 10:09:46 -04:00
0eed9dbc44 fix(ui): fix packaging import issue (#3294)
I accidentally merged a broken #3292 (merge conflicts incorrectly
resolved). Fixing it
2023-04-29 00:39:56 +12:00
53c7832fd1 fix(ui): fix packaging import issue 2023-04-28 22:37:51 +10:00
ca1cc0e2c2 feat(ui): rerender mitigation sweep 2023-04-28 22:00:18 +10:00
5d8728c7ef feat(ui): persist socket session ids and re-sub on connect 2023-04-28 22:00:18 +10:00
a8cec4c7e6 fix(ui): improve schema parsing error handling 2023-04-28 22:00:18 +10:00
2b5ccdc55f build(ui): treeshake lodash via lodash-es 2023-04-28 21:56:43 +10:00
d92d5b5258 build(ui): fix types exports 2023-04-28 21:56:43 +10:00
a591184d2a build(ui): remove unneeded types file 2023-04-28 21:56:43 +10:00
ee881e4c78 build(ui): add react/react-dom peer deps 2023-04-28 21:56:43 +10:00
61fbb24e36 feat(ui): set up for packaging 2023-04-28 21:56:43 +10:00
d582949488 feat(ui): rename main app components 2023-04-28 21:56:43 +10:00
de574eb4d9 chore(ui): upgrade all packages 2023-04-28 21:56:43 +10:00
bfd90968f1 chore(ui): tidy npm structure 2023-04-28 21:56:43 +10:00
4a924c9b54 feat(nodes): hardcode resize latents downsampling 2023-04-28 09:52:09 +10:00
0453d60c64 fix(nodes): fix slatents and rlatents bugs 2023-04-28 09:52:09 +10:00
c4f4f8b1b8 fix(nodes): remove unused width and height from t2l 2023-04-28 09:52:09 +10:00
3e80eaa342 feat(nodes): add resize and scale latents nodes
- this resize/scale latents is what is needed for hires fix
- also remove unused `seed` from t2l
2023-04-28 09:52:09 +10:00
00a0cb3403 fix(ui): update exported types 2023-04-28 09:20:09 +10:00
ea93cad5ff fix(ui): update to match change in route params 2023-04-28 09:19:03 +10:00
4453a0d20d feat(ui): remove toasts for network bc we have status to tell us 2023-04-28 09:18:19 +10:00
1e837e3c9d fix(ui): add formatted neg prompt for linear nodes (#3282)
* fix(ui): add formatted neg prompt for linear nodes

* remove conditional

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-27 15:05:35 -04:00
0f95f7cea3 Fix inpaint node
Seems like this is the only change needed for the existing inpaint node to work.
2023-04-27 11:03:07 -07:00
0b0068ab86 Merge branch 'main' into feat/compel_node 2023-04-27 14:53:10 +03:00
31c7fa833e feat(ui): simplify image display 2023-04-27 14:10:44 +10:00
db16ca0079 fix(ui): Current Image Buttons position 2023-04-27 14:10:44 +10:00
a824f47bc6 fix(nodes): use absolute path when deleting 2023-04-27 14:10:44 +10:00
99392debe8 feat(ui): refactor DeleteImageModal
- refactor the component
- use translations
- add config for systems where deleted images are not sent to bin (only changes the messaging)
2023-04-27 14:10:44 +10:00
0cc739afc8 feat(nodes): use send2trash to delete images, fix thumbnail_path 2023-04-27 14:10:44 +10:00
0ab62b0343 feat(ui): "blacklist" -> "denylist" 2023-04-27 14:10:44 +10:00
75d25dd5cc feat(ui): restore image deletion functionality 2023-04-27 14:10:44 +10:00
2e54da13d8 chore(ui): regen api client 2023-04-27 14:10:44 +10:00
f34f416bf5 fix(ui): handle floats in NumberInputFieldComponent 2023-04-27 14:10:44 +10:00
021c63891d fix(ui): fix config types and merging 2023-04-27 14:10:44 +10:00
a968862e6b feat(ui): Move img2img badge info to top right 2023-04-27 14:10:44 +10:00
a08189d457 ui: Match styling of img2img to the rest of the accordions 2023-04-27 14:10:44 +10:00
0a936696c3 feat(ui): add config slice, configuration default values 2023-04-27 14:10:44 +10:00
55e33eaf4c docs: add note on README about migration (#3277) 2023-04-27 13:17:43 +12:00
3da5fb223f docs: add note on README about migration 2023-04-27 11:05:32 +10:00
a3c5a664e5 fix(ui): update UI to handle uploads with alternate URLs (#3274) 2023-04-26 07:14:08 -07:00
b638fb2f30 fix(ui): use name in response instead of parsing out of URL to handle alternative URLs 2023-04-26 09:48:16 -04:00
c1b10b2222 feat(ui): open in new tab @ hoverable image 2023-04-26 12:40:10 +10:00
bee29714d9 fix(ui): fix templates not refreshing correctly 2023-04-26 12:40:10 +10:00
d40d5276dd feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
568f0aad71 feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
38474fa9d4 feat(ui): add lil spinner to loading 2023-04-26 12:17:01 +10:00
f7f974a28b fix(ui): fix inverted conditional 2023-04-26 12:17:01 +10:00
3c150b384c fix(ui): fix export of ApplicationFeature type 2023-04-26 12:17:01 +10:00
65816049ba feat(ui): add secret loading screen override button 2023-04-26 12:17:01 +10:00
c1c881ded5 feat(ui): support disabledFeatures, add nicer loading
- `disabledParametersPanels` -> `disabledFeatures`
- handle disabling `faceRestore`, `upscaling`, `lightbox`, `modelManager` and OSS header links/buttons
- wait until models are loaded to hide loading screen
- also wait until schema is parsed if `nodes` is an enabled tab
2023-04-26 12:17:01 +10:00
82c4dd8b86 fix(api): return same URL on location header 2023-04-26 06:29:30 +10:00
711d09a107 feat(nodes): add get_uri method to image storage
- gets the external URI of an image
2023-04-26 06:29:30 +10:00
74013b6611 fix(nodes): address feedback 2023-04-26 06:29:30 +10:00
790f399986 feat(nodes): tidy images routes 2023-04-26 06:29:30 +10:00
73cdd36594 feat(nodes): raise HTTPExceptions instead of returning Reponses 2023-04-26 06:29:30 +10:00
50ac3eb28d feat(nodes): add delete_image & delete_images routes 2023-04-26 06:29:30 +10:00
d753cff91a Undo debug message 2023-04-25 13:18:50 +03:00
89f1909e4b Update default graph 2023-04-25 13:11:50 +03:00
37916a22ad Use textual inversion manager from pipeline, remove extra conditioning info for uc 2023-04-25 12:53:13 +03:00
76e5d0595d fix(ui): fix no progress images when gallery is empty (#3268)
When gallery was empty (and there is therefore no selected image), no
progress images were displayed.

- fix by correcting the logic in CurrentImageDisplay
- also fix app crash introduced by fixing the first bug
2023-04-25 17:48:24 +12:00
f03cb8f134 fix(ui): fix no progress images when gallery is empty 2023-04-25 15:00:54 +10:00
c2a0e8afc3 [Bugfix] prevent cli crash (#3132)
Prevent legacy CLI crash caused by removal of convert option
    
- Compensatory change to the CLI that prevents it from crashing when it
tries to import a model.
- Bug introduced when the "convert" option removed from the model
manager.
2023-04-25 03:55:33 +01:00
31a904b903 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:28:45 +01:00
c174cab3ee [Bugfix] fixes and code cleanup to update and installation routines (#3101)
- Fix the update script to work again and fixes the ambiguity between
when a user wants to update to a tag vs updating to a branch, by making
these two operations explicitly separate.
- Remove dangling functions and arguments related to legacy checkpoint
conversion. These are no longer needed now that all legacy models are
either converted at import time, or on-the-fly in RAM.
2023-04-25 03:28:23 +01:00
fe12938c23 update to diffusers 0.15 and fix code for name changes (#3201)
- This is a port of #3184 to the main branch
2023-04-25 03:23:24 +01:00
4fa5c963a1 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:10:51 +01:00
48ce256ba2 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-25 02:49:59 +01:00
8cb2fa8600 Restore log_tokenization check 2023-04-25 04:29:17 +03:00
8f460b92f1 Make latent generation nodes use conditions instead of prompt 2023-04-25 04:21:03 +03:00
d99a08a441 Add compel node and conditioning field type 2023-04-25 03:48:44 +03:00
7555b1f876 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly (#3256)
I noticed that the current invokeai-new.py was using almost all of a CPU
core. After a bit of profileing I noticed that there were many thousands
of calls to epoll() which suggested to me that something wasn't sleeping
properly in asyncio's loop.

A bit of further investigation with Python profiling revealed that the
__dispatch_from_queue() method in FastAPIEventService
(app/api/events.py:33) was also being called thousands of times.

I believe the asyncio.sleep(0.001) in that method is too aggressive (it
means that the queue will be polled every 1ms) and that 0.1 (100ms) is
still entirely reasonable.
2023-04-24 19:35:27 +12:00
a537231f19 Merge branch 'main' into reduce-event-polling 2023-04-24 19:14:10 +12:00
8044d1b840 translationBot(ui): update translation (Turkish)
Currently translated at 11.3% (58 of 512 strings)

translationBot(ui): added translation (Turkish)

Co-authored-by: ismail ihsan bülbül <e-ben@msn.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/tr/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
2b58ce4ae4 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 75.0% (380 of 506 strings)

Co-authored-by: Patrick Tien <ivetien@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
ef605cd76c translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

Co-authored-by: Fabian Bahl <fabian98@bahl-netz.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
a84b5b168f translationBot(ui): update translation (Swedish)
Currently translated at 34.7% (176 of 506 strings)

translationBot(ui): added translation (Swedish)

Co-authored-by: figgefigge <qvintuz@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/sv/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
16f6ee04d0 translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

translationBot(ui): update translation (German)

Currently translated at 80.8% (409 of 506 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
44be057aa3 translationBot(ui): update translation (Ukrainian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (English)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Ukrainian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/en/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
422f6967b2 translationBot(ui): update translation (Ukrainian)
Currently translated at 75.8% (384 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 85.5% (433 of 506 strings)

Co-authored-by: mitien <mitien@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
4528cc8ba6 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
87e91ebc1d translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
fd00d111ea translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (504 of 504 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
b8dc9000bd translationBot(ui): update translation (German)
Currently translated at 73.4% (370 of 504 strings)

Co-authored-by: Jaulustus <jaulustus@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
58c1066765 translationBot(ui): update translation (Finnish)
Currently translated at 18.2% (92 of 504 strings)

translationBot(ui): added translation (Finnish)

Co-authored-by: Juuso V <juuso.vantola@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fi/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
37096a697b translationBot(ui): added translation (Mongolian)
Co-authored-by: Bouncyknighter <gebifirm@gmail.com>
2023-04-24 16:05:16 +10:00
17d0920186 translationBot(ui): update translation (Japanese)
Currently translated at 73.0% (368 of 504 strings)

Co-authored-by: 唐澤 克幸 <4ranci0ne@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
1e05538364 translationBot(ui): added translation (Vietnamese)
Co-authored-by: techybrain-dev <techybrain.dev@gmail.com>
2023-04-24 16:05:16 +10:00
cf28617cd6 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly 2023-04-23 21:27:02 +01:00
d0d8640711 feat(ui): add reload schema button (#3252) 2023-04-23 19:51:37 +12:00
e6158d1874 feat(ui): add reload schema button 2023-04-23 17:49:02 +10:00
2e9d1ea8a3 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL (#3250)
* if `shouldFetchImages` is passed in, UI will make an additional
request to get valid image URL when an invocation is complete
* this is necessary in order to have optional authorization for images
2023-04-23 16:00:13 +10:00
59b0153236 add to types 2023-04-23 15:59:55 +10:00
9f8ff912c4 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL 2023-04-23 15:59:55 +10:00
f0e4a2124a [Nodes UI] More Work (#3248)
- Style the Minimap
- Made the Node UI Legend Responsive
- Set Min Width for nodes on Spawn so resize doesn't snap.
- Initial Implementation of Node Search
- Added FuseJS to handle the node filtering
2023-04-23 17:51:40 +12:00
11ab5c7d56 fix(ui): Fix up arrow not working on unfiltered list 2023-04-23 15:18:35 +12:00
3f334d9e5e feat(ui): Add fusejs to NodeSearch 2023-04-23 15:14:44 +12:00
ff891b1ff2 feat(ui): Basic Node Search Component
Very buggy
2023-04-23 13:35:02 +12:00
2914ee10b0 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-22 20:21:59 +01:00
e29c2fb782 Merge branch 'more-nodes-work' of https://github.com/blessedcoolant/InvokeAI into more-nodes-work 2023-04-23 02:53:25 +12:00
b763f1809e feat(ui): Stylize Node Minimap 2023-04-23 02:52:32 +12:00
d26b44104a fix(ui): minor tidy 2023-04-23 00:45:03 +10:00
b73fd2a6d2 fix(ui): Set Min Width for Nodes 2023-04-23 00:55:43 +12:00
f258aba6d1 chore(ui): Make the Node UI Legend Responsive 2023-04-23 00:55:22 +12:00
2e70848aa0 Responsive Mobile Layout (#3207)
The first draft for a Responsive Mobile Layout for InvokeAI. Some basic
documentation to help contributors. // Notes from: @blessedcoolant

---

The whole rework needs to be done using the `mobile first` concept where
the base design will be catered to mobile and we add responsive changes
as we grow to larger screens.

**Added**

- Basic breakpoints have been added to the `theme.ts` file that indicate
at which values Chakra makes the responsive changes.
- A basic `useResolution` hook has been added that either returns
`mobile`, `tablet` or `desktop` based on the breakpoint. We can
customize this hook further to do more complex checks for us if need be.

**Syntax**

- Any Chakra component is directly capable of taking different values
for the different breakpoints set in our `theme.ts` file. These can be
passed in a few ways with the most descriptive being an object. For
example:

`flexDir={{ base: 'column', xl: 'row' }}` - This would set the `0em and
above` to be column for the flex direction but change to row
automatically when we hit `xl` and above resolutions which in our case
is `80em or 1280px`. This same format is applicable for any element in
Chakra.

`flexDir={['column', null, null, 'row', null]}` - The above syntax can
also be passed as an array to the property with each value in the array
corresponding to each breakpoint we have. Setting `null` just bypasses
it. This is a good short hand but I think we stick to the above syntax
for readability.

**Note**: I've modified a few elements here and there to give an idea on
how the responsive syntax works for reference.

---

**Problems to be solved** @SammCheese 

- Some issues you might run into are with the Resizable components.
We've decided we will get not use resizable components for smaller
resolutions. Doesn't make sense. So you'll need to make conditional
renderings around these.
- Some components that need custom layouts for different screens might
be better if ported over to `Grid` and use `gridTemplateAreas` to swap
out the design layout. I've demonstrated an example of this in a commit
I've made. I'll let you be the judge of where we might need this.
- The header will probably need to be converted to a burger menu of some
sort with the model changing being handled correctly UX wise. We'll
discuss this on discord.

---

Anyone willing to contribute to this PR can feel free to join the
discussion on discord.

https://discord.com/channels/1020123559063990373/1020839344170348605/threads/1097323866780606615
2023-04-22 22:34:30 +10:00
e973aeef0d Merge branch 'main' into responsive-ui 2023-04-22 14:31:19 +02:00
50e1ac731d fix(ui): make input/outputs renderfn callback 2023-04-22 22:25:17 +10:00
43addc1548 fix(ui): memoize everything nodes 2023-04-22 22:25:17 +10:00
4901911c1a fix(ui): improve nodes performance 2023-04-22 22:25:17 +10:00
44a653925a feat(ui): node styling, controls
- custom node controls
- fix some types
- fix badge colors via colorScheme
- style nodes
2023-04-22 22:25:17 +10:00
94a07a8da7 feat(ui): Make Nodes always spawn in center of work area 2023-04-22 22:25:17 +10:00
ad41afe65e feat(ui): Make Nodes Resizable 2023-04-22 22:25:17 +10:00
77fa7519c4 chore(ui): Cleanup Invocation Component 2023-04-22 22:25:17 +10:00
6e29148d4d delete ImageToImageContent.tsx 2023-04-22 08:43:14 +02:00
3044f3bfe5 fix(ui): adapt NodeEditor for smaller screens 2023-04-22 08:33:05 +02:00
67a8627cf6 add dev:host script 2023-04-22 08:30:09 +02:00
3fb433cb91 Merge branch 'main' of https://github.com/invoke-ai/InvokeAI into responsive-ui 2023-04-22 08:27:00 +02:00
5f498e10bd Partial migration of UI to nodes API (#3195)
* feat(ui): add axios client generator and simple example

* fix(ui): update client & nodes test code w/ new Edge type

* chore(ui): organize generated files

* chore(ui): update .eslintignore, .prettierignore

* chore(ui): update openapi.json

* feat(backend): fixes for nodes/generator

* feat(ui): generate object args for api client

* feat(ui): more nodes api prototyping

* feat(ui): nodes cancel

* chore(ui): regenerate api client

* fix(ui): disable OG web server socket connection

* fix(ui): fix scrollbar styles typing and prop

just noticed the typo, and made the types stronger.

* feat(ui): add socketio types

* feat(ui): wip nodes

- extract api client method arg types instead of manually declaring them
- update example to display images
- general tidy up

* start building out node translations from frontend state and add notes about missing features

* use reference to sampler_name

* use reference to sampler_name

* add optional apiUrl prop

* feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation

* feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node

* feat(ui): img2img implementation

* feat(ui): get intermediate images working but types are stubbed out

* chore(ui): add support for package mode

* feat(ui): add nodes mode script

* feat(ui): handle random seeds

* fix(ui): fix middleware types

* feat(ui): add rtk action type guard

* feat(ui): disable NodeAPITest

This was polluting the network/socket logs.

* feat(ui): fix parameters panel border color

This commit should be elsewhere but I don't want to break my flow

* feat(ui): make thunk types more consistent

* feat(ui): add type guards for outputs

* feat(ui): load images on socket connect

Rudimentary

* chore(ui): bump redux-toolkit

* docs(ui): update readme

* chore(ui): regenerate api client

* chore(ui): add typescript as dev dependency

I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue.

* feat(ui): begin migrating gallery to nodes

Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way.

* feat(ui): clean up & comment results slice

* fix(ui): separate thunk for initial gallery load so it properly gets index 0

* feat(ui): POST upload working

* fix(ui): restore removed type

* feat(ui): patch api generation for headers access

* chore(ui): regenerate api

* feat(ui): wip gallery migration

* feat(ui): wip gallery migration

* chore(ui): regenerate api

* feat(ui): wip refactor socket events

* feat(ui): disable panels based on app props

* feat(ui): invert logic to be disabled

* disable panels when app mounts

* feat(ui): add support to disableTabs

* docs(ui): organise and update docs

* lang(ui): add toast strings

* feat(ui): wip events, comments, and general refactoring

* feat(ui): add optional token for auth

* feat(ui): export StatusIndicator and ModelSelect for header use

* feat(ui) working on making socket URL dynamic

* feat(ui): dynamic middleware loading

* feat(ui): prep for socket jwt

* feat(ui): migrate cancelation

also updated action names to be event-like instead of declaration-like

sorry, i was scattered and this commit has a lot of unrelated stuff in it.

* fix(ui): fix img2img type

* chore(ui): regenerate api client

* feat(ui): improve InvocationCompleteEvent types

* feat(ui): increase StatusIndicator font size

* fix(ui): fix middleware order for multi-node graphs

* feat(ui): add exampleGraphs object w/ iterations example

* feat(ui): generate iterations graph

* feat(ui): update ModelSelect for nodes API

* feat(ui): add hi-res functionality for txt2img generations

* feat(ui): "subscribe" to particular nodes

feels like a dirty hack but oh well it works

* feat(ui): first steps to node editor ui

* fix(ui): disable event subscription

it is not fully baked just yet

* feat(ui): wip node editor

* feat(ui): remove extraneous field types

* feat(ui): nodes before deleting stuff

* feat(ui): cleanup nodes ui stuff

* feat(ui): hook up nodes to redux

* fix(ui): fix handle

* fix(ui): add basic node edges & connection validation

* feat(ui): add connection validation styling

* feat(ui): increase edge width

* feat(ui): it blends

* feat(ui): wip model handling and graph topology validation

* feat(ui): validation connections w/ graphlib

* docs(ui): update nodes doc

* feat(ui): wip node editor

* chore(ui): rebuild api, update types

* add redux-dynamic-middlewares as a dependency

* feat(ui): add url host transformation

* feat(ui): handle already-connected fields

* feat(ui): rewrite SqliteItemStore in sqlalchemy

* fix(ui): fix sqlalchemy dynamic model instantiation

* feat(ui, nodes): metadata wip

* feat(ui, nodes): models

* feat(ui, nodes): more metadata wip

* feat(ui): wip range/iterate

* fix(nodes): fix sqlite typing

* feat(ui): export new type for invoke component

* tests(nodes): fix test instantiation of ImageField

* feat(nodes): fix LoadImageInvocation

* feat(nodes): add `title` ui hint

* feat(nodes): make ImageField attrs optional

* feat(ui): wip nodes etc

* feat(nodes): roll back sqlalchemy

* fix(nodes): partially address feedback

* fix(backend): roll back changes to pngwriter

* feat(nodes): wip address metadata feedback

* feat(nodes): add seeded rng to RandomRange

* feat(nodes): address feedback

* feat(nodes): move GET images error handling to DiskImageStorage

* feat(nodes): move GET images error handling to DiskImageStorage

* fix(nodes): fix image output schema customization

* feat(ui): img2img/txt2img -> linear

- remove txt2img and img2img tabs
- add linear tab
- add initial image selection to linear parameters accordion

* feat(ui): tidy graph builders

* feat(ui): tidy misc

* feat(ui): improve invocation union types

* feat(ui): wip metadata viewer recall

* feat(ui): move fonts to normal deps

* feat(nodes): fix broken upload

* feat(nodes): add metadata module + tests, thumbnails

- `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service`
- Handles loading/parsing/building metadata, and creating png info objects
- added tests for MetadataModule
- Lifted thumbnail stuff to util

* fix(nodes): revert change to RandomRangeInvocation

* feat(nodes): address feedback

- make metadata a service
- rip out pydantic validation, implement metadata parsing as simple functions
- update tests
- address other minor feedback items

* fix(nodes): fix other tests

* fix(nodes): add metadata service to cli

* fix(nodes): fix latents/image field parsing

* feat(nodes): customise LatentsField schema

* feat(nodes): move metadata parsing to frontend

* fix(nodes): fix metadata test

---------

Co-authored-by: maryhipp <maryhipp@gmail.com>
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 13:10:20 +10:00
fdad62e88b chore: add ".version" and ".last_model" to gitignore (#3208)
Mistakenly closed the previous pr.
2023-04-20 18:26:27 +01:00
955c81acef Merge branch 'main' into patch-1 2023-04-20 18:26:06 +01:00
e1058f3416 update CODEOWNERS for changed team composition (#3234)
Remove @mauwii and @keturn until they are able to reengage with the
development effort. @GreggHelt2 is designated co-codeowner for the
backend.
2023-04-20 17:19:10 +01:00
edf16a253d Merge branch 'main' into patch-1 2023-04-20 14:16:10 +02:00
46f5ef4100 Merge branch 'main' into dev/codeowner-fix-main 2023-04-19 22:40:56 +01:00
b843255236 update CODEOWNERS for changed team composition 2023-04-19 17:37:48 -04:00
3a968e5072 Update NSFW.md
Outdated doc said to change the '.invokeai' file, but it's now named 'invokeai.init' afaik.
2023-04-18 21:18:32 -04:00
b164330e3c replaced remaining print statements with log.*() 2023-04-18 20:49:00 -04:00
69433c9f68 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-18 19:21:53 -04:00
bd8ffd36bf bump to diffusers 0.15.1, remove dangling module 2023-04-18 19:20:38 -04:00
fd80e84ea6 Merge branch 'main' into patch-1 2023-04-18 19:14:28 -04:00
4824237a98 Added CPU instruction for README (#3225)
Since the change itself is quite straight-forward, I'll just describe
the context. Tried using automatic installer on my laptop, kept erroring
out on line 140-something of installer.py, "ERROR: Can not perform a
'--user' install. User site-packages are not visible in this
virtualenv."
Got tired of of fighting with pip so moved on to command line install.
Worked immediately, but at the time lacked instruction for CPU, so
instead of opening any helpful hyperlinks in the readme, took a few
minutes to grab the link from installer.py - thus this pr.
2023-04-18 19:07:37 -04:00
2c9a05eb59 Added CPU instruction for README 2023-04-18 18:46:55 +03:00
ecb5bdaf7e [bug] #3218 HuggingFace API off when --no-internet set (#3219)
#3218 

Huggingface API will not be queried if --no-internet flag is set
2023-04-18 14:34:34 +12:00
2feeb1f44c fix(ui): more responsive layout work 2023-04-18 04:29:31 +12:00
554f353773 fix(ui): Fix Width and Height showing 0 as input 2023-04-18 04:28:58 +12:00
f6cdff2c5b [bug] #3218 HuggingFace API off when --no-internet set
https://github.com/invoke-ai/InvokeAI/issues/3218

Huggingface API will not be queried if --no-internet flag is set
2023-04-17 16:53:31 +02:00
aee27e94c9 fix(ui): Fix site header on really small screens 2023-04-18 01:25:53 +12:00
695893e1ac fix(ui): Improve parameters panel and preview display 2023-04-18 01:09:48 +12:00
b800a8eb2e feat(ui): responsive wip
- Fixed a bunch of padding and margin issues across the app
- Fixed the Invoke logo compressing
- Disabled the visibility of the options panel pin button in tablet and mobile views
- Refined the header menu options in mobile and tablet views
- Refined other site header elements in mobile and tablet views
- Aligned Tab Icons to center in mobile and tablet views
2023-04-18 00:50:09 +12:00
9749ef34b5 layout improvements 2023-04-17 13:30:33 +02:00
9a43362127 Revert "Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207"
This reverts commit 866024ea6c, reversing
changes made to 601cc1f92c.
2023-04-17 13:51:08 +12:00
866024ea6c Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207 2023-04-17 13:50:44 +12:00
601cc1f92c help(ui): Basic responsive updates to demonstrate
Made some basic responsive changes to demonstrate how to go about making changes.

There are a bunch of problems not addressed yet. Like dealing with the resizeable component and etc.
2023-04-17 13:50:13 +12:00
d6a9a4464d feat(ui): Add Basic useResolution Component
This component just classifies `base` and `sm` as mobile, `md` and `lg` as tablet and `xl` and `2xl` as desktop.

This is a basic hook for quicker work with resolutions. Can be modified and adjusted to our needs. All resolution related work can go into this hook.
2023-04-17 13:48:42 +12:00
dac271725a feat(ui): Add Basic Breakpoints 2023-04-17 13:26:10 +12:00
e1fbecfcf7 fix(ui): Syntax issue with the HidePreview icon 2023-04-17 12:42:06 +12:00
63d10027a4 nodes: invocation queue item - make more pydantic 2023-04-16 09:39:33 -04:00
ef0773b8a3 nodes: set default for InvocationQueueItem.invoke_all 2023-04-16 09:39:33 -04:00
3daaddf15b nodes: remove duplicate LatentsToLatentsInvocation 2023-04-16 09:39:33 -04:00
570c3fe690 nodes: ensure Graph and GraphExecutionState ids are cast to str on instantiation 2023-04-16 09:39:33 -04:00
cbd1a7263a nodes: fix typing of GraphExecutionState.id 2023-04-16 09:39:33 -04:00
7fc5fbd4ce nodes: convert InvocationQueueItem to Pydantic class 2023-04-16 09:39:33 -04:00
6f6de402ad make InvocationQueueItem serializable 2023-04-16 09:39:33 -04:00
2ec4f5af10 remove unused import to pass lint & revert package.json 2023-04-15 21:53:33 +02:00
281662a6e1 chore: add ".version" and ".last_model" to gitignore
Mistakenly closed the previous pr
2023-04-15 21:46:47 +02:00
2edd032ec7 draft mobile layout 2023-04-15 21:34:03 +02:00
50eb02f68b chore(ui): build 2023-04-15 20:45:17 +10:00
d73f3adc43 moving shouldHidePreview from gallery to ui slice. 2023-04-15 20:45:17 +10:00
116107f464 chore(ui): build 2023-04-15 20:45:17 +10:00
da44bb1707 rename setter 2023-04-15 20:45:17 +10:00
f43aed677e chore(ui): build 2023-04-15 20:45:17 +10:00
0d051aaae2 rename hidden variable to something more descriptive 2023-04-15 20:45:17 +10:00
e4e48ff995 i forgor to push the locale 2023-04-15 20:45:17 +10:00
442a6bffa4 feat: add "Hide Preview" Button 2023-04-15 20:45:17 +10:00
aab262d991 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-14 20:12:38 -04:00
47b9910b48 update to diffusers 0.15 and fix code for name changes
- This is a port of #3184 to the main branch
2023-04-14 15:35:03 -04:00
0b0e6fe448 convert remainder of print() to log.info() 2023-04-14 15:15:14 -04:00
23d65e7162 [nodes] Add subgraph library, subgraph usage in CLI, and fix subgraph execution (#3180)
* Add latent to latent (img2img equivalent)
Fix a CLI bug with multiple links per node

* Using "latents" instead of "latent"

* [nodes] In-progress implementation of graph library

* Add linking to CLI for graph nodes (still broken)

* Fix subgraph execution, fix subgraph linking in CLI

* Fix LatentsToLatents
2023-04-14 06:41:06 +00:00
024fd54d0b Fixed a Typo. (#3190) 2023-04-14 14:33:31 +12:00
c44c19e911 Fixed a Typo. 2023-04-13 17:42:34 +02:00
c132dbdefa change "ialog" to "log" 2023-04-11 18:48:20 -04:00
f3081e7013 add module-level getLogger() method 2023-04-11 12:23:13 -04:00
f904f14f9e add missing module-level methods 2023-04-11 11:10:43 -04:00
8917a6d99b add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)

This style logs everything through a single logging object and is
identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus
to logging:

  import invokeai.backend.util.logging as ialog

  ialog.debug('this is a debugging message')
  ialog.info('this is a informational message')
  ialog.log(level=logging.CRITICAL, 'get out of dodge')
  ialog.disable(level=logging.INFO)
  ialog.basicConfig(filename='/var/log/invokeai.log')

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add the additional
message decorations.

For more control, the logging module's object-oriented logging style
is also supported. The API is identical to the vanilla logging
usage. In fact, the only thing that has changed is that the
getLogger() method adds a custom formatter to the log messages.

 import logging
 from invokeai.backend.util.logging import InvokeAILogger

 logger = InvokeAILogger.getLogger(__name__)
 fh = logging.FileHandler('/var/invokeai.log')
 logger.addHandler(fh)
 logger.critical('this will be logged to both the console and the log file')
2023-04-11 10:46:38 -04:00
5a4765046e add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)
2023-04-11 09:33:28 -04:00
d923d1d66b fix(nodes): fix naming of CvInvocationConfig 2023-04-11 12:13:53 +10:00
1f2c1e14db fix(nodes): move InvocationConfig to baseinvocation.py 2023-04-11 12:13:53 +10:00
07e3a0ec15 feat(nodes): add invocation schema customisation, add model selection
- add invocation schema customisation

done via fastapi's `Config` class and `schema_extra`. when using `Config`, inherit from `InvocationConfig` to get type hints.

where it makes sense - like for all math invocations - define a `MathInvocationConfig` class and have all invocations inherit from it.

this customisation can provide any arbitrary additional data to the UI. currently it provides tags and field type hints.

this is necessary for `model` type fields, which are actually string fields. without something like this, we can't reliably differentiate  `model` fields from normal `string` fields.

can also be used for future field types.

all invocations now have tags, and all `model` fields have ui type hints.

- fix model handling for invocations

added a helper to fall back to the default model if an invalid model name is chosen. model names in graphs now work.

- fix latents progress callback

noticed this wasn't correct while working on everything else.
2023-04-11 12:13:53 +10:00
427db7c7e2 feat(nodes): fix typo in PasteImageInvocation 2023-04-10 21:33:08 +10:00
dad3a7f263 fix(nodes): sampler_name --> scheduler
the name of this was changed at some point. nodes still used the old name, so scheduler selection did nothing. simple fix.
2023-04-10 19:54:09 +10:00
5bd0bb637f fix(nodes): add missing type to ImageField 2023-04-10 19:33:15 +10:00
f05095770c Increase chunk size when computing diffusers SHAs (#3159)
When running this app first time in WSL2 environment, which is
notoriously slow when it comes to IO, computing the SHAs of the models
takes an eternity.

Computing shas for sd2.1
```
| Calculating sha256 hash of model files
| sha256 = 1e4ce085102fe6590d41ec1ab6623a18c07127e2eca3e94a34736b36b57b9c5e (49 files hashed in 510.87s)
```

I increased the chunk size to 16MB reduce the number of round trips for
loading the data. New results:

```
| Calculating sha256 hash of model files
| sha256 = 1e4ce085102fe6590d41ec1ab6623a18c07127e2eca3e94a34736b36b57b9c5e (49 files hashed in 59.89s)
```

Higher values don't seem to make an impact.
2023-04-09 22:29:43 -04:00
de189f2db6 Increase chunk size when computing SHAs 2023-04-09 21:53:59 +02:00
cee159dfa3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-09 12:08:09 -04:00
4463124bdd feat(nodes): mark ImageField properties required, add docs 2023-04-09 22:53:17 +10:00
34402cc46a feat(nodes): add list_images endpoint
- add `list_images` endpoint at `GET api/v1/images`
- extend `ImageStorageBase` with `list()` method, implemented it for `DiskImageStorage`
- add `ImageReponse` class to for image responses, which includes urls, metadata
- add `ImageMetadata` class (basically a stub at the moment)
- uploaded images now named `"{uuid}_{timestamp}.png"`
- add `models` modules. besides separating concerns more clearly, this helps to mitigate circular dependencies
- improve thumbnail handling
2023-04-09 13:48:44 +10:00
54d9833db0 Else. 2023-04-08 12:08:51 -04:00
5fe8cb56fc Correct response note 2023-04-08 12:08:51 -04:00
7919d81fb1 Update to address feedback 2023-04-08 12:08:51 -04:00
9d80b28a4f Begin Convert Work 2023-04-08 12:08:51 -04:00
1fcd91bcc5 Add/Update and Delete Models 2023-04-08 12:08:51 -04:00
e456e2e63a fix typo (#3147)
fix typo.

reference:
21f79e5919/invokeai/configs/INITIAL_MODELS.yaml (L21-L25)
2023-04-08 20:25:31 +12:00
ee41b99049 Update 050_INSTALLING_MODELS.md
fix typo
2023-04-08 17:02:47 +09:00
111d674e71 fix(nodes): use correct torch device in NoiseInvocation 2023-04-08 12:32:03 +10:00
8f048cfbd9 Add python-multipart, which is needed by nodes (#3141)
I'm not quite sure why this isn't being installed by fastapi's
dependencies, but running without it installed yields:

```
root@gnubert:/srv/ssdtank/docker/invokeai/git/InvokeAI# docker run --gpus all -p 9989:9090 -v /srv/ssdtank/docker/invokeai/data:/data -v /srv/ssdtank/docker/invokeai/git/InvokeAI/static/dream_web/:/static/dream_web --rm -ti -u root --entrypoint /bin/bash ghcr.io/cmsj/invokeai-nodes@sha256:426ebc414936cb67e02f5f64d963196500a77b2f485df8122a2d462797293938
root@7a77b56a5771:/usr/src# /invoke-new.py --web
Form data requires "python-multipart" to be installed.
You can install "python-multipart" with:

pip install python-multipart

╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /invoke-new.py:22 in <module>                                                                    │
│                                                                                                  │
│   19                                                                                             │
│   20                                                                                             │
│   21 if __name__ == '__main__':                                                                  │
│ ❱ 22 │   main()                                                                                  │
│   23                                                                                             │
│                                                                                                  │
│ /invoke-new.py:13 in main                                                                        │
│                                                                                                  │
│   10 │   os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))                │
│   11 │                                                                                           │
│   12 │   if '--web' in sys.argv:                                                                 │
│ ❱ 13 │   │   from invokeai.app.api_app import invoke_api                                         │
│   14 │   │   invoke_api()                                                                        │
│   15 │   else:                                                                                   │
│   16 │   │   # TODO: Parse some top-level args here.                                             │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/invokeai/app/api_app.py:17 in <module>            │
│                                                                                                  │
│    14                                                                                            │
│    15 from ..backend import Args                                                                 │
│    16 from .api.dependencies import ApiDependencies                                              │
│ ❱  17 from .api.routers import images, sessions, models                                          │
│    18 from .api.sockets import SocketIO                                                          │
│    19 from .invocations import *                                                                 │
│    20 from .invocations.baseinvocation import BaseInvocation                                     │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/invokeai/app/api/routers/images.py:45 in <module> │
│                                                                                                  │
│   42 │   │   404: {"description": "Session not found"},                                          │
│   43 │   },                                                                                      │
│   44 )                                                                                           │
│ ❱ 45 async def upload_image(file: UploadFile, request: Request):                                 │
│   46 │   if not file.content_type.startswith("image"):                                           │
│   47 │   │   return Response(status_code=415)                                                    │
│   48                                                                                             │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/routing.py:630 in decorator               │
│                                                                                                  │
│    627 │   │   ),                                                                                │
│    628 │   ) -> Callable[[DecoratedCallable], DecoratedCallable]:                                │
│    629 │   │   def decorator(func: DecoratedCallable) -> DecoratedCallable:                      │
│ ❱  630 │   │   │   self.add_api_route(                                                           │
│    631 │   │   │   │   path,                                                                     │
│    632 │   │   │   │   func,                                                                     │
│    633 │   │   │   │   response_model=response_model,                                            │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/routing.py:569 in add_api_route           │
│                                                                                                  │
│    566 │   │   current_generate_unique_id = get_value_or_default(                                │
│    567 │   │   │   generate_unique_id_function, self.generate_unique_id_function                 │
│    568 │   │   )                                                                                 │
│ ❱  569 │   │   route = route_class(                                                              │
│    570 │   │   │   self.prefix + path,                                                           │
│    571 │   │   │   endpoint=endpoint,                                                            │
│    572 │   │   │   response_model=response_model,                                                │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/routing.py:444 in __init__                │
│                                                                                                  │
│    441 │   │   │   │   0,                                                                        │
│    442 │   │   │   │   get_parameterless_sub_dependant(depends=depends, path=self.path_format),  │
│    443 │   │   │   )                                                                             │
│ ❱  444 │   │   self.body_field = get_body_field(dependant=self.dependant, name=self.unique_id)   │
│    445 │   │   self.app = request_response(self.get_route_handler())                             │
│    446 │                                                                                         │
│    447 │   def get_route_handler(self) -> Callable[[Request], Coroutine[Any, Any, Response]]:    │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/dependencies/utils.py:756 in              │
│ get_body_field                                                                                   │
│                                                                                                  │
│   753 │   │   alias="body",                                                                      │
│   754 │   │   field_info=BodyFieldInfo(**BodyFieldInfo_kwargs),                                  │
│   755 │   )                                                                                      │
│ ❱ 756 │   check_file_field(final_field)                                                          │
│   757 │   return final_field                                                                     │
│   758                                                                                            │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/dependencies/utils.py:111 in              │
│ check_file_field                                                                                 │
│                                                                                                  │
│   108 │   │   │   │   raise RuntimeError(multipart_incorrect_install_error) from None            │
│   109 │   │   except ImportError:                                                                │
│   110 │   │   │   logger.error(multipart_not_installed_error)                                    │
│ ❱ 111 │   │   │   raise RuntimeError(multipart_not_installed_error) from None                    │
│   112                                                                                            │
│   113                                                                                            │
│   114 def get_param_sub_dependant(                                                               │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: Form data requires "python-multipart" to be installed.
You can install "python-multipart" with:

pip install python-multipart
```
2023-04-07 19:17:37 -04:00
cd1b350dae Merge branch 'main' into bugfix/release-updater 2023-04-07 18:56:21 -04:00
8334757af9 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-07 18:55:54 -04:00
7103ac6a32 Add python-multipart, which is needed by nodes 2023-04-07 19:43:42 +01:00
f6b131e706 remove vestiges of non-functional autoimport code for legacy checkpoints (#3076)
- the functionality to automatically import and run legacy checkpoint
files in a designated folder has been removed from the backend but there
are vestiges of the code remaining in the frontend that are causing
crashes.
- This fixes the problem.

- Closes #3075
2023-04-08 02:21:23 +12:00
d1b2b99226 Merge branch 'main' into bugfix/remove-autoimport-dead-code 2023-04-07 09:59:58 -04:00
e356f2511b chore: configure stale bot 2023-04-07 20:45:08 +10:00
e5f8b22a43 add a new method to model_manager that retrieves individual pipeline components (#3120)
This PR introduces a new set of ModelManager methods that enables you to
retrieve the individual parts of a stable diffusion pipeline model,
including the vae, text_encoder, unet, tokenizer, etc.

To use:

```
from invokeai.backend import ModelManager

manager = ModelManager('/path/to/models.yaml')

# get the VAE
vae = manager.get_model_vae('stable-diffusion-1.5')

# get the unet
unet = manager.get_model_unet('stable-diffusion-1.5')

# get the tokenizer
tokenizer = manager.get_model_tokenizer('stable-diffusion-1.5')

# etc etc
feature_extractor = manager.get_model_feature_extractor('stable-diffusion-1.5')
scheduler = manager.get_model_scheduler('stable-diffusion-1.5')
text_encoder = manager.get_model_text_encoder('stable-diffusion-1.5')

# if no model provided, then defaults to the one currently in GPU, if any
vae = manager.get_model_vae()
```
2023-04-07 01:39:57 -04:00
45b84fb4bb Merge branch 'main' into bugfix/remove-autoimport-dead-code 2023-04-07 17:07:25 +12:00
f022c89249 Merge branch 'main' into feat/return-submodels 2023-04-06 22:03:31 -04:00
ab05144716 Change where !replay looks for its infile (#3129)
!fetch puts its output file into the output directory; it may be
beneficial to have !replay look in the output directory as well.
2023-04-06 22:02:06 -04:00
aeb4914e67 Merge branch 'main' into replay-file_path 2023-04-06 21:45:23 -04:00
4c339dd4b0 refactor get_submodels() into individual methods 2023-04-06 17:08:23 -04:00
bc2b9500e3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-06 15:38:46 -04:00
32857d81c5 prevent legacy CLI crash caused by removal of convert option
- Compensatory change to the CLI that prevents it from crashing
  when it tries to import a model.
- Bug introduced when the "convert" option removed from the model
  manager.
2023-04-06 15:36:05 -04:00
7268131f57 change where !replay looks for its infile
!fetch puts its output file into the output directory; it may be beneficial to have !replay look in the output directory as well.
2023-04-06 08:14:11 -04:00
28f75d80d5 Merge branch 'main' into bugfix/release-updater 2023-04-05 18:25:33 -04:00
b917ffa4d7 Merge branch 'main' into bugfix/release-updater 2023-04-05 17:37:27 -04:00
d44151d6ff add a new method to model_manager that retrieves individual pipeline parts
- New method is ModelManager.get_sub_model(model_name:str,model_part:SDModelComponent)

To use:

```
from invokeai.backend import ModelManager, SDModelComponent as sdmc
manager = ModelManager('/path/to/models.yaml')
vae = manager.get_sub_model('stable-diffusion-1.5', sdmc.vae)
```
2023-04-05 17:25:42 -04:00
f682fb8040 fix invokeai-update script
- This commit fixes the update script to work again, as well as fixing
  the ambiguity between updating to a tag and updating to a branch.
2023-04-02 11:08:12 -04:00
1f89cf3343 remove vestiges of non-functional autoimport code for legacy checkpoints
- Closes #3075
2023-03-31 04:27:03 -04:00
929 changed files with 42375 additions and 27990 deletions

24
.github/CODEOWNERS vendored
View File

@ -1,16 +1,16 @@
# continuous integration
/.github/workflows/ @mauwii @lstein @blessedcoolant
/.github/workflows/ @lstein @blessedcoolant
# documentation
/docs/ @lstein @mauwii @tildebyte @blessedcoolant
/mkdocs.yml @lstein @mauwii @blessedcoolant
/docs/ @lstein @blessedcoolant @hipsterusername
/mkdocs.yml @lstein @blessedcoolant
# nodes
/invokeai/app/ @Kyle0654 @blessedcoolant
# installation and configuration
/pyproject.toml @mauwii @lstein @blessedcoolant
/docker/ @mauwii @lstein @blessedcoolant
/pyproject.toml @lstein @blessedcoolant
/docker/ @lstein @blessedcoolant
/scripts/ @ebr @lstein
/installer/ @lstein @ebr
/invokeai/assets @lstein @ebr
@ -18,17 +18,17 @@
/invokeai/version @lstein @blessedcoolant
# web ui
/invokeai/frontend @blessedcoolant @psychedelicious @lstein
/invokeai/backend @blessedcoolant @psychedelicious @lstein
/invokeai/frontend @blessedcoolant @psychedelicious @lstein @maryhipp
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp
# generation, model management, postprocessing
/invokeai/backend @keturn @damian0815 @lstein @blessedcoolant @jpphoto
/invokeai/backend @damian0815 @lstein @blessedcoolant @jpphoto @gregghelt2 @StAlKeR7779
# front ends
/invokeai/frontend/CLI @lstein
/invokeai/frontend/install @lstein @ebr @mauwii
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant
/invokeai/frontend/install @lstein @ebr
/invokeai/frontend/merge @lstein @blessedcoolant
/invokeai/frontend/training @lstein @blessedcoolant
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp

19
.github/stale.yaml vendored Normal file
View File

@ -0,0 +1,19 @@
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 28
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 14
# Issues with these labels will never be considered stale
exemptLabels:
- pinned
- security
# Label to use when marking an issue as stale
staleLabel: stale
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Please
update the ticket if this is still a problem on the latest release.
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: >
Due to inactivity, this issue has been automatically closed. If this is
still a problem on the latest release, please recreate the issue.

View File

@ -2,8 +2,7 @@ name: mkdocs-material
on:
push:
branches:
- 'main'
- 'development'
- 'refs/heads/v2.3'
permissions:
contents: write
@ -12,6 +11,10 @@ jobs:
mkdocs-material:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout sources
uses: actions/checkout@v3
@ -22,11 +25,15 @@ jobs:
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install -r docs/requirements-mkdocs.txt
pip install ".[docs]"
- name: confirm buildability
run: |
@ -36,7 +43,7 @@ jobs:
--verbose
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
if: ${{ github.ref == 'refs/heads/v2.3' }}
run: |
python -m \
mkdocs gh-deploy \

View File

@ -80,11 +80,6 @@ jobs:
uses: actions/checkout@v3
- name: set test prompt to main branch validation
if: ${{ github.ref == 'refs/heads/main' }}
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> ${{ matrix.github-env }}
- name: set test prompt to Pull Request validation
if: ${{ github.ref != 'refs/heads/main' }}
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
@ -105,12 +100,6 @@ jobs:
id: run-pytest
run: pytest
- name: set INVOKEAI_OUTDIR
run: >
python -c
"import os;from invokeai.backend.globals import Globals;OUTDIR=os.path.join(Globals.root,str('outputs'));print(f'INVOKEAI_OUTDIR={OUTDIR}')"
>> ${{ matrix.github-env }}
- name: run invokeai-configure
id: run-preload-models
env:
@ -129,15 +118,21 @@ jobs:
HF_HUB_OFFLINE: 1
HF_DATASETS_OFFLINE: 1
TRANSFORMERS_OFFLINE: 1
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
run: >
invokeai
--no-patchmatch
--no-nsfw_checker
--from_file ${{ env.TEST_PROMPTS }}
--precision=float32
--always_use_cpu
--use_memory_db
--outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
--from_file ${{ env.TEST_PROMPTS }}
- name: Archive results
id: archive-results
env:
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
uses: actions/upload-artifact@v3
with:
name: results

4
.gitignore vendored
View File

@ -9,6 +9,8 @@ models/ldm/stable-diffusion-v1/model.ckpt
configs/models.user.yaml
config/models.user.yml
invokeai.init
.version
.last_model
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
@ -199,6 +201,8 @@ checkpoints
# If it's a Mac
.DS_Store
invokeai/frontend/web/dist/*
# Let the frontend manage its own gitignore
!invokeai/frontend/web/*

View File

@ -33,6 +33,8 @@
</div>
_**Note: The UI is not fully functional on `main`. If you need a stable UI based on `main`, use the `pre-nodes` tag while we [migrate to a new backend](https://github.com/invoke-ai/InvokeAI/discussions/3246).**_
InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products.
**Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
@ -84,7 +86,7 @@ installing lots of models.
6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generaiton models.
select a set of starting image generation models.
7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this
@ -148,6 +150,11 @@ not supported.
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2:_
```sh

View File

@ -1,164 +0,0 @@
@echo off
@rem This script will install git (if not found on the PATH variable)
@rem using micromamba (an 8mb static-linked single-file binary, conda replacement).
@rem For users who already have git, this step will be skipped.
@rem Next, it'll download the project's source code.
@rem Then it will download a self-contained, standalone Python and unpack it.
@rem Finally, it'll create the Python virtual environment and preload the models.
@rem This enables a user to install this project without manually installing git or Python
@rem change to the script's directory
PUSHD "%~dp0"
set "no_cache_dir=--no-cache-dir"
if "%1" == "use-cache" (
set "no_cache_dir="
)
echo ***** Installing InvokeAI.. *****
@rem Config
set INSTALL_ENV_DIR=%cd%\installer_files\env
@rem https://mamba.readthedocs.io/en/latest/installation.html
set MICROMAMBA_DOWNLOAD_URL=https://github.com/cmdr2/stable-diffusion-ui/releases/download/v1.1/micromamba.exe
set RELEASE_URL=https://github.com/invoke-ai/InvokeAI
set RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
set PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download
set PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-x86_64-pc-windows-msvc-shared-install_only.tar.gz
set PACKAGES_TO_INSTALL=
call git --version >.tmp1 2>.tmp2
if "%ERRORLEVEL%" NEQ "0" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% git
@rem Cleanup
del /q .tmp1 .tmp2
@rem (if necessary) install git into a contained environment
if "%PACKAGES_TO_INSTALL%" NEQ "" (
@rem download micromamba
echo ***** Downloading micromamba from %MICROMAMBA_DOWNLOAD_URL% to micromamba.exe *****
call curl -L "%MICROMAMBA_DOWNLOAD_URL%" > micromamba.exe
@rem test the mamba binary
echo ***** Micromamba version: *****
call micromamba.exe --version
@rem create the installer env
if not exist "%INSTALL_ENV_DIR%" (
call micromamba.exe create -y --prefix "%INSTALL_ENV_DIR%"
)
echo ***** Packages to install:%PACKAGES_TO_INSTALL% *****
call micromamba.exe install -y --prefix "%INSTALL_ENV_DIR%" -c conda-forge %PACKAGES_TO_INSTALL%
if not exist "%INSTALL_ENV_DIR%" (
echo ----- There was a problem while installing "%PACKAGES_TO_INSTALL%" using micromamba. Cannot continue. -----
pause
exit /b
)
)
del /q micromamba.exe
@rem For 'git' only
set PATH=%INSTALL_ENV_DIR%\Library\bin;%PATH%
@rem Download/unpack/clean up InvokeAI release sourceball
set err_msg=----- InvokeAI source download failed -----
echo Trying to download "%RELEASE_URL%%RELEASE_SOURCEBALL%"
curl -L %RELEASE_URL%%RELEASE_SOURCEBALL% --output InvokeAI.tgz
if %errorlevel% neq 0 goto err_exit
set err_msg=----- InvokeAI source unpack failed -----
tar -zxf InvokeAI.tgz
if %errorlevel% neq 0 goto err_exit
del /q InvokeAI.tgz
set err_msg=----- InvokeAI source copy failed -----
cd InvokeAI-*
xcopy . .. /e /h
if %errorlevel% neq 0 goto err_exit
cd ..
@rem cleanup
for /f %%i in ('dir /b InvokeAI-*') do rd /s /q %%i
rd /s /q .dev_scripts .github docker-build tests
del /q requirements.in requirements-mkdocs.txt shell.nix
echo ***** Unpacked InvokeAI source *****
@rem Download/unpack/clean up python-build-standalone
set err_msg=----- Python download failed -----
curl -L %PYTHON_BUILD_STANDALONE_URL%/%PYTHON_BUILD_STANDALONE% --output python.tgz
if %errorlevel% neq 0 goto err_exit
set err_msg=----- Python unpack failed -----
tar -zxf python.tgz
if %errorlevel% neq 0 goto err_exit
del /q python.tgz
echo ***** Unpacked python-build-standalone *****
@rem create venv
set err_msg=----- problem creating venv -----
.\python\python -E -s -m venv .venv
if %errorlevel% neq 0 goto err_exit
call .venv\Scripts\activate.bat
echo ***** Created Python virtual environment *****
@rem Print venv's Python version
set err_msg=----- problem calling venv's python -----
echo We're running under
.venv\Scripts\python --version
if %errorlevel% neq 0 goto err_exit
set err_msg=----- pip update failed -----
.venv\Scripts\python -m pip install %no_cache_dir% --no-warn-script-location --upgrade pip wheel
if %errorlevel% neq 0 goto err_exit
echo ***** Updated pip and wheel *****
set err_msg=----- requirements file copy failed -----
copy binary_installer\py3.10-windows-x86_64-cuda-reqs.txt requirements.txt
if %errorlevel% neq 0 goto err_exit
set err_msg=----- main pip install failed -----
.venv\Scripts\python -m pip install %no_cache_dir% --no-warn-script-location -r requirements.txt
if %errorlevel% neq 0 goto err_exit
echo ***** Installed Python dependencies *****
set err_msg=----- InvokeAI setup failed -----
.venv\Scripts\python -m pip install %no_cache_dir% --no-warn-script-location -e .
if %errorlevel% neq 0 goto err_exit
copy binary_installer\invoke.bat.in .\invoke.bat
echo ***** Installed invoke launcher script ******
@rem more cleanup
rd /s /q binary_installer installer_files
@rem preload the models
call .venv\Scripts\python ldm\invoke\config\invokeai_configure.py
set err_msg=----- model download clone failed -----
if %errorlevel% neq 0 goto err_exit
deactivate
echo ***** Finished downloading models *****
echo All done! Execute the file invoke.bat in this directory to start InvokeAI
pause
exit
:err_exit
echo %err_msg%
pause
exit

View File

@ -1,235 +0,0 @@
#!/usr/bin/env bash
# ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
set -euo pipefail
IFS=$'\n\t'
function _err_exit {
if test "$1" -ne 0
then
echo -e "Error code $1; Error caught was '$2'"
read -p "Press any key to exit..."
exit
fi
}
# This script will install git (if not found on the PATH variable)
# using micromamba (an 8mb static-linked single-file binary, conda replacement).
# For users who already have git, this step will be skipped.
# Next, it'll download the project's source code.
# Then it will download a self-contained, standalone Python and unpack it.
# Finally, it'll create the Python virtual environment and preload the models.
# This enables a user to install this project without manually installing git or Python
echo -e "\n***** Installing InvokeAI into $(pwd)... *****\n"
export no_cache_dir="--no-cache-dir"
if [ $# -ge 1 ]; then
if [ "$1" = "use-cache" ]; then
export no_cache_dir=""
fi
fi
OS_NAME=$(uname -s)
case "${OS_NAME}" in
Linux*) OS_NAME="linux";;
Darwin*) OS_NAME="darwin";;
*) echo -e "\n----- Unknown OS: $OS_NAME! This script runs only on Linux or macOS -----\n" && exit
esac
OS_ARCH=$(uname -m)
case "${OS_ARCH}" in
x86_64*) ;;
arm64*) ;;
*) echo -e "\n----- Unknown system architecture: $OS_ARCH! This script runs only on x86_64 or arm64 -----\n" && exit
esac
# https://mamba.readthedocs.io/en/latest/installation.html
MAMBA_OS_NAME=$OS_NAME
MAMBA_ARCH=$OS_ARCH
if [ "$OS_NAME" == "darwin" ]; then
MAMBA_OS_NAME="osx"
fi
if [ "$OS_ARCH" == "linux" ]; then
MAMBA_ARCH="aarch64"
fi
if [ "$OS_ARCH" == "x86_64" ]; then
MAMBA_ARCH="64"
fi
PY_ARCH=$OS_ARCH
if [ "$OS_ARCH" == "arm64" ]; then
PY_ARCH="aarch64"
fi
# Compute device ('cd' segment of reqs files) detect goes here
# This needs a ton of work
# Suggestions:
# - lspci
# - check $PATH for nvidia-smi, gtt CUDA/GPU version from output
# - Surely there's a similar utility for AMD?
CD="cuda"
if [ "$OS_NAME" == "darwin" ] && [ "$OS_ARCH" == "arm64" ]; then
CD="mps"
fi
# config
INSTALL_ENV_DIR="$(pwd)/installer_files/env"
MICROMAMBA_DOWNLOAD_URL="https://micro.mamba.pm/api/micromamba/${MAMBA_OS_NAME}-${MAMBA_ARCH}/latest"
RELEASE_URL=https://github.com/invoke-ai/InvokeAI
RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download
if [ "$OS_NAME" == "darwin" ]; then
PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-${PY_ARCH}-apple-darwin-install_only.tar.gz
elif [ "$OS_NAME" == "linux" ]; then
PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-${PY_ARCH}-unknown-linux-gnu-install_only.tar.gz
fi
echo "INSTALLING $RELEASE_SOURCEBALL FROM $RELEASE_URL"
PACKAGES_TO_INSTALL=""
if ! hash "git" &>/dev/null; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL git"; fi
# (if necessary) install git and conda into a contained environment
if [ "$PACKAGES_TO_INSTALL" != "" ]; then
# download micromamba
echo -e "\n***** Downloading micromamba from $MICROMAMBA_DOWNLOAD_URL to micromamba *****\n"
curl -L "$MICROMAMBA_DOWNLOAD_URL" | tar -xvjO bin/micromamba > micromamba
chmod u+x ./micromamba
# test the mamba binary
echo -e "\n***** Micromamba version: *****\n"
./micromamba --version
# create the installer env
if [ ! -e "$INSTALL_ENV_DIR" ]; then
./micromamba create -y --prefix "$INSTALL_ENV_DIR"
fi
echo -e "\n***** Packages to install:$PACKAGES_TO_INSTALL *****\n"
./micromamba install -y --prefix "$INSTALL_ENV_DIR" -c conda-forge "$PACKAGES_TO_INSTALL"
if [ ! -e "$INSTALL_ENV_DIR" ]; then
echo -e "\n----- There was a problem while initializing micromamba. Cannot continue. -----\n"
exit
fi
fi
rm -f micromamba.exe
export PATH="$INSTALL_ENV_DIR/bin:$PATH"
# Download/unpack/clean up InvokeAI release sourceball
_err_msg="\n----- InvokeAI source download failed -----\n"
curl -L $RELEASE_URL/$RELEASE_SOURCEBALL --output InvokeAI.tgz
_err_exit $? _err_msg
_err_msg="\n----- InvokeAI source unpack failed -----\n"
tar -zxf InvokeAI.tgz
_err_exit $? _err_msg
rm -f InvokeAI.tgz
_err_msg="\n----- InvokeAI source copy failed -----\n"
cd InvokeAI-*
cp -r . ..
_err_exit $? _err_msg
cd ..
# cleanup
rm -rf InvokeAI-*/
rm -rf .dev_scripts/ .github/ docker-build/ tests/ requirements.in requirements-mkdocs.txt shell.nix
echo -e "\n***** Unpacked InvokeAI source *****\n"
# Download/unpack/clean up python-build-standalone
_err_msg="\n----- Python download failed -----\n"
curl -L $PYTHON_BUILD_STANDALONE_URL/$PYTHON_BUILD_STANDALONE --output python.tgz
_err_exit $? _err_msg
_err_msg="\n----- Python unpack failed -----\n"
tar -zxf python.tgz
_err_exit $? _err_msg
rm -f python.tgz
echo -e "\n***** Unpacked python-build-standalone *****\n"
# create venv
_err_msg="\n----- problem creating venv -----\n"
if [ "$OS_NAME" == "darwin" ]; then
# patch sysconfig so that extensions can build properly
# adapted from https://github.com/cashapp/hermit-packages/commit/fcba384663892f4d9cfb35e8639ff7a28166ee43
PYTHON_INSTALL_DIR="$(pwd)/python"
SYSCONFIG="$(echo python/lib/python*/_sysconfigdata_*.py)"
TMPFILE="$(mktemp)"
chmod +w "${SYSCONFIG}"
cp "${SYSCONFIG}" "${TMPFILE}"
sed "s,'/install,'${PYTHON_INSTALL_DIR},g" "${TMPFILE}" > "${SYSCONFIG}"
rm -f "${TMPFILE}"
fi
./python/bin/python3 -E -s -m venv .venv
_err_exit $? _err_msg
source .venv/bin/activate
echo -e "\n***** Created Python virtual environment *****\n"
# Print venv's Python version
_err_msg="\n----- problem calling venv's python -----\n"
echo -e "We're running under"
.venv/bin/python3 --version
_err_exit $? _err_msg
_err_msg="\n----- pip update failed -----\n"
.venv/bin/python3 -m pip install $no_cache_dir --no-warn-script-location --upgrade pip
_err_exit $? _err_msg
echo -e "\n***** Updated pip *****\n"
_err_msg="\n----- requirements file copy failed -----\n"
cp binary_installer/py3.10-${OS_NAME}-"${OS_ARCH}"-${CD}-reqs.txt requirements.txt
_err_exit $? _err_msg
_err_msg="\n----- main pip install failed -----\n"
.venv/bin/python3 -m pip install $no_cache_dir --no-warn-script-location -r requirements.txt
_err_exit $? _err_msg
echo -e "\n***** Installed Python dependencies *****\n"
_err_msg="\n----- InvokeAI setup failed -----\n"
.venv/bin/python3 -m pip install $no_cache_dir --no-warn-script-location -e .
_err_exit $? _err_msg
echo -e "\n***** Installed InvokeAI *****\n"
cp binary_installer/invoke.sh.in ./invoke.sh
chmod a+rx ./invoke.sh
echo -e "\n***** Installed invoke launcher script ******\n"
# more cleanup
rm -rf binary_installer/ installer_files/
# preload the models
.venv/bin/python3 scripts/configure_invokeai.py
_err_msg="\n----- model download clone failed -----\n"
_err_exit $? _err_msg
deactivate
echo -e "\n***** Finished downloading models *****\n"
echo "All done! Run the command"
echo " $scriptdir/invoke.sh"
echo "to start InvokeAI."
read -p "Press any key to exit..."
exit

View File

@ -1,36 +0,0 @@
@echo off
PUSHD "%~dp0"
call .venv\Scripts\activate.bat
echo Do you want to generate images using the
echo 1. command-line
echo 2. browser-based UI
echo OR
echo 3. open the developer console
set /p choice="Please enter 1, 2 or 3: "
if /i "%choice%" == "1" (
echo Starting the InvokeAI command-line.
.venv\Scripts\python scripts\invoke.py %*
) else if /i "%choice%" == "2" (
echo Starting the InvokeAI browser-based UI.
.venv\Scripts\python scripts\invoke.py --web %*
) else if /i "%choice%" == "3" (
echo Developer Console
echo Python command is:
where python
echo Python version is:
python --version
echo *************************
echo You are now in the system shell, with the local InvokeAI Python virtual environment activated,
echo so that you can troubleshoot this InvokeAI installation as necessary.
echo *************************
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) else (
echo Invalid selection
pause
exit /b
)
deactivate

View File

@ -1,46 +0,0 @@
#!/usr/bin/env sh
set -eu
. .venv/bin/activate
# set required env var for torch on mac MPS
if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
echo "Do you want to generate images using the"
echo "1. command-line"
echo "2. browser-based UI"
echo "OR"
echo "3. open the developer console"
echo "Please enter 1, 2, or 3:"
read choice
case $choice in
1)
printf "\nStarting the InvokeAI command-line..\n";
.venv/bin/python scripts/invoke.py $*;
;;
2)
printf "\nStarting the InvokeAI browser-based UI..\n";
.venv/bin/python scripts/invoke.py --web $*;
;;
3)
printf "\nDeveloper Console:\n";
printf "Python command is:\n\t";
which python;
printf "Python version is:\n\t";
python --version;
echo "*************************"
echo "You are now in your user shell ($SHELL) with the local InvokeAI Python virtual environment activated,";
echo "so that you can troubleshoot this InvokeAI installation as necessary.";
printf "*************************\n"
echo "*** Type \`exit\` to quit this shell and deactivate the Python virtual environment *** ";
/usr/bin/env "$SHELL";
;;
*)
echo "Invalid selection";
exit
;;
esac

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +0,0 @@
InvokeAI
Project homepage: https://github.com/invoke-ai/InvokeAI
Installation on Windows:
NOTE: You might need to enable Windows Long Paths. If you're not sure,
then you almost certainly need to. Simply double-click the 'WinLongPathsEnabled.reg'
file. Note that you will need to have admin privileges in order to
do this.
Please double-click the 'install.bat' file (while keeping it inside the invokeAI folder).
Installation on Linux and Mac:
Please open the terminal, and run './install.sh' (while keeping it inside the invokeAI folder).
After installation, please run the 'invoke.bat' file (on Windows) or 'invoke.sh'
file (on Linux/Mac) to start InvokeAI.

View File

@ -1,33 +0,0 @@
--prefer-binary
--extra-index-url https://download.pytorch.org/whl/torch_stable.html
--extra-index-url https://download.pytorch.org/whl/cu116
--trusted-host https://download.pytorch.org
accelerate~=0.15
albumentations
diffusers[torch]~=0.11
einops
eventlet
flask_cors
flask_socketio
flaskwebgui==1.0.3
getpass_asterisk
imageio-ffmpeg
pyreadline3
realesrgan
send2trash
streamlit
taming-transformers-rom1504
test-tube
torch-fidelity
torch==1.12.1 ; platform_system == 'Darwin'
torch==1.12.0+cu116 ; platform_system == 'Linux' or platform_system == 'Windows'
torchvision==0.13.1 ; platform_system == 'Darwin'
torchvision==0.13.0+cu116 ; platform_system == 'Linux' or platform_system == 'Windows'
transformers
picklescan
https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip
https://github.com/invoke-ai/clipseg/archive/1f754751c85d7d4255fa681f4491ff5711c1c288.zip
https://github.com/invoke-ai/GFPGAN/archive/3f5d2397361199bc4a91c08bb7d80f04d7805615.zip ; platform_system=='Windows'
https://github.com/invoke-ai/GFPGAN/archive/c796277a1cf77954e5fc0b288d7062d162894248.zip ; platform_system=='Linux' or platform_system=='Darwin'
https://github.com/Birch-san/k-diffusion/archive/363386981fee88620709cf8f6f2eea167bd6cd74.zip
https://github.com/invoke-ai/PyPatchMatch/archive/129863937a8ab37f6bbcec327c994c0f932abdbc.zip

View File

@ -1,105 +1,277 @@
# Invocations
Invocations represent a single operation, its inputs, and its outputs. These operations and their outputs can be chained together to generate and modify images.
Invocations represent a single operation, its inputs, and its outputs. These
operations and their outputs can be chained together to generate and modify
images.
## Creating a new invocation
To create a new invocation, either find the appropriate module file in `/ldm/invoke/app/invocations` to add your invocation to, or create a new one in that folder. All invocations in that folder will be discovered and made available to the CLI and API automatically. Invocations make use of [typing](https://docs.python.org/3/library/typing.html) and [pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration into the CLI and API.
To create a new invocation, either find the appropriate module file in
`/ldm/invoke/app/invocations` to add your invocation to, or create a new one in
that folder. All invocations in that folder will be discovered and made
available to the CLI and API automatically. Invocations make use of
[typing](https://docs.python.org/3/library/typing.html) and
[pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration
into the CLI and API.
An invocation looks like this:
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
type: Literal['upscale'] = 'upscale'
# fmt: off
type: Literal["upscale"] = "upscale"
# Inputs
image: Union[ImageField,None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2,4] = Field(default=2, description = "The upscale level")
image: Union[ImageField, None] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
results = context.services.generate.upscale_and_reconstruct(
image_list = [[image, 0]],
upscale = (self.level, self.strength),
strength = 0.0, # GFPGAN strength
save_original = False,
image_callback = None,
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
```
Each portion is important to implement correctly.
### Class definition and type
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
type: Literal['upscale'] = 'upscale'
```
All invocations must derive from `BaseInvocation`. They should have a docstring that declares what they do in a single, short line. They should also have a `type` with a type hint that's `Literal["command_name"]`, where `command_name` is what the user will type on the CLI or use in the API to create this invocation. The `command_name` must be unique. The `type` must be assigned to the value of the literal in the type hint.
All invocations must derive from `BaseInvocation`. They should have a docstring
that declares what they do in a single, short line. They should also have a
`type` with a type hint that's `Literal["command_name"]`, where `command_name`
is what the user will type on the CLI or use in the API to create this
invocation. The `command_name` must be unique. The `type` must be assigned to
the value of the literal in the type hint.
### Inputs
```py
# Inputs
image: Union[ImageField,None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2,4] = Field(default=2, description="The upscale level")
```
Inputs consist of three parts: a name, a type hint, and a `Field` with default, description, and validation information. For example:
| Part | Value | Description |
| ---- | ----- | ----------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this field to be parsed with `None` as a value, which enables linking to previous invocations. All fields should either provide a default value or allow `None` as a value, so that they can be overwritten with a linked output from another invocation.
Inputs consist of three parts: a name, a type hint, and a `Field` with default,
description, and validation information. For example:
The special type `ImageField` is also used here. All images are passed as `ImageField`, which protects them from pydantic validation errors (since images only ever come from links).
| Part | Value | Description |
| --------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Finally, note that for all linking, the `type` of the linked fields must match. If the `name` also matches, then the field can be **automatically linked** to a previous invocation by name and matching.
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this
field to be parsed with `None` as a value, which enables linking to previous
invocations. All fields should either provide a default value or allow `None` as
a value, so that they can be overwritten with a linked output from another
invocation.
The special type `ImageField` is also used here. All images are passed as
`ImageField`, which protects them from pydantic validation errors (since images
only ever come from links).
Finally, note that for all linking, the `type` of the linked fields must match.
If the `name` also matches, then the field can be **automatically linked** to a
previous invocation by name and matching.
### Config
```py
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
```
This is an optional configuration for the invocation. It inherits from
pydantic's model `Config` class, and it used primarily to customize the
autogenerated OpenAPI schema.
The UI relies on the OpenAPI schema in two ways:
- An API client & Typescript types are generated from it. This happens at build
time.
- The node editor parses the schema into a template used by the UI to create the
node editor UI. This parsing happens at runtime.
In this example, a `ui` key has been added to the `schema_extra` dict to provide
some tags for the UI, to facilitate filtering nodes.
See the Schema Generation section below for more information.
### Invoke Function
```py
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
results = context.services.generate.upscale_and_reconstruct(
image_list = [[image, 0]],
upscale = (self.level, self.strength),
strength = 0.0, # GFPGAN strength
save_original = False,
image_callback = None,
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
image_type = ImageType.RESULT
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
context.services.images.save(image_type, image_name, results[0][0])
# TODO: can this return multiple results?
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
```
The `invoke` function is the last portion of an invocation. It is provided an `InvocationContext` which contains services to perform work as well as a `session_id` for use as needed. It should return a class with output values that derives from `BaseInvocationOutput`.
Before being called, the invocation will have all of its fields set from defaults, inputs, and finally links (overriding in that order).
The `invoke` function is the last portion of an invocation. It is provided an
`InvocationContext` which contains services to perform work as well as a
`session_id` for use as needed. It should return a class with output values that
derives from `BaseInvocationOutput`.
Assume that this invocation may be running simultaneously with other invocations, may be running on another machine, or in other interesting scenarios. If you need functionality, please provide it as a service in the `InvocationServices` class, and make sure it can be overridden.
Before being called, the invocation will have all of its fields set from
defaults, inputs, and finally links (overriding in that order).
Assume that this invocation may be running simultaneously with other
invocations, may be running on another machine, or in other interesting
scenarios. If you need functionality, please provide it as a service in the
`InvocationServices` class, and make sure it can be overridden.
### Outputs
```py
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal['image'] = 'image'
image: ImageField = Field(default=None, description="The output image")
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
```
Output classes look like an invocation class without the invoke method. Prefer to use an existing output class if available, and prefer to name inputs the same as outputs when possible, to promote automatic invocation linking.
Output classes look like an invocation class without the invoke method. Prefer
to use an existing output class if available, and prefer to name inputs the same
as outputs when possible, to promote automatic invocation linking.
## Schema Generation
Invocation, output and related classes are used to generate an OpenAPI schema.
### Required Properties
The schema generation treat all properties with default values as optional. This
makes sense internally, but when when using these classes via the generated
schema, we end up with e.g. the `ImageOutput` class having its `image` property
marked as optional.
We know that this property will always be present, so the additional logic
needed to always check if the property exists adds a lot of extraneous cruft.
To fix this, we can leverage `pydantic`'s
[schema customisation](https://docs.pydantic.dev/usage/schema/#schema-customization)
to mark properties that we know will always be present as required.
Here's that `ImageOutput` class, without the needed schema customisation:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
```
The OpenAPI schema that results from this `ImageOutput` will have the `type`,
`image`, `width` and `height` properties marked as optional, even though we know
they will always have a value.
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
# Add schema customization
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
```
With the customization in place, the schema will now show these properties as
required, obviating the need for extensive null checks in client code.
See this `pydantic` issue for discussion on this solution:
<https://github.com/pydantic/pydantic/discussions/4577>

171
docs/features/LOGGING.md Normal file
View File

@ -0,0 +1,171 @@
---
title: Controlling Logging
---
# :material-image-off: Controlling Logging
## Controlling How InvokeAI Logs Status Messages
InvokeAI logs status messages using a configurable logging system. You
can log to the terminal window, to a designated file on the local
machine, to the syslog facility on a Linux or Mac, or to a properly
configured web server. You can configure several logs at the same
time, and control the level of message logged and the logging format
(to a limited extent).
Three command-line options control logging:
### `--log_handlers <handler1> <handler2> ...`
This option activates one or more log handlers. Options are "console",
"file", "syslog" and "http". To specify more than one, separate them
by spaces:
```bash
invokeai-web --log_handlers console syslog=/dev/log file=C:\Users\fred\invokeai.log
```
The format of these options is described below.
### `--log_format {plain|color|legacy|syslog}`
This controls the format of log messages written to the console. Only
the "console" log handler is currently affected by this setting.
* "plain" provides formatted messages like this:
```bash
[2023-05-24 23:18:2[2023-05-24 23:18:50,352]::[InvokeAI]::DEBUG --> this is a debug message
[2023-05-24 23:18:50,352]::[InvokeAI]::INFO --> this is an informational messages
[2023-05-24 23:18:50,352]::[InvokeAI]::WARNING --> this is a warning
[2023-05-24 23:18:50,352]::[InvokeAI]::ERROR --> this is an error
[2023-05-24 23:18:50,352]::[InvokeAI]::CRITICAL --> this is a critical error
```
* "color" produces similar output, but the text will be color coded to
indicate the severity of the message.
* "legacy" produces output similar to InvokeAI versions 2.3 and earlier:
```bash
### this is a critical error
*** this is an error
** this is a warning
>> this is an informational messages
| this is a debug message
```
* "syslog" produces messages suitable for syslog entries:
```bash
InvokeAI [2691178] <CRITICAL> this is a critical error
InvokeAI [2691178] <ERROR> this is an error
InvokeAI [2691178] <WARNING> this is a warning
InvokeAI [2691178] <INFO> this is an informational messages
InvokeAI [2691178] <DEBUG> this is a debug message
```
(note that the date, time and hostname will be added by the syslog
system)
### `--log_level {debug|info|warning|error|critical}`
Providing this command-line option will cause only messages at the
specified level or above to be emitted.
## Console logging
When "console" is provided to `--log_handlers`, messages will be
written to the command line window in which InvokeAI was launched. By
default, the color formatter will be used unless overridden by
`--log_format`.
## File logging
When "file" is provided to `--log_handlers`, entries will be written
to the file indicated in the path argument. By default, the "plain"
format will be used:
```bash
invokeai-web --log_handlers file=/var/log/invokeai.log
```
## Syslog logging
When "syslog" is requested, entries will be sent to the syslog
system. There are a variety of ways to control where the log message
is sent:
* Send to the local machine using the `/dev/log` socket:
```
invokeai-web --log_handlers syslog=/dev/log
```
* Send to the local machine using a UDP message:
```
invokeai-web --log_handlers syslog=localhost
```
* Send to the local machine using a UDP message on a nonstandard
port:
```
invokeai-web --log_handlers syslog=localhost:512
```
* Send to a remote machine named "loghost" on the local LAN using
facility LOG_USER and UDP packets:
```
invokeai-web --log_handlers syslog=loghost,facility=LOG_USER,socktype=SOCK_DGRAM
```
This can be abbreviated `syslog=loghost`, as LOG_USER and SOCK_DGRAM
are defaults.
* Send to a remote machine named "loghost" using the facility LOCAL0
and using a TCP socket:
```
invokeai-web --log_handlers syslog=loghost,facility=LOG_LOCAL0,socktype=SOCK_STREAM
```
If no arguments are specified (just a bare "syslog"), then the logging
system will look for a UNIX socket named `/dev/log`, and if not found
try to send a UDP message to `localhost`. The Macintosh OS used to
support logging to a socket named `/var/run/syslog`, but this feature
has since been disabled.
## Web logging
If you have access to a web server that is configured to log messages
when a particular URL is requested, you can log using the "http"
method:
```
invokeai-web --log_handlers http=http://my.server/path/to/logger,method=POST
```
The optional [,method=] part can be used to specify whether the URL
accepts GET (default) or POST messages.
Currently password authentication and SSL are not supported.
## Using the configuration file
You can set and forget logging options by adding a "Logging" section
to `invokeai.yaml`:
```
InvokeAI:
[... other settings...]
Logging:
log_handlers:
- console
- syslog=/dev/log
log_level: info
log_format: color
```

View File

@ -32,7 +32,7 @@ turned on and off on the command line using `--nsfw_checker` and
At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file (usually
`.invokeai` in your home directory). You can change the default at any
`invokeai.init` in your home directory). You can change the default at any
time by opening this file in a text editor and commenting or
uncommenting the line `--nsfw_checker`.

View File

@ -57,6 +57,9 @@ Personalize models by adding your own style or subjects.
## * [The NSFW Checker](NSFW.md)
Prevent InvokeAI from displaying unwanted racy images.
## * [Controlling Logging](LOGGING.md)
Control how InvokeAI logs status messages.
## * [Miscellaneous](OTHER.md)
Run InvokeAI on Google Colab, generate images with repeating patterns,
batch process a file of prompts, increase the "creativity" of image

View File

@ -89,7 +89,7 @@ experimental versions later.
sudo apt update
sudo apt install -y software-properties-common
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt install python3.10 python3-pip python3.10-venv
sudo apt install -y python3.10 python3-pip python3.10-venv
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
```

View File

@ -216,7 +216,7 @@ manager, please follow these steps:
9. Run the command-line- or the web- interface:
From within INVOKEAI_ROOT, activate the environment
(with `source .venv/bin/activate` or `.venv\scripts\activate), and then run
(with `source .venv/bin/activate` or `.venv\scripts\activate`), and then run
the script `invokeai`. If the virtual environment you selected is NOT inside
INVOKEAI_ROOT, then you must specify the path to the root directory by adding
`--root_dir \path\to\invokeai` to the commands below:

View File

@ -50,7 +50,7 @@ subset that are currently installed are found in
|stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting |
|stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-inpainting|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-inpainting |
|analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion |
|deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate |
|d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion |

View File

@ -247,8 +247,8 @@ class InvokeAiInstance:
pip[
"install",
"--require-virtualenv",
"torch",
"torchvision",
"torch~=2.0.0",
"torchvision>=0.14.1",
"--force-reinstall",
"--find-links" if find_links is not None else None,
find_links,

View File

@ -7,42 +7,42 @@ call .venv\Scripts\activate.bat
set INVOKEAI_ROOT=.
:start
echo Do you want to generate images using the
echo 1. command-line interface
echo 2. browser-based UI
echo 3. run textual inversion training
echo 4. merge models (diffusers type only)
echo 5. download and install models
echo 6. change InvokeAI startup options
echo 7. re-run the configure script to fix a broken install
echo 8. open the developer console
echo 9. update InvokeAI
echo 10. command-line help
echo Q - quit
set /P restore="Please enter 1-10, Q: [2] "
if not defined restore set restore=2
IF /I "%restore%" == "1" (
echo Desired action:
echo 1. Generate images with the browser-based interface
echo 2. Explore InvokeAI nodes using a command-line interface
echo 3. Run textual inversion training
echo 4. Merge models (diffusers type only)
echo 5. Download and install models
echo 6. Change InvokeAI startup options
echo 7. Re-run the configure script to fix a broken install
echo 8. Open the developer console
echo 9. Update InvokeAI
echo 10. Command-line help
echo Q - Quit
set /P choice="Please enter 1-10, Q: [2] "
if not defined choice set choice=2
IF /I "%choice%" == "1" (
echo Starting the InvokeAI browser-based UI..
python .venv\Scripts\invokeai-web.exe %*
) ELSE IF /I "%choice%" == "2" (
echo Starting the InvokeAI command-line..
python .venv\Scripts\invokeai.exe %*
) ELSE IF /I "%restore%" == "2" (
echo Starting the InvokeAI browser-based UI..
python .venv\Scripts\invokeai.exe --web %*
) ELSE IF /I "%restore%" == "3" (
) ELSE IF /I "%choice%" == "3" (
echo Starting textual inversion training..
python .venv\Scripts\invokeai-ti.exe --gui
) ELSE IF /I "%restore%" == "4" (
) ELSE IF /I "%choice%" == "4" (
echo Starting model merging script..
python .venv\Scripts\invokeai-merge.exe --gui
) ELSE IF /I "%restore%" == "5" (
) ELSE IF /I "%choice%" == "5" (
echo Running invokeai-model-install...
python .venv\Scripts\invokeai-model-install.exe
) ELSE IF /I "%restore%" == "6" (
) ELSE IF /I "%choice%" == "6" (
echo Running invokeai-configure...
python .venv\Scripts\invokeai-configure.exe --skip-sd-weight --skip-support-models
) ELSE IF /I "%restore%" == "7" (
) ELSE IF /I "%choice%" == "7" (
echo Running invokeai-configure...
python .venv\Scripts\invokeai-configure.exe --yes --default_only
) ELSE IF /I "%restore%" == "8" (
) ELSE IF /I "%choice%" == "8" (
echo Developer Console
echo Python command is:
where python
@ -54,15 +54,15 @@ IF /I "%restore%" == "1" (
echo *************************
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) ELSE IF /I "%restore%" == "9" (
) ELSE IF /I "%choice%" == "9" (
echo Running invokeai-update...
python .venv\Scripts\invokeai-update.exe %*
) ELSE IF /I "%restore%" == "10" (
) ELSE IF /I "%choice%" == "10" (
echo Displaying command line help...
python .venv\Scripts\invokeai.exe --help %*
pause
exit /b
) ELSE IF /I "%restore%" == "q" (
) ELSE IF /I "%choice%" == "q" (
echo Goodbye!
goto ending
) ELSE (

View File

@ -1,5 +1,10 @@
#!/bin/bash
# MIT License
# Coauthored by Lincoln Stein, Eugene Brodsky and Joshua Kimsey
# Copyright 2023, The InvokeAI Development Team
####
# This launch script assumes that:
# 1. it is located in the runtime directory,
@ -11,85 +16,168 @@
set -eu
# ensure we're in the correct folder in case user's CWD is somewhere else
# Ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
. .venv/bin/activate
export INVOKEAI_ROOT="$scriptdir"
PARAMS=$@
# set required env var for torch on mac MPS
# Check to see if dialog is installed (it seems to be fairly standard, but good to check regardless) and if the user has passed the --no-tui argument to disable the dialog TUI
tui=true
if command -v dialog &>/dev/null; then
# This must use $@ to properly loop through the arguments passed by the user
for arg in "$@"; do
if [ "$arg" == "--no-tui" ]; then
tui=false
# Remove the --no-tui argument to avoid errors later on when passing arguments to InvokeAI
PARAMS=$(echo "$PARAMS" | sed 's/--no-tui//')
break
fi
done
else
tui=false
fi
# Set required env var for torch on mac MPS
if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
if [ "$0" != "bash" ]; then
while true
do
echo "Do you want to generate images using the"
echo "1. command-line interface"
echo "2. browser-based UI"
echo "3. run textual inversion training"
echo "4. merge models (diffusers type only)"
echo "5. download and install models"
echo "6. change InvokeAI startup options"
echo "7. re-run the configure script to fix a broken install"
echo "8. open the developer console"
echo "9. update InvokeAI"
echo "10. command-line help"
echo "Q - Quit"
echo ""
read -p "Please enter 1-10, Q: [2] " yn
choice=${yn:='2'}
case $choice in
1)
echo "Starting the InvokeAI command-line..."
invokeai $@
;;
2)
echo "Starting the InvokeAI browser-based UI..."
invokeai --web $@
;;
3)
echo "Starting Textual Inversion:"
invokeai-ti --gui $@
;;
4)
echo "Merging Models:"
invokeai-merge --gui $@
;;
5)
invokeai-model-install --root ${INVOKEAI_ROOT}
;;
6)
invokeai-configure --root ${INVOKEAI_ROOT} --skip-sd-weights --skip-support-models
;;
7)
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only
;;
8)
echo "Developer Console:"
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
;;
9)
echo "Update:"
invokeai-update
;;
10)
invokeai --help
;;
[qQ])
exit 0
;;
*)
echo "Invalid selection"
exit;;
# Primary function for the case statement to determine user input
do_choice() {
case $1 in
1)
clear
printf "Generate images with a browser-based interface\n"
invokeai-web $PARAMS
;;
2)
clear
printf "Explore InvokeAI nodes using a command-line interface\n"
invokeai $PARAMS
;;
3)
clear
printf "Textual inversion training\n"
invokeai-ti --gui $PARAMS
;;
4)
clear
printf "Merge models (diffusers type only)\n"
invokeai-merge --gui $PARAMS
;;
5)
clear
printf "Download and install models\n"
invokeai-model-install --root ${INVOKEAI_ROOT}
;;
6)
clear
printf "Change InvokeAI startup options\n"
invokeai-configure --root ${INVOKEAI_ROOT} --skip-sd-weights --skip-support-models
;;
7)
clear
printf "Re-run the configure script to fix a broken install\n"
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only
;;
8)
clear
printf "Open the developer console\n"
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
;;
9)
clear
printf "Update InvokeAI\n"
invokeai-update
;;
10)
clear
printf "Command-line help\n"
invokeai --help
;;
"HELP 1")
clear
printf "Command-line help\n"
invokeai --help
;;
*)
clear
printf "Exiting...\n"
exit
;;
esac
done
clear
}
# Dialog-based TUI for launcing Invoke functions
do_dialog() {
options=(
1 "Generate images with a browser-based interface"
2 "Generate images using a command-line interface"
3 "Textual inversion training"
4 "Merge models (diffusers type only)"
5 "Download and install models"
6 "Change InvokeAI startup options"
7 "Re-run the configure script to fix a broken install"
8 "Open the developer console"
9 "Update InvokeAI")
choice=$(dialog --clear \
--backtitle "\Zb\Zu\Z3InvokeAI" \
--colors \
--title "What would you like to do?" \
--ok-label "Run" \
--cancel-label "Exit" \
--help-button \
--help-label "CLI Help" \
--menu "Select an option:" \
0 0 0 \
"${options[@]}" \
2>&1 >/dev/tty) || clear
do_choice "$choice"
clear
}
# Command-line interface for launching Invoke functions
do_line_input() {
clear
printf " ** For a more attractive experience, please install the 'dialog' utility using your package manager. **\n\n"
printf "What would you like to do?\n"
printf "1: Generate images using the browser-based interface\n"
printf "2: Explore InvokeAI nodes using the command-line interface\n"
printf "3: Run textual inversion training\n"
printf "4: Merge models (diffusers type only)\n"
printf "5: Download and install models\n"
printf "6: Change InvokeAI startup options\n"
printf "7: Re-run the configure script to fix a broken install\n"
printf "8: Open the developer console\n"
printf "9: Update InvokeAI\n"
printf "10: Command-line help\n"
printf "Q: Quit\n\n"
read -p "Please enter 1-10, Q: [1] " yn
choice=${yn:='1'}
do_choice $choice
clear
}
# Main IF statement for launching Invoke with either the TUI or CLI, and for checking if the user is in the developer console
if [ "$0" != "bash" ]; then
while true; do
if $tui; then
# .dialogrc must be located in the same directory as the invoke.sh script
export DIALOGRC="./.dialogrc"
do_dialog
else
do_line_input
fi
done
else # in developer console
python --version
echo "Press ^D to exit"
printf "Press ^D to exit\n"
export PS1="(InvokeAI) \u@\h \w> "
fi

View File

@ -1,15 +1,20 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from logging import Logger
import os
from argparse import Namespace
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService
from invokeai.app.services.metadata import CoreMetadataService
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from invokeai.backend.util.logging import InvokeAILogger
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState
from ..services.image_storage import DiskImageStorage
from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.image_file_storage import DiskImageFileStorage
from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker
@ -34,48 +39,67 @@ def check_internet() -> bool:
return False
logger = InvokeAILogger.getLogger()
class ApiDependencies:
"""Contains and initializes all dependencies for the API"""
invoker: Invoker = None
@staticmethod
def initialize(config, event_handler_id: int):
Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert
# TODO: Use a logger
print(f">> Internet connectivity is {Globals.internet_available}")
def initialize(config, event_handler_id: int, logger: Logger = logger):
logger.info(f"Internet connectivity is {config.internet_available}")
events = FastAPIEventService(event_handler_id)
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../../outputs")
)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
images = DiskImageStorage(f'{output_folder}/images')
output_folder = config.output_path
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
db_location = config.db_path
db_location.parent.mkdir(parents=True,exist_ok=True)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
)
urls = LocalUrlService()
metadata = CoreMetadataService()
image_record_storage = SqliteImageRecordStorage(db_location)
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
latents = ForwardCacheLatentsStorage(
DiskLatentsStorage(f"{output_folder}/latents")
)
images = ImageService(
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
services = InvocationServices(
model_manager=get_model_manager(config),
model_manager=get_model_manager(config, logger),
events=events,
latents=latents,
images=images,
queue=MemoryInvocationQueue(),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
restoration=RestorationServices(config, logger),
configuration=config,
logger=logger,
)
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services)
@staticmethod

View File

@ -45,7 +45,7 @@ class FastAPIEventService(EventServiceBase):
)
except Empty:
await asyncio.sleep(0.001)
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:

View File

@ -1,66 +1,237 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from fastapi import Path, Request, UploadFile
from fastapi.responses import FileResponse, Response
import io
from typing import Optional
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.routing import APIRouter
from fastapi.responses import FileResponse
from PIL import Image
from invokeai.app.models.image import (
ImageCategory,
ResourceOrigin,
)
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.image_record import (
ImageDTO,
ImageRecordChanges,
ImageUrlsDTO,
)
from invokeai.app.services.item_storage import PaginatedResults
from ...services.image_storage import ImageType
from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@images_router.get("/{image_type}/{image_name}", operation_id="get_image")
async def get_image(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
"""Gets a result"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, image_name)
return FileResponse(filename)
@images_router.get("/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail")
async def get_thumbnail(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
"""Gets a thumbnail"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, 'thumbnails/' + image_name)
return FileResponse(filename)
@images_router.post(
"/uploads/",
"/",
operation_id="upload_image",
responses={
201: {"description": "The image was uploaded successfully"},
404: {"description": "Session not found"},
415: {"description": "Image upload failed"},
},
status_code=201,
response_model=ImageDTO,
)
async def upload_image(file: UploadFile, request: Request):
async def upload_image(
file: UploadFile,
request: Request,
response: Response,
image_category: ImageCategory = Query(description="The category of the image"),
is_intermediate: bool = Query(description="Whether this is an intermediate image"),
session_id: Optional[str] = Query(
default=None, description="The session ID associated with this upload, if any"
),
) -> ImageDTO:
"""Uploads an image"""
if not file.content_type.startswith("image"):
return Response(status_code=415)
raise HTTPException(status_code=415, detail="Not an image")
contents = await file.read()
try:
im = Image.open(contents)
pil_image = Image.open(io.BytesIO(contents))
except:
# Error opening the image
return Response(status_code=415)
raise HTTPException(status_code=415, detail="Failed to read image")
filename = f"{str(int(datetime.now(timezone.utc).timestamp()))}.png"
ApiDependencies.invoker.services.images.save(ImageType.UPLOAD, filename, im)
try:
image_dto = ApiDependencies.invoker.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.EXTERNAL,
image_category=image_category,
session_id=session_id,
is_intermediate=is_intermediate,
)
return Response(
status_code=201,
headers={
"Location": request.url_for(
"get_image", image_type=ImageType.UPLOAD, image_name=filename
)
response.status_code = 201
response.headers["Location"] = image_dto.image_url
return image_dto
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to create image")
@images_router.delete("/{image_name}", operation_id="delete_image")
async def delete_image(
image_name: str = Path(description="The name of the image to delete"),
) -> None:
"""Deletes an image"""
try:
ApiDependencies.invoker.services.images.delete(image_name)
except Exception as e:
# TODO: Does this need any exception handling at all?
pass
@images_router.patch(
"/{image_name}",
operation_id="update_image",
response_model=ImageDTO,
)
async def update_image(
image_name: str = Path(description="The name of the image to update"),
image_changes: ImageRecordChanges = Body(
description="The changes to apply to the image"
),
) -> ImageDTO:
"""Updates an image"""
try:
return ApiDependencies.invoker.services.images.update(image_name, image_changes)
except Exception as e:
raise HTTPException(status_code=400, detail="Failed to update image")
@images_router.get(
"/{image_name}/metadata",
operation_id="get_image_metadata",
response_model=ImageDTO,
)
async def get_image_metadata(
image_name: str = Path(description="The name of image to get"),
) -> ImageDTO:
"""Gets an image's metadata"""
try:
return ApiDependencies.invoker.services.images.get_dto(image_name)
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_name}",
operation_id="get_image_full",
response_class=Response,
responses={
200: {
"description": "Return the full-resolution image",
"content": {"image/png": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> FileResponse:
"""Gets a full-resolution image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(image_name)
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
return FileResponse(
path,
media_type="image/png",
filename=image_name,
content_disposition_type="inline",
)
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_name}/thumbnail",
operation_id="get_image_thumbnail",
response_class=Response,
responses={
200: {
"description": "Return the image thumbnail",
"content": {"image/webp": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_thumbnail(
image_name: str = Path(description="The name of thumbnail image file to get"),
) -> FileResponse:
"""Gets a thumbnail image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(
image_name, thumbnail=True
)
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
return FileResponse(
path, media_type="image/webp", content_disposition_type="inline"
)
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_name}/urls",
operation_id="get_image_urls",
response_model=ImageUrlsDTO,
)
async def get_image_urls(
image_name: str = Path(description="The name of the image whose URL to get"),
) -> ImageUrlsDTO:
"""Gets an image and thumbnail URL"""
try:
image_url = ApiDependencies.invoker.services.images.get_url(image_name)
thumbnail_url = ApiDependencies.invoker.services.images.get_url(
image_name, thumbnail=True
)
return ImageUrlsDTO(
image_name=image_name,
image_url=image_url,
thumbnail_url=thumbnail_url,
)
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/",
operation_id="list_images_with_metadata",
response_model=OffsetPaginatedResults[ImageDTO],
)
async def list_images_with_metadata(
image_origin: Optional[ResourceOrigin] = Query(
default=None, description="The origin of images to list"
),
categories: Optional[list[ImageCategory]] = Query(
default=None, description="The categories of image to include"
),
is_intermediate: Optional[bool] = Query(
default=None, description="Whether to list intermediate images"
),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of images per page"),
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a list of images"""
image_dtos = ApiDependencies.invoker.services.images.get_many(
offset,
limit,
image_origin,
categories,
is_intermediate,
)
return image_dtos

View File

@ -1,10 +1,12 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
import shutil
import asyncio
from typing import Annotated, Any, List, Literal, Optional, Union
from fastapi.routing import APIRouter
from fastapi.routing import APIRouter, HTTPException
from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
@ -15,11 +17,9 @@ class VaeRepo(BaseModel):
path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
@ -29,7 +29,6 @@ class CkptModelInfo(ModelInfo):
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
@ -37,12 +36,29 @@ class DiffusersModelInfo(ModelInfo):
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class CreateModelRequest(BaseModel):
name: str = Field(description="The name of the model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
class CreateModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
status: str = Field(description="The status of the API response")
class ConversionRequest(BaseModel):
name: str = Field(description="The name of the new model")
info: CkptModelInfo = Field(description="The converted model info")
save_location: str = Field(description="The path to save the converted model weights")
class ConvertedModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: DiffusersModelInfo = Field(description="The converted model info")
class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
@models_router.get(
"/",
operation_id="list_models",
@ -54,108 +70,62 @@ async def list_models() -> ModelsList:
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
# @socketio.on("requestSystemConfig")
# def handle_request_capabilities():
# print(">> System config requested")
# config = self.get_system_config()
# config["model_list"] = self.generate.model_manager.list_models()
# config["infill_methods"] = infill_methods()
# socketio.emit("systemConfig", config)
# @socketio.on("searchForModels")
# def handle_search_models(search_folder: str):
# try:
# if not search_folder:
# socketio.emit(
# "foundModels",
# {"search_folder": None, "found_models": None},
# )
# else:
# (
# search_folder,
# found_models,
# ) = self.generate.model_manager.search_models(search_folder)
# socketio.emit(
# "foundModels",
# {"search_folder": search_folder, "found_models": found_models},
# )
# except Exception as e:
# self.handle_exceptions(e)
# print("\n")
@models_router.post(
"/",
operation_id="update_model",
responses={200: {"status": "success"}},
)
async def update_model(
model_request: CreateModelRequest
) -> CreateModelResponse:
""" Add Model """
model_request_info = model_request.info
info_dict = model_request_info.dict()
model_response = CreateModelResponse(name=model_request.name, info=model_request.info, status="success")
# @socketio.on("addNewModel")
# def handle_add_model(new_model_config: dict):
# try:
# model_name = new_model_config["name"]
# del new_model_config["name"]
# model_attributes = new_model_config
# if len(model_attributes["vae"]) == 0:
# del model_attributes["vae"]
# update = False
# current_model_list = self.generate.model_manager.list_models()
# if model_name in current_model_list:
# update = True
ApiDependencies.invoker.services.model_manager.add_model(
model_name=model_request.name,
model_attributes=info_dict,
clobber=True,
)
# print(f">> Adding New Model: {model_name}")
return model_response
# self.generate.model_manager.add_model(
# model_name=model_name,
# model_attributes=model_attributes,
# clobber=True,
# )
# self.generate.model_manager.commit(opt.conf)
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "newModelAdded",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": update,
# },
# )
# print(f">> New Model Added: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
@models_router.delete(
"/{model_name}",
operation_id="del_model",
responses={
204: {
"description": "Model deleted successfully"
},
404: {
"description": "Model not found"
}
},
)
async def delete_model(model_name: str) -> None:
"""Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names()
logger = ApiDependencies.invoker.services.logger
model_exists = model_name in model_names
# @socketio.on("deleteModel")
# def handle_delete_model(model_name: str):
# try:
# print(f">> Deleting Model: {model_name}")
# self.generate.model_manager.del_model(model_name)
# self.generate.model_manager.commit(opt.conf)
# updated_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelDeleted",
# {
# "deleted_model_name": model_name,
# "model_list": updated_model_list,
# },
# )
# print(f">> Model Deleted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# check if model exists
logger.info(f"Checking for model {model_name}...")
if model_exists:
logger.info(f"Deleting Model: {model_name}")
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
logger.info(f"Model Deleted: {model_name}")
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
else:
logger.error(f"Model not found")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
# @socketio.on("requestModelChange")
# def handle_set_model(model_name: str):
# try:
# print(f">> Model change requested: {model_name}")
# model = self.generate.set_model(model_name)
# model_list = self.generate.model_manager.list_models()
# if model is None:
# socketio.emit(
# "modelChangeFailed",
# {"model_name": model_name, "model_list": model_list},
# )
# else:
# socketio.emit(
# "modelChanged",
# {"model_name": model_name, "model_list": model_list},
# )
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("convertToDiffusers")
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
@ -276,4 +246,3 @@ async def list_models() -> ModelsList:
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:
# self.handle_exceptions(e)

View File

@ -2,8 +2,7 @@
from typing import Annotated, List, Optional, Union
from fastapi import Body, Path, Query
from fastapi.responses import Response
from fastapi import Body, HTTPException, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic.fields import Field
@ -76,7 +75,7 @@ async def get_session(
"""Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
else:
return session
@ -99,7 +98,7 @@ async def add_node(
"""Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.add_node(node)
@ -108,9 +107,9 @@ async def add_node(
) # TODO: can this be done automatically, or add node through an API?
return session.id
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.put(
@ -132,7 +131,7 @@ async def update_node(
"""Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.update_node(node_path, node)
@ -141,9 +140,9 @@ async def update_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.delete(
@ -162,7 +161,7 @@ async def delete_node(
"""Deletes a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.delete_node(node_path)
@ -171,9 +170,9 @@ async def delete_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.post(
@ -192,7 +191,7 @@ async def add_edge(
"""Adds an edge to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.add_edge(edge)
@ -201,9 +200,9 @@ async def add_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
# TODO: the edge being in the path here is really ugly, find a better solution
@ -226,7 +225,7 @@ async def delete_edge(
"""Deletes an edge from the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
edge = Edge(
@ -239,9 +238,9 @@ async def delete_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.put(
@ -259,14 +258,14 @@ async def invoke_session(
all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations"
),
) -> None:
) -> Response:
"""Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
if session.is_complete():
return Response(status_code=400)
raise HTTPException(status_code=400)
ApiDependencies.invoker.invoke(session, invoke_all=all)
return Response(status_code=202)
@ -281,7 +280,7 @@ async def invoke_session(
)
async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"),
) -> None:
) -> Response:
"""Invokes a session"""
ApiDependencies.invoker.cancel(session_id)
return Response(status_code=202)

View File

@ -3,6 +3,7 @@ import asyncio
from inspect import signature
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
@ -10,13 +11,21 @@ from fastapi.openapi.utils import get_openapi
from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from pathlib import Path
from pydantic.schema import schema
from ..backend import Args
#This should come early so that modules can log their initialization properly
from .services.config import InvokeAIAppConfig
from ..backend.util.logging import InvokeAILogger
app_config = InvokeAIAppConfig.get_config()
app_config.parse_args()
logger = InvokeAILogger.getLogger(config=app_config)
import invokeai.frontend.web as web_dir
from .api.dependencies import ApiDependencies
from .api.routers import images, sessions, models
from .api.routers import sessions, models, images
from .api.sockets import SocketIO
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
# Create the app
@ -33,30 +42,21 @@ app.add_middleware(
middleware_id=event_handler_id,
)
# Add CORS
# TODO: use configuration for this
origins = []
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
socket_io = SocketIO(app)
config = {}
# Add startup event to load dependencies
@app.on_event("startup")
async def startup_event():
config = Args()
config.parse_args()
app.add_middleware(
CORSMiddleware,
allow_origins=app_config.allow_origins,
allow_credentials=app_config.allow_credentials,
allow_methods=app_config.allow_methods,
allow_headers=app_config.allow_headers,
)
ApiDependencies.initialize(
config=config, event_handler_id=event_handler_id
config=app_config, event_handler_id=event_handler_id, logger=logger
)
@ -74,10 +74,9 @@ async def shutdown_event():
app.include_router(sessions.session_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(models.models_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
# Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow?
@ -124,8 +123,7 @@ def custom_openapi():
app.openapi = custom_openapi
# Override API doc favicons
app.mount("/static", StaticFiles(directory="static/dream_web"), name="static")
app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], 'static/dream_web')), name="static")
@app.get("/docs", include_in_schema=False)
def overridden_swagger():
@ -145,16 +143,20 @@ def overridden_redoc():
)
# Must mount *after* the other routes else it borks em
app.mount("/",
StaticFiles(directory=Path(web_dir.__path__[0],"dist"),
html=True
), name="ui"
)
def invoke_api():
# Start our own event loop for eventing usage
# TODO: determine if there's a better way to do this
loop = asyncio.new_event_loop()
config = uvicorn.Config(app=app, host="0.0.0.0", port=9090, loop=loop)
config = uvicorn.Config(app=app, host=app_config.host, port=app_config.port, loop=loop)
# Use access_log to turn off logging
server = uvicorn.Server(config)
loop.run_until_complete(server.serve())
if __name__ == "__main__":
invoke_api()

View File

@ -2,15 +2,46 @@
from abc import ABC, abstractmethod
import argparse
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
from typing import Any, Callable, Iterable, Literal, Union, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field
import networkx as nx
import matplotlib.pyplot as plt
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation
from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState
from ..services.graph import GraphExecutionState, LibraryGraph, Edge
from ..services.invoker import Invoker
def add_field_argument(command_parser, name: str, field, default_override = None):
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
help=field.field_info.description,
)
def add_parsers(
subparsers,
commands: list[type],
@ -35,30 +66,26 @@ def add_parsers(
if name in exclude_fields:
continue
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
add_field_argument(command_parser, name, field)
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=field.default if field.default_factory is None else field.default_factory(),
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=field.default if field.default_factory is None else field.default_factory(),
help=field.field_info.description,
)
def add_graph_parsers(
subparsers,
graphs: list[LibraryGraph],
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
):
for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description)
if add_arguments is not None:
add_arguments(command_parser)
# Add arguments for inputs
for exposed_input in graph.exposed_inputs:
node = graph.graph.get_node(exposed_input.node_path)
field = node.__fields__[exposed_input.field]
default_override = getattr(node, exposed_input.field)
add_field_argument(command_parser, exposed_input.alias, field, default_override)
class CliContext:
@ -66,17 +93,38 @@ class CliContext:
session: GraphExecutionState
parser: argparse.ArgumentParser
defaults: dict[str, Any]
graph_nodes: dict[str, str]
nodes_added: list[str]
def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser):
self.invoker = invoker
self.session = session
self.parser = parser
self.defaults = dict()
self.graph_nodes = dict()
self.nodes_added = list()
def get_session(self):
self.session = self.invoker.services.graph_execution_manager.get(self.session.id)
return self.session
def reset(self):
self.session = self.invoker.create_execution_state()
self.graph_nodes = dict()
self.nodes_added = list()
# Leave defaults unchanged
def add_node(self, node: BaseInvocation):
self.get_session()
self.session.graph.add_node(node)
self.nodes_added.append(node.id)
self.invoker.services.graph_execution_manager.set(self.session)
def add_edge(self, edge: Edge):
self.get_session()
self.session.add_edge(edge)
self.invoker.services.graph_execution_manager.set(self.session)
class ExitCli(Exception):
"""Exception to exit the CLI"""
@ -182,7 +230,7 @@ class HistoryCommand(BaseCommand):
for i in range(min(self.count, len(history))):
entry_id = history[-1 - i]
entry = context.get_session().graph.get_node(entry_id)
print(f"{entry_id}: {get_invocation_command(entry)}")
logger.info(f"{entry_id}: {get_invocation_command(entry)}")
class SetDefaultCommand(BaseCommand):
@ -237,3 +285,19 @@ class DrawExecutionGraphCommand(BaseCommand):
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()
class SortedHelpFormatter(argparse.HelpFormatter):
def _iter_indented_subactions(self, action):
try:
get_subactions = action._get_subactions
except AttributeError:
pass
else:
self._indent()
if isinstance(action, argparse._SubParsersAction):
for subaction in sorted(get_subactions(), key=lambda x: x.dest):
yield subaction
else:
for subaction in get_subactions():
yield subaction
self._dedent()

View File

@ -10,9 +10,11 @@ import shlex
from pathlib import Path
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
from ...backend import ModelManager, Globals
import invokeai.backend.util.logging as logger
from ...backend import ModelManager
from ..invocations.baseinvocation import BaseInvocation
from .commands import BaseCommand
from ..services.invocation_services import InvocationServices
# singleton object, class variable
completer = None
@ -130,13 +132,13 @@ class Completer(object):
readline.redisplay()
self.linebuffer = None
def set_autocompleter(model_manager: ModelManager) -> Completer:
def set_autocompleter(services: InvocationServices) -> Completer:
global completer
if completer:
return completer
completer = Completer(model_manager)
completer = Completer(services.model_manager)
readline.set_completer(completer.complete)
# pyreadline3 does not have a set_auto_history() method
@ -152,7 +154,7 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
readline.parse_and_bind("set skip-completed-text on")
readline.parse_and_bind("set show-all-if-ambiguous on")
histfile = Path(Globals.root, ".invoke_history")
histfile = Path(services.configuration.root_dir / ".invoke_history")
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)
@ -160,8 +162,8 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
pass
except OSError: # file likely corrupted
newname = f"{histfile}.old"
print(
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
logger.error(
f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
)
histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile)

View File

@ -4,27 +4,41 @@ import argparse
import os
import re
import shlex
import sys
import time
from typing import (
Union,
get_type_hints,
)
from pydantic import BaseModel
from pydantic import BaseModel, ValidationError
from pydantic.fields import Field
# This should come early so that the logger can pick up its configuration options
from .services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger().getLogger(config=config)
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService
from invokeai.app.services.metadata import CoreMetadataService
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from .services.default_graphs import create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, SortedHelpFormatter
from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState, are_connection_types_compatible
from .services.image_storage import DiskImageStorage
from .services.graph import Edge, EdgeConnection, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.image_file_storage import DiskImageFileStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
from .services.invoker import Invoker
@ -39,7 +53,6 @@ class CliCommand(BaseModel):
class InvalidArgs(Exception):
pass
def add_invocation_args(command_parser):
# Add linking capability
command_parser.add_argument(
@ -58,9 +71,9 @@ def add_invocation_args(command_parser):
)
def get_command_parser() -> argparse.ArgumentParser:
def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
# Create invocation parser
parser = argparse.ArgumentParser()
parser = argparse.ArgumentParser(formatter_class=SortedHelpFormatter)
def exit(*args, **kwargs):
raise InvalidArgs
@ -76,20 +89,72 @@ def get_command_parser() -> argparse.ArgumentParser:
commands = BaseCommand.get_all_subclasses()
add_parsers(subparsers, commands, exclude_fields=["type"])
# Create subparsers for exposed CLI graphs
# TODO: add a way to identify these graphs
text_to_image = services.graph_library.get(default_text_to_image_graph_id)
add_graph_parsers(subparsers, [text_to_image], add_arguments=add_invocation_args)
return parser
class NodeField():
alias: str
node_path: str
field: str
field_type: type
def __init__(self, alias: str, node_path: str, field: str, field_type: type):
self.alias = alias
self.node_path = node_path
self.field = field
self.field_type = field_type
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str,NodeField]:
return {k:NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_input.node_path))
return NodeField(alias=exposed_input.alias, node_path=f'{node_id}.{exposed_input.node_path}', field=exposed_input.field, field_type=get_type_hints(node_type)[exposed_input.field])
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_output.node_path))
node_output_type = node_type.get_output_type()
return NodeField(alias=exposed_output.alias, node_path=f'{node_id}.{exposed_output.node_path}', field=exposed_output.field, field_type=get_type_hints(node_output_type)[exposed_output.field])
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the inputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_input_field(graph, e.alias, invocation.id) for e in graph.exposed_inputs}
def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the outputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type.get_output_type()), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
def generate_matching_edges(
a: BaseInvocation, b: BaseInvocation
a: BaseInvocation, b: BaseInvocation, context: CliContext
) -> list[Edge]:
"""Generates all possible edges between two invocations"""
atype = type(a)
btype = type(b)
aoutputtype = atype.get_output_type()
afields = get_type_hints(aoutputtype)
bfields = get_type_hints(btype)
afields = get_node_outputs(a, context)
bfields = get_node_inputs(b, context)
matching_fields = set(afields.keys()).intersection(bfields.keys())
@ -98,14 +163,14 @@ def generate_matching_edges(
matching_fields = matching_fields.difference(invalid_fields)
# Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f], bfields[f])]
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)]
edges = [
Edge(
source=EdgeConnection(node_id=a.id, field=field),
destination=EdgeConnection(node_id=b.id, field=field)
source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field),
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field)
)
for field in matching_fields
for alias in matching_fields
]
return edges
@ -125,49 +190,80 @@ def invoke_all(context: CliContext):
# Print any errors
if context.session.has_error():
for n in context.session.errors:
print(
context.invoker.services.logger.error(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
)
raise SessionError()
def invoke_cli():
config = Args()
config.parse_args()
model_manager = get_model_manager(config)
# This initializes the autocompleter and returns it.
# Currently nothing is done with the returned Completer
# object, but the object can be used to change autocompletion
# behavior on the fly, if desired.
completer = set_autocompleter(model_manager)
# get the optional list of invocations to execute on the command line
parser = config.get_parser()
parser.add_argument('commands',nargs='*')
invocation_commands = parser.parse_args().commands
# get the optional file to read commands from.
# Simplest is to use it for STDIN
if infile := config.from_file:
sys.stdin = open(infile,"r")
model_manager = get_model_manager(config,logger=logger)
events = EventServiceBase()
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs")
)
output_folder = config.output_path
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
if config.use_memory_db:
db_location = ":memory:"
else:
db_location = config.db_path
db_location.parent.mkdir(parents=True,exist_ok=True)
logger.info(f'InvokeAI database location is "{db_location}"')
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
)
urls = LocalUrlService()
metadata = CoreMetadataService()
image_record_storage = SqliteImageRecordStorage(db_location)
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
images = ImageService(
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
services = InvocationServices(
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images'),
images=images,
queue=MemoryInvocationQueue(),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
restoration=RestorationServices(config,logger=logger),
logger=logger,
configuration=config,
)
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser()
parser = get_command_parser(services)
re_negid = re.compile('^-[0-9]+$')
@ -175,21 +271,30 @@ def invoke_cli():
# print(services.session_manager.list())
context = CliContext(invoker, session, parser)
set_autocompleter(services)
while True:
command_line_args_exist = len(invocation_commands) > 0
done = False
while not done:
try:
cmd_input = input("invoke> ")
if command_line_args_exist:
cmd_input = invocation_commands.pop(0)
done = len(invocation_commands) == 0
else:
cmd_input = input("invoke> ")
except (KeyboardInterrupt, EOFError):
# Ctrl-c exits
break
try:
# Refresh the state of the session
history = list(get_graph_execution_history(context.session))
#history = list(get_graph_execution_history(context.session))
history = list(reversed(context.nodes_added))
# Split the command for piping
cmds = cmd_input.split("|")
start_id = len(history)
start_id = len(context.nodes_added)
current_id = start_id
new_invocations = list()
for cmd in cmds:
@ -205,8 +310,24 @@ def invoke_cli():
args[field_name] = field_default
# Parse invocation
args["id"] = current_id
command = CliCommand(command=args)
command: CliCommand = None # type:ignore
system_graph: LibraryGraph|None = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
for exposed_input in system_graph.exposed_inputs:
if exposed_input.alias in args:
node = invocation.graph.get_node(exposed_input.node_path)
field = exposed_input.field
setattr(node, field, args[exposed_input.alias])
command = CliCommand(command = invocation)
context.graph_nodes[invocation.id] = system_graph.id
else:
args["id"] = current_id
command = CliCommand(command=args)
if command is None:
continue
# Run any CLI commands immediately
if isinstance(command.command, BaseCommand):
@ -217,6 +338,7 @@ def invoke_cli():
command.command.run(context)
continue
# TODO: handle linking with library graphs
# Pipe previous command output (if there was a previous command)
edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id:
@ -229,7 +351,7 @@ def invoke_cli():
else context.session.graph.get_node(from_id)
)
matching_edges = generate_matching_edges(
from_node, command.command
from_node, command.command, context
)
edges.extend(matching_edges)
@ -242,7 +364,7 @@ def invoke_cli():
link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges(
link_node, command.command
link_node, command.command, context
)
matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations]
@ -256,12 +378,14 @@ def invoke_cli():
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
# TODO: handle missing input/output
node_output = get_node_outputs(context.session.graph.get_node(node_id), context)[link[1]]
node_input = get_node_inputs(command.command, context)[link[2]]
edges.append(
Edge(
source=EdgeConnection(node_id=node_id, field=link[1]),
destination=EdgeConnection(
node_id=command.command.id, field=link[2]
)
source=EdgeConnection(node_id=node_output.node_path, field=node_output.field),
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field)
)
)
@ -270,22 +394,25 @@ def invoke_cli():
current_id = current_id + 1
# Add the node to the session
context.session.add_node(command.command)
context.add_node(command.command)
for edge in edges:
print(edge)
context.session.add_edge(edge)
context.add_edge(edge)
# Execute all remaining nodes
invoke_all(context)
except InvalidArgs:
print('Invalid command, use "help" to list commands')
invoker.services.logger.warning('Invalid command, use "help" to list commands')
continue
except ValidationError:
invoker.services.logger.warning('Invalid command arguments, run "<command> --help" for summary')
except SessionError:
# Start a new session
print("Session error: creating a new session")
context.session = context.invoker.create_execution_state()
invoker.services.logger.warning("Session error: creating a new session")
context.reset()
except ExitCli:
break

View File

@ -1,12 +1,15 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from __future__ import annotations
from abc import ABC, abstractmethod
from inspect import signature
from typing import get_args, get_type_hints
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict, TYPE_CHECKING
from pydantic import BaseModel, Field
from ..services.invocation_services import InvocationServices
if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices
class InvocationContext:
@ -75,4 +78,59 @@ class BaseInvocation(ABC, BaseModel):
#fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
is_intermediate: bool = Field(default=False, description="Whether or not this node is an intermediate node.")
#fmt: on
# TODO: figure out a better way to provide these hints
# TODO: when we can upgrade to python 3.11, we can use the`NotRequired` type instead of `total=False`
class UIConfig(TypedDict, total=False):
type_hints: Dict[
str,
Literal[
"integer",
"float",
"boolean",
"string",
"enum",
"image",
"latents",
"model",
"control",
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
class InvocationConfig(BaseModel.Config):
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.
`tags`
- A list of strings, used to categorise invocations.
`type_hints`
- A dict of field types which override the types in the invocation definition.
- Each key should be the name of one of the invocation's fields.
- Each value should be one of the valid types:
- `integer`, `float`, `boolean`, `string`, `enum`, `image`, `latents`, `model`
```python
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"initial_image": "image",
},
},
}
```
"""
schema_extra: CustomisedSchemaExtra

View File

@ -1,16 +1,17 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import Literal
import cv2 as cv
import numpy as np
import numpy.random
from PIL import Image, ImageOps
from pydantic import Field
from pydantic import Field, validator
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext, BaseInvocationOutput
from .image import ImageField, ImageOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from .baseinvocation import (
BaseInvocation,
InvocationContext,
BaseInvocationOutput,
)
class IntCollectionOutput(BaseInvocationOutput):
@ -21,9 +22,17 @@ class IntCollectionOutput(BaseInvocationOutput):
# Outputs
collection: list[int] = Field(default=[], description="The int collection")
class FloatCollectionOutput(BaseInvocationOutput):
"""A collection of floats"""
type: Literal["float_collection"] = "float_collection"
# Outputs
collection: list[float] = Field(default=[], description="The float collection")
class RangeInvocation(BaseInvocation):
"""Creates a range"""
"""Creates a range of numbers from start to stop with step"""
type: Literal["range"] = "range"
@ -32,8 +41,32 @@ class RangeInvocation(BaseInvocation):
stop: int = Field(default=10, description="The stop of the range")
step: int = Field(default=1, description="The step of the range")
@validator("stop")
def stop_gt_start(cls, v, values):
if "start" in values and v <= values["start"]:
raise ValueError("stop must be greater than start")
return v
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
return IntCollectionOutput(
collection=list(range(self.start, self.stop, self.step))
)
class RangeOfSizeInvocation(BaseInvocation):
"""Creates a range from start to start + size with step"""
type: Literal["range_of_size"] = "range_of_size"
# Inputs
start: int = Field(default=0, description="The start of the range")
size: int = Field(default=1, description="The number of values")
step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(
collection=list(range(self.start, self.start + self.size, self.step))
)
class RandomRangeInvocation(BaseInvocation):
@ -43,8 +76,19 @@ class RandomRangeInvocation(BaseInvocation):
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
size: int = Field(default=1, description="The number of values to generate")
seed: int = Field(
ge=0,
le=SEED_MAX,
description="The seed for the RNG (omit for random)",
default_factory=get_random_seed,
)
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(numpy.random.randint(self.low, self.high, size=self.size)))
rng = np.random.default_rng(self.seed)
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)

View File

@ -0,0 +1,266 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from ...backend.prompting.conditioning import try_parse_legacy_blend
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
from compel import Compel
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment, Conjunction,
)
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
class CompelOutput(BaseInvocationOutput):
"""Compel parser output"""
#fmt: off
type: Literal["compel_output"] = "compel_output"
conditioning: ConditioningField = Field(default=None, description="Conditioning")
#fmt: on
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
type: Literal["compel"] = "compel"
prompt: str = Field(default="", description="Prompt")
model: str = Field(default="", description="Model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
def invoke(self, context: InvocationContext) -> CompelOutput:
# TODO: load without model
model = choose_model(context.services.model_manager, self.model)
pipeline = model["model"]
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
# TODO: global? input?
#use_full_precision = precision == "float32" or precision == "autocast"
#use_full_precision = False
# TODO: redo TI when separate model loding implemented
#textual_inversion_manager = TextualInversionManager(
# tokenizer=tokenizer,
# text_encoder=text_encoder,
# full_precision=use_full_precision,
#)
def load_huggingface_concepts(concepts: list[str]):
pipeline.textual_inversion_manager.load_huggingface_concepts(concepts)
# apply the concepts library to the prompt
prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
self.prompt,
lambda concepts: load_huggingface_concepts(concepts),
pipeline.textual_inversion_manager.get_all_trigger_strings(),
)
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_str
)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=pipeline.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False,
)
legacy_blend = try_parse_legacy_blend(prompt_str, skip_normalize=False)
if legacy_blend is not None:
conjunction = legacy_blend
else:
conjunction = Compel.parse_prompt_string(prompt_str)
if context.services.configuration.log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
cross_attention_control_args=options.get("cross_attention_control", None),
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (c, ec))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in blend.prompts
]
)
elif type(prompt) is Conjunction:
conjunction: Conjunction = prompt
return sum(
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in conjunction.prompts
]
)
else:
return len(
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> [str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_conjunction(
c: Conjunction, tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts)>1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
this_display_label_prefix = display_label_prefix
log_tokenization_for_prompt_object(
p,
tokenizer,
display_label_prefix=this_display_label_prefix
)
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
original_fragments = []
edited_fragments = []
for f in flattened_prompt.children:
if type(f) is CrossAttentionControlSubstitute:
original_fragments += f.original
edited_fragments += f.edited
else:
original_fragments.append(f)
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")

View File

@ -0,0 +1,457 @@
# InvokeAI nodes for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import float, bool
import numpy as np
from typing import Literal, Optional, Union, List
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field, validator
from ..models.image import ImageField, ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from controlnet_aux import (
CannyDetector,
HEDdetector,
LineartDetector,
LineartAnimeDetector,
MidasDetector,
MLSDdetector,
NormalBaeDetector,
OpenposeDetector,
PidiNetDetector,
ContentShuffleDetector,
ZoeDetector,
MediapipeFaceDetector,
)
from .image import ImageOutput, PILInvocationConfig
CONTROLNET_DEFAULT_MODELS = [
###########################################
# lllyasviel sd v1.5, ControlNet v1.0 models
##############################################
"lllyasviel/sd-controlnet-canny",
"lllyasviel/sd-controlnet-depth",
"lllyasviel/sd-controlnet-hed",
"lllyasviel/sd-controlnet-seg",
"lllyasviel/sd-controlnet-openpose",
"lllyasviel/sd-controlnet-scribble",
"lllyasviel/sd-controlnet-normal",
"lllyasviel/sd-controlnet-mlsd",
#############################################
# lllyasviel sd v1.5, ControlNet v1.1 models
#############################################
"lllyasviel/control_v11p_sd15_canny",
"lllyasviel/control_v11p_sd15_openpose",
"lllyasviel/control_v11p_sd15_seg",
# "lllyasviel/control_v11p_sd15_depth", # broken
"lllyasviel/control_v11f1p_sd15_depth",
"lllyasviel/control_v11p_sd15_normalbae",
"lllyasviel/control_v11p_sd15_scribble",
"lllyasviel/control_v11p_sd15_mlsd",
"lllyasviel/control_v11p_sd15_softedge",
"lllyasviel/control_v11p_sd15s2_lineart_anime",
"lllyasviel/control_v11p_sd15_lineart",
"lllyasviel/control_v11p_sd15_inpaint",
# "lllyasviel/control_v11u_sd15_tile",
# problem (temporary?) with huffingface "lllyasviel/control_v11u_sd15_tile",
# so for now replace "lllyasviel/control_v11f1e_sd15_tile",
"lllyasviel/control_v11e_sd15_shuffle",
"lllyasviel/control_v11e_sd15_ip2p",
"lllyasviel/control_v11f1e_sd15_tile",
#################################################
# thibaud sd v2.1 models (ControlNet v1.0? or v1.1?
##################################################
"thibaud/controlnet-sd21-openpose-diffusers",
"thibaud/controlnet-sd21-canny-diffusers",
"thibaud/controlnet-sd21-depth-diffusers",
"thibaud/controlnet-sd21-scribble-diffusers",
"thibaud/controlnet-sd21-hed-diffusers",
"thibaud/controlnet-sd21-zoedepth-diffusers",
"thibaud/controlnet-sd21-color-diffusers",
"thibaud/controlnet-sd21-openposev2-diffusers",
"thibaud/controlnet-sd21-lineart-diffusers",
"thibaud/controlnet-sd21-normalbae-diffusers",
"thibaud/controlnet-sd21-ade20k-diffusers",
##############################################
# ControlNetMediaPipeface, ControlNet v1.1
##############################################
# ["CrucibleAI/ControlNetMediaPipeFace", "diffusion_sd15"], # SD 1.5
# diffusion_sd15 needs to be passed to from_pretrained() as subfolder arg
# hacked t2l to split to model & subfolder if format is "model,subfolder"
"CrucibleAI/ControlNetMediaPipeFace,diffusion_sd15", # SD 1.5
"CrucibleAI/ControlNetMediaPipeFace", # SD 2.1?
]
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])]
class ControlField(BaseModel):
image: ImageField = Field(default=None, description="The control image")
control_model: Optional[str] = Field(default=None, description="The ControlNet model to use")
# control_weight: Optional[float] = Field(default=1, description="weight given to controlnet")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(default=0, ge=0, le=1,
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The contorl mode to use")
@validator("control_weight")
def abs_le_one(cls, v):
"""validate that all abs(values) are <=1"""
if isinstance(v, list):
for i in v:
if abs(i) > 1:
raise ValueError('all abs(control_weight) must be <= 1')
else:
if abs(v) > 1:
raise ValueError('abs(control_weight) must be <= 1')
return v
class Config:
schema_extra = {
"required": ["image", "control_model", "control_weight", "begin_step_percent", "end_step_percent"],
"ui": {
"type_hints": {
"control_weight": "float",
# "control_weight": "number",
}
}
}
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# fmt: off
type: Literal["control_output"] = "control_output"
control: ControlField = Field(default=None, description="The control info")
# fmt: on
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
# fmt: off
type: Literal["controlnet"] = "controlnet"
# Inputs
image: ImageField = Field(default=None, description="The control image")
control_model: CONTROLNET_NAME_VALUES = Field(default="lllyasviel/sd-controlnet-canny",
description="control model used")
control_weight: Union[float, List[float]] = Field(default=1.0, description="The weight given to the ControlNet")
begin_step_percent: float = Field(default=0, ge=0, le=1,
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode used")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number",
"control_weight": "float",
}
},
}
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
image=self.image,
control_model=self.control_model,
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
control_mode=self.control_mode,
),
)
# TODO: move image processors to separate file (image_analysis.py
class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
"""Base class for invocations that preprocess images for ControlNet"""
# fmt: off
type: Literal["image_processor"] = "image_processor"
# Inputs
image: ImageField = Field(default=None, description="The image to process")
# fmt: on
def run_processor(self, image):
# superclass just passes through image without processing
return image
def invoke(self, context: InvocationContext) -> ImageOutput:
raw_image = context.services.images.get_pil_image(self.image.image_name)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
# FIXME: what happened to image metadata?
# metadata = context.services.metadata.build_metadata(
# session_id=context.graph_execution_state_id, node=self
# )
# currently can't see processed image in node UI without a showImage node,
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
image_dto = context.services.images.create(
image=processed_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.CONTROL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate
)
"""Builds an ImageOutput and its ImageField"""
processed_image_field = ImageField(image_name=image_dto.image_name)
return ImageOutput(
image=processed_image_field,
# width=processed_image.width,
width = image_dto.width,
# height=processed_image.height,
height = image_dto.height,
# mode=processed_image.mode,
)
class CannyImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Canny edge detection for ControlNet"""
# fmt: off
type: Literal["canny_image_processor"] = "canny_image_processor"
# Input
low_threshold: int = Field(default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)")
high_threshold: int = Field(default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)")
# fmt: on
def run_processor(self, image):
canny_processor = CannyDetector()
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
return processed_image
class HedImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies HED edge detection to image"""
# fmt: off
type: Literal["hed_image_processor"] = "hed_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# safe not supported in controlnet_aux v0.0.3
# safe: bool = Field(default=False, description="whether to use safe mode")
scribble: bool = Field(default=False, description="Whether to use scribble mode")
# fmt: on
def run_processor(self, image):
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = hed_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
# safe not supported in controlnet_aux v0.0.3
# safe=self.safe,
scribble=self.scribble,
)
return processed_image
class LineartImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art processing to image"""
# fmt: off
type: Literal["lineart_image_processor"] = "lineart_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
coarse: bool = Field(default=False, description="Whether to use coarse mode")
# fmt: on
def run_processor(self, image):
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
processed_image = lineart_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
coarse=self.coarse)
return processed_image
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art anime processing to image"""
# fmt: off
type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
def run_processor(self, image):
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
class OpenposeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Openpose processing to image"""
# fmt: off
type: Literal["openpose_image_processor"] = "openpose_image_processor"
# Inputs
hand_and_face: bool = Field(default=False, description="Whether to use hands and face mode")
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
def run_processor(self, image):
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = openpose_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,
)
return processed_image
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Midas depth processing to image"""
# fmt: off
type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor"
# Inputs
a_mult: float = Field(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
bg_th: float = Field(default=0.1, ge=0, description="Midas parameter `bg_th`")
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = Field(default=False, description="whether to use depth and normal mode")
# fmt: on
def run_processor(self, image):
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(image,
a=np.pi * self.a_mult,
bg_th=self.bg_th,
# dept_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal=self.depth_and_normal,
)
return processed_image
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies NormalBae processing to image"""
# fmt: off
type: Literal["normalbae_image_processor"] = "normalbae_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
def run_processor(self, image):
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution)
return processed_image
class MlsdImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies MLSD processing to image"""
# fmt: off
type: Literal["mlsd_image_processor"] = "mlsd_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
thr_v: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_d`")
# fmt: on
def run_processor(self, image):
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
thr_v=self.thr_v,
thr_d=self.thr_d)
return processed_image
class PidiImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies PIDI processing to image"""
# fmt: off
type: Literal["pidi_image_processor"] = "pidi_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
safe: bool = Field(default=False, description="Whether to use safe mode")
scribble: bool = Field(default=False, description="Whether to use scribble mode")
# fmt: on
def run_processor(self, image):
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
scribble=self.scribble)
return processed_image
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies content shuffle processing to image"""
# fmt: off
type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
h: Union[int, None] = Field(default=512, ge=0, description="Content shuffle `h` parameter")
w: Union[int, None] = Field(default=512, ge=0, description="Content shuffle `w` parameter")
f: Union[int, None] = Field(default=256, ge=0, description="Content shuffle `f` parameter")
# fmt: on
def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
h=self.h,
w=self.w,
f=self.f
)
return processed_image
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Zoe depth processing to image"""
# fmt: off
type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
# fmt: on
def run_processor(self, image):
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies mediapipe face processing to image"""
# fmt: off
type: Literal["mediapipe_face_processor"] = "mediapipe_face_processor"
# Inputs
max_faces: int = Field(default=1, ge=1, description="Maximum number of faces to detect")
min_confidence: float = Field(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
# fmt: on
def run_processor(self, image):
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
return processed_image

View File

@ -5,33 +5,44 @@ from typing import Literal
import cv2 as cv
import numpy
from PIL import Image, ImageOps
from pydantic import Field
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
class CvInpaintInvocation(BaseInvocation):
class CvInvocationConfig(BaseModel):
"""Helper class to provide all OpenCV invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["cv", "image"],
},
}
class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
"""Simple inpaint using opencv."""
#fmt: off
# fmt: off
type: Literal["cv_inpaint"] = "cv_inpaint"
# Inputs
image: ImageField = Field(default=None, description="The image to inpaint")
mask: ImageField = Field(default=None, description="The mask to use when inpainting")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
mask = context.services.images.get(self.mask.image_type, self.mask.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
mask = context.services.images.get_pil_image(self.mask.image_name)
# Convert to cv image/mask
# TODO: consider making these utility functions
cv_image = cv.cvtColor(numpy.array(image.convert("RGB")), cv.COLOR_RGB2BGR)
cv_mask = numpy.array(ImageOps.invert(mask))
cv_mask = numpy.array(ImageOps.invert(mask.convert("L")))
# Inpaint
cv_inpainted = cv.inpaint(cv_image, cv_mask, 3, cv.INPAINT_TELEA)
@ -40,11 +51,17 @@ class CvInpaintInvocation(BaseInvocation):
# TODO: consider making a utility function
image_inpainted = Image.fromarray(cv.cvtColor(cv_inpainted, cv.COLOR_BGR2RGB))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=image_inpainted,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
context.services.images.save(image_type, image_name, image_inpainted)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -1,26 +1,50 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from functools import partial
from typing import Literal, Optional, Union
from typing import Literal, Optional, Union, get_args
import numpy as np
from diffusers import ControlNetModel
from torch import Tensor
import torch
from pydantic import Field
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ColorField, ImageField, ResourceOrigin
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.generator.inpaint import infill_methods
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.util import diffusers_step_callback_adapter, CanceledException
from ..util.step_callback import stable_diffusion_step_callback
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = (
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
class SDImageInvocation(BaseModel):
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"model": "model",
},
},
}
SAMPLER_NAME_VALUES = Literal[
tuple(InvokeAIGenerator.schedulers())
]
# Text to image
class TextToImageInvocation(BaseInvocation):
class TextToImageInvocation(BaseInvocation, SDImageInvocation):
"""Generates an image using text2img."""
type: Literal["txt2img"] = "txt2img"
@ -29,66 +53,82 @@ class TextToImageInvocation(BaseInvocation):
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed)
steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
control_model: Optional[str] = Field(default=None, description="The control model to use")
control_image: Optional[ImageField] = Field(default=None, description="The processed control image")
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
# def step_callback(state: PipelineIntermediateState):
# if (context.services.queue.is_canceled(context.graph_execution_state_id)):
# raise CanceledException
# self.dispatch_progress(context, state.latents, state.step)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
# (right now uses whatever current model is set in model manager)
model= context.services.model_manager.get_model()
outputs = Txt2Img(model).generate(
model = choose_model(context.services.model_manager, self.model)
# loading controlnet image (currently requires pre-processed image)
control_image = (
None if self.control_image is None
else context.services.images.get_pil_image(self.control_image.image_name)
)
# loading controlnet model
if (self.control_model is None or self.control_model==''):
control_model = None
else:
# FIXME: change this to dropdown menu?
# FIXME: generalize so don't have to hardcode torch_dtype and device
control_model = ControlNetModel.from_pretrained(self.control_model,
torch_dtype=torch.float16).to("cuda")
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
txt2img = Txt2Img(model, control_model=control_model)
outputs = txt2img.generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context),
step_callback=partial(self.dispatch_progress, context, source_node_id),
control_image=control_image,
**self.dict(
exclude={"prompt"}
exclude={"prompt", "control_image" }
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generate_output = next(outputs)
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=generate_output.image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
)
context.services.images.save(image_type, image_name, generate_output.image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@ -108,63 +148,66 @@ class ImageToImageInvocation(TextToImageInvocation):
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
else context.services.images.get_pil_image(self.image.image_name)
)
mask = None
if self.fit:
image = image.resize((self.width, self.height))
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_image=image,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
result_image = generator_output.image
image_dto = context.services.images.create(
image=generator_output.image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
)
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
@ -172,6 +215,39 @@ class InpaintInvocation(ImageToImageInvocation):
# Inputs
mask: Union[ImageField, None] = Field(description="The mask")
seam_size: int = Field(default=96, ge=1, description="The seam inpaint size (px)")
seam_blur: int = Field(
default=16, ge=0, description="The seam inpaint blur radius (px)"
)
seam_strength: float = Field(
default=0.75, gt=0, le=1, description="The seam inpaint strength"
)
seam_steps: int = Field(
default=30, ge=1, description="The number of steps to use for seam inpaint"
)
tile_size: int = Field(
default=32, ge=1, description="The tile infill method size (px)"
)
infill_method: INFILL_METHODS = Field(
default=DEFAULT_INFILL_METHOD,
description="The method used to infill empty regions (px)",
)
inpaint_width: Optional[int] = Field(
default=None,
multiple_of=8,
gt=0,
description="The width of the inpaint region (px)",
)
inpaint_height: Optional[int] = Field(
default=None,
multiple_of=8,
gt=0,
description="The height of the inpaint region (px)",
)
inpaint_fill: Optional[ColorField] = Field(
default=ColorField(r=127, g=127, b=127, a=255),
description="The solid infill method color",
)
inpaint_replace: float = Field(
default=0.0,
ge=0.0,
@ -180,63 +256,64 @@ class InpaintInvocation(ImageToImageInvocation):
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
else context.services.images.get_pil_image(self.image.image_name)
)
mask = (
None
if self.mask is None
else context.services.images.get(self.mask.image_type, self.mask.image_name)
else context.services.images.get_pil_image(self.mask.image_name)
)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_image=image,
mask_image=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
result_image = generator_output.image
image_dto = context.services.images.create(
image=generator_output.image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
)
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -1,70 +1,83 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
import io
from typing import Literal, Optional, Union
import numpy
from PIL import Image, ImageFilter, ImageOps
from PIL import Image, ImageFilter, ImageOps, ImageChops
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
image_type: str = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
#fmt: off
type: Literal["image"] = "image"
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
#fmt: on
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {
'required': [
'type',
'image',
]
}
schema_extra = {"required": ["type", "image", "width", "height"]}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
#fmt: off
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
#fmt: on
width: int = Field(description="The width of the mask in pixels")
height: int = Field(description="The height of the mask in pixels")
# fmt: on
class Config:
schema_extra = {
'required': [
'type',
'mask',
"required": [
"type",
"mask",
]
}
# TODO: this isn't really necessary anymore
class LoadImageInvocation(BaseInvocation):
"""Load an image from a filename and provide it as output."""
#fmt: off
"""Load an image and provide it as output."""
# fmt: off
type: Literal["load_image"] = "load_image"
# Inputs
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
#fmt: on
image: Union[ImageField, None] = Field(
default=None, description="The image to load"
)
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
return ImageOutput(
image=ImageField(image_type=self.image_type, image_name=self.image_name)
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
@ -74,82 +87,84 @@ class ShowImageInvocation(BaseInvocation):
type: Literal["show_image"] = "show_image"
# Inputs
image: ImageField = Field(default=None, description="The image to show")
image: Union[ImageField, None] = Field(
default=None, description="The image to show"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
if image:
image.show()
# TODO: how to handle failure?
return ImageOutput(
image=ImageField(
image_type=self.image.image_type, image_name=self.image.image_name
)
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
class CropImageInvocation(BaseInvocation):
class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
"""Crops an image to a specified box. The box can be outside of the image."""
#fmt: off
type: Literal["crop"] = "crop"
# fmt: off
type: Literal["img_crop"] = "img_crop"
# Inputs
image: ImageField = Field(default=None, description="The image to crop")
image: Union[ImageField, None] = Field(default=None, description="The image to crop")
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_crop = Image.new(
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
)
image_crop.paste(image, (-self.x, -self.y))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=image_crop,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
context.services.images.save(image_type, image_name, image_crop)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class PasteImageInvocation(BaseInvocation):
class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
"""Pastes an image into another image."""
#fmt: off
type: Literal["paste"] = "paste"
# fmt: off
type: Literal["img_paste"] = "img_paste"
# Inputs
base_image: ImageField = Field(default=None, description="The base image")
image: ImageField = Field(default=None, description="The image to paste")
base_image: Union[ImageField, None] = Field(default=None, description="The base image")
image: Union[ImageField, None] = Field(default=None, description="The image to paste")
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get(
self.base_image.image_type, self.base_image.image_name
)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
base_image = context.services.images.get_pil_image(self.base_image.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
mask = (
None
if self.mask is None
else ImageOps.invert(
services.images.get(self.mask.image_type, self.mask.image_name)
context.services.images.get_pil_image(self.mask.image_name)
)
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
@ -165,59 +180,173 @@ class PasteImageInvocation(BaseInvocation):
new_image.paste(base_image, (abs(min_x), abs(min_y)))
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=new_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
context.services.images.save(image_type, image_name, new_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class MaskFromAlphaInvocation(BaseInvocation):
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
"""Extracts the alpha channel of an image as a mask."""
#fmt: off
# fmt: off
type: Literal["tomask"] = "tomask"
# Inputs
image: ImageField = Field(default=None, description="The image to create the mask from")
image: Union[ImageField, None] = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_mask = image.split()[-1]
if self.invert:
image_mask = ImageOps.invert(image_mask)
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=image_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return MaskOutput(
mask=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
context.services.images.save(image_type, image_name, image_mask)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class BlurInvocation(BaseInvocation):
"""Blurs an image"""
class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
#fmt: off
type: Literal["blur"] = "blur"
# fmt: off
type: Literal["img_mul"] = "img_mul"
# Inputs
image: ImageField = Field(default=None, description="The image to blur")
image1: Union[ImageField, None] = Field(default=None, description="The first image to multiply")
image2: Union[ImageField, None] = Field(default=None, description="The second image to multiply")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image1 = context.services.images.get_pil_image(self.image1.image_name)
image2 = context.services.images.get_pil_image(self.image2.image_name)
multiply_image = ImageChops.multiply(image1, image2)
image_dto = context.services.images.create(
image=multiply_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
"""Gets a channel from an image."""
# fmt: off
type: Literal["img_chan"] = "img_chan"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to get the channel from")
channel: IMAGE_CHANNELS = Field(default="A", description="The channel to get")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
channel_image = image.getchannel(self.channel)
image_dto = context.services.images.create(
image=channel_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
"""Converts an image to a different mode."""
# fmt: off
type: Literal["img_conv"] = "img_conv"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to convert")
mode: IMAGE_MODES = Field(default="L", description="The mode to convert to")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
converted_image = image.convert(self.mode)
image_dto = context.services.images.create(
image=converted_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
"""Blurs an image"""
# fmt: off
type: Literal["img_blur"] = "img_blur"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
blur = (
ImageFilter.GaussianBlur(self.radius)
@ -226,62 +355,171 @@ class BlurInvocation(BaseInvocation):
)
blur_image = image.filter(blur)
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=blur_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
context.services.images.save(image_type, image_name, blur_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class LerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image"""
#fmt: off
type: Literal["lerp"] = "lerp"
PIL_RESAMPLING_MODES = Literal[
"nearest",
"box",
"bilinear",
"hamming",
"bicubic",
"lanczos",
]
PIL_RESAMPLING_MAP = {
"nearest": Image.Resampling.NEAREST,
"box": Image.Resampling.BOX,
"bilinear": Image.Resampling.BILINEAR,
"hamming": Image.Resampling.HAMMING,
"bicubic": Image.Resampling.BICUBIC,
"lanczos": Image.Resampling.LANCZOS,
}
class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
"""Resizes an image to specific dimensions"""
# fmt: off
type: Literal["img_resize"] = "img_resize"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
#fmt: on
image: Union[ImageField, None] = Field(default=None, description="The image to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
resize_image = image.resize(
(self.width, self.height),
resample=resample_mode,
)
image_dto = context.services.images.create(
image=resize_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
"""Scales an image by a factor"""
# fmt: off
type: Literal["img_scale"] = "img_scale"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the image")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
width = int(image.width * self.scale_factor)
height = int(image.height * self.scale_factor)
resize_image = image.resize(
(width, height),
resample=resample_mode,
)
image_dto = context.services.images.create(
image=resize_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Linear interpolation of all pixels of an image"""
# fmt: off
type: Literal["img_lerp"] = "img_lerp"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
image_arr = image_arr * (self.max - self.min) + self.max
lerp_image = Image.fromarray(numpy.uint8(image_arr))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=lerp_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
context.services.images.save(image_type, image_name, lerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InverseLerpInvocation(BaseInvocation):
class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Inverse linear interpolation of all pixels of an image"""
#fmt: off
type: Literal["ilerp"] = "ilerp"
# fmt: off
type: Literal["img_ilerp"] = "img_ilerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
image: Union[ImageField, None] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = (
@ -293,11 +531,17 @@ class InverseLerpInvocation(BaseInvocation):
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=ilerp_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
context.services.images.save(image_type, image_name, ilerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -0,0 +1,230 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import Literal, Union, get_args
import numpy as np
import math
from PIL import Image, ImageOps
from pydantic import Field
from invokeai.app.invocations.image import ImageOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ColorField, ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
InvocationContext,
)
def infill_methods() -> list[str]:
methods = [
"tile",
"solid",
]
if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch")
return methods
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = (
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
def infill_patchmatch(im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
# Skip patchmatch if patchmatch isn't available
if not PatchMatch.patchmatch_available():
return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
def get_tile_images(image: np.ndarray, width=8, height=8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False,
)
def tile_fill_missing(
im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum()
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[
rng.choice(filtered_tiles.shape[0], replace_count), :, :, :
]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
return si
class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color"""
type: Literal["infill_rgba"] = "infill_rgba"
image: Union[ImageField, None] = Field(
default=None, description="The image to infill"
)
color: ColorField = Field(
default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InfillTileInvocation(BaseInvocation):
"""Infills transparent areas of an image with tiles of the image"""
type: Literal["infill_tile"] = "infill_tile"
image: Union[ImageField, None] = Field(
default=None, description="The image to infill"
)
tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
seed: int = Field(
ge=0,
le=SEED_MAX,
description="The seed to use for tile generation (omit for random)",
default_factory=get_random_seed,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
infilled = tile_fill_missing(
image.copy(), seed=self.seed, tile_size=self.tile_size
)
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InfillPatchMatchInvocation(BaseInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
type: Literal["infill_patchmatch"] = "infill_patchmatch"
image: Union[ImageField, None] = Field(
default=None, description="The image to infill"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
if PatchMatch.patchmatch_available():
infilled = infill_patchmatch(image.copy())
else:
raise ValueError("PatchMatch is not available on this system")
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -1,28 +1,42 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional
from pydantic import BaseModel, Field
from torch import Tensor
import random
import einops
from typing import Literal, Optional, Union, List
from compel import Compel
from diffusers.pipelines.controlnet import MultiControlNetModel
from pydantic import BaseModel, Field, validator
import torch
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.models.image import ImageCategory
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from .controlnet_image_processors import ControlField
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import CUDA_DEVICE, torch_dtype
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.stable_diffusion.diffusers_pipeline import ControlNetData
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from accelerate.utils import set_seed
from ..services.image_storage import ImageType
from ..services.image_file_storage import ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from ...backend.generator import Generator
from .compel import ConditioningField
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util.util import image_to_dataURL
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline
from diffusers import DiffusionPipeline, ControlNetModel
class LatentsField(BaseModel):
@ -30,45 +44,61 @@ class LatentsField(BaseModel):
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
type: Literal["latent_output"] = "latent_output"
latents: LatentsField = Field(default=None, description="The output latents")
type: Literal["latents_output"] = "latents_output"
# Inputs
latents: LatentsField = Field(default=None, description="The output latents")
width: int = Field(description="The width of the latents in pixels")
height: int = Field(description="The height of the latents in pixels")
#fmt: on
def build_latents_output(latents_name: str, latents: torch.Tensor):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
#fmt: off
type: Literal["noise_output"] = "noise_output"
type: Literal["noise_output"] = "noise_output"
# Inputs
noise: LatentsField = Field(default=None, description="The output noise")
width: int = Field(description="The width of the noise in pixels")
height: int = Field(description="The height of the noise in pixels")
#fmt: on
# TODO: this seems like a hack
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
def build_noise_output(latents_name: str, latents: torch.Tensor):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
SAMPLER_NAME_VALUES = Literal[
tuple(list(scheduler_map.keys()))
tuple(list(SCHEDULER_MAP.keys()))
]
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class = scheduler_map.get(scheduler_name,'ddim')
scheduler = scheduler_class.from_config(model.scheduler.config)
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
scheduler_config = model.scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
@ -105,138 +135,249 @@ class NoiseInvocation(BaseInvocation):
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(default=0, ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", )
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed)
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
return v % SEED_MAX
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(CUDA_DEVICE)
device = torch.device(choose_torch_device())
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, noise)
return NoiseOutput(
noise=LatentsField(latents_name=name)
)
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise)
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from a prompt."""
"""Generates latents from conditionings."""
type: Literal["t2l"] = "t2l"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
control: Union[ControlField, List[ControlField]] = Field(default=None, description="The control to use")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError('cfg_scale must be greater than 1')
else:
if v < 1:
raise ValueError('cfg_scale must be greater than 1')
return v
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, sample: Tensor, step: int
) -> None:
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
self.id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
self.steps,
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = model_manager.get_model(self.model)
model_info = choose_model(model_manager, self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.sampler_name
scheduler_name=self.scheduler
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
self.seamless,
self.seamless_axes
)
else:
configure_model_padding(model,
self.seamless,
self.seamless_axes
)
# if isinstance(model, DiffusionPipeline):
# for component in [model.unet, model.vae]:
# configure_model_padding(component,
# self.seamless,
# self.seamless_axes
# )
# else:
# configure_model_padding(model,
# self.seamless,
# self.seamless_axes
# )
return model
def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model)
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
compel = Compel(
tokenizer=model.tokenizer,
text_encoder=model.text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False,
)
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
conditioning_data = ConditioningData(
uc,
c,
self.cfg_scale,
extra_conditioning_info,
unconditioned_embeddings=uc,
text_embeddings=c,
guidance_scale=self.cfg_scale,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(model.scheduler, eta=None)#ddim_eta)
).add_scheduler_args_if_applicable(model.scheduler, eta=0.0)#ddim_eta)
return conditioning_data
def prep_control_data(self,
context: InvocationContext,
model: StableDiffusionGeneratorPipeline, # really only need model for dtype and device
control_input: List[ControlField],
latents_shape: List[int],
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
# assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8
if control_input is None:
control_list = None
elif isinstance(control_input, list) and len(control_input) == 0:
control_list = None
elif isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
control_list = control_input
else:
control_list = None
if (control_list is None):
control_data = None
# from above handling, any control that is not None should now be of type list[ControlField]
else:
# FIXME: add checks to skip entry if model or image is None
# and if weight is None, populate with default 1.0?
control_data = []
control_models = []
for control_info in control_list:
# handle control models
if ("," in control_info.control_model):
control_model_split = control_info.control_model.split(",")
control_name = control_model_split[0]
control_subfolder = control_model_split[1]
print("Using HF model subfolders")
print(" control_name: ", control_name)
print(" control_subfolder: ", control_subfolder)
control_model = ControlNetModel.from_pretrained(control_name,
subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(model.device)
else:
control_model = ControlNetModel.from_pretrained(control_info.control_model,
torch_dtype=model.unet.dtype).to(model.device)
control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
# and do real check for classifier_free_guidance?
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
control_image = model.prepare_control_image(
image=input_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=control_width_resize,
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
)
control_item = ControlNetData(model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
)
control_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return control_data
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
conditioning_data = self.get_conditioning_data(context, model)
control_data = self.prep_control_data(model=model, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
@ -246,29 +387,48 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.5, description="The strength of the latents to use")
strength: float = Field(default=0.7, ge=0, le=1, description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
"cfg_scale": "number",
}
},
}
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
conditioning_data = self.get_conditioning_data(context, model)
control_data = self.prep_control_data(model=model, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
timesteps, _ = model.get_img2img_timesteps(
self.steps,
self.strength,
device=model.device,
)
timesteps, _ = model.get_img2img_timesteps(self.steps, self.strength)
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=initial_latents,
@ -276,6 +436,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
@ -283,10 +444,8 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
# Latent to image
@ -299,23 +458,161 @@ class LatentsToImageInvocation(BaseInvocation):
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = context.services.model_manager.get_model(self.model)
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
# what happened to metadata?
# metadata = context.services.metadata.build_metadata(
# session_id=context.graph_execution_state_id, node=self
torch.cuda.empty_cache()
# new (post Image service refactor) way of using services to save image
# and gnenerate unique image_name
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate
)
context.services.images.save(image_type, image_name, image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
type: Literal["i2l"] = "i2l"
# Inputs
image: Union[ImageField, None] = Field(description="The image to encode")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {"model": "model"},
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
# image = context.services.images.get(
# self.image.image_type, self.image.image_name
# )
image = context.services.images.get_pil_image(self.image.image_name)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info["model"]
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = model.non_noised_latents_from_image(
image_tensor,
device=model._model_group.device_for(model.unet),
dtype=model.unet.dtype,
)
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, latents)
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents)

View File

@ -1,68 +1,109 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
from typing import Literal
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
import numpy as np
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class MathInvocationConfig(BaseModel):
"""Helper class to provide all math invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["math"],
}
}
class IntOutput(BaseInvocationOutput):
"""An integer output"""
#fmt: off
# fmt: off
type: Literal["int_output"] = "int_output"
a: int = Field(default=None, description="The output integer")
#fmt: on
# fmt: on
class AddInvocation(BaseInvocation):
class FloatOutput(BaseInvocationOutput):
"""A float output"""
# fmt: off
type: Literal["float_output"] = "float_output"
param: float = Field(default=None, description="The output float")
# fmt: on
class AddInvocation(BaseInvocation, MathInvocationConfig):
"""Adds two numbers"""
#fmt: off
# fmt: off
type: Literal["add"] = "add"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a + self.b)
class SubtractInvocation(BaseInvocation):
class SubtractInvocation(BaseInvocation, MathInvocationConfig):
"""Subtracts two numbers"""
#fmt: off
# fmt: off
type: Literal["sub"] = "sub"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a - self.b)
class MultiplyInvocation(BaseInvocation):
class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
"""Multiplies two numbers"""
#fmt: off
# fmt: off
type: Literal["mul"] = "mul"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a * self.b)
class DivideInvocation(BaseInvocation):
class DivideInvocation(BaseInvocation, MathInvocationConfig):
"""Divides two numbers"""
#fmt: off
# fmt: off
type: Literal["div"] = "div"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=int(self.a / self.b))
class RandomIntInvocation(BaseInvocation):
"""Outputs a single random integer."""
# fmt: off
type: Literal["rand_int"] = "rand_int"
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=np.random.randint(self.low, self.high))

View File

@ -0,0 +1,237 @@
import io
from typing import Literal, Optional, Any
# from PIL.Image import Image
import PIL.Image
from matplotlib.ticker import MaxNLocator
from matplotlib.figure import Figure
from pydantic import BaseModel, Field
import numpy as np
import matplotlib.pyplot as plt
from easing_functions import (
LinearInOut,
QuadEaseInOut, QuadEaseIn, QuadEaseOut,
CubicEaseInOut, CubicEaseIn, CubicEaseOut,
QuarticEaseInOut, QuarticEaseIn, QuarticEaseOut,
QuinticEaseInOut, QuinticEaseIn, QuinticEaseOut,
SineEaseInOut, SineEaseIn, SineEaseOut,
CircularEaseIn, CircularEaseInOut, CircularEaseOut,
ExponentialEaseInOut, ExponentialEaseIn, ExponentialEaseOut,
ElasticEaseIn, ElasticEaseInOut, ElasticEaseOut,
BackEaseIn, BackEaseInOut, BackEaseOut,
BounceEaseIn, BounceEaseInOut, BounceEaseOut)
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from ...backend.util.logging import InvokeAILogger
from .collections import FloatCollectionOutput
class FloatLinearRangeInvocation(BaseInvocation):
"""Creates a range"""
type: Literal["float_range"] = "float_range"
# Inputs
start: float = Field(default=5, description="The first value of the range")
stop: float = Field(default=10, description="The last value of the range")
steps: int = Field(default=30, description="number of values to interpolate over (including start and stop)")
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps))
return FloatCollectionOutput(
collection=param_list
)
EASING_FUNCTIONS_MAP = {
"Linear": LinearInOut,
"QuadIn": QuadEaseIn,
"QuadOut": QuadEaseOut,
"QuadInOut": QuadEaseInOut,
"CubicIn": CubicEaseIn,
"CubicOut": CubicEaseOut,
"CubicInOut": CubicEaseInOut,
"QuarticIn": QuarticEaseIn,
"QuarticOut": QuarticEaseOut,
"QuarticInOut": QuarticEaseInOut,
"QuinticIn": QuinticEaseIn,
"QuinticOut": QuinticEaseOut,
"QuinticInOut": QuinticEaseInOut,
"SineIn": SineEaseIn,
"SineOut": SineEaseOut,
"SineInOut": SineEaseInOut,
"CircularIn": CircularEaseIn,
"CircularOut": CircularEaseOut,
"CircularInOut": CircularEaseInOut,
"ExponentialIn": ExponentialEaseIn,
"ExponentialOut": ExponentialEaseOut,
"ExponentialInOut": ExponentialEaseInOut,
"ElasticIn": ElasticEaseIn,
"ElasticOut": ElasticEaseOut,
"ElasticInOut": ElasticEaseInOut,
"BackIn": BackEaseIn,
"BackOut": BackEaseOut,
"BackInOut": BackEaseInOut,
"BounceIn": BounceEaseIn,
"BounceOut": BounceEaseOut,
"BounceInOut": BounceEaseInOut,
}
EASING_FUNCTION_KEYS: Any = Literal[
tuple(list(EASING_FUNCTIONS_MAP.keys()))
]
# actually I think for now could just use CollectionOutput (which is list[Any]
class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps"""
type: Literal["step_param_easing"] = "step_param_easing"
# Inputs
# fmt: off
easing: EASING_FUNCTION_KEYS = Field(default="Linear", description="The easing function to use")
num_steps: int = Field(default=20, description="number of denoising steps")
start_value: float = Field(default=0.0, description="easing starting value")
end_value: float = Field(default=1.0, description="easing ending value")
start_step_percent: float = Field(default=0.0, description="fraction of steps at which to start easing")
end_step_percent: float = Field(default=1.0, description="fraction of steps after which to end easing")
# if None, then start_value is used prior to easing start
pre_start_value: Optional[float] = Field(default=None, description="value before easing start")
# if None, then end value is used prior to easing end
post_end_value: Optional[float] = Field(default=None, description="value after easing end")
mirror: bool = Field(default=False, description="include mirror of easing function")
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# alt_mirror: bool = Field(default=False, description="alternative mirroring by dual easing")
show_easing_plot: bool = Field(default=False, description="show easing plot")
# fmt: on
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
log_diagnostics = False
# convert from start_step_percent to nearest step <= (steps * start_step_percent)
# start_step = int(np.floor(self.num_steps * self.start_step_percent))
start_step = int(np.round(self.num_steps * self.start_step_percent))
# convert from end_step_percent to nearest step >= (steps * end_step_percent)
# end_step = int(np.ceil((self.num_steps - 1) * self.end_step_percent))
end_step = int(np.round((self.num_steps - 1) * self.end_step_percent))
# end_step = int(np.ceil(self.num_steps * self.end_step_percent))
num_easing_steps = end_step - start_step + 1
# num_presteps = max(start_step - 1, 0)
num_presteps = start_step
num_poststeps = self.num_steps - (num_presteps + num_easing_steps)
prelist = list(num_presteps * [self.pre_start_value])
postlist = list(num_poststeps * [self.post_end_value])
if log_diagnostics:
logger = InvokeAILogger.getLogger(name="StepParamEasing")
logger.debug("start_step: " + str(start_step))
logger.debug("end_step: " + str(end_step))
logger.debug("num_easing_steps: " + str(num_easing_steps))
logger.debug("num_presteps: " + str(num_presteps))
logger.debug("num_poststeps: " + str(num_poststeps))
logger.debug("prelist size: " + str(len(prelist)))
logger.debug("postlist size: " + str(len(postlist)))
logger.debug("prelist: " + str(prelist))
logger.debug("postlist: " + str(postlist))
easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics:
logger.debug("easing class: " + str(easing_class))
easing_list = list()
if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2
# and create reverse copy of list to append
# if number of steps is odd, squeeze duration down to ceil(number_of_steps/2)
# and create reverse copy of list[1:end-1]
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
base_easing_duration = int(np.ceil(num_easing_steps/2.0))
if log_diagnostics: logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = (num_easing_steps % 2 == 0) # even number of steps
easing_function = easing_class(start=self.start_value,
end=self.end_value,
duration=base_easing_duration - 1)
base_easing_vals = list()
for step_index in range(base_easing_duration):
easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val)
if log_diagnostics:
logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
if even_num_steps:
mirror_easing_vals = list(reversed(base_easing_vals))
else:
mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
if log_diagnostics:
logger.debug("base easing vals: " + str(base_easing_vals))
logger.debug("mirror easing vals: " + str(mirror_easing_vals))
easing_list = base_easing_vals + mirror_easing_vals
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# elif self.alt_mirror: # function mirroring (unintuitive behavior (at least to me))
# # half_ease_duration = round(num_easing_steps - 1 / 2)
# half_ease_duration = round((num_easing_steps - 1) / 2)
# easing_function = easing_class(start=self.start_value,
# end=self.end_value,
# duration=half_ease_duration,
# )
#
# mirror_function = easing_class(start=self.end_value,
# end=self.start_value,
# duration=half_ease_duration,
# )
# for step_index in range(num_easing_steps):
# if step_index <= half_ease_duration:
# step_val = easing_function.ease(step_index)
# else:
# step_val = mirror_function.ease(step_index - half_ease_duration)
# easing_list.append(step_val)
# if log_diagnostics: logger.debug(step_index, step_val)
#
else: # no mirroring (default)
easing_function = easing_class(start=self.start_value,
end=self.end_value,
duration=num_easing_steps - 1)
for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)
if log_diagnostics:
logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
if log_diagnostics:
logger.debug("prelist size: " + str(len(prelist)))
logger.debug("easing_list size: " + str(len(easing_list)))
logger.debug("postlist size: " + str(len(postlist)))
param_list = prelist + easing_list + postlist
if self.show_easing_plot:
plt.figure()
plt.xlabel("Step")
plt.ylabel("Param Value")
plt.title("Per-Step Values Based On Easing: " + self.easing)
plt.bar(range(len(param_list)), param_list)
# plt.plot(param_list)
ax = plt.gca()
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
im = PIL.Image.open(buf)
im.show()
buf.close()
# output array of size steps, each entry list[i] is param value for step i
return FloatCollectionOutput(
collection=param_list
)

View File

@ -0,0 +1,28 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .math import IntOutput, FloatOutput
# Pass-through parameter nodes - used by subgraphs
class ParamIntInvocation(BaseInvocation):
"""An integer parameter"""
#fmt: off
type: Literal["param_int"] = "param_int"
a: int = Field(default=0, description="The integer value")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a)
class ParamFloatInvocation(BaseInvocation):
"""A float parameter"""
#fmt: off
type: Literal["param_float"] = "param_float"
param: float = Field(default=0.0, description="The float value")
#fmt: on
def invoke(self, context: InvocationContext) -> FloatOutput:
return FloatOutput(param=self.param)

View File

@ -2,8 +2,8 @@ from typing import Literal
from pydantic.fields import Field
from .baseinvocation import BaseInvocationOutput
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from dynamicprompts.generators import RandomPromptGenerator, CombinatorialPromptGenerator
class PromptOutput(BaseInvocationOutput):
"""Base class for invocations that output a prompt"""
@ -20,3 +20,38 @@ class PromptOutput(BaseInvocationOutput):
'prompt',
]
}
class PromptCollectionOutput(BaseInvocationOutput):
"""Base class for invocations that output a collection of prompts"""
# fmt: off
type: Literal["prompt_collection_output"] = "prompt_collection_output"
prompt_collection: list[str] = Field(description="The output prompt collection")
count: int = Field(description="The size of the prompt collection")
# fmt: on
class Config:
schema_extra = {"required": ["type", "prompt_collection", "count"]}
class DynamicPromptInvocation(BaseInvocation):
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
type: Literal["dynamic_prompt"] = "dynamic_prompt"
prompt: str = Field(description="The prompt to parse with dynamicprompts")
max_prompts: int = Field(default=1, description="The number of prompts to generate")
combinatorial: bool = Field(
default=False, description="Whether to use the combinatorial generator"
)
def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
if self.combinatorial:
generator = CombinatorialPromptGenerator()
prompts = generator.generate(self.prompt, max_prompts=self.max_prompts)
else:
generator = RandomPromptGenerator()
prompts = generator.generate(self.prompt, num_images=self.max_prompts)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))

View File

@ -1,27 +1,34 @@
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image."""
#fmt: off
# fmt: off
type: Literal["restore_face"] = "restore_face"
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
#fmt: on
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["restoration", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=None,
@ -32,11 +39,17 @@ class RestoreFaceInvocation(BaseInvocation):
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -1,31 +1,36 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
#fmt: off
# fmt: off
type: Literal["upscale"] = "upscale"
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
#fmt: on
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
@ -36,11 +41,17 @@ class UpscaleInvocation(BaseInvocation):
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -0,0 +1,14 @@
from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
logger = model_manager.logger
if model_name and not model_manager.valid_model(model_name):
default_model_name = model_manager.default_model()
logger.warning(f"\'{model_name}\' is not a valid model name. Using default model \'{default_model_name}\' instead.")
model = model_manager.get_model()
else:
model = model_manager.get_model(model_name)
return model

View File

@ -0,0 +1,3 @@
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@ -0,0 +1,90 @@
from enum import Enum
from typing import Optional, Tuple
from pydantic import BaseModel, Field
from invokeai.app.util.metaenum import MetaEnum
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image).
- INTERNAL: The resource was created by the application.
- EXTERNAL: The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
INTERNAL = "internal"
"""The resource was created by the application."""
EXTERNAL = "external"
"""The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
class InvalidOriginException(ValueError):
"""Raised when a provided value is not a valid ResourceOrigin.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid resource origin."):
super().__init__(message)
class ImageCategory(str, Enum, metaclass=MetaEnum):
"""The category of an image.
- GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose.
- MASK: The image is a mask image.
- CONTROL: The image is a ControlNet control image.
- USER: The image is a user-provide image.
- OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes.
"""
GENERAL = "general"
"""GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose."""
MASK = "mask"
"""MASK: The image is a mask image."""
CONTROL = "control"
"""CONTROL: The image is a ControlNet control image."""
USER = "user"
"""USER: The image is a user-provide image."""
OTHER = "other"
"""OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes."""
class InvalidImageCategoryException(ValueError):
"""Raised when a provided value is not a valid ImageCategory.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid image category."):
super().__init__(message)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_name"]}
class ColorField(BaseModel):
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")

View File

@ -0,0 +1,93 @@
from typing import Optional, Union, List
from pydantic import BaseModel, Extra, Field, StrictFloat, StrictInt, StrictStr
class ImageMetadata(BaseModel):
"""
Core generation metadata for an image/tensor generated in InvokeAI.
Also includes any metadata from the image's PNG tEXt chunks.
Generated by traversing the execution graph, collecting the parameters of the nearest ancestors
of a given node.
Full metadata may be accessed by querying for the session in the `graph_executions` table.
"""
class Config:
extra = Extra.allow
"""
This lets the ImageMetadata class accept arbitrary additional fields. The CoreMetadataService
won't add any fields that are not already defined, but other a different metadata service
implementation might.
"""
type: Optional[StrictStr] = Field(
default=None,
description="The type of the ancestor node of the image output node.",
)
"""The type of the ancestor node of the image output node."""
positive_conditioning: Optional[StrictStr] = Field(
default=None, description="The positive conditioning."
)
"""The positive conditioning"""
negative_conditioning: Optional[StrictStr] = Field(
default=None, description="The negative conditioning."
)
"""The negative conditioning"""
width: Optional[StrictInt] = Field(
default=None, description="Width of the image/latents in pixels."
)
"""Width of the image/latents in pixels"""
height: Optional[StrictInt] = Field(
default=None, description="Height of the image/latents in pixels."
)
"""Height of the image/latents in pixels"""
seed: Optional[StrictInt] = Field(
default=None, description="The seed used for noise generation."
)
"""The seed used for noise generation"""
# cfg_scale: Optional[StrictFloat] = Field(
# cfg_scale: Union[float, list[float]] = Field(
cfg_scale: Union[StrictFloat, List[StrictFloat]] = Field(
default=None, description="The classifier-free guidance scale."
)
"""The classifier-free guidance scale"""
steps: Optional[StrictInt] = Field(
default=None, description="The number of steps used for inference."
)
"""The number of steps used for inference"""
scheduler: Optional[StrictStr] = Field(
default=None, description="The scheduler used for inference."
)
"""The scheduler used for inference"""
model: Optional[StrictStr] = Field(
default=None, description="The model used for inference."
)
"""The model used for inference"""
strength: Optional[StrictFloat] = Field(
default=None,
description="The strength used for image-to-image/latents-to-latents.",
)
"""The strength used for image-to-image/latents-to-latents."""
latents: Optional[StrictStr] = Field(
default=None, description="The ID of the initial latents."
)
"""The ID of the initial latents"""
vae: Optional[StrictStr] = Field(
default=None, description="The VAE used for decoding."
)
"""The VAE used for decoding"""
unet: Optional[StrictStr] = Field(
default=None, description="The UNet used dor inference."
)
"""The UNet used dor inference"""
clip: Optional[StrictStr] = Field(
default=None, description="The CLIP Encoder used for conditioning."
)
"""The CLIP Encoder used for conditioning"""
extra: Optional[StrictStr] = Field(
default=None,
description="Uploaded image metadata, extracted from the PNG tEXt chunk.",
)
"""Uploaded image metadata, extracted from the PNG tEXt chunk."""

View File

@ -0,0 +1,581 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
'''Invokeai configuration system.
Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has a top-level key of "InvokeAI" and subheadings for each of the
categories returned by `invokeai --help`. The file looks like this:
[file: invokeai.yaml]
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
embedding_dir: embeddings
lora_dir: loras
autoconvert_dir: null
gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth
Models:
model: stable-diffusion-1.5
embeddings: true
Memory/Performance:
xformers_enabled: false
sequential_guidance: false
precision: float16
max_loaded_models: 4
always_use_cpu: false
free_gpu_mem: false
Features:
nsfw_checker: true
restore: true
esrgan: true
patchmatch: true
internet_available: true
log_tokenization: false
Web Server:
host: 127.0.0.1
port: 8081
allow_origins: []
allow_credentials: true
allow_methods:
- '*'
allow_headers:
- '*'
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing any
OmegaConf dictionary object initialization time:
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig()
conf.parse_args(conf=omegaconf)
InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv`
at initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv:
conf.parse_args(argv=['--xformers_enabled'])
It is also possible to set a value at initialization time. However, if
you call parse_args() it may be overwritten.
conf = InvokeAIAppConfig(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
# False
To avoid this, use `get_config()` to retrieve the application-wide
configuration object. This will retain any properties set at object
creation time:
conf = InvokeAIAppConfig.get_config(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
# True
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<setting>", as in:
export INVOKEAI_port=8080
Order of precedence (from highest):
1) initialization options
2) command line options
3) environment variable options
4) config file options
5) pydantic defaults
Typical usage at the top level file:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig.get_config()
conf.parse_args()
print(conf.nsfw_checker)
Typical usage in a backend module:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig.get_config()
print(conf.nsfw_checker)
Computed properties:
The InvokeAIAppConfig object has a series of properties that
resolve paths relative to the runtime root directory. They each return
a Path object:
root_path - path to InvokeAI root
output_path - path to default outputs directory
model_conf_path - path to models.yaml
conf - alias for the above
embedding_path - path to the embeddings directory
lora_path - path to the LoRA directory
In most cases, you will want to create a single InvokeAIAppConfig
object for the entire application. The InvokeAIAppConfig.get_config() function
does this:
config = InvokeAIAppConfig.get_config()
config.parse_args() # read values from the command line/config file
print(config.root)
# Subclassing
If you wish to create a similar class, please subclass the
`InvokeAISettings` class and define a Literal field named "type",
which is set to the desired top-level name. For example, to create a
"InvokeBatch" configuration, define like this:
class InvokeBatch(InvokeAISettings):
type: Literal["InvokeBatch"] = "InvokeBatch"
node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources')
cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources')
This will now read and write from the "InvokeBatch" section of the
config file, look for environment variables named INVOKEBATCH_*, and
accept the command-line arguments `--node_count` and `--cpu_count`. The
two configs are kept in separate sections of the config file:
# invokeai.yaml
InvokeBatch:
Resources:
node_count: 1
cpu_count: 8
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
...
'''
from __future__ import annotations
import argparse
import pydoc
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Literal, Type, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path('invokeai.yaml')
DB_FILE = Path('invokeai.db')
LEGACY_INIT_FILE = Path('invokeai.init')
class InvokeAISettings(BaseSettings):
'''
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
'''
initconf : ClassVar[DictConfig] = None
argparse_groups : ClassVar[Dict] = {}
def parse_args(self, argv: list=sys.argv[1:]):
parser = self.get_parser()
opt = parser.parse_args(argv)
for name in self.__fields__:
if name not in self._excluded():
setattr(self, name, getattr(opt,name))
def to_yaml(self)->str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)['type'])[0]
field_dict = dict({type:dict()})
for name,field in self.__fields__.items():
if name in cls._excluded():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self,name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value,Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
@classmethod
def add_parser_arguments(cls, parser):
if 'type' in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)['type'])[0]
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config,'env_prefix') else settings_stanza.upper()
initconf = cls.initconf.get(settings_stanza) \
if cls.initconf and settings_stanza in cls.initconf \
else OmegaConf.create()
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key,value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category","Uncategorized")
env_name = env_prefix + '_' + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
field.default = upcase_environ[env_name.upper()]
cls.add_field_argument(parser, name, field)
field.default = current_default
@classmethod
def cmd_name(self, command_field: str='type')->str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return 'Uncategorized'
@classmethod
def get_parser(cls)->ArgumentParser:
parser = PagingArgumentParser(
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self)->List[str]:
return ['type','initconf']
class Config:
env_file_encoding = 'utf-8'
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override = None):
field_type = get_type_hints(cls).get(name)
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field_type) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
elif get_origin(field_type) == list:
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs='*',
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
help=field.field_info.description,
)
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
help=field.field_info.description,
)
def _find_root()->Path:
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif (
os.environ.get("VIRTUAL_ENV")
and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists()
or
Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists()
)
):
root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
class InvokeAIAppConfig(InvokeAISettings):
'''
Generate images using Stable Diffusion. Use "invokeai" to launch
the command-line client (recommended for experts only), or
"invokeai-web" to launch the web server. Global options
can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by
setting environment variables INVOKEAI_<setting>.
'''
singleton_config: ClassVar[InvokeAIAppConfig] = None
singleton_init: ClassVar[Dict] = None
#fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server')
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server')
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server')
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server')
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
restore : bool = Field(default=True, description="Enable/disable face restoration code", category='Features')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_loaded_models : int = Field(default=2, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
autoconvert_dir : Path = Field(default=None, description='Path to a directory of ckpt files to be converted into diffusers and imported on startup.', category='Paths')
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
embedding_dir : Path = Field(default='embeddings', description='Path to InvokeAI textual inversion aembeddings directory', category='Paths')
gfpgan_model_dir : Path = Field(default="./models/gfpgan/GFPGANv1.4.pth", description='Path to GFPGAN models directory.', category='Paths')
controlnet_dir : Path = Field(default="controlnets", description='Path to directory of ControlNet models.', category='Paths')
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
lora_dir : Path = Field(default='loras', description='Path to InvokeAI LoRA model directory', category='Paths')
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
embeddings : bool = Field(default=True, description='Load contents of embeddings directory', category='Models')
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal[tuple(['plain','color','syslog','legacy'])] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="debug", description="Emit logging messages at this level or higher", category="Logging")
#fmt: on
def parse_args(self, argv: List[str]=None, conf: DictConfig = None, clobber=False):
'''
Update settings with contents of init file, environment, and
command-line settings.
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
:param clobber: ovewrite any initialization parameters passed during initialization
'''
# Set the runtime root directory. We parse command-line switches here
# in order to pick up the --root_dir option.
super().parse_args(argv)
if conf is None:
try:
conf = OmegaConf.load(self.root_dir / INIT_FILE)
except:
pass
InvokeAISettings.initconf = conf
# parse args again in order to pick up settings in configuration file
super().parse_args(argv)
if self.singleton_init and not clobber:
hints = get_type_hints(self.__class__)
for k in self.singleton_init:
setattr(self,k,parse_obj_as(hints[k],self.singleton_init[k]))
@classmethod
def get_config(cls,**kwargs)->InvokeAIAppConfig:
'''
This returns a singleton InvokeAIAppConfig configuration object.
'''
if cls.singleton_config is None \
or type(cls.singleton_config)!=cls \
or (kwargs and cls.singleton_init != kwargs):
cls.singleton_config = cls(**kwargs)
cls.singleton_init = kwargs
return cls.singleton_config
@property
def root_path(self)->Path:
'''
Path to the runtime root directory
'''
if self.root:
return Path(self.root).expanduser()
else:
return self.find_root()
@property
def root_dir(self)->Path:
'''
Alias for above.
'''
return self.root_path
def _resolve(self,partial_path:Path)->Path:
return (self.root_path / partial_path).resolve()
@property
def init_file_path(self)->Path:
'''
Path to invokeai.yaml
'''
return self._resolve(INIT_FILE)
@property
def output_path(self)->Path:
'''
Path to defaults outputs directory.
'''
return self._resolve(self.outdir)
@property
def db_path(self)->Path:
'''
Path to the invokeai.db file.
'''
return self._resolve(self.db_dir) / DB_FILE
@property
def model_conf_path(self)->Path:
'''
Path to models configuration file.
'''
return self._resolve(self.conf_path)
@property
def legacy_conf_path(self)->Path:
'''
Path to directory of legacy configuration files (e.g. v1-inference.yaml)
'''
return self._resolve(self.legacy_conf_dir)
@property
def cache_dir(self)->Path:
'''
Path to the global cache directory for HuggingFace hub-managed models
'''
return self.models_dir / "hub"
@property
def models_dir(self)->Path:
'''
Path to the models directory
'''
return self._resolve("models")
@property
def embedding_path(self)->Path:
'''
Path to the textual inversion embeddings directory.
'''
return self._resolve(self.embedding_dir) if self.embedding_dir else None
@property
def lora_path(self)->Path:
'''
Path to the LoRA models directory.
'''
return self._resolve(self.lora_dir) if self.lora_dir else None
@property
def controlnet_path(self)->Path:
'''
Path to the controlnet models directory.
'''
return self._resolve(self.controlnet_dir) if self.controlnet_dir else None
@property
def autoconvert_path(self)->Path:
'''
Path to the directory containing models to be imported automatically at startup.
'''
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
@property
def gfpgan_model_path(self)->Path:
'''
Path to the GFPGAN model.
'''
return self._resolve(self.gfpgan_model_dir) if self.gfpgan_model_dir else None
# the following methods support legacy calls leftover from the Globals era
@property
def full_precision(self)->bool:
"""Return true if precision set to float32"""
return self.precision=='float32'
@property
def disable_xformers(self)->bool:
"""Return true if xformers_enabled is false"""
return not self.xformers_enabled
@property
def try_patchmatch(self)->bool:
"""Return true if patchmatch true"""
return self.patchmatch
@staticmethod
def find_root()->Path:
'''
Choose the runtime root directory when not specified on command line or
init file.
'''
return _find_root()
class PagingArgumentParser(argparse.ArgumentParser):
'''
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
'''
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def get_invokeai_config(**kwargs)->InvokeAIAppConfig:
'''
Legacy function which returns InvokeAIAppConfig.get_config()
'''
return InvokeAIAppConfig.get_config(**kwargs)

View File

@ -0,0 +1,64 @@
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
default_text_to_image_graph_id = '539b2af5-2b4d-4d8c-8071-e54a3255fc74'
def create_text_to_image() -> LibraryGraph:
return LibraryGraph(
id=default_text_to_image_graph_id,
name='t2i',
description='Converts text to an image',
graph=Graph(
nodes={
'width': ParamIntInvocation(id='width', a=512),
'height': ParamIntInvocation(id='height', a=512),
'seed': ParamIntInvocation(id='seed', a=-1),
'3': NoiseInvocation(id='3'),
'4': CompelInvocation(id='4'),
'5': CompelInvocation(id='5'),
'6': TextToLatentsInvocation(id='6'),
'7': LatentsToImageInvocation(id='7'),
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='6', field='noise')),
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')),
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')),
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')),
]
),
exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='positive_prompt'),
ExposedNodeInput(node_path='5', field='prompt', alias='negative_prompt'),
ExposedNodeInput(node_path='width', field='a', alias='width'),
ExposedNodeInput(node_path='height', field='a', alias='height'),
ExposedNodeInput(node_path='seed', field='a', alias='seed'),
],
exposed_outputs=[
ExposedNodeOutput(node_path='7', field='image', alias='image')
])
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
# TODO: Uncomment this when we are ready to fix this up to prevent breaking changes
graphs: list[LibraryGraph] = list()
# text_to_image = graph_library.get(default_text_to_image_graph_id)
# # TODO: Check if the graph is the same as the default one, and if not, update it
# #if text_to_image is None:
text_to_image = create_text_to_image()
graph_library.set(text_to_image)
graphs.append(text_to_image)
return graphs

View File

@ -1,10 +1,9 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, TypedDict
from typing import Any
from invokeai.app.models.image import ProgressImage
from invokeai.app.util.misc import get_timestamp
ProgressImage = TypedDict(
"ProgressImage", {"dataURL": str, "width": int, "height": int}
)
class EventServiceBase:
session_event: str = "session_event"
@ -14,7 +13,8 @@ class EventServiceBase:
def dispatch(self, event_name: str, payload: Any) -> None:
pass
def __emit_session_event(self, event_name: str, payload: Dict) -> None:
def __emit_session_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.session_event,
payload=dict(event=event_name, data=payload),
@ -25,7 +25,8 @@ class EventServiceBase:
def emit_generator_progress(
self,
graph_execution_state_id: str,
invocation_id: str,
node: dict,
source_node_id: str,
progress_image: ProgressImage | None,
step: int,
total_steps: int,
@ -35,48 +36,60 @@ class EventServiceBase:
event_name="generator_progress",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
progress_image=progress_image,
node=node,
source_node_id=source_node_id,
progress_image=progress_image.dict() if progress_image is not None else None,
step=step,
total_steps=total_steps,
),
)
def emit_invocation_complete(
self, graph_execution_state_id: str, invocation_id: str, result: Dict
self,
graph_execution_state_id: str,
result: dict,
node: dict,
source_node_id: str,
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_complete",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
result=result,
),
)
def emit_invocation_error(
self, graph_execution_state_id: str, invocation_id: str, error: str
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
error: str,
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
error=error,
),
)
def emit_invocation_started(
self, graph_execution_state_id: str, invocation_id: str
self, graph_execution_state_id: str, node: dict, source_node_id: str
) -> None:
"""Emitted when an invocation has started"""
self.__emit_session_event(
event_name="invocation_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
),
)
@ -84,5 +97,7 @@ class EventServiceBase:
"""Emitted when a session has completed all invocations"""
self.__emit_session_event(
event_name="graph_execution_state_complete",
payload=dict(graph_execution_state_id=graph_execution_state_id),
payload=dict(
graph_execution_state_id=graph_execution_state_id,
),
)

View File

@ -2,7 +2,6 @@
import copy
import itertools
import traceback
import uuid
from types import NoneType
from typing import (
@ -17,7 +16,7 @@ from typing import (
)
import networkx as nx
from pydantic import BaseModel, validator
from pydantic import BaseModel, root_validator, validator
from pydantic.fields import Field
from ..invocations import *
@ -26,7 +25,6 @@ from ..invocations.baseinvocation import (
BaseInvocationOutput,
InvocationContext,
)
from .invocation_services import InvocationServices
class EdgeConnection(BaseModel):
@ -62,6 +60,33 @@ def get_input_field(node: BaseInvocation, field: str) -> Any:
node_input_field = node_inputs.get(field) or None
return node_input_field
from typing import Optional, Union, List, get_args
def is_union_subtype(t1, t2):
t1_args = get_args(t1)
t2_args = get_args(t2)
if not t1_args:
# t1 is a single type
return t1 in t2_args
else:
# t1 is a Union, check that all of its types are in t2_args
return all(arg in t2_args for arg in t1_args)
def is_list_or_contains_list(t):
t_args = get_args(t)
# If the type is a List
if get_origin(t) is list:
return True
# If the type is a Union
elif t_args:
# Check if any of the types in the Union is a List
for arg in t_args:
if get_origin(arg) is list:
return True
return False
def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
if not from_type:
@ -87,7 +112,8 @@ def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
if to_type in get_args(from_type):
return True
if not issubclass(from_type, to_type):
# if not issubclass(from_type, to_type):
if not is_union_subtype(from_type, to_type):
return False
else:
return False
@ -137,6 +163,7 @@ class GraphInvocationOutput(BaseInvocationOutput):
# TODO: Fill this out and move to invocations
class GraphInvocation(BaseInvocation):
"""Execute a graph"""
type: Literal["graph"] = "graph"
# TODO: figure out how to create a default here
@ -164,6 +191,7 @@ class IterateInvocationOutput(BaseInvocationOutput):
# TODO: Fill this out and move to invocations
class IterateInvocation(BaseInvocation):
"""Iterates over a list of items"""
type: Literal["iterate"] = "iterate"
collection: list[Any] = Field(
@ -215,7 +243,7 @@ InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()]
class Graph(BaseModel):
id: str = Field(description="The id of this graph", default_factory=uuid.uuid4)
id: str = Field(description="The id of this graph", default_factory=lambda: uuid.uuid4().__str__())
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field(
description="The nodes in this graph", default_factory=dict
@ -283,7 +311,8 @@ class Graph(BaseModel):
:raises InvalidEdgeError: the provided edge is invalid.
"""
if self._is_edge_valid(edge) and edge not in self.edges:
self._validate_edge(edge)
if edge not in self.edges:
self.edges.append(edge)
else:
raise InvalidEdgeError()
@ -354,7 +383,7 @@ class Graph(BaseModel):
return True
def _is_edge_valid(self, edge: Edge) -> bool:
def _validate_edge(self, edge: Edge):
"""Validates that a new edge doesn't create a cycle in the graph"""
# Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly)
@ -362,54 +391,53 @@ class Graph(BaseModel):
from_node = self.get_node(edge.source.node_id)
to_node = self.get_node(edge.destination.node_id)
except NodeNotFoundError:
return False
raise InvalidEdgeError("One or both nodes don't exist: {edge.source.node_id} -> {edge.destination.node_id}")
# Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
return False
raise InvalidEdgeError(f'Edge to node {edge.destination.node_id} field {edge.destination.field} already exists')
# Validate that no cycles would be created
g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g):
return False
raise InvalidEdgeError(f'Edge creates a cycle in the graph: {edge.source.node_id} -> {edge.destination.node_id}')
# Validate that the field types are compatible
if not are_connections_compatible(
from_node, edge.source.field, to_node, edge.destination.field
):
return False
raise InvalidEdgeError(f'Fields are incompatible: cannot connect {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid(
edge.destination.node_id, new_input=edge.source
):
return False
raise InvalidEdgeError(f'Iterator input type does not match iterator output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid(
edge.source.node_id, new_output=edge.destination
):
return False
raise InvalidEdgeError(f'Iterator output type does not match iterator input type:, {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid(
edge.destination.node_id, new_input=edge.source
):
return False
raise InvalidEdgeError(f'Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid(
edge.source.node_id, new_output=edge.destination
):
return False
raise InvalidEdgeError(f'Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
return True
def has_node(self, node_path: str) -> bool:
"""Determines whether or not a node exists in the graph."""
@ -694,7 +722,11 @@ class Graph(BaseModel):
input_root_type = next(t[0] for t in type_degrees if t[1] == 0) # type: ignore
# Verify that all outputs are lists
if not all((get_origin(f) == list for f in output_fields)):
# if not all((get_origin(f) == list for f in output_fields)):
# return False
# Verify that all outputs are lists
if not all(is_list_or_contains_list(f) for f in output_fields):
return False
# Verify that all outputs match the input type (are a base class or the same class)
@ -713,6 +745,13 @@ class Graph(BaseModel):
g.add_edges_from(set([(e.source.node_id, e.destination.node_id) for e in self.edges]))
return g
def nx_graph_with_data(self) -> nx.DiGraph:
"""Returns a NetworkX DiGraph representing the data and layout of this graph"""
g = nx.DiGraph()
g.add_nodes_from([n for n in self.nodes.items()])
g.add_edges_from(set([(e.source.node_id, e.destination.node_id) for e in self.edges]))
return g
def nx_graph_flat(
self, nx_graph: Optional[nx.DiGraph] = None, prefix: Optional[str] = None
) -> nx.DiGraph:
@ -733,7 +772,7 @@ class Graph(BaseModel):
for sgn in (
gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)
):
sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
g = sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
# TODO: figure out if iteration nodes need to be expanded
@ -750,9 +789,7 @@ class Graph(BaseModel):
class GraphExecutionState(BaseModel):
"""Tracks the state of a graph execution"""
id: str = Field(
description="The id of the execution state", default_factory=uuid.uuid4
)
id: str = Field(description="The id of the execution state", default_factory=lambda: uuid.uuid4().__str__())
# TODO: Store a reference to the graph instead of the actual graph?
graph: Graph = Field(description="The graph being executed")
@ -794,9 +831,6 @@ class GraphExecutionState(BaseModel):
default_factory=dict,
)
# Declare all fields as required; necessary for OpenAPI schema generation build.
# Technically only fields without a `default_factory` need to be listed here.
# See: https://github.com/pydantic/pydantic/discussions/4577
class Config:
schema_extra = {
'required': [
@ -823,11 +857,9 @@ class GraphExecutionState(BaseModel):
if next_node is None:
prepared_id = self._prepare()
# TODO: prepare multiple nodes at once?
# while prepared_id is not None and not isinstance(self.graph.nodes[prepared_id], IterateInvocation):
# prepared_id = self._prepare()
if prepared_id is not None:
# Prepare as many nodes as we can
while prepared_id is not None:
prepared_id = self._prepare()
next_node = self._get_next_node()
# Get values from edges
@ -861,7 +893,8 @@ class GraphExecutionState(BaseModel):
def is_complete(self) -> bool:
"""Returns true if the graph is complete"""
return self.has_error() or all((k in self.executed for k in self.graph.nodes))
node_ids = set(self.graph.nx_graph_flat().nodes)
return self.has_error() or all((k in self.executed for k in node_ids))
def has_error(self) -> bool:
"""Returns true if the graph has any errors"""
@ -949,11 +982,11 @@ class GraphExecutionState(BaseModel):
def _iterator_graph(self) -> nx.DiGraph:
"""Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node"""
g = self.graph.nx_graph()
g = self.graph.nx_graph_flat()
collectors = (
n
for n in self.graph.nodes
if isinstance(self.graph.nodes[n], CollectInvocation)
if isinstance(self.graph.get_node(n), CollectInvocation)
)
for c in collectors:
g.remove_edges_from(list(g.in_edges(c)))
@ -965,7 +998,7 @@ class GraphExecutionState(BaseModel):
iterators = [
n
for n in nx.ancestors(g, node_id)
if isinstance(self.graph.nodes[n], IterateInvocation)
if isinstance(self.graph.get_node(n), IterateInvocation)
]
return iterators
@ -973,14 +1006,30 @@ class GraphExecutionState(BaseModel):
# Get flattened source graph
g = self.graph.nx_graph_flat()
# Find next unprepared node where all source nodes are executed
# Find next node that:
# - was not already prepared
# - is not an iterate node whose inputs have not been executed
# - does not have an unexecuted iterate ancestor
sorted_nodes = nx.topological_sort(g)
next_node_id = next(
(
n
for n in sorted_nodes
# exclude nodes that have already been prepared
if n not in self.source_prepared_mapping
and all((e[0] in self.executed for e in g.in_edges(n)))
# exclude iterate nodes whose inputs have not been executed
and not (
isinstance(self.graph.get_node(n), IterateInvocation) # `n` is an iterate node...
and not all((e[0] in self.executed for e in g.in_edges(n))) # ...that has unexecuted inputs
)
# exclude nodes who have unexecuted iterate ancestors
and not any(
(
isinstance(self.graph.get_node(a), IterateInvocation) # `a` is an iterate ancestor of `n`...
and a not in self.executed # ...that is not executed
for a in nx.ancestors(g, n) # for all ancestors `a` of node `n`
)
)
),
None,
)
@ -1077,9 +1126,22 @@ class GraphExecutionState(BaseModel):
)
def _get_next_node(self) -> Optional[BaseInvocation]:
"""Gets the deepest node that is ready to be executed"""
g = self.execution_graph.nx_graph()
sorted_nodes = nx.topological_sort(g)
next_node = next((n for n in sorted_nodes if n not in self.executed), None)
# Depth-first search with pre-order traversal is a depth-first topological sort
sorted_nodes = nx.dfs_preorder_nodes(g)
next_node = next(
(
n
for n in sorted_nodes
if n not in self.executed # the node must not already be executed...
and all((e[0] in self.executed for e in g.in_edges(n))) # ...and all its inputs must be executed
),
None,
)
if next_node is None:
return None
@ -1101,7 +1163,9 @@ class GraphExecutionState(BaseModel):
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
def _is_edge_valid(self, edge: Edge) -> bool:
if not self._is_edge_valid(edge):
try:
self.graph._validate_edge(edge)
except InvalidEdgeError:
return False
# Invalid if destination has already been prepared or executed
@ -1147,4 +1211,52 @@ class GraphExecutionState(BaseModel):
self.graph.delete_edge(edge)
class ExposedNodeInput(BaseModel):
node_path: str = Field(description="The node path to the node with the input")
field: str = Field(description="The field name of the input")
alias: str = Field(description="The alias of the input")
class ExposedNodeOutput(BaseModel):
node_path: str = Field(description="The node path to the node with the output")
field: str = Field(description="The field name of the output")
alias: str = Field(description="The alias of the output")
class LibraryGraph(BaseModel):
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4)
graph: Graph = Field(description="The graph")
name: str = Field(description="The name of the graph")
description: str = Field(description="The description of the graph")
exposed_inputs: list[ExposedNodeInput] = Field(description="The inputs exposed by this graph", default_factory=list)
exposed_outputs: list[ExposedNodeOutput] = Field(description="The outputs exposed by this graph", default_factory=list)
@validator('exposed_inputs', 'exposed_outputs')
def validate_exposed_aliases(cls, v):
if len(v) != len(set(i.alias for i in v)):
raise ValueError("Duplicate exposed alias")
return v
@root_validator
def validate_exposed_nodes(cls, values):
graph = values['graph']
# Validate exposed inputs
for exposed_input in values['exposed_inputs']:
if not graph.has_node(exposed_input.node_path):
raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist")
node = graph.get_node(exposed_input.node_path)
if get_input_field(node, exposed_input.field) is None:
raise ValueError(f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}")
# Validate exposed outputs
for exposed_output in values['exposed_outputs']:
if not graph.has_node(exposed_output.node_path):
raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist")
node = graph.get_node(exposed_output.node_path)
if get_output_field(node, exposed_output.field) is None:
raise ValueError(f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}")
return values
GraphInvocation.update_forward_refs()

View File

@ -0,0 +1,186 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict, Optional
from PIL.Image import Image as PILImageType
from PIL import Image, PngImagePlugin
from send2trash import send2trash
from invokeai.app.models.image import ResourceOrigin
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
# TODO: Should these excpetions subclass existing python exceptions?
class ImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message="Image file not found"):
super().__init__(message)
class ImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message="Image file not saved"):
super().__init__(message)
class ImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message="Image file not deleted"):
super().__init__(message)
class ImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, image_name: str) -> PILImageType:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the internal path to an image or thumbnail."""
pass
# TODO: We need to validate paths before starlette makes the FileResponse, else we get a
# 500 internal server error. I don't like having this method on the service.
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates the path given for an image or thumbnail."""
pass
@abstractmethod
def save(
self,
image: PILImageType,
image_name: str,
metadata: Optional[ImageMetadata] = None,
thumbnail_size: int = 256,
) -> None:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""
__output_folder: Path
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[Path, PILImageType]
__max_cache_size: int
def __init__(self, output_folder: str | Path):
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / 'thumbnails'
# Validate required output folders at launch
self.__validate_storage_folders()
def get(self, image_name: str) -> PILImageType:
try:
image_path = self.get_path(image_name)
cache_item = self.__get_cache(image_path)
if cache_item:
return cache_item
image = Image.open(image_path)
self.__set_cache(image_path, image)
return image
except FileNotFoundError as e:
raise ImageFileNotFoundException from e
def save(
self,
image: PILImageType,
image_name: str,
metadata: Optional[ImageMetadata] = None,
thumbnail_size: int = 256,
) -> None:
try:
self.__validate_storage_folders()
image_path = self.get_path(image_name)
if metadata is not None:
pnginfo = PngImagePlugin.PngInfo()
pnginfo.add_text("invokeai", metadata.json())
image.save(image_path, "PNG", pnginfo=pnginfo)
else:
image.save(image_path, "PNG")
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(thumbnail_name, thumbnail=True)
thumbnail_image = make_thumbnail(image, thumbnail_size)
thumbnail_image.save(thumbnail_path)
self.__set_cache(image_path, image)
self.__set_cache(thumbnail_path, thumbnail_image)
except Exception as e:
raise ImageFileSaveException from e
def delete(self, image_name: str) -> None:
try:
image_path = self.get_path(image_name)
if image_path.exists():
send2trash(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(thumbnail_name, True)
if thumbnail_path.exists():
send2trash(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
except Exception as e:
raise ImageFileDeleteException from e
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(self, image_name: str, thumbnail: bool = False) -> Path:
path = self.__output_folder / image_name
if thumbnail:
thumbnail_name = get_thumbnail_name(image_name)
path = self.__thumbnails_folder / thumbnail_name
return path
def validate_path(self, path: str | Path) -> bool:
"""Validates the path given for an image or thumbnail."""
path = path if isinstance(path, Path) else Path(path)
return path.exists()
def __validate_storage_folders(self) -> None:
"""Checks if the required output folders exist and create them if they don't"""
folders: list[Path] = [self.__output_folder, self.__thumbnails_folder]
for folder in folders:
folder.mkdir(parents=True, exist_ok=True)
def __get_cache(self, image_name: Path) -> PILImageType | None:
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: Path, image: PILImageType):
if not image_name in self.__cache:
self.__cache[image_name] = image
self.__cache_ids.put(image_name) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size:
cache_id = self.__cache_ids.get()
if cache_id in self.__cache:
del self.__cache[cache_id]

View File

@ -0,0 +1,414 @@
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Generic, Optional, TypeVar, cast
import sqlite3
import threading
from typing import Optional, Union
from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.models.image import (
ImageCategory,
ResourceOrigin,
)
from invokeai.app.services.models.image_record import (
ImageRecord,
ImageRecordChanges,
deserialize_image_record,
)
T = TypeVar("T", bound=BaseModel)
class OffsetPaginatedResults(GenericModel, Generic[T]):
"""Offset-paginated results"""
# fmt: off
items: list[T] = Field(description="Items")
offset: int = Field(description="Offset from which to retrieve items")
limit: int = Field(description="Limit of items to get")
total: int = Field(description="Total number of items in result")
# fmt: on
# TODO: Should these excpetions subclass existing python exceptions?
class ImageRecordNotFoundException(Exception):
"""Raised when an image record is not found."""
def __init__(self, message="Image record not found"):
super().__init__(message)
class ImageRecordSaveException(Exception):
"""Raised when an image record cannot be saved."""
def __init__(self, message="Image record not saved"):
super().__init__(message)
class ImageRecordDeleteException(Exception):
"""Raised when an image record cannot be deleted."""
def __init__(self, message="Image record not deleted"):
super().__init__(message)
class ImageRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the image record store."""
# TODO: Implement an `update()` method
@abstractmethod
def get(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> None:
"""Updates an image record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets a page of image records."""
pass
# TODO: The database has a nullable `deleted_at` column, currently unused.
# Should we implement soft deletes? Would need coordination with ImageFileStorage.
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image record."""
pass
@abstractmethod
def save(
self,
image_name: str,
image_origin: ResourceOrigin,
image_category: ImageCategory,
width: int,
height: int,
session_id: Optional[str],
node_id: Optional[str],
metadata: Optional[ImageMetadata],
is_intermediate: bool = False,
) -> datetime:
"""Saves an image record."""
pass
class SqliteImageRecordStorage(ImageRecordStorageBase):
_filename: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
def __init__(self, filename: str) -> None:
super().__init__()
self._filename = filename
self._conn = sqlite3.connect(filename, check_same_thread=False)
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor()
self._lock = threading.Lock()
try:
self._lock.acquire()
# Enable foreign keys
self._conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the tables for the `images` database."""
# Create the `images` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS images (
image_name TEXT NOT NULL PRIMARY KEY,
-- This is an enum in python, unrestricted string here for flexibility
image_origin TEXT NOT NULL,
-- This is an enum in python, unrestricted string here for flexibility
image_category TEXT NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
session_id TEXT,
node_id TEXT,
metadata TEXT,
is_intermediate BOOLEAN DEFAULT FALSE,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME
);
"""
)
# Create the `images` table indices.
self._cursor.execute(
"""--sql
CREATE UNIQUE INDEX IF NOT EXISTS idx_images_image_name ON images(image_name);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_origin ON images(image_origin);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_category ON images(image_category);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_created_at ON images(created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_images_updated_at
AFTER UPDATE
ON images FOR EACH ROW
BEGIN
UPDATE images SET updated_at = current_timestamp
WHERE image_name = old.image_name;
END;
"""
)
def get(self, image_name: str) -> Union[ImageRecord, None]:
try:
self._lock.acquire()
self._cursor.execute(
f"""--sql
SELECT * FROM images
WHERE image_name = ?;
""",
(image_name,),
)
result = cast(Union[sqlite3.Row, None], self._cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordNotFoundException from e
finally:
self._lock.release()
if not result:
raise ImageRecordNotFoundException
return deserialize_image_record(dict(result))
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> None:
try:
self._lock.acquire()
# Change the category of the image
if changes.image_category is not None:
self._cursor.execute(
f"""--sql
UPDATE images
SET image_category = ?
WHERE image_name = ?;
""",
(changes.image_category, image_name),
)
# Change the session associated with the image
if changes.session_id is not None:
self._cursor.execute(
f"""--sql
UPDATE images
SET session_id = ?
WHERE image_name = ?;
""",
(changes.session_id, image_name),
)
# Change the image's `is_intermediate`` flag
if changes.is_intermediate is not None:
self._cursor.execute(
f"""--sql
UPDATE images
SET is_intermediate = ?
WHERE image_name = ?;
""",
(changes.is_intermediate, image_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordSaveException from e
finally:
self._lock.release()
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
) -> OffsetPaginatedResults[ImageRecord]:
try:
self._lock.acquire()
# Manually build two queries - one for the count, one for the records
count_query = f"""SELECT COUNT(*) FROM images WHERE 1=1\n"""
images_query = f"""SELECT * FROM images WHERE 1=1\n"""
query_conditions = ""
query_params = []
if image_origin is not None:
query_conditions += f"""AND image_origin = ?\n"""
query_params.append(image_origin.value)
if categories is not None:
## Convert the enum values to unique list of strings
category_strings = list(map(lambda c: c.value, set(categories)))
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
query_conditions += f"AND image_category IN ( {placeholders} )\n"
# Unpack the included categories into the query params
for c in category_strings:
query_params.append(c)
if is_intermediate is not None:
query_conditions += f"""AND is_intermediate = ?\n"""
query_params.append(is_intermediate)
query_pagination = f"""ORDER BY created_at DESC LIMIT ? OFFSET ?\n"""
# Final images query with pagination
images_query += query_conditions + query_pagination + ";"
# Add all the parameters
images_params = query_params.copy()
images_params.append(limit)
images_params.append(offset)
# Build the list of images, deserializing each row
self._cursor.execute(images_query, images_params)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = list(map(lambda r: deserialize_image_record(dict(r)), result))
# Set up and execute the count query, without pagination
count_query += query_conditions + ";"
count_params = query_params.copy()
self._cursor.execute(count_query, count_params)
count = self._cursor.fetchone()[0]
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return OffsetPaginatedResults(
items=images, offset=offset, limit=limit, total=count
)
def delete(self, image_name: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM images
WHERE image_name = ?;
""",
(image_name,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
image_name: str,
image_origin: ResourceOrigin,
image_category: ImageCategory,
session_id: Optional[str],
width: int,
height: int,
node_id: Optional[str],
metadata: Optional[ImageMetadata],
is_intermediate: bool = False,
) -> datetime:
try:
metadata_json = (
None if metadata is None else metadata.json(exclude_none=True)
)
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO images (
image_name,
image_origin,
image_category,
width,
height,
node_id,
session_id,
metadata,
is_intermediate
)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);
""",
(
image_name,
image_origin.value,
image_category.value,
width,
height,
node_id,
session_id,
metadata_json,
is_intermediate,
),
)
self._conn.commit()
self._cursor.execute(
"""--sql
SELECT created_at
FROM images
WHERE image_name = ?;
""",
(image_name,),
)
created_at = datetime.fromisoformat(self._cursor.fetchone()[0])
return created_at
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordSaveException from e
finally:
self._lock.release()

View File

@ -1,121 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import datetime
import os
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from queue import Queue
from typing import Dict
from PIL.Image import Image
from invokeai.app.util.save_thumbnail import save_thumbnail
from invokeai.backend.image_util import PngWriter
class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
class ImageStorageBase(ABC):
"""Responsible for storing and retrieving images."""
@abstractmethod
def get(self, image_type: ImageType, image_name: str) -> Image:
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_path(self, image_type: ImageType, image_name: str) -> str:
pass
@abstractmethod
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
pass
@abstractmethod
def delete(self, image_type: ImageType, image_name: str) -> None:
pass
def create_name(self, context_id: str, node_id: str) -> str:
return f"{context_id}_{node_id}_{str(int(datetime.datetime.now(datetime.timezone.utc).timestamp()))}.png"
class DiskImageStorage(ImageStorageBase):
"""Stores images on disk"""
__output_folder: str
__pngWriter: PngWriter
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, Image]
__max_cache_size: int
def __init__(self, output_folder: str):
self.__output_folder = output_folder
self.__pngWriter = PngWriter(output_folder)
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
Path(output_folder).mkdir(parents=True, exist_ok=True)
# TODO: don't hard-code. get/save/delete should maybe take subpath?
for image_type in ImageType:
Path(os.path.join(output_folder, image_type)).mkdir(
parents=True, exist_ok=True
)
Path(os.path.join(output_folder, image_type, "thumbnails")).mkdir(
parents=True, exist_ok=True
)
def get(self, image_type: ImageType, image_name: str) -> Image:
image_path = self.get_path(image_type, image_name)
cache_item = self.__get_cache(image_path)
if cache_item:
return cache_item
image = Image.open(image_path)
self.__set_cache(image_path, image)
return image
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(self, image_type: ImageType, image_name: str) -> str:
path = os.path.join(self.__output_folder, image_type, image_name)
return path
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
image_subpath = os.path.join(image_type, image_name)
self.__pngWriter.save_image_and_prompt_to_png(
image, "", image_subpath, None
) # TODO: just pass full path to png writer
save_thumbnail(
image=image,
filename=image_name,
path=os.path.join(self.__output_folder, image_type, "thumbnails"),
)
image_path = self.get_path(image_type, image_name)
self.__set_cache(image_path, image)
def delete(self, image_type: ImageType, image_name: str) -> None:
image_path = self.get_path(image_type, image_name)
if os.path.exists(image_path):
os.remove(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
def __get_cache(self, image_name: str) -> Image:
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: str, image: Image):
if not image_name in self.__cache:
self.__cache[image_name] = image
self.__cache_ids.put(
image_name
) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size:
cache_id = self.__cache_ids.get()
del self.__cache[cache_id]

View File

@ -0,0 +1,380 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import Optional, TYPE_CHECKING, Union
from PIL.Image import Image as PILImageType
from invokeai.app.models.image import (
ImageCategory,
ResourceOrigin,
InvalidImageCategoryException,
InvalidOriginException,
)
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.services.image_record_storage import (
ImageRecordDeleteException,
ImageRecordNotFoundException,
ImageRecordSaveException,
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.models.image_record import (
ImageRecord,
ImageDTO,
ImageRecordChanges,
image_record_to_dto,
)
from invokeai.app.services.image_file_storage import (
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
ImageFileStorageBase,
)
from invokeai.app.services.item_storage import ItemStorageABC, PaginatedResults
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.app.services.resource_name import NameServiceBase
from invokeai.app.services.urls import UrlServiceBase
if TYPE_CHECKING:
from invokeai.app.services.graph import GraphExecutionState
class ImageServiceABC(ABC):
"""High-level service for image management."""
@abstractmethod
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
intermediate: bool = False,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
"""Updates an image."""
pass
@abstractmethod
def get_pil_image(self, image_name: str) -> PILImageType:
"""Gets an image as a PIL image."""
pass
@abstractmethod
def get_record(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_dto(self, image_name: str) -> ImageDTO:
"""Gets an image DTO."""
pass
@abstractmethod
def get_path(self, image_name: str) -> str:
"""Gets an image's path."""
pass
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image's path."""
pass
@abstractmethod
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's or thumbnail's URL."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
pass
@abstractmethod
def delete(self, image_name: str):
"""Deletes an image."""
pass
class ImageServiceDependencies:
"""Service dependencies for the ImageService."""
records: ImageRecordStorageBase
files: ImageFileStorageBase
metadata: MetadataServiceBase
urls: UrlServiceBase
logger: Logger
names: NameServiceBase
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
def __init__(
self,
image_record_storage: ImageRecordStorageBase,
image_file_storage: ImageFileStorageBase,
metadata: MetadataServiceBase,
url: UrlServiceBase,
logger: Logger,
names: NameServiceBase,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
):
self.records = image_record_storage
self.files = image_file_storage
self.metadata = metadata
self.urls = url
self.logger = logger
self.names = names
self.graph_execution_manager = graph_execution_manager
class ImageService(ImageServiceABC):
_services: ImageServiceDependencies
def __init__(
self,
image_record_storage: ImageRecordStorageBase,
image_file_storage: ImageFileStorageBase,
metadata: MetadataServiceBase,
url: UrlServiceBase,
logger: Logger,
names: NameServiceBase,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
):
self._services = ImageServiceDependencies(
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=url,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
is_intermediate: bool = False,
) -> ImageDTO:
if image_origin not in ResourceOrigin:
raise InvalidOriginException
if image_category not in ImageCategory:
raise InvalidImageCategoryException
image_name = self._services.names.create_image_name()
metadata = self._get_metadata(session_id, node_id)
(width, height) = image.size
try:
# TODO: Consider using a transaction here to ensure consistency between storage and database
created_at = self._services.records.save(
# Non-nullable fields
image_name=image_name,
image_origin=image_origin,
image_category=image_category,
width=width,
height=height,
# Meta fields
is_intermediate=is_intermediate,
# Nullable fields
node_id=node_id,
session_id=session_id,
metadata=metadata,
)
self._services.files.save(
image_name=image_name,
image=image,
metadata=metadata,
)
image_url = self._services.urls.get_image_url(image_name)
thumbnail_url = self._services.urls.get_image_url(image_name, True)
return ImageDTO(
# Non-nullable fields
image_name=image_name,
image_origin=image_origin,
image_category=image_category,
width=width,
height=height,
# Nullable fields
node_id=node_id,
session_id=session_id,
metadata=metadata,
# Meta fields
created_at=created_at,
updated_at=created_at, # this is always the same as the created_at at this time
deleted_at=None,
is_intermediate=is_intermediate,
# Extra non-nullable fields for DTO
image_url=image_url,
thumbnail_url=thumbnail_url,
)
except ImageRecordSaveException:
self._services.logger.error("Failed to save image record")
raise
except ImageFileSaveException:
self._services.logger.error("Failed to save image file")
raise
except Exception as e:
self._services.logger.error("Problem saving image record and file")
raise e
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
try:
self._services.records.update(image_name, changes)
return self.get_dto(image_name)
except ImageRecordSaveException:
self._services.logger.error("Failed to update image record")
raise
except Exception as e:
self._services.logger.error("Problem updating image record")
raise e
def get_pil_image(self, image_name: str) -> PILImageType:
try:
return self._services.files.get(image_name)
except ImageFileNotFoundException:
self._services.logger.error("Failed to get image file")
raise
except Exception as e:
self._services.logger.error("Problem getting image file")
raise e
def get_record(self, image_name: str) -> ImageRecord:
try:
return self._services.records.get(image_name)
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise
except Exception as e:
self._services.logger.error("Problem getting image record")
raise e
def get_dto(self, image_name: str) -> ImageDTO:
try:
image_record = self._services.records.get(image_name)
image_dto = image_record_to_dto(
image_record,
self._services.urls.get_image_url(image_name),
self._services.urls.get_image_url(image_name, True),
)
return image_dto
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise
except Exception as e:
self._services.logger.error("Problem getting image DTO")
raise e
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self._services.files.get_path(image_name, thumbnail)
except Exception as e:
self._services.logger.error("Problem getting image path")
raise e
def validate_path(self, path: str) -> bool:
try:
return self._services.files.validate_path(path)
except Exception as e:
self._services.logger.error("Problem validating image path")
raise e
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self._services.urls.get_image_url(image_name, thumbnail)
except Exception as e:
self._services.logger.error("Problem getting image path")
raise e
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
) -> OffsetPaginatedResults[ImageDTO]:
try:
results = self._services.records.get_many(
offset,
limit,
image_origin,
categories,
is_intermediate,
)
image_dtos = list(
map(
lambda r: image_record_to_dto(
r,
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
),
results.items,
)
)
return OffsetPaginatedResults[ImageDTO](
items=image_dtos,
offset=results.offset,
limit=results.limit,
total=results.total,
)
except Exception as e:
self._services.logger.error("Problem getting paginated image DTOs")
raise e
def delete(self, image_name: str):
try:
self._services.files.delete(image_name)
self._services.records.delete(image_name)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image record")
raise
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image file")
raise
except Exception as e:
self._services.logger.error("Problem deleting image record and file")
raise e
def _get_metadata(
self, session_id: Optional[str] = None, node_id: Optional[str] = None
) -> Union[ImageMetadata, None]:
"""Get the metadata for a node."""
metadata = None
if node_id is not None and session_id is not None:
session = self._services.graph_execution_manager.get(session_id)
metadata = self._services.metadata.create_image_metadata(session, node_id)
return metadata

View File

@ -1,30 +1,17 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from abc import ABC, abstractmethod
from queue import Queue
import time
from pydantic import BaseModel, Field
# TODO: make this serializable
class InvocationQueueItem:
# session_id: str
graph_execution_state_id: str
invocation_id: str
invoke_all: bool
timestamp: float
def __init__(
self,
# session_id: str,
graph_execution_state_id: str,
invocation_id: str,
invoke_all: bool = False,
):
# self.session_id = session_id
self.graph_execution_state_id = graph_execution_state_id
self.invocation_id = invocation_id
self.invoke_all = invoke_all
self.timestamp = time.time()
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)
class InvocationQueueABC(ABC):

View File

@ -1,43 +1,60 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from invokeai.backend import ModelManager
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from __future__ import annotations
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from logging import Logger
from invokeai.app.services.images import ImageService
from invokeai.backend import ModelManager
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.latent_storage import LatentsStorageBase
from invokeai.app.services.restoration_services import RestorationServices
from invokeai.app.services.invocation_queue import InvocationQueueABC
from invokeai.app.services.item_storage import ItemStorageABC
from invokeai.app.services.config import InvokeAISettings
from invokeai.app.services.graph import GraphExecutionState, LibraryGraph
from invokeai.app.services.invoker import InvocationProcessorABC
from .events import EventServiceBase
from .latent_storage import LatentsStorageBase
from .image_storage import ImageStorageBase
from .restoration_services import RestorationServices
from .invocation_queue import InvocationQueueABC
from .item_storage import ItemStorageABC
class InvocationServices:
"""Services that can be used by invocations"""
events: EventServiceBase
latents: LatentsStorageBase
images: ImageStorageBase
queue: InvocationQueueABC
model_manager: ModelManager
restoration: RestorationServices
# TODO: Just forward-declared everything due to circular dependencies. Fix structure.
events: "EventServiceBase"
latents: "LatentsStorageBase"
queue: "InvocationQueueABC"
model_manager: "ModelManager"
restoration: "RestorationServices"
configuration: "InvokeAISettings"
images: "ImageService"
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
graph_library: "ItemStorageABC"["LibraryGraph"]
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"]
processor: "InvocationProcessorABC"
def __init__(
self,
model_manager: ModelManager,
events: EventServiceBase,
latents: LatentsStorageBase,
images: ImageStorageBase,
queue: InvocationQueueABC,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: RestorationServices,
self,
model_manager: "ModelManager",
events: "EventServiceBase",
logger: "Logger",
latents: "LatentsStorageBase",
images: "ImageService",
queue: "InvocationQueueABC",
graph_library: "ItemStorageABC"["LibraryGraph"],
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: "RestorationServices",
configuration: "InvokeAISettings",
):
self.model_manager = model_manager
self.events = events
self.logger = logger
self.latents = latents
self.images = images
self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager
self.processor = processor
self.restoration = restoration
self.configuration = configuration

View File

@ -22,7 +22,8 @@ class Invoker:
def invoke(
self, graph_execution_state: GraphExecutionState, invoke_all: bool = False
) -> str | None:
"""Determines the next node to invoke and returns the id of the invoked node, or None if there are no nodes to execute"""
"""Determines the next node to invoke and enqueues it, preparing if needed.
Returns the id of the queued node, or `None` if there are no nodes left to enqueue."""
# Get the next invocation
invocation = graph_execution_state.next()
@ -49,7 +50,7 @@ class Invoker:
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state)
return new_state
def cancel(self, graph_execution_state_id: str) -> None:
"""Cancels the given execution state"""
self.services.queue.cancel(graph_execution_state_id)
@ -71,18 +72,12 @@ class Invoker:
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
def stop(self) -> None:
"""Stops the invoker. A new invoker will have to be created to execute further."""
# First stop all services
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
self.services.queue.put(None)

View File

@ -1,6 +1,5 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import os
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
@ -16,7 +15,7 @@ class LatentsStorageBase(ABC):
pass
@abstractmethod
def set(self, name: str, data: torch.Tensor) -> None:
def save(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
@ -47,8 +46,8 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
self.__set_cache(name, latent)
return latent
def set(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.set(name, data)
def save(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.save(name, data)
self.__set_cache(name, data)
def delete(self, name: str) -> None:
@ -70,24 +69,26 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: str
__output_folder: str | Path
def __init__(self, output_folder: str):
self.__output_folder = output_folder
Path(output_folder).mkdir(parents=True, exist_ok=True)
def __init__(self, output_folder: str | Path):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def set(self, name: str, data: torch.Tensor) -> None:
def save(self, name: str, data: torch.Tensor) -> None:
self.__output_folder.mkdir(parents=True, exist_ok=True)
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
os.remove(latent_path)
latent_path.unlink()
def get_path(self, name: str) -> str:
return os.path.join(self.__output_folder, name)
def get_path(self, name: str) -> Path:
return self.__output_folder / name

View File

@ -0,0 +1,142 @@
from abc import ABC, abstractmethod
from typing import Any, Union
import networkx as nx
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.services.graph import Graph, GraphExecutionState
class MetadataServiceBase(ABC):
"""Handles building metadata for nodes, images, and outputs."""
@abstractmethod
def create_image_metadata(
self, session: GraphExecutionState, node_id: str
) -> ImageMetadata:
"""Builds an ImageMetadata object for a node."""
pass
class CoreMetadataService(MetadataServiceBase):
_ANCESTOR_TYPES = ["t2l", "l2l"]
"""The ancestor types that contain the core metadata"""
_ANCESTOR_PARAMS = ["type", "steps", "model", "cfg_scale", "scheduler", "strength"]
"""The core metadata parameters in the ancestor types"""
_NOISE_FIELDS = ["seed", "width", "height"]
"""The core metadata parameters in the noise node"""
def create_image_metadata(
self, session: GraphExecutionState, node_id: str
) -> ImageMetadata:
metadata = self._build_metadata_from_graph(session, node_id)
return metadata
def _find_nearest_ancestor(self, G: nx.DiGraph, node_id: str) -> Union[str, None]:
"""
Finds the id of the nearest ancestor (of a valid type) of a given node.
Parameters:
G (nx.DiGraph): The execution graph, converted in to a networkx DiGraph. Its nodes must
have the same data as the execution graph.
node_id (str): The ID of the node.
Returns:
str | None: The ID of the nearest ancestor, or None if there are no valid ancestors.
"""
# Retrieve the node from the graph
node = G.nodes[node_id]
# If the node type is one of the core metadata node types, return its id
if node.get("type") in self._ANCESTOR_TYPES:
return node.get("id")
# Else, look for the ancestor in the predecessor nodes
for predecessor in G.predecessors(node_id):
result = self._find_nearest_ancestor(G, predecessor)
if result:
return result
# If there are no valid ancestors, return None
return None
def _get_additional_metadata(
self, graph: Graph, node_id: str
) -> Union[dict[str, Any], None]:
"""
Returns additional metadata for a given node.
Parameters:
graph (Graph): The execution graph.
node_id (str): The ID of the node.
Returns:
dict[str, Any] | None: A dictionary of additional metadata.
"""
metadata = {}
# Iterate over all edges in the graph
for edge in graph.edges:
dest_node_id = edge.destination.node_id
dest_field = edge.destination.field
source_node_dict = graph.nodes[edge.source.node_id].dict()
# If the destination node ID matches the given node ID, gather necessary metadata
if dest_node_id == node_id:
# Prompt
if dest_field == "positive_conditioning":
metadata["positive_conditioning"] = source_node_dict.get("prompt")
# Negative prompt
if dest_field == "negative_conditioning":
metadata["negative_conditioning"] = source_node_dict.get("prompt")
# Seed, width and height
if dest_field == "noise":
for field in self._NOISE_FIELDS:
metadata[field] = source_node_dict.get(field)
return metadata
def _build_metadata_from_graph(
self, session: GraphExecutionState, node_id: str
) -> ImageMetadata:
"""
Builds an ImageMetadata object for a node.
Parameters:
session (GraphExecutionState): The session.
node_id (str): The ID of the node.
Returns:
ImageMetadata: The metadata for the node.
"""
# We need to do all the traversal on the execution graph
graph = session.execution_graph
# Find the nearest `t2l`/`l2l` ancestor of the given node
ancestor_id = self._find_nearest_ancestor(graph.nx_graph_with_data(), node_id)
# If no ancestor was found, return an empty ImageMetadata object
if ancestor_id is None:
return ImageMetadata()
ancestor_node = graph.get_node(ancestor_id)
# Grab all the core metadata from the ancestor node
ancestor_metadata = {
param: val
for param, val in ancestor_node.dict().items()
if param in self._ANCESTOR_PARAMS
}
# Get this image's prompts and noise parameters
addl_metadata = self._get_additional_metadata(graph, ancestor_id)
# If additional metadata was found, add it to the main metadata
if addl_metadata is not None:
ancestor_metadata.update(addl_metadata)
return ImageMetadata(**ancestor_metadata)

View File

@ -2,26 +2,25 @@ import os
import sys
import torch
from argparse import Namespace
from invokeai.backend import Args
from omegaconf import OmegaConf
from pathlib import Path
from typing import types
import invokeai.version
from .config import InvokeAISettings
from ...backend import ModelManager
from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals
# TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config: Args) -> ModelManager:
if not config.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file):
report_model_error(
config, FileNotFoundError(f"The file {config_file} could not be found.")
)
def get_model_manager(config: InvokeAISettings, logger: types.ModuleType) -> ModelManager:
model_config = config.model_conf_path
if not model_config.exists():
report_model_error(
config, FileNotFoundError(f"The file {model_config} could not be found."), logger
)
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}")
logger.info(f'InvokeAI runtime directory is "{config.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
@ -31,20 +30,7 @@ def get_model_manager(config: Args) -> ModelManager:
import diffusers
diffusers.logging.set_verbosity_error()
# normalize the config directory relative to root
if not os.path.isabs(config.conf):
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
if config.embeddings:
if not os.path.isabs(config.embedding_path):
embedding_path = os.path.normpath(
os.path.join(Globals.root, config.embedding_path)
)
else:
embedding_path = config.embedding_path
else:
embedding_path = None
embedding_path = config.embedding_path
# migrate legacy models
ModelManager.migrate_models()
@ -57,37 +43,36 @@ def get_model_manager(config: Args) -> ModelManager:
else choose_precision(device)
model_manager = ModelManager(
OmegaConf.load(config.conf),
OmegaConf.load(config.model_conf_path),
precision=precision,
device_type=device,
max_loaded_models=config.max_loaded_models,
embedding_path = Path(embedding_path),
embedding_path = embedding_path,
logger = logger,
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e)
report_model_error(config, e, logger)
except (IOError, KeyError) as e:
print(f"{e}. Aborting.")
logger.error(f"{e}. Aborting.")
sys.exit(-1)
# try to autoconvert new models
# autoimport new .ckpt files
if path := config.autoconvert:
model_manager.autoconvert_weights(
conf_path=config.conf,
weights_directory=path,
if config.autoconvert_path:
model_manager.heuristic_import(
config.autoconvert_path,
)
return model_manager
def report_model_error(opt: Namespace, e: Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
print(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"')
logger.error(
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
print(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
logger.warning(
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
response = input(
@ -96,13 +81,12 @@ def report_model_error(opt: Namespace, e: Exception):
if response.startswith(("n", "N")):
return
print("invokeai-configure is launching....\n")
logger.info("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
previous_config = sys.argv
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config.to_dict())

View File

@ -0,0 +1,146 @@
import datetime
from typing import Optional, Union
from pydantic import BaseModel, Extra, Field, StrictBool, StrictStr
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.util.misc import get_iso_timestamp
class ImageRecord(BaseModel):
"""Deserialized image record."""
image_name: str = Field(description="The unique name of the image.")
"""The unique name of the image."""
image_origin: ResourceOrigin = Field(description="The type of the image.")
"""The origin of the image."""
image_category: ImageCategory = Field(description="The category of the image.")
"""The category of the image."""
width: int = Field(description="The width of the image in px.")
"""The actual width of the image in px. This may be different from the width in metadata."""
height: int = Field(description="The height of the image in px.")
"""The actual height of the image in px. This may be different from the height in metadata."""
created_at: Union[datetime.datetime, str] = Field(
description="The created timestamp of the image."
)
"""The created timestamp of the image."""
updated_at: Union[datetime.datetime, str] = Field(
description="The updated timestamp of the image."
)
"""The updated timestamp of the image."""
deleted_at: Union[datetime.datetime, str, None] = Field(
description="The deleted timestamp of the image."
)
"""The deleted timestamp of the image."""
is_intermediate: bool = Field(description="Whether this is an intermediate image.")
"""Whether this is an intermediate image."""
session_id: Optional[str] = Field(
default=None,
description="The session ID that generated this image, if it is a generated image.",
)
"""The session ID that generated this image, if it is a generated image."""
node_id: Optional[str] = Field(
default=None,
description="The node ID that generated this image, if it is a generated image.",
)
"""The node ID that generated this image, if it is a generated image."""
metadata: Optional[ImageMetadata] = Field(
default=None,
description="A limited subset of the image's generation metadata. Retrieve the image's session for full metadata.",
)
"""A limited subset of the image's generation metadata. Retrieve the image's session for full metadata."""
class ImageRecordChanges(BaseModel, extra=Extra.forbid):
"""A set of changes to apply to an image record.
Only limited changes are valid:
- `image_category`: change the category of an image
- `session_id`: change the session associated with an image
- `is_intermediate`: change the image's `is_intermediate` flag
"""
image_category: Optional[ImageCategory] = Field(
description="The image's new category."
)
"""The image's new category."""
session_id: Optional[StrictStr] = Field(
default=None,
description="The image's new session ID.",
)
"""The image's new session ID."""
is_intermediate: Optional[StrictBool] = Field(
default=None, description="The image's new `is_intermediate` flag."
)
"""The image's new `is_intermediate` flag."""
class ImageUrlsDTO(BaseModel):
"""The URLs for an image and its thumbnail."""
image_name: str = Field(description="The unique name of the image.")
"""The unique name of the image."""
image_url: str = Field(description="The URL of the image.")
"""The URL of the image."""
thumbnail_url: str = Field(description="The URL of the image's thumbnail.")
"""The URL of the image's thumbnail."""
class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend with URLs."""
pass
def image_record_to_dto(
image_record: ImageRecord, image_url: str, thumbnail_url: str
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(
**image_record.dict(),
image_url=image_url,
thumbnail_url=thumbnail_url,
)
def deserialize_image_record(image_dict: dict) -> ImageRecord:
"""Deserializes an image record."""
# Retrieve all the values, setting "reasonable" defaults if they are not present.
image_name = image_dict.get("image_name", "unknown")
image_origin = ResourceOrigin(
image_dict.get("image_origin", ResourceOrigin.INTERNAL.value)
)
image_category = ImageCategory(
image_dict.get("image_category", ImageCategory.GENERAL.value)
)
width = image_dict.get("width", 0)
height = image_dict.get("height", 0)
session_id = image_dict.get("session_id", None)
node_id = image_dict.get("node_id", None)
created_at = image_dict.get("created_at", get_iso_timestamp())
updated_at = image_dict.get("updated_at", get_iso_timestamp())
deleted_at = image_dict.get("deleted_at", get_iso_timestamp())
is_intermediate = image_dict.get("is_intermediate", False)
raw_metadata = image_dict.get("metadata")
if raw_metadata is not None:
metadata = ImageMetadata.parse_raw(raw_metadata)
else:
metadata = None
return ImageRecord(
image_name=image_name,
image_origin=image_origin,
image_category=image_category,
width=width,
height=height,
session_id=session_id,
node_id=node_id,
metadata=metadata,
created_at=created_at,
updated_at=updated_at,
deleted_at=deleted_at,
is_intermediate=is_intermediate,
)

View File

@ -1,17 +1,22 @@
import time
import traceback
from threading import Event, Thread
from threading import Event, Thread, BoundedSemaphore
from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem
from .invoker import InvocationProcessorABC, Invoker
from ..util.util import CanceledException
from ..models.exceptions import CanceledException
import invokeai.backend.util.logging as logger
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
__stop_event: Event
__invoker: Invoker
__threadLimit: BoundedSemaphore
def start(self, invoker) -> None:
# if we do want multithreading at some point, we could make this configurable
self.__threadLimit = BoundedSemaphore(1)
self.__invoker = invoker
self.__stop_event = Event()
self.__invoker_thread = Thread(
@ -20,7 +25,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
kwargs=dict(stop_event=self.__stop_event),
)
self.__invoker_thread.daemon = (
True # TODO: probably better to just not use threads?
True # TODO: make async and do not use threads
)
self.__invoker_thread.start()
@ -29,9 +34,16 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
def __process(self, stop_event: Event):
try:
self.__threadLimit.acquire()
while not stop_event.is_set():
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
try:
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
except Exception as e:
logger.debug("Exception while getting from queue: %s" % e)
if not queue_item: # Probably stopping
# do not hammer the queue
time.sleep(0.5)
continue
graph_execution_state = (
@ -43,10 +55,14 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item.invocation_id
)
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
# Send starting event
self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id
)
# Invoke
@ -75,7 +91,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(),
)
@ -99,12 +116,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send error event
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id,
error=error,
)
pass
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(
graph_execution_state.id
@ -114,11 +132,22 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Queue any further commands if invoking all
is_complete = graph_execution_state.is_complete()
if queue_item.invoke_all and not is_complete:
self.__invoker.invoke(graph_execution_state, invoke_all=True)
try:
self.__invoker.invoke(graph_execution_state, invoke_all=True)
except Exception as e:
logger.error("Error while invoking: %s" % e)
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
error=traceback.format_exc()
)
elif is_complete:
self.__invoker.services.events.emit_graph_execution_complete(
graph_execution_state.id
)
except KeyboardInterrupt:
... # Log something?
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
finally:
self.__threadLimit.release()

View File

@ -0,0 +1,30 @@
from abc import ABC, abstractmethod
from enum import Enum, EnumMeta
import uuid
class ResourceType(str, Enum, metaclass=EnumMeta):
"""Enum for resource types."""
IMAGE = "image"
LATENT = "latent"
class NameServiceBase(ABC):
"""Low-level service responsible for naming resources (images, latents, etc)."""
# TODO: Add customizable naming schemes
@abstractmethod
def create_image_name(self) -> str:
"""Creates a name for an image."""
pass
class SimpleNameService(NameServiceBase):
"""Creates image names from UUIDs."""
# TODO: Add customizable naming schemes
def create_image_name(self) -> str:
uuid_str = str(uuid.uuid4())
filename = f"{uuid_str}.png"
return filename

View File

@ -1,6 +1,7 @@
import sys
import traceback
import torch
from typing import types
from ...backend.restoration import Restoration
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
@ -10,7 +11,7 @@ from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
class RestorationServices:
'''Face restoration and upscaling'''
def __init__(self,args):
def __init__(self,args,logger:types.ModuleType):
try:
gfpgan, codeformer, esrgan = None, None, None
if args.restore or args.esrgan:
@ -20,20 +21,22 @@ class RestorationServices:
args.gfpgan_model_path
)
else:
print(">> Face restoration disabled")
logger.info("Face restoration disabled")
if args.esrgan:
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
else:
print(">> Upscaling disabled")
logger.info("Upscaling disabled")
else:
print(">> Face restoration and upscaling disabled")
logger.info("Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
self.device = torch.device(choose_torch_device())
self.gfpgan = gfpgan
self.codeformer = codeformer
self.esrgan = esrgan
self.logger = logger
self.logger.info('Face restoration initialized')
# note that this one method does gfpgan and codepath reconstruction, as well as
# esrgan upscaling
@ -58,15 +61,15 @@ class RestorationServices:
if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan":
if self.gfpgan is None:
print(
">> GFPGAN not found. Face restoration is disabled."
self.logger.info(
"GFPGAN not found. Face restoration is disabled."
)
else:
image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer":
if self.codeformer is None:
print(
">> CodeFormer not found. Face restoration is disabled."
self.logger.info(
"CodeFormer not found. Face restoration is disabled."
)
else:
cf_device = (
@ -80,7 +83,7 @@ class RestorationServices:
fidelity=codeformer_fidelity,
)
else:
print(">> Face Restoration is disabled.")
self.logger.info("Face Restoration is disabled.")
if upscale is not None:
if self.esrgan is not None:
if len(upscale) < 2:
@ -93,10 +96,10 @@ class RestorationServices:
denoise_str=upscale_denoise_str,
)
else:
print(">> ESRGAN is disabled. Image not upscaled.")
self.logger.info("ESRGAN is disabled. Image not upscaled.")
except Exception as e:
print(
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
self.logger.info(
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
)
if image_callback is not None:

View File

@ -26,7 +26,6 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._table_name = table_name
self._id_field = id_field # TODO: validate that T has this field
self._lock = Lock()
self._conn = sqlite3.connect(
self._filename, check_same_thread=False
) # TODO: figure out a better threading solution

View File

@ -0,0 +1,25 @@
import os
from abc import ABC, abstractmethod
class UrlServiceBase(ABC):
"""Responsible for building URLs for resources."""
@abstractmethod
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the URL for an image or thumbnail."""
pass
class LocalUrlService(UrlServiceBase):
def __init__(self, base_url: str = "api/v1"):
self._base_url = base_url
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
image_basename = os.path.basename(image_name)
# These paths are determined by the routes in invokeai/app/api/routers/images.py
if thumbnail:
return f"{self._base_url}/images/{image_basename}/thumbnail"
return f"{self._base_url}/images/{image_basename}"

View File

View File

@ -0,0 +1,15 @@
from enum import EnumMeta
class MetaEnum(EnumMeta):
"""Metaclass to support additional features in Enums.
- `in` operator support: `'value' in MyEnum -> bool`
"""
def __contains__(cls, item):
try:
cls(item)
except ValueError:
return False
return True

21
invokeai/app/util/misc.py Normal file
View File

@ -0,0 +1,21 @@
import datetime
import numpy as np
def get_timestamp():
return int(datetime.datetime.now(datetime.timezone.utc).timestamp())
def get_iso_timestamp() -> str:
return datetime.datetime.utcnow().isoformat()
def get_datetime_from_iso_timestamp(iso_timestamp: str) -> datetime.datetime:
return datetime.datetime.fromisoformat(iso_timestamp)
SEED_MAX = np.iinfo(np.int32).max
def get_random_seed():
return np.random.randint(0, SEED_MAX)

View File

@ -1,25 +0,0 @@
import os
from PIL import Image
def save_thumbnail(
image: Image.Image,
filename: str,
path: str,
size: int = 256,
) -> str:
"""
Saves a thumbnail of an image, returning its path.
"""
base_filename = os.path.splitext(filename)[0]
thumbnail_path = os.path.join(path, base_filename + ".webp")
if os.path.exists(thumbnail_path):
return thumbnail_path
image_copy = image.copy()
image_copy.thumbnail(size=(size, size))
image_copy.save(thumbnail_path, "WEBP")
return thumbnail_path

View File

@ -0,0 +1,55 @@
from invokeai.app.models.exceptions import CanceledException
from invokeai.app.models.image import ProgressImage
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
def stable_diffusion_step_callback(
context: InvocationContext,
intermediate_state: PipelineIntermediateState,
node: dict,
source_node_id: str,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be. Use
# that estimate if it is available.
if intermediate_state.predicted_original is not None:
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
# TODO: This does not seem to be needed any more?
# # txt2img provides a Tensor in the step_callback
# # img2img provides a PipelineIntermediateState
# if isinstance(sample, PipelineIntermediateState):
# # this was an img2img
# print('img2img')
# latents = sample.latents
# step = sample.step
# else:
# print('txt2img')
# latents = sample
# step = intermediate_state.step
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
graph_execution_state_id=context.graph_execution_state_id,
node=node,
source_node_id=source_node_id,
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=intermediate_state.step,
total_steps=node["steps"],
)

View File

@ -0,0 +1,15 @@
import os
from PIL import Image
def get_thumbnail_name(image_name: str) -> str:
"""Formats given an image name, returns the appropriate thumbnail image name"""
thumbnail_name = os.path.splitext(image_name)[0] + ".webp"
return thumbnail_name
def make_thumbnail(image: Image.Image, size: int = 256) -> Image.Image:
"""Makes a thumbnail from a PIL Image"""
thumbnail = image.copy()
thumbnail.thumbnail(size=(size, size))
return thumbnail

View File

@ -1,42 +0,0 @@
import torch
from PIL import Image
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
class CanceledException(Exception):
pass
def fast_latents_step_callback(sample: torch.Tensor, step: int, steps: int, id: str, context: InvocationContext, ):
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
steps,
)
def diffusers_step_callback_adapter(*cb_args, **kwargs):
"""
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
This adapter grabs the needed data and passes it along to the callback function.
"""
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return fast_latents_step_callback(progress_state.latents, progress_state.step, **kwargs)
else:
return fast_latents_step_callback(*cb_args, **kwargs)

View File

@ -1,7 +1,6 @@
"""
Initialization file for invokeai.backend
"""
from .generate import Generate
from .generator import (
InvokeAIGeneratorBasicParams,
InvokeAIGenerator,
@ -10,7 +9,5 @@ from .generator import (
Img2Img,
Inpaint
)
from .model_management import ModelManager
from .model_management import ModelManager, SDModelComponent
from .safety_checker import SafetyChecker
from .args import Args
from .globals import Globals

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -25,11 +25,13 @@ from typing import Callable, List, Iterator, Optional, Type
from dataclasses import dataclass, field
from diffusers.schedulers import SchedulerMixin as Scheduler
import invokeai.backend.util.logging as logger
from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker
from ..prompting.conditioning import get_uc_and_c_and_ec
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..stable_diffusion.schedulers import SCHEDULER_MAP
downsampling = 8
@ -70,25 +72,14 @@ class InvokeAIGeneratorOutput:
# we are interposing a wrapper around the original Generator classes so that
# old code that calls Generate will continue to work.
class InvokeAIGenerator(metaclass=ABCMeta):
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
def __init__(self,
model_info: dict,
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
**kwargs,
):
self.model_info=model_info
self.params=params
self.kwargs = kwargs
def generate(self,
prompt: str='',
@ -129,9 +120,12 @@ class InvokeAIGenerator(metaclass=ABCMeta):
model=model,
scheduler_name=generator_args.get('scheduler')
)
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(prompt,model=model)
# get conditioning from prompt via Compel package
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(prompt, model=model)
gen_class = self._generator_class()
generator = gen_class(model, self.params.precision)
generator = gen_class(model, self.params.precision, **self.kwargs)
if self.params.variation_amount > 0:
generator.set_variation(generator_args.get('seed'),
generator_args.get('variation_amount'),
@ -174,14 +168,20 @@ class InvokeAIGenerator(metaclass=ABCMeta):
'''
Return list of all the schedulers that we currently handle.
'''
return list(self.scheduler_map.keys())
return list(SCHEDULER_MAP.keys())
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
return generator_class(model, self.params.precision)
def get_scheduler(self, scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class = self.scheduler_map.get(scheduler_name,'ddim')
scheduler = scheduler_class.from_config(model.scheduler.config)
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
scheduler_config = model.scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
@ -225,10 +225,10 @@ class Inpaint(Img2Img):
def generate(self,
mask_image: Image.Image | torch.FloatTensor,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 0,
seam_blur: int = 0,
seam_size: int = 96,
seam_blur: int = 16,
seam_strength: float = 0.7,
seam_steps: int = 10,
seam_steps: int = 30,
tile_size: int = 32,
inpaint_replace=False,
infill_method=None,
@ -281,7 +281,7 @@ class Generator:
precision: str
model: DiffusionPipeline
def __init__(self, model: DiffusionPipeline, precision: str):
def __init__(self, model: DiffusionPipeline, precision: str, **kwargs):
self.model = model
self.precision = precision
self.seed = None
@ -372,7 +372,7 @@ class Generator:
try:
x_T = self.get_noise(width, height)
except:
print("** An error occurred while getting initial noise **")
logger.error("An error occurred while getting initial noise")
print(traceback.format_exc())
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
@ -607,7 +607,7 @@ class Generator:
image = self.sample_to_image(sample)
dirname = os.path.dirname(filepath) or "."
if not os.path.exists(dirname):
print(f"** creating directory {dirname}")
logger.info(f"creating directory {dirname}")
os.makedirs(dirname, exist_ok=True)
image.save(filepath, "PNG")

View File

@ -8,10 +8,11 @@ import torch
from PIL import Image
from tqdm import trange
import invokeai.backend.util.logging as logger
from .base import Generator
from .img2img import Img2Img
class Embiggen(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
@ -72,22 +73,22 @@ class Embiggen(Generator):
embiggen = [1.0] # If not specified, assume no scaling
elif embiggen[0] < 0:
embiggen[0] = 1.0
print(
">> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
logger.warning(
"Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
)
if len(embiggen) < 2:
embiggen.append(0.75)
elif embiggen[1] > 1.0 or embiggen[1] < 0:
embiggen[1] = 0.75
print(
">> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
logger.warning(
"Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
)
if len(embiggen) < 3:
embiggen.append(0.25)
elif embiggen[2] < 0:
embiggen[2] = 0.25
print(
">> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
logger.warning(
"Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
)
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
@ -97,8 +98,8 @@ class Embiggen(Generator):
embiggen_tiles.sort()
if strength >= 0.5:
print(
f"* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
logger.warning(
f"Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
)
# Prep img2img generator, since we wrap over it
@ -121,8 +122,8 @@ class Embiggen(Generator):
from ..restoration.realesrgan import ESRGAN
esrgan = ESRGAN()
print(
f">> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
logger.info(
f"ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
)
if embiggen[0] > 2:
initsuperimage = esrgan.process(
@ -312,10 +313,10 @@ class Embiggen(Generator):
def make_image():
# Make main tiles -------------------------------------------------
if embiggen_tiles:
print(f">> Making {len(embiggen_tiles)} Embiggen tiles...")
logger.info(f"Making {len(embiggen_tiles)} Embiggen tiles...")
else:
print(
f">> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
logger.info(
f"Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
)
emb_tile_store = []
@ -361,11 +362,11 @@ class Embiggen(Generator):
# newinitimage.save(newinitimagepath)
if embiggen_tiles:
print(
logger.debug(
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
)
else:
print(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
logger.debug(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
# create a torch tensor from an Image
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
@ -547,8 +548,8 @@ class Embiggen(Generator):
# Layer tile onto final image
outputsuperimage.alpha_composite(intileimage, (left, top))
else:
print(
"Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
logger.error(
"Could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
)
# after internal loops and patching up return Embiggen image

View File

@ -4,6 +4,7 @@ invokeai.backend.generator.inpaint descends from .generator
from __future__ import annotations
import math
from typing import Tuple, Union
import cv2
import numpy as np
@ -59,7 +60,7 @@ class Inpaint(Img2Img):
writeable=False,
)
def infill_patchmatch(self, im: Image.Image) -> Image:
def infill_patchmatch(self, im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
@ -75,18 +76,18 @@ class Inpaint(Img2Img):
return im_patched
def tile_fill_missing(
self, im: Image.Image, tile_size: int = 16, seed: int = None
) -> Image:
self, im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size = (tile_size, tile_size)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = self.get_tile_images(a, *tile_size).copy()
tiles = self.get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
@ -127,7 +128,9 @@ class Inpaint(Img2Img):
return si
def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image:
def mask_edge(
self, mask: Image.Image, edge_size: int, edge_blur: int
) -> Image.Image:
npimg = np.asarray(mask, dtype=np.uint8)
# Detect any partially transparent regions
@ -193,7 +196,7 @@ class Inpaint(Img2Img):
seam_noise = self.get_noise(im.width, im.height)
result = make_image(seam_noise, seed)
result = make_image(seam_noise, seed=None)
return result
@ -206,15 +209,15 @@ class Inpaint(Img2Img):
cfg_scale,
ddim_eta,
conditioning,
init_image: PIL.Image.Image | torch.FloatTensor,
mask_image: PIL.Image.Image | torch.FloatTensor,
init_image: Image.Image | torch.FloatTensor,
mask_image: Image.Image | torch.FloatTensor,
strength: float,
mask_blur_radius: int = 8,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 0,
seam_blur: int = 0,
seam_size: int = 96,
seam_blur: int = 16,
seam_strength: float = 0.7,
seam_steps: int = 10,
seam_steps: int = 30,
tile_size: int = 32,
step_callback=None,
inpaint_replace=False,
@ -222,7 +225,7 @@ class Inpaint(Img2Img):
infill_method=None,
inpaint_width=None,
inpaint_height=None,
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
inpaint_fill: Tuple[int, int, int, int] = (0x7F, 0x7F, 0x7F, 0xFF),
attention_maps_callback=None,
**kwargs,
):
@ -239,7 +242,7 @@ class Inpaint(Img2Img):
self.inpaint_width = inpaint_width
self.inpaint_height = inpaint_height
if isinstance(init_image, PIL.Image.Image):
if isinstance(init_image, Image.Image):
self.pil_image = init_image.copy()
# Do infill
@ -250,8 +253,8 @@ class Inpaint(Img2Img):
self.pil_image.copy(), seed=self.seed, tile_size=tile_size
)
elif infill_method == "solid":
solid_bg = PIL.Image.new("RGBA", init_image.size, inpaint_fill)
init_filled = PIL.Image.alpha_composite(solid_bg, init_image)
solid_bg = Image.new("RGBA", init_image.size, inpaint_fill)
init_filled = Image.alpha_composite(solid_bg, init_image)
else:
raise ValueError(
f"Non-supported infill type {infill_method}", infill_method
@ -269,7 +272,7 @@ class Inpaint(Img2Img):
# Create init tensor
init_image = image_resized_to_grid_as_tensor(init_filled.convert("RGB"))
if isinstance(mask_image, PIL.Image.Image):
if isinstance(mask_image, Image.Image):
self.pil_mask = mask_image.copy()
debug_image(
mask_image,

View File

@ -4,6 +4,10 @@ invokeai.backend.generator.txt2img inherits from invokeai.backend.generator
import PIL.Image
import torch
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from diffusers.models.controlnet import ControlNetModel, ControlNetOutput
from diffusers.pipelines.controlnet import MultiControlNetModel
from ..stable_diffusion import (
ConditioningData,
PostprocessingSettings,
@ -13,8 +17,13 @@ from .base import Generator
class Txt2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
def __init__(self, model, precision,
control_model: Optional[Union[ControlNetModel, List[ControlNetModel]]] = None,
**kwargs):
self.control_model = control_model
if isinstance(self.control_model, list):
self.control_model = MultiControlNetModel(self.control_model)
super().__init__(model, precision, **kwargs)
@torch.no_grad()
def get_make_image(
@ -42,9 +51,12 @@ class Txt2Img(Generator):
kwargs are 'width' and 'height'
"""
self.perlin = perlin
control_image = kwargs.get("control_image", None)
do_classifier_free_guidance = cfg_scale > 1.0
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.control_model = self.control_model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
@ -61,6 +73,37 @@ class Txt2Img(Generator):
),
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
if control_image is not None:
if isinstance(self.control_model, ControlNetModel):
control_image = pipeline.prepare_control_image(
image=control_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=width,
height=height,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=self.control_model.device,
dtype=self.control_model.dtype,
)
elif isinstance(self.control_model, MultiControlNetModel):
images = []
for image_ in control_image:
image_ = self.model.prepare_control_image(
image=image_,
do_classifier_free_guidance=do_classifier_free_guidance,
width=width,
height=height,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=self.control_model.device,
dtype=self.control_model.dtype,
)
images.append(image_)
control_image = images
kwargs["control_image"] = control_image
def make_image(x_T: torch.Tensor, _: int) -> PIL.Image.Image:
pipeline_output = pipeline.image_from_embeddings(
latents=torch.zeros_like(x_T, dtype=self.torch_dtype()),
@ -68,6 +111,7 @@ class Txt2Img(Generator):
num_inference_steps=steps,
conditioning_data=conditioning_data,
callback=step_callback,
**kwargs,
)
if (

View File

@ -14,6 +14,8 @@ from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeli
from ..stable_diffusion.diffusers_pipeline import ConditioningData
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
import invokeai.backend.util.logging as logger
class Txt2Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
@ -77,8 +79,8 @@ class Txt2Img2Img(Generator):
# the message below is accurate.
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
print(
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
logger.info(
f"Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
# resizing

View File

@ -1,122 +0,0 @@
"""
invokeai.backend.globals defines a small number of global variables that would
otherwise have to be passed through long and complex call chains.
It defines a Namespace object named "Globals" that contains
the attributes:
- root - the root directory under which "models" and "outputs" can be found
- initfile - path to the initialization file
- try_patchmatch - option to globally disable loading of 'patchmatch' module
- always_use_cpu - force use of CPU even if GPU is available
"""
import os
import os.path as osp
from argparse import Namespace
from pathlib import Path
from typing import Union
Globals = Namespace()
# Where to look for the initialization file and other key components
Globals.initfile = "invokeai.init"
Globals.models_file = "models.yaml"
Globals.models_dir = "models"
Globals.config_dir = "configs"
Globals.autoscan_dir = "weights"
Globals.converted_ckpts_dir = "converted_ckpts"
# Set the default root directory. This can be overwritten by explicitly
# passing the `--root <directory>` argument on the command line.
# logic is:
# 1) use INVOKEAI_ROOT environment variable (no check for this being a valid directory)
# 2) use VIRTUAL_ENV environment variable, with a check for initfile being there
# 3) use ~/invokeai
if os.environ.get("INVOKEAI_ROOT"):
Globals.root = osp.abspath(os.environ.get("INVOKEAI_ROOT"))
elif (
os.environ.get("VIRTUAL_ENV")
and Path(os.environ.get("VIRTUAL_ENV"), "..", Globals.initfile).exists()
):
Globals.root = osp.abspath(osp.join(os.environ.get("VIRTUAL_ENV"), ".."))
else:
Globals.root = osp.abspath(osp.expanduser("~/invokeai"))
# Try loading patchmatch
Globals.try_patchmatch = True
# Use CPU even if GPU is available (main use case is for debugging MPS issues)
Globals.always_use_cpu = False
# Whether the internet is reachable for dynamic downloads
# The CLI will test connectivity at startup time.
Globals.internet_available = True
# Whether to disable xformers
Globals.disable_xformers = False
# Low-memory tradeoff for guidance calculations.
Globals.sequential_guidance = False
# whether we are forcing full precision
Globals.full_precision = False
# whether we should convert ckpt files into diffusers models on the fly
Globals.ckpt_convert = True
# logging tokenization everywhere
Globals.log_tokenization = False
def global_config_file() -> Path:
return Path(Globals.root, Globals.config_dir, Globals.models_file)
def global_config_dir() -> Path:
return Path(Globals.root, Globals.config_dir)
def global_models_dir() -> Path:
return Path(Globals.root, Globals.models_dir)
def global_autoscan_dir() -> Path:
return Path(Globals.root, Globals.autoscan_dir)
def global_converted_ckpts_dir() -> Path:
return Path(global_models_dir(), Globals.converted_ckpts_dir)
def global_set_root(root_dir: Union[str, Path]):
Globals.root = root_dir
def global_cache_dir(subdir: Union[str, Path] = "") -> Path:
"""
Returns Path to the model cache directory. If a subdirectory
is provided, it will be appended to the end of the path, allowing
for Hugging Face-style conventions. Currently, Hugging Face has
moved all models into the "hub" subfolder, so for any pretrained
HF model, use:
global_cache_dir('hub')
The legacy location for transformers used to be global_cache_dir('transformers')
and global_cache_dir('diffusers') for diffusers.
"""
home: str = os.getenv("HF_HOME")
if home is None:
home = os.getenv("XDG_CACHE_HOME")
if home is not None:
# Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in Hugging Face Hub Client Library.
# See: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/environment_variables#xdgcachehome
home += os.sep + "huggingface"
if home is not None:
return Path(home, subdir)
else:
return Path(Globals.root, "models", subdir)

View File

@ -5,9 +5,9 @@ wraps the actual patchmatch object. It respects the global
be suppressed or deferred
"""
import numpy as np
from invokeai.backend.globals import Globals
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig.get_config()
class PatchMatch:
"""
@ -24,16 +24,16 @@ class PatchMatch:
def _load_patch_match(self):
if self.tried_load:
return
if Globals.try_patchmatch:
if config.try_patchmatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
print(">> Patchmatch initialized")
logger.info("Patchmatch initialized")
else:
print(">> Patchmatch not loaded (nonfatal)")
logger.info("Patchmatch not loaded (nonfatal)")
self.patch_match = pm
else:
print(">> Patchmatch loading disabled")
logger.info("Patchmatch loading disabled")
self.tried_load = True
@classmethod

View File

@ -30,14 +30,14 @@ work fine.
import numpy as np
import torch
from PIL import Image, ImageOps
from torchvision import transforms
from transformers import AutoProcessor, CLIPSegForImageSegmentation
from invokeai.backend.globals import global_cache_dir
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
CLIPSEG_SIZE = 352
config = InvokeAIAppConfig.get_config()
class SegmentedGrayscale(object):
def __init__(self, image: Image, heatmap: torch.Tensor):
@ -83,15 +83,15 @@ class Txt2Mask(object):
"""
def __init__(self, device="cpu", refined=False):
print(">> Initializing clipseg model for text to mask inference")
logger.info("Initializing clipseg model for text to mask inference")
# BUG: we are not doing anything with the device option at this time
self.device = device
self.processor = AutoProcessor.from_pretrained(
CLIPSEG_MODEL, cache_dir=global_cache_dir("hub")
CLIPSEG_MODEL, cache_dir=config.cache_dir
)
self.model = CLIPSegForImageSegmentation.from_pretrained(
CLIPSEG_MODEL, cache_dir=global_cache_dir("hub")
CLIPSEG_MODEL, cache_dir=config.cache_dir
)
@torch.no_grad()
@ -101,18 +101,6 @@ class Txt2Mask(object):
provided image and returns a SegmentedGrayscale object in which the brighter
pixels indicate where the object is inferred to be.
"""
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
transforms.Resize(
(CLIPSEG_SIZE, CLIPSEG_SIZE)
), # must be multiple of 64...
]
)
if type(image) is str:
image = Image.open(image).convert("RGB")

View File

View File

@ -12,17 +12,17 @@ print("Loading Python libraries...\n",file=sys.stderr)
import argparse
import io
import os
import re
import shutil
import textwrap
import traceback
import warnings
from argparse import Namespace
from pathlib import Path
from shutil import get_terminal_size
from typing import get_type_hints
from urllib import request
import npyscreen
import torch
import transformers
from diffusers import AutoencoderKL
from huggingface_hub import HfFolder
@ -35,57 +35,53 @@ from transformers import (
CLIPTextModel,
CLIPTokenizer,
)
import invokeai.configs as configs
from ...frontend.install.model_install import addModelsForm, process_and_execute
from ...frontend.install.widgets import (
from invokeai.app.services.config import (
InvokeAIAppConfig,
)
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
from invokeai.frontend.install.widgets import (
CenteredButtonPress,
IntTitleSlider,
set_min_terminal_size,
CyclingForm,
MIN_COLS,
MIN_LINES,
)
from ..args import PRECISION_CHOICES, Args
from ..globals import Globals, global_cache_dir, global_config_dir, global_config_file
from .model_install_backend import (
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
from invokeai.backend.install.model_install_backend import (
default_dataset,
download_from_hf,
hf_download_with_resume,
recommended_datasets,
UserSelections,
)
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
# --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config()
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path
Default_config_file = Path(global_config_dir()) / "models.yaml"
SD_Configs = Path(global_config_dir()) / "stable-diffusion"
Datasets = OmegaConf.load(Dataset_path)
# minimum size for the UI
MIN_COLS = 135
MIN_LINES = 45
PRECISION_CHOICES = ['auto','float16','float32','autocast']
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running invokeai-configure again.
# Place frequently-used startup commands here, one or more per line.
# Examples:
# --outdir=D:\data\images
# --no-nsfw_checker
# --web --host=0.0.0.0
# --steps=20
# -Ak_euler_a -C10.0
"""
logger=None
# --------------------------------------------
def postscript(errors: None):
@ -96,14 +92,13 @@ If you installed manually from source or with 'pip install': activate the virtua
then run one of the following commands to start InvokeAI.
Web UI:
invokeai --web # (connect to http://localhost:9090)
invokeai --web --host 0.0.0.0 # (connect to http://your-lan-ip:9090 from another computer on the local network)
invokeai-web
Command-line interface:
Command-line client:
invokeai
If you installed using an installation script, run:
{Globals.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
{config.root_path}/invoke.{"bat" if sys.platform == "win32" else "sh"}
Add the '--help' argument to see all of the command-line switches available for use.
"""
@ -215,16 +210,11 @@ def download_realesrgan():
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
model_dest = os.path.join(
Globals.root, "models/realesrgan/realesr-general-x4v3.pth"
)
model_dest = config.root_path / "models/realesrgan/realesr-general-x4v3.pth"
wdn_model_dest = config.root_path / "models/realesrgan/realesr-general-wdn-x4v3.pth"
wdn_model_dest = os.path.join(
Globals.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
)
download_with_progress_bar(model_url, model_dest, "RealESRGAN")
download_with_progress_bar(wdn_model_url, wdn_model_dest, "RealESRGANwdn")
download_with_progress_bar(model_url, str(model_dest), "RealESRGAN")
download_with_progress_bar(wdn_model_url, str(wdn_model_dest), "RealESRGANwdn")
def download_gfpgan():
@ -243,8 +233,8 @@ def download_gfpgan():
"./models/gfpgan/weights/parsing_parsenet.pth",
],
):
model_url, model_dest = model[0], os.path.join(Globals.root, model[1])
download_with_progress_bar(model_url, model_dest, "GFPGAN weights")
model_url, model_dest = model[0], config.root_path / model[1]
download_with_progress_bar(model_url, str(model_dest), "GFPGAN weights")
# ---------------------------------------------
@ -253,8 +243,8 @@ def download_codeformer():
model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
)
model_dest = os.path.join(Globals.root, "models/codeformer/codeformer.pth")
download_with_progress_bar(model_url, model_dest, "CodeFormer")
model_dest = config.root_path / "models/codeformer/codeformer.pth"
download_with_progress_bar(model_url, str(model_dest), "CodeFormer")
# ---------------------------------------------
@ -295,7 +285,7 @@ def download_vaes():
# first the diffusers version
repo_id = "stabilityai/sd-vae-ft-mse"
args = dict(
cache_dir=global_cache_dir("hub"),
cache_dir=config.cache_dir,
)
if not AutoencoderKL.from_pretrained(repo_id, **args):
raise Exception(f"download of {repo_id} failed")
@ -306,7 +296,7 @@ def download_vaes():
if not hf_download_with_resume(
repo_id=repo_id,
model_name=model_name,
model_dir=str(Globals.root / Model_dir / Weights_dir),
model_dir=str(config.root_path / Model_dir / Weights_dir),
):
raise Exception(f"download of {model_name} failed")
except Exception as e:
@ -321,25 +311,24 @@ def get_root(root: str = None) -> str:
elif os.environ.get("INVOKEAI_ROOT"):
return os.environ.get("INVOKEAI_ROOT")
else:
return Globals.root
return str(config.root_path)
# -------------------------------------
class editOptsForm(npyscreen.FormMultiPage):
class editOptsForm(CyclingForm, npyscreen.FormMultiPage):
# for responsive resizing - disabled
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
def create(self):
program_opts = self.parentApp.program_opts
old_opts = self.parentApp.invokeai_opts
first_time = not (Globals.root / Globals.initfile).exists()
first_time = not (config.root_path / 'invokeai.yaml').exists()
access_token = HfFolder.get_token()
window_width, window_height = get_terminal_size()
for i in [
"Configure startup settings. You can come back and change these later.",
"Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.",
"Use cursor arrows to make a checkbox selection, and space to toggle.",
]:
label = """Configure startup settings. You can come back and change these later.
Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.
Use cursor arrows to make a checkbox selection, and space to toggle.
"""
for i in textwrap.wrap(label,width=window_width-6):
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
@ -366,7 +355,7 @@ class editOptsForm(npyscreen.FormMultiPage):
self.outdir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="(<tab> autocompletes, ctrl-N advances):",
value=old_opts.outdir or str(default_output_dir()),
value=str(default_output_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
@ -381,22 +370,21 @@ class editOptsForm(npyscreen.FormMultiPage):
editable=False,
color="CONTROL",
)
self.safety_checker = self.add_widget_intelligent(
self.nsfw_checker = self.add_widget_intelligent(
npyscreen.Checkbox,
name="NSFW checker",
value=old_opts.safety_checker,
value=old_opts.nsfw_checker,
relx=5,
scroll_exit=True,
)
self.nextrely += 1
for i in [
"If you have an account at HuggingFace you may paste your access token here",
'to allow InvokeAI to download styles & subjects from the "Concept Library".',
"See https://huggingface.co/settings/tokens",
]:
label = """If you have an account at HuggingFace you may optionally paste your access token here
to allow InvokeAI to download restricted styles & subjects from the "Concept Library". See https://huggingface.co/settings/tokens.
"""
for line in textwrap.wrap(label,width=window_width-6):
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
value=line,
editable=False,
color="CONTROL",
)
@ -435,17 +423,10 @@ class editOptsForm(npyscreen.FormMultiPage):
relx=5,
scroll_exit=True,
)
self.xformers = self.add_widget_intelligent(
self.xformers_enabled = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Enable xformers support if available",
value=old_opts.xformers,
relx=5,
scroll_exit=True,
)
self.ckpt_convert = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Load legacy checkpoint models into memory as diffusers models",
value=old_opts.ckpt_convert,
value=old_opts.xformers_enabled,
relx=5,
scroll_exit=True,
)
@ -480,19 +461,41 @@ class editOptsForm(npyscreen.FormMultiPage):
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Directory containing embedding/textual inversion files:",
value="Directories containing textual inversion, controlnet and LoRA models (<tab> autocompletes, ctrl-N advances):",
editable=False,
color="CONTROL",
)
self.embedding_path = self.add_widget_intelligent(
self.embedding_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="(<tab> autocompletes, ctrl-N advances):",
name=" Textual Inversion Embeddings:",
value=str(default_embedding_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=40,
begin_entry_at=32,
scroll_exit=True,
)
self.lora_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=" LoRA and LyCORIS:",
value=str(default_lora_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
scroll_exit=True,
)
self.controlnet_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=" ControlNets:",
value=str(default_controlnet_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
scroll_exit=True,
)
self.nextrely += 1
@ -505,11 +508,11 @@ class editOptsForm(npyscreen.FormMultiPage):
scroll_exit=True,
)
self.nextrely -= 1
for i in [
"BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ",
"AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT",
"https://huggingface.co/spaces/CompVis/stable-diffusion-license",
]:
label = """BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ
AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT
https://huggingface.co/spaces/CompVis/stable-diffusion-license
"""
for i in textwrap.wrap(label,width=window_width-6):
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
@ -548,7 +551,7 @@ class editOptsForm(npyscreen.FormMultiPage):
self.editing = False
else:
self.editing = True
def validate_field_values(self, opt: Namespace) -> bool:
bad_fields = []
if not opt.license_acceptance:
@ -559,9 +562,9 @@ class editOptsForm(npyscreen.FormMultiPage):
bad_fields.append(
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
)
if not Path(opt.embedding_path).parent.exists():
if not Path(opt.embedding_dir).parent.exists():
bad_fields.append(
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_path).parent)} is an existing directory."
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
)
if len(bad_fields) > 0:
message = "The following problems were detected and must be corrected:\n"
@ -576,20 +579,24 @@ class editOptsForm(npyscreen.FormMultiPage):
new_opts = Namespace()
for attr in [
"outdir",
"safety_checker",
"free_gpu_mem",
"max_loaded_models",
"xformers",
"always_use_cpu",
"embedding_path",
"ckpt_convert",
"outdir",
"nsfw_checker",
"free_gpu_mem",
"max_loaded_models",
"xformers_enabled",
"always_use_cpu",
"embedding_dir",
"lora_dir",
"controlnet_dir",
]:
setattr(new_opts, attr, getattr(self, attr).value)
new_opts.hf_token = self.hf_token.value
new_opts.license_acceptance = self.license_acceptance.value
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
# widget library workaround to make max_loaded_models an int rather than a float
new_opts.max_loaded_models = int(new_opts.max_loaded_models)
return new_opts
@ -608,6 +615,7 @@ class EditOptApplication(npyscreen.NPSAppManaged):
"MAIN",
editOptsForm,
name="InvokeAI Startup Options",
cycle_widgets=True,
)
if not (self.program_opts.skip_sd_weights or self.program_opts.default_only):
self.model_select = self.addForm(
@ -615,6 +623,7 @@ class EditOptApplication(npyscreen.NPSAppManaged):
addModelsForm,
name="Install Stable Diffusion Models",
multipage=True,
cycle_widgets=True,
)
def new_opts(self):
@ -628,18 +637,14 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
def default_startup_options(init_file: Path) -> Namespace:
opts = Args().parse_args([])
outdir = Path(opts.outdir)
if not outdir.is_absolute():
opts.outdir = str(Globals.root / opts.outdir)
opts = InvokeAIAppConfig.get_config()
if not init_file.exists():
opts.safety_checker = True
opts.nsfw_checker = True
return opts
def default_user_selections(program_opts: Namespace) -> Namespace:
return Namespace(
starter_models=default_dataset()
def default_user_selections(program_opts: Namespace) -> UserSelections:
return UserSelections(
install_models=default_dataset()
if program_opts.default_only
else recommended_datasets()
if program_opts.yes_to_all
@ -647,26 +652,27 @@ def default_user_selections(program_opts: Namespace) -> Namespace:
purge_deleted_models=False,
scan_directory=None,
autoscan_on_startup=None,
import_model_paths=None,
convert_to_diffusers=None,
)
# -------------------------------------
def initialize_rootdir(root: str, yes_to_all: bool = False):
def initialize_rootdir(root: Path, yes_to_all: bool = False):
print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
for name in (
"models",
"configs",
"embeddings",
"text-inversion-output",
"text-inversion-training-data",
"models",
"configs",
"embeddings",
"databases",
"loras",
"controlnets",
"text-inversion-output",
"text-inversion-training-data",
):
os.makedirs(os.path.join(root, name), exist_ok=True)
configs_src = Path(configs.__path__[0])
configs_dest = Path(root) / "configs"
configs_dest = root / "configs"
if not os.path.samefile(configs_src, configs_dest):
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
@ -677,8 +683,17 @@ def run_console_ui(
) -> (Namespace, Namespace):
# parse_args() will read from init file if present
invokeai_opts = default_startup_options(initfile)
invokeai_opts.root = program_opts.root
set_min_terminal_size(MIN_COLS, MIN_LINES)
# The third argument is needed in the Windows 11 environment to
# launch a console window running this program.
set_min_terminal_size(MIN_COLS, MIN_LINES,'invokeai-configure')
# the install-models application spawns a subprocess to install
# models, and will crash unless this is set before running.
import torch
torch.multiprocessing.set_start_method("spawn")
editApp = EditOptApplication(program_opts, invokeai_opts)
editApp.run()
if editApp.user_cancelled:
@ -690,70 +705,66 @@ def run_console_ui(
# -------------------------------------
def write_opts(opts: Namespace, init_file: Path):
"""
Update the invokeai.init file with values from opts Namespace
Update the invokeai.yaml file with values from current settings.
"""
# touch file if it doesn't exist
if not init_file.exists():
with open(init_file, "w") as f:
f.write(INIT_FILE_PREAMBLE)
# We want to write in the changed arguments without clobbering
# any other initialization values the user has entered. There is
# no good way to do this because of the one-way nature of
# argparse: i.e. --outdir could be --outdir, --out, or -o
# initfile needs to be replaced with a fully structured format
# such as yaml; this is a hack that will work much of the time
args_to_skip = re.compile(
"^--?(o|out|no-xformer|xformer|no-ckpt|ckpt|free|no-nsfw|nsfw|prec|max_load|embed|always|ckpt|free_gpu)"
)
# fix windows paths
opts.outdir = opts.outdir.replace("\\", "/")
opts.embedding_path = opts.embedding_path.replace("\\", "/")
new_file = f"{init_file}.new"
try:
lines = [x.strip() for x in open(init_file, "r").readlines()]
with open(new_file, "w") as out_file:
for line in lines:
if len(line) > 0 and not args_to_skip.match(line):
out_file.write(line + "\n")
out_file.write(
f"""
--outdir={opts.outdir}
--embedding_path={opts.embedding_path}
--precision={opts.precision}
--max_loaded_models={int(opts.max_loaded_models)}
--{'no-' if not opts.safety_checker else ''}nsfw_checker
--{'no-' if not opts.xformers else ''}xformers
--{'no-' if not opts.ckpt_convert else ''}ckpt_convert
{'--free_gpu_mem' if opts.free_gpu_mem else ''}
{'--always_use_cpu' if opts.always_use_cpu else ''}
"""
)
except OSError as e:
print(f"** An error occurred while writing the init file: {str(e)}")
os.replace(new_file, init_file)
if opts.hf_token:
HfLogin(opts.hf_token)
# this will load current settings
new_config = InvokeAIAppConfig.get_config()
new_config.root = config.root
for key,value in opts.__dict__.items():
if hasattr(new_config,key):
setattr(new_config,key,value)
with open(init_file,'w', encoding='utf-8') as file:
file.write(new_config.to_yaml())
# -------------------------------------
def default_output_dir() -> Path:
return Globals.root / "outputs"
return config.root_path / "outputs"
# -------------------------------------
def default_embedding_dir() -> Path:
return Globals.root / "embeddings"
return config.root_path / "embeddings"
# -------------------------------------
def default_lora_dir() -> Path:
return config.root_path / "loras"
# -------------------------------------
def default_controlnet_dir() -> Path:
return config.root_path / "controlnets"
# -------------------------------------
def write_default_options(program_opts: Namespace, initfile: Path):
opt = default_startup_options(initfile)
opt.hf_token = HfFolder.get_token()
write_opts(opt, initfile)
# -------------------------------------
# Here we bring in
# the legacy Args object in order to parse
# the old init file and write out the new
# yaml format.
def migrate_init_file(legacy_format:Path):
old = legacy_parser.parse_args([f'@{str(legacy_format)}'])
new = InvokeAIAppConfig.get_config()
fields = list(get_type_hints(InvokeAIAppConfig).keys())
for attr in fields:
if hasattr(old,attr):
setattr(new,attr,getattr(old,attr))
# a few places where the field names have changed and we have to
# manually add in the new names/values
new.nsfw_checker = old.safety_checker
new.xformers_enabled = old.xformers
new.conf_path = old.conf
new.embedding_dir = old.embedding_path
invokeai_yaml = legacy_format.parent / 'invokeai.yaml'
with open(invokeai_yaml,"w", encoding="utf-8") as outfile:
outfile.write(new.to_yaml())
legacy_format.replace(legacy_format.parent / 'invokeai.init.old')
# -------------------------------------
def main():
@ -809,8 +820,13 @@ def main():
)
opt = parser.parse_args()
# setting a global here
Globals.root = Path(os.path.expanduser(get_root(opt.root) or ""))
invoke_args = []
if opt.root:
invoke_args.extend(['--root',opt.root])
if opt.full_precision:
invoke_args.extend(['--precision','float32'])
config.parse_args(invoke_args)
logger = InvokeAILogger().getLogger(config=config)
errors = set()
@ -818,19 +834,26 @@ def main():
models_to_download = default_user_selections(opt)
# We check for to see if the runtime directory is correctly initialized.
init_file = Path(Globals.root, Globals.initfile)
if not init_file.exists() or not global_config_file().exists():
initialize_rootdir(Globals.root, opt.yes_to_all)
old_init_file = config.root_path / 'invokeai.init'
new_init_file = config.root_path / 'invokeai.yaml'
if old_init_file.exists() and not new_init_file.exists():
print('** Migrating invokeai.init to invokeai.yaml')
migrate_init_file(old_init_file)
# Load new init file into config
config.parse_args(argv=[],conf=OmegaConf.load(new_init_file))
if not config.model_conf_path.exists():
initialize_rootdir(config.root_path, opt.yes_to_all)
if opt.yes_to_all:
write_default_options(opt, init_file)
write_default_options(opt, new_init_file)
init_options = Namespace(
precision="float32" if opt.full_precision else "float16"
)
else:
init_options, models_to_download = run_console_ui(opt, init_file)
init_options, models_to_download = run_console_ui(opt, new_init_file)
if init_options:
write_opts(init_options, init_file)
write_opts(init_options, new_init_file)
else:
print(
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
@ -840,7 +863,7 @@ def main():
if opt.skip_support_models:
print("\n** SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST **")
else:
print("\n** DOWNLOADING SUPPORT MODELS **")
print("\n** CHECKING/UPDATING SUPPORT MODELS **")
download_bert()
download_sd1_clip()
download_sd2_clip()
@ -858,6 +881,8 @@ def main():
process_and_execute(opt, models_to_download)
postscript(errors=errors)
if not opt.yes_to_all:
input('Press any key to continue...')
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")

View File

@ -0,0 +1,390 @@
# Copyright 2023 Lincoln D. Stein and the InvokeAI Team
import argparse
import shlex
from argparse import ArgumentParser
SAMPLER_CHOICES = [
"ddim",
"ddpm",
"deis",
"lms",
"pndm",
"heun",
"heun_k",
"euler",
"euler_k",
"euler_a",
"kdpm_2",
"kdpm_2_a",
"dpmpp_2s",
"dpmpp_2m",
"dpmpp_2m_k",
"unipc",
]
PRECISION_CHOICES = [
"auto",
"float32",
"autocast",
"float16",
]
class FileArgumentParser(ArgumentParser):
"""
Supports reading defaults from an init file.
"""
def convert_arg_line_to_args(self, arg_line):
return shlex.split(arg_line, comments=True)
legacy_parser = FileArgumentParser(
description=
"""
Generate images using Stable Diffusion.
Use --web to launch the web interface.
Use --from_file to load prompts from a file path or standard input ("-").
Otherwise you will be dropped into an interactive command prompt (type -h for help.)
Other command-line arguments are defaults that can usually be overridden
prompt the command prompt.
""",
fromfile_prefix_chars='@',
)
general_group = legacy_parser.add_argument_group('General')
model_group = legacy_parser.add_argument_group('Model selection')
file_group = legacy_parser.add_argument_group('Input/output')
web_server_group = legacy_parser.add_argument_group('Web server')
render_group = legacy_parser.add_argument_group('Rendering')
postprocessing_group = legacy_parser.add_argument_group('Postprocessing')
deprecated_group = legacy_parser.add_argument_group('Deprecated options')
deprecated_group.add_argument('--laion400m')
deprecated_group.add_argument('--weights') # deprecated
general_group.add_argument(
'--version','-V',
action='store_true',
help='Print InvokeAI version number'
)
model_group.add_argument(
'--root_dir',
default=None,
help='Path to directory containing "models", "outputs" and "configs". If not present will read from environment variable INVOKEAI_ROOT. Defaults to ~/invokeai.',
)
model_group.add_argument(
'--config',
'-c',
'-config',
dest='conf',
default='./configs/models.yaml',
help='Path to configuration file for alternate models.',
)
model_group.add_argument(
'--model',
help='Indicates which diffusion model to load (defaults to "default" stanza in configs/models.yaml)',
)
model_group.add_argument(
'--weight_dirs',
nargs='+',
type=str,
help='List of one or more directories that will be auto-scanned for new model weights to import',
)
model_group.add_argument(
'--png_compression','-z',
type=int,
default=6,
choices=range(0,9),
dest='png_compression',
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
)
model_group.add_argument(
'-F',
'--full_precision',
dest='full_precision',
action='store_true',
help='Deprecated way to set --precision=float32',
)
model_group.add_argument(
'--max_loaded_models',
dest='max_loaded_models',
type=int,
default=2,
help='Maximum number of models to keep in memory for fast switching, including the one in GPU',
)
model_group.add_argument(
'--free_gpu_mem',
dest='free_gpu_mem',
action='store_true',
help='Force free gpu memory before final decoding',
)
model_group.add_argument(
'--sequential_guidance',
dest='sequential_guidance',
action='store_true',
help="Calculate guidance in serial instead of in parallel, lowering memory requirement "
"at the expense of speed",
)
model_group.add_argument(
'--xformers',
action=argparse.BooleanOptionalAction,
default=True,
help='Enable/disable xformers support (default enabled if installed)',
)
model_group.add_argument(
"--always_use_cpu",
dest="always_use_cpu",
action="store_true",
help="Force use of CPU even if GPU is available"
)
model_group.add_argument(
'--precision',
dest='precision',
type=str,
choices=PRECISION_CHOICES,
metavar='PRECISION',
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
default='auto',
)
model_group.add_argument(
'--ckpt_convert',
action=argparse.BooleanOptionalAction,
dest='ckpt_convert',
default=True,
help='Deprecated option. Legacy ckpt files are now always converted to diffusers when loaded.'
)
model_group.add_argument(
'--internet',
action=argparse.BooleanOptionalAction,
dest='internet_available',
default=True,
help='Indicate whether internet is available for just-in-time model downloading (default: probe automatically).',
)
model_group.add_argument(
'--nsfw_checker',
'--safety_checker',
action=argparse.BooleanOptionalAction,
dest='safety_checker',
default=False,
help='Check for and blur potentially NSFW images. Use --no-nsfw_checker to disable.',
)
model_group.add_argument(
'--autoimport',
default=None,
type=str,
help='Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly',
)
model_group.add_argument(
'--autoconvert',
default=None,
type=str,
help='Check the indicated directory for .ckpt/.safetensors weights files at startup and import as optimized diffuser models',
)
model_group.add_argument(
'--patchmatch',
action=argparse.BooleanOptionalAction,
default=True,
help='Load the patchmatch extension for outpainting. Use --no-patchmatch to disable.',
)
file_group.add_argument(
'--from_file',
dest='infile',
type=str,
help='If specified, load prompts from this file',
)
file_group.add_argument(
'--outdir',
'-o',
type=str,
help='Directory to save generated images and a log of prompts and seeds. Default: ROOTDIR/outputs',
default='outputs',
)
file_group.add_argument(
'--prompt_as_dir',
'-p',
action='store_true',
help='Place images in subdirectories named after the prompt.',
)
render_group.add_argument(
'--fnformat',
default='{prefix}.{seed}.png',
type=str,
help='Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png',
)
render_group.add_argument(
'-s',
'--steps',
type=int,
default=50,
help='Number of steps'
)
render_group.add_argument(
'-W',
'--width',
type=int,
help='Image width, multiple of 64',
)
render_group.add_argument(
'-H',
'--height',
type=int,
help='Image height, multiple of 64',
)
render_group.add_argument(
'-C',
'--cfg_scale',
default=7.5,
type=float,
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
)
render_group.add_argument(
'--sampler',
'-A',
'-m',
dest='sampler_name',
type=str,
choices=SAMPLER_CHOICES,
metavar='SAMPLER_NAME',
help=f'Set the default sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
default='k_lms',
)
render_group.add_argument(
'--log_tokenization',
'-t',
action='store_true',
help='shows how the prompt is split into tokens'
)
render_group.add_argument(
'-f',
'--strength',
type=float,
help='img2img strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
)
render_group.add_argument(
'-T',
'-fit',
'--fit',
action=argparse.BooleanOptionalAction,
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)',
)
render_group.add_argument(
'--grid',
'-g',
action=argparse.BooleanOptionalAction,
help='generate a grid'
)
render_group.add_argument(
'--embedding_directory',
'--embedding_path',
dest='embedding_path',
default='embeddings',
type=str,
help='Path to a directory containing .bin and/or .pt files, or a single .bin/.pt file. You may use subdirectories. (default is ROOTDIR/embeddings)'
)
render_group.add_argument(
'--lora_directory',
dest='lora_path',
default='loras',
type=str,
help='Path to a directory containing LoRA files; subdirectories are not supported. (default is ROOTDIR/loras)'
)
render_group.add_argument(
'--embeddings',
action=argparse.BooleanOptionalAction,
default=True,
help='Enable embedding directory (default). Use --no-embeddings to disable.',
)
render_group.add_argument(
'--enable_image_debugging',
action='store_true',
help='Generates debugging image to display'
)
render_group.add_argument(
'--karras_max',
type=int,
default=None,
help="control the point at which the K* samplers will shift from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts). Set to 0 to use LatentDiffusion for all step values, and to a high value (e.g. 1000) to use Karras for all step values. [29]."
)
# Restoration related args
postprocessing_group.add_argument(
'--no_restore',
dest='restore',
action='store_false',
help='Disable face restoration with GFPGAN or codeformer',
)
postprocessing_group.add_argument(
'--no_upscale',
dest='esrgan',
action='store_false',
help='Disable upscaling with ESRGAN',
)
postprocessing_group.add_argument(
'--esrgan_bg_tile',
type=int,
default=400,
help='Tile size for background sampler, 0 for no tile during testing. Default: 400.',
)
postprocessing_group.add_argument(
'--esrgan_denoise_str',
type=float,
default=0.75,
help='esrgan denoise str. 0 is no denoise, 1 is max denoise. Default: 0.75',
)
postprocessing_group.add_argument(
'--gfpgan_model_path',
type=str,
default='./models/gfpgan/GFPGANv1.4.pth',
help='Indicates the path to the GFPGAN model',
)
web_server_group.add_argument(
'--web',
dest='web',
action='store_true',
help='Start in web server mode.',
)
web_server_group.add_argument(
'--web_develop',
dest='web_develop',
action='store_true',
help='Start in web server development mode.',
)
web_server_group.add_argument(
"--web_verbose",
action="store_true",
help="Enables verbose logging",
)
web_server_group.add_argument(
"--cors",
nargs="*",
type=str,
help="Additional allowed origins, comma-separated",
)
web_server_group.add_argument(
'--host',
type=str,
default='127.0.0.1',
help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.'
)
web_server_group.add_argument(
'--port',
type=int,
default='9090',
help='Web server: Port to listen on'
)
web_server_group.add_argument(
'--certfile',
type=str,
default=None,
help='Web server: Path to certificate file to use for SSL. Use together with --keyfile'
)
web_server_group.add_argument(
'--keyfile',
type=str,
default=None,
help='Web server: Path to private key file to use for SSL. Use together with --certfile'
)
web_server_group.add_argument(
'--gui',
dest='gui',
action='store_true',
help='Start InvokeAI GUI',
)

View File

@ -6,26 +6,30 @@ import re
import shutil
import sys
import warnings
from dataclasses import dataclass,field
from pathlib import Path
from tempfile import TemporaryFile
from typing import List
from typing import List, Dict, Callable
import requests
from diffusers import AutoencoderKL
from huggingface_hub import hf_hub_url
from huggingface_hub import hf_hub_url, HfFolder
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from tqdm import tqdm
import invokeai.configs as configs
from ..globals import Globals, global_cache_dir, global_config_dir
from ..model_management import ModelManager
from invokeai.app.services.config import InvokeAIAppConfig
from ..stable_diffusion import StableDiffusionGeneratorPipeline
from ..util.logging import InvokeAILogger
warnings.filterwarnings("ignore")
# --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config()
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
@ -35,6 +39,9 @@ Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
# initial models omegaconf
Datasets = None
# logger
logger = InvokeAILogger.getLogger(name='InvokeAI')
Config_preamble = """
# This file describes the alternative machine learning models
# available to InvokeAI script.
@ -45,59 +52,98 @@ Config_preamble = """
# was trained on.
"""
@dataclass
class ModelInstallList:
'''Class for listing models to be installed/removed'''
install_models: List[str] = field(default_factory=list)
remove_models: List[str] = field(default_factory=list)
@dataclass
class UserSelections():
install_models: List[str]= field(default_factory=list)
remove_models: List[str]=field(default_factory=list)
purge_deleted_models: bool=field(default_factory=list)
install_cn_models: List[str] = field(default_factory=list)
remove_cn_models: List[str] = field(default_factory=list)
install_lora_models: List[str] = field(default_factory=list)
remove_lora_models: List[str] = field(default_factory=list)
install_ti_models: List[str] = field(default_factory=list)
remove_ti_models: List[str] = field(default_factory=list)
scan_directory: Path = None
autoscan_on_startup: bool=False
import_model_paths: str=None
def default_config_file():
return Path(global_config_dir()) / "models.yaml"
return config.model_conf_path
def sd_configs():
return Path(global_config_dir()) / "stable-diffusion"
return config.legacy_conf_path
def initial_models():
global Datasets
if Datasets:
return Datasets
return (Datasets := OmegaConf.load(Dataset_path))
return (Datasets := OmegaConf.load(Dataset_path)['diffusers'])
def install_requested_models(
install_initial_models: List[str] = None,
remove_models: List[str] = None,
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
convert_to_diffusers: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
diffusers: ModelInstallList = None,
controlnet: ModelInstallList = None,
lora: ModelInstallList = None,
ti: ModelInstallList = None,
cn_model_map: Dict[str,str] = None, # temporary - move to model manager
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
model_config_file_callback: Callable[[Path],Path] = None
):
"""
Entry point for installing/deleting starter models, or installing external models.
"""
access_token = HfFolder.get_token()
config_file_path = config_file_path or default_config_file()
if not config_file_path.exists():
open(config_file_path, "w")
# prevent circular import here
from ..model_management import ModelManager
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
if controlnet:
model_manager.install_controlnet_models(controlnet.install_models, access_token=access_token)
model_manager.delete_controlnet_models(controlnet.remove_models)
if remove_models and len(remove_models) > 0:
print("== DELETING UNCHECKED STARTER MODELS ==")
for model in remove_models:
print(f"{model}...")
model_manager.del_model(model, delete_files=purge_deleted)
model_manager.commit(config_file_path)
if lora:
model_manager.install_lora_models(lora.install_models, access_token=access_token)
model_manager.delete_lora_models(lora.remove_models)
if install_initial_models and len(install_initial_models) > 0:
print("== INSTALLING SELECTED STARTER MODELS ==")
successfully_downloaded = download_weight_datasets(
models=install_initial_models,
access_token=None,
precision=precision,
) # FIX: for historical reasons, we don't use model manager here
update_config_file(successfully_downloaded, config_file_path)
if len(successfully_downloaded) < len(install_initial_models):
print("** Some of the model downloads were not successful")
if ti:
model_manager.install_ti_models(ti.install_models, access_token=access_token)
model_manager.delete_ti_models(ti.remove_models)
if diffusers:
# TODO: Replace next three paragraphs with calls into new model manager
if diffusers.remove_models and len(diffusers.remove_models) > 0:
logger.info("Processing requested deletions")
for model in diffusers.remove_models:
logger.info(f"{model}...")
model_manager.del_model(model, delete_files=purge_deleted)
model_manager.commit(config_file_path)
if diffusers.install_models and len(diffusers.install_models) > 0:
logger.info("Installing requested models")
downloaded_paths = download_weight_datasets(
models=diffusers.install_models,
access_token=None,
precision=precision,
)
successful = {x:v for x,v in downloaded_paths.items() if v is not None}
if len(successful) > 0:
update_config_file(successful, config_file_path)
if len(successful) < len(diffusers.install_models):
unsuccessful = [x for x in downloaded_paths if downloaded_paths[x] is None]
logger.warning(f"Some of the model downloads were not successful: {unsuccessful}")
# due to above, we have to reload the model manager because conf file
# was changed behind its back
@ -108,13 +154,14 @@ def install_requested_models(
external_models.append(str(scan_directory))
if len(external_models) > 0:
print("== INSTALLING EXTERNAL MODELS ==")
logger.info("INSTALLING EXTERNAL MODELS")
for path_url_or_repo in external_models:
try:
logger.debug(f'In install_requested_models; callback = {model_config_file_callback}')
model_manager.heuristic_import(
path_url_or_repo,
convert=convert_to_diffusers,
commit_to_conf=config_file_path,
config_file_callback = model_config_file_callback,
)
except KeyboardInterrupt:
sys.exit(-1)
@ -122,17 +169,22 @@ def install_requested_models(
pass
if scan_at_startup and scan_directory.is_dir():
argument = "--autoconvert" if convert_to_diffusers else "--autoimport"
initfile = Path(Globals.root, Globals.initfile)
replacement = Path(Globals.root, f"{Globals.initfile}.new")
directory = str(scan_directory).replace("\\", "/")
with open(initfile, "r") as input:
with open(replacement, "w") as output:
while line := input.readline():
if not line.startswith(argument):
output.writelines([line])
output.writelines([f"{argument} {directory}"])
os.replace(replacement, initfile)
update_autoconvert_dir(scan_directory)
else:
update_autoconvert_dir(None)
def update_autoconvert_dir(autodir: Path):
'''
Update the "autoconvert_dir" option in invokeai.yaml
'''
invokeai_config_path = config.init_file_path
conf = OmegaConf.load(invokeai_config_path)
conf.InvokeAI.Paths.autoconvert_dir = str(autodir) if autodir else None
yaml = OmegaConf.to_yaml(conf)
tmpfile = invokeai_config_path.parent / "new_config.tmp"
with open(tmpfile, "w", encoding="utf-8") as outfile:
outfile.write(yaml)
tmpfile.replace(invokeai_config_path)
# -------------------------------------
@ -144,33 +196,21 @@ def yes_or_no(prompt: str, default_yes=True):
else:
return response[0] in ("y", "Y")
# -------------------------------------
def get_root(root: str = None) -> str:
if root:
return root
elif os.environ.get("INVOKEAI_ROOT"):
return os.environ.get("INVOKEAI_ROOT")
else:
return Globals.root
# ---------------------------------------------
def recommended_datasets() -> dict:
datasets = dict()
def recommended_datasets() -> List['str']:
datasets = set()
for ds in initial_models().keys():
if initial_models()[ds].get("recommended", False):
datasets[ds] = True
return datasets
datasets.add(ds)
return list(datasets)
# ---------------------------------------------
def default_dataset() -> dict:
datasets = dict()
datasets = set()
for ds in initial_models().keys():
if initial_models()[ds].get("default", False):
datasets[ds] = True
return datasets
datasets.add(ds)
return list(datasets)
# ---------------------------------------------
@ -185,14 +225,14 @@ def all_datasets() -> dict:
# look for legacy model.ckpt in models directory and offer to
# normalize its name
def migrate_models_ckpt():
model_path = os.path.join(Globals.root, Model_dir, Weights_dir)
model_path = os.path.join(config.root_dir, Model_dir, Weights_dir)
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
return
new_name = initial_models()["stable-diffusion-1.4"]["file"]
print(
logger.warning(
'The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.'
)
print(f"model.ckpt => {new_name}")
logger.warning(f"model.ckpt => {new_name}")
os.replace(
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
)
@ -205,7 +245,7 @@ def download_weight_datasets(
migrate_models_ckpt()
successful = dict()
for mod in models:
print(f"Downloading {mod}:")
logger.info(f"Downloading {mod}:")
successful[mod] = _download_repo_or_file(
initial_models()[mod], access_token, precision=precision
)
@ -226,11 +266,10 @@ def _download_repo_or_file(
)
return path
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
repo_id = mconfig["repo_id"]
filename = mconfig["file"]
cache_dir = os.path.join(Globals.root, Model_dir, Weights_dir)
cache_dir = os.path.join(config.root_dir, Model_dir, Weights_dir)
return hf_download_with_resume(
repo_id=repo_id,
model_dir=cache_dir,
@ -241,9 +280,12 @@ def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
# ---------------------------------------------
def download_from_hf(
model_class: object, model_name: str, cache_subdir: Path = Path("hub"), **kwargs
model_class: object, model_name: str, **kwargs
):
path = global_cache_dir(cache_subdir)
logger = InvokeAILogger.getLogger('InvokeAI')
logger.addFilter(lambda x: 'fp16 is not a valid' not in x.getMessage())
path = config.cache_dir
model = model_class.from_pretrained(
model_name,
cache_dir=path,
@ -274,10 +316,10 @@ def _download_diffusion_weights(
**extra_args,
)
except OSError as e:
if str(e).startswith("fp16 is not a valid"):
if 'Revision Not Found' in str(e):
pass
else:
print(f"An unexpected error occurred while downloading the model: {e})")
logger.error(str(e))
if path:
break
return path
@ -285,9 +327,13 @@ def _download_diffusion_weights(
# ---------------------------------------------
def hf_download_with_resume(
repo_id: str, model_dir: str, model_name: str, access_token: str = None
repo_id: str,
model_dir: str,
model_name: str,
model_dest: Path = None,
access_token: str = None,
) -> Path:
model_dest = Path(os.path.join(model_dir, model_name))
model_dest = model_dest or Path(os.path.join(model_dir, model_name))
os.makedirs(model_dir, exist_ok=True)
url = hf_hub_url(repo_id, model_name)
@ -307,20 +353,19 @@ def hf_download_with_resume(
if (
resp.status_code == 416
): # "range not satisfiable", which means nothing to return
print(f"* {model_name}: complete file found. Skipping.")
logger.info(f"{model_name}: complete file found. Skipping.")
return model_dest
elif resp.status_code == 404:
logger.warning("File not found")
return None
elif resp.status_code != 200:
print(f"** An error occurred during downloading {model_name}: {resp.reason}")
logger.warning(f"{model_name}: {resp.reason}")
elif exist_size > 0:
print(f"* {model_name}: partial file found. Resuming...")
logger.info(f"{model_name}: partial file found. Resuming...")
else:
print(f"* {model_name}: Downloading...")
logger.info(f"{model_name}: Downloading...")
try:
if total < 2000:
print(f"*** ERROR DOWNLOADING {model_name}: {resp.text}")
return None
with open(model_dest, open_mode) as file, tqdm(
desc=model_name,
initial=exist_size,
@ -333,7 +378,7 @@ def hf_download_with_resume(
size = file.write(data)
bar.update(size)
except Exception as e:
print(f"An error occurred while downloading {model_name}: {str(e)}")
logger.error(f"An error occurred while downloading {model_name}: {str(e)}")
return None
return model_dest
@ -358,8 +403,8 @@ def update_config_file(successfully_downloaded: dict, config_file: Path):
try:
backup = None
if os.path.exists(config_file):
print(
f"** {config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
logger.warning(
f"{config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
)
backup = config_file.with_suffix(".yaml.orig")
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
@ -376,16 +421,16 @@ def update_config_file(successfully_downloaded: dict, config_file: Path):
new_config.write(tmp.read())
except Exception as e:
print(f"**Error creating config file {config_file}: {str(e)} **")
logger.error(f"Error creating config file {config_file}: {str(e)}")
if backup is not None:
print("restoring previous config file")
logger.info("restoring previous config file")
## workaround, for WinError 183, see above
if sys.platform == "win32" and config_file.is_file():
config_file.unlink()
backup.rename(config_file)
return
print(f"Successfully created new configuration file {config_file}")
logger.info(f"Successfully created new configuration file {config_file}")
# ---------------------------------------------
@ -419,7 +464,7 @@ def new_config_file_contents(
stanza["height"] = mod["height"]
if "file" in mod:
stanza["weights"] = os.path.relpath(
successfully_downloaded[model], start=Globals.root
successfully_downloaded[model], start=config.root_dir
)
stanza["config"] = os.path.normpath(
os.path.join(sd_configs(), mod["config"])
@ -452,14 +497,14 @@ def delete_weights(model_name: str, conf_stanza: dict):
if re.match("/VAE/", conf_stanza.get("config")):
return
print(
f"\n** The checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
logger.warning(
f"\nThe checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
)
weights = Path(weights)
if not weights.is_absolute():
weights = Path(Globals.root) / weights
weights = config.root_dir / weights
try:
weights.unlink()
except OSError as e:
print(str(e))
logger.error(str(e))

View File

@ -5,5 +5,7 @@ from .convert_ckpt_to_diffusers import (
convert_ckpt_to_diffusers,
load_pipeline_from_original_stable_diffusion_ckpt,
)
from .model_manager import ModelManager
from .model_manager import ModelManager,SDModelComponent

View File

@ -25,7 +25,8 @@ from typing import Union
import torch
from safetensors.torch import load_file
from invokeai.backend.globals import global_cache_dir, global_config_dir
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from .model_manager import ModelManager, SDLegacyType
@ -46,6 +47,7 @@ from diffusers import (
LDMTextToImagePipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
@ -72,7 +74,6 @@ from transformers import (
from ..stable_diffusion import StableDiffusionGeneratorPipeline
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
@ -372,9 +373,9 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100:
print(f" | Checkpoint {path} has both EMA and non-EMA weights.")
logger.debug(f"Checkpoint {path} has both EMA and non-EMA weights.")
if extract_ema:
print(" | Extracting EMA weights (usually better for inference)")
logger.debug("Extracting EMA weights (usually better for inference)")
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
@ -392,8 +393,8 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
key
)
else:
print(
" | Extracting only the non-EMA weights (usually better for fine-tuning)"
logger.debug(
"Extracting only the non-EMA weights (usually better for fine-tuning)"
)
for key in keys:
@ -841,7 +842,7 @@ def convert_ldm_bert_checkpoint(checkpoint, config):
def convert_ldm_clip_checkpoint(checkpoint):
text_model = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14", cache_dir=global_cache_dir("hub")
"openai/clip-vit-large-patch14", cache_dir=InvokeAIAppConfig.get_config().cache_dir
)
keys = list(checkpoint.keys())
@ -896,7 +897,7 @@ textenc_pattern = re.compile("|".join(protected.keys()))
def convert_paint_by_example_checkpoint(checkpoint):
cache_dir = global_cache_dir("hub")
cache_dir = InvokeAIAppConfig.get_config().cache_dir
config = CLIPVisionConfig.from_pretrained(
"openai/clip-vit-large-patch14", cache_dir=cache_dir
)
@ -968,7 +969,7 @@ def convert_paint_by_example_checkpoint(checkpoint):
def convert_open_clip_checkpoint(checkpoint):
cache_dir = global_cache_dir("hub")
cache_dir = InvokeAIAppConfig.get_config().cache_dir
text_model = CLIPTextModel.from_pretrained(
"stabilityai/stable-diffusion-2", subfolder="text_encoder", cache_dir=cache_dir
)
@ -1091,6 +1092,8 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
:param vae: A diffusers VAE to load into the pipeline.
:param vae_path: Path to a checkpoint VAE that will be converted into diffusers and loaded into the pipeline.
"""
config = InvokeAIAppConfig.get_config()
cache_dir = config.cache_dir
with warnings.catch_warnings():
warnings.simplefilter("ignore")
@ -1104,7 +1107,6 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
else:
checkpoint = load_file(checkpoint_path)
cache_dir = global_cache_dir("hub")
pipeline_class = (
StableDiffusionGeneratorPipeline
if return_generator_pipeline
@ -1115,7 +1117,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
if "global_step" in checkpoint:
global_step = checkpoint["global_step"]
else:
print(" | global_step key not found in model")
logger.debug("global_step key not found in model")
global_step = None
# sometimes there is a state_dict key and sometimes not
@ -1128,25 +1130,23 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
if model_type == SDLegacyType.V2_v:
original_config_file = (
global_config_dir() / "stable-diffusion" / "v2-inference-v.yaml"
config.legacy_conf_path / "v2-inference-v.yaml"
)
if global_step == 110000:
# v2.1 needs to upcast attention
upcast_attention = True
elif model_type == SDLegacyType.V2_e:
original_config_file = (
global_config_dir() / "stable-diffusion" / "v2-inference.yaml"
config.legacy_conf_path / "v2-inference.yaml"
)
elif model_type == SDLegacyType.V1_INPAINT:
original_config_file = (
global_config_dir()
/ "stable-diffusion"
/ "v1-inpainting-inference.yaml"
config.legacy_conf_path / "v1-inpainting-inference.yaml"
)
elif model_type == SDLegacyType.V1:
original_config_file = (
global_config_dir() / "stable-diffusion" / "v1-inference.yaml"
config.legacy_conf_path / "v1-inference.yaml"
)
else:
@ -1208,6 +1208,8 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == 'unipc':
scheduler = UniPCMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == "ddim":
scheduler = scheduler
else:
@ -1229,15 +1231,15 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
# If a replacement VAE path was specified, we'll incorporate that into
# the checkpoint model and then convert it
if vae_path:
print(f" | Converting VAE {vae_path}")
logger.debug(f"Converting VAE {vae_path}")
replace_checkpoint_vae(checkpoint,vae_path)
# otherwise we use the original VAE, provided that
# an externally loaded diffusers VAE was not passed
elif not vae:
print(" | Using checkpoint model's original VAE")
logger.debug("Using checkpoint model's original VAE")
if vae:
print(" | Using replacement diffusers VAE")
logger.debug("Using replacement diffusers VAE")
else: # convert the original or replacement VAE
vae_config = create_vae_diffusers_config(
original_config, image_size=image_size
@ -1296,7 +1298,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker",
cache_dir=global_cache_dir("hub"),
cache_dir=cache_dir,
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
"CompVis/stable-diffusion-safety-checker", cache_dir=cache_dir

Some files were not shown because too many files have changed in this diff Show More