Compare commits

...

33 Commits

Author SHA1 Message Date
77eed8712e Update version 2023-08-11 11:36:10 +10:00
5c5813bbe0 Added updated JS files for frontend 2023-08-11 11:33:49 +10:00
37c9b85549 Add slider for VRAM cache in configure script (#4133)
## What type of PR is this? (check all applicable)

- [X ] Feature

## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No - will be in release notes

## Description

On CUDA systems, this PR adds a new slider to the install-time configure
script for adjusting the VRAM cache and suggests a good starting value
based on the user's max VRAM (this is subject to verification).

On non-CUDA systems this slider is suppressed.

Please test on both CUDA and non-CUDA systems using:
```
invokeai-configure --root ~/invokeai-main/ --skip-sd --skip-support
```

To see and test the default values, move `invokeai.yaml` out of the way
before running.

**Note added 8 August 2023**

This PR also fixes the configure and model install scripts so that if
the window is too small to fit the user interface, the user will be
prompted to interactively resize the window and/or change font size
(with the option to give up). This will prevent `npyscreen` from
generating its horrible tracebacks.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-09 12:27:54 +10:00
8b39b67ec7 Merge branch 'main' into feat/select-vram-in-config 2023-08-09 12:17:27 +10:00
a933977861 Pick correct config file for sdxl models (#4191)
## What type of PR is this? (check all applicable)

- [X] Bug Fix

## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X Yes
- [ ] No


## Description

If `models.yaml` is cleared out for some reason, the model manager will
repopulate it by scanning `models`. However, this would fail with a
pydantic validation error if any SDXL checkpoint models were present
because the lack of logic to pick the correct configuration file. This
has now been added.
2023-08-09 11:16:48 +10:00
dfb41d8461 Merge branch 'main' into bugfix/autodetect-sdxl-ckpt-config 2023-08-09 03:57:44 +03:00
4d5169e16d Merge branch 'main' into feat/select-vram-in-config 2023-08-08 13:50:02 -04:00
f56f19710d allow user to interactively resize screen before UI runs 2023-08-08 12:27:25 -04:00
e77400ab62 remove deprecated options from config 2023-08-08 08:33:30 -07:00
13347f6aec blackified 2023-08-08 08:33:30 -07:00
a9bf387e5e turned on Pydantic validate_assignment 2023-08-08 08:33:30 -07:00
8258c87a9f refrain from writing deprecated legacy options to invokeai.yaml 2023-08-08 08:33:30 -07:00
1b1b399fd0 Fix crash when attempting to update a model (#4192)
## What type of PR is this? (check all applicable)

- [X] Bug Fix


## Have you discussed this change with the InvokeAI team?
- [X No, because small fix

      
## Have you updated all relevant documentation?
- [X] Yes

## Description

A logic bug was introduced in PR #4109 that caused Web-based model
updates to fail with a pydantic validation error. This corrects the
problem.

## Related Tickets & Documents

PR #4109
2023-08-08 10:54:27 -04:00
6ed7ba57dd Merge branch 'main' into bugfix/fix-model-updates 2023-08-08 09:05:25 -04:00
2b3b77a276 api(images): allow HEAD request on image/full (#4193) 2023-08-08 00:08:48 -07:00
8b8ec68b30 Merge branch 'main' into feat/image_http_head 2023-08-08 00:02:48 -07:00
e20af5aef0 feat(ui): add LoRA support to SDXL linear UI
new graph modifier `addSDXLLoRasToGraph()` handles adding LoRA to the SDXL t2i and i2i graphs.
2023-08-08 15:02:00 +10:00
57e8ec9488 chore(ui): lint/format 2023-08-08 12:53:47 +10:00
734a9e4271 invalidate board total when images deleted, only run date range logic if board has less than 20 images 2023-08-08 12:53:47 +10:00
fe924daee3 add option to disable multiselect 2023-08-08 12:53:47 +10:00
809705c30d api(images): allow HEAD request on image/full 2023-08-07 15:11:47 -07:00
0fd13d3604 Merge branch 'main' into feat/select-vram-in-config 2023-08-07 15:51:59 -04:00
72a3e776b2 fix logic error introduced in PR 4109 2023-08-07 15:38:22 -04:00
af044007d5 pick correct config file for sdxl models 2023-08-07 15:19:49 -04:00
da96a41103 Merge branch 'main' into feat/select-vram-in-config 2023-08-05 12:11:50 +10:00
1deca89fde Merge branch 'main' into feat/select-vram-in-config 2023-08-03 19:27:58 -04:00
6bc21984c6 Merge branch 'main' into feat/select-vram-in-config 2023-08-02 19:12:43 -04:00
ec48779080 blackify 2023-08-02 14:28:19 -04:00
bc20fe4cb5 Merge branch 'main' into feat/select-vram-in-config 2023-08-02 14:27:17 -04:00
5de42be4a6 reduce VRAM cache default; take max RAM from system 2023-08-02 14:27:13 -04:00
29ac252501 blackify 2023-08-02 09:44:06 -04:00
880727436c fix default vram cache size calculation 2023-08-02 09:43:52 -04:00
77c5c18542 add slider for VRAM cache 2023-08-02 09:11:24 -04:00
27 changed files with 797 additions and 307 deletions

View File

@ -1,22 +1,20 @@
import io
from typing import Optional
from PIL import Image
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field
from pydantic import BaseModel
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.services.models.image_record import (
ImageDTO,
ImageRecordChanges,
ImageUrlsDTO,
)
from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@ -152,8 +150,9 @@ async def get_image_metadata(
raise HTTPException(status_code=404)
@images_router.get(
@images_router.api_route(
"/i/{image_name}/full",
methods=["GET", "HEAD"],
operation_id="get_image_full",
response_class=Response,
responses={

View File

@ -24,11 +24,10 @@ InvokeAI:
sequential_guidance: false
precision: float16
max_cache_size: 6
max_vram_cache_size: 2.7
max_vram_cache_size: 0.5
always_use_cpu: false
free_gpu_mem: false
Features:
restore: true
esrgan: true
patchmatch: true
internet_available: true
@ -165,7 +164,7 @@ import pydoc
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig
from omegaconf import OmegaConf, DictConfig, ListConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
@ -173,6 +172,7 @@ from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_ty
INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_MAX_VRAM = 0.5
class InvokeAISettings(BaseSettings):
@ -189,7 +189,12 @@ class InvokeAISettings(BaseSettings):
opt = parser.parse_args(argv)
for name in self.__fields__:
if name not in self._excluded():
setattr(self, name, getattr(opt, name))
value = getattr(opt, name)
if isinstance(value, ListConfig):
value = list(value)
elif isinstance(value, DictConfig):
value = dict(value)
setattr(self, name, value)
def to_yaml(self) -> str:
"""
@ -282,14 +287,10 @@ class InvokeAISettings(BaseSettings):
return [
"type",
"initconf",
"gpu_mem_reserved",
"max_loaded_models",
"version",
"from_file",
"model",
"restore",
"root",
"nsfw_checker",
]
class Config:
@ -388,15 +389,11 @@ class InvokeAIAppConfig(InvokeAISettings):
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
restore : bool = Field(default=True, description="Enable/disable face restoration code (DEPRECATED)", category='DEPRECATED')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='DEPRECATED')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
gpu_mem_reserved : float = Field(default=2.75, ge=0, description="DEPRECATED: use max_vram_cache_size. Amount of VRAM reserved for model storage", category='DEPRECATED')
nsfw_checker : bool = Field(default=True, description="DEPRECATED: use Web settings to enable/disable", category='DEPRECATED')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='auto',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
@ -414,9 +411,7 @@ class InvokeAIAppConfig(InvokeAISettings):
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features')
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
@ -426,6 +421,9 @@ class InvokeAIAppConfig(InvokeAISettings):
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
# fmt: on
class Config:
validate_assignment = True
def parse_args(self, argv: List[str] = None, conf: DictConfig = None, clobber=False):
"""
Update settings with contents of init file, environment, and

View File

@ -10,12 +10,15 @@ import sys
import argparse
import io
import os
import psutil
import shutil
import textwrap
import torch
import traceback
import yaml
import warnings
from argparse import Namespace
from enum import Enum
from pathlib import Path
from shutil import get_terminal_size
from typing import get_type_hints
@ -44,6 +47,8 @@ from invokeai.app.services.config import (
)
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
# TO DO - Move all the frontend code into invokeai.frontend.install
from invokeai.frontend.install.widgets import (
SingleSelectColumns,
CenteredButtonPress,
@ -53,6 +58,7 @@ from invokeai.frontend.install.widgets import (
CyclingForm,
MIN_COLS,
MIN_LINES,
WindowTooSmallException,
)
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
from invokeai.backend.install.model_install_backend import (
@ -61,6 +67,7 @@ from invokeai.backend.install.model_install_backend import (
ModelInstall,
)
from invokeai.backend.model_management.model_probe import ModelType, BaseModelType
from pydantic.error_wrappers import ValidationError
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
@ -76,6 +83,13 @@ Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path
PRECISION_CHOICES = ["auto", "float16", "float32"]
GB = 1073741824 # GB in bytes
HAS_CUDA = torch.cuda.is_available()
_, MAX_VRAM = torch.cuda.mem_get_info() if HAS_CUDA else (0, 0)
MAX_VRAM /= GB
MAX_RAM = psutil.virtual_memory().total / GB
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
@ -86,6 +100,12 @@ INIT_FILE_PREAMBLE = """# InvokeAI initialization file
logger = InvokeAILogger.getLogger()
class DummyWidgetValue(Enum):
zero = 0
true = True
false = False
# --------------------------------------------
def postscript(errors: None):
if not any(errors):
@ -378,13 +398,35 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
)
self.max_cache_size = self.add_widget_intelligent(
IntTitleSlider,
name="Size of the RAM cache used for fast model switching (GB)",
name="RAM cache size (GB). Make this at least large enough to hold a single full model.",
value=old_opts.max_cache_size,
out_of=20,
out_of=MAX_RAM,
lowest=3,
begin_entry_at=6,
scroll_exit=True,
)
if HAS_CUDA:
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="VRAM cache size (GB). Reserving a small amount of VRAM will modestly speed up the start of image generation.",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.max_vram_cache_size = self.add_widget_intelligent(
npyscreen.Slider,
value=old_opts.max_vram_cache_size,
out_of=round(MAX_VRAM * 2) / 2,
lowest=0.0,
relx=8,
step=0.25,
scroll_exit=True,
)
else:
self.max_vram_cache_size = DummyWidgetValue.zero
self.nextrely += 1
self.outdir = self.add_widget_intelligent(
FileBox,
@ -401,7 +443,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
self.autoimport_dirs = {}
self.autoimport_dirs["autoimport_dir"] = self.add_widget_intelligent(
FileBox,
name=f"Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models",
name="Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models",
value=str(config.root_path / config.autoimport_dir),
select_dir=True,
must_exist=False,
@ -476,6 +518,7 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
"outdir",
"free_gpu_mem",
"max_cache_size",
"max_vram_cache_size",
"xformers_enabled",
"always_use_cpu",
]:
@ -592,13 +635,13 @@ def maybe_create_models_yaml(root: Path):
# -------------------------------------
def run_console_ui(program_opts: Namespace, initfile: Path = None) -> (Namespace, Namespace):
# parse_args() will read from init file if present
invokeai_opts = default_startup_options(initfile)
invokeai_opts.root = program_opts.root
# The third argument is needed in the Windows 11 environment to
# launch a console window running this program.
set_min_terminal_size(MIN_COLS, MIN_LINES)
if not set_min_terminal_size(MIN_COLS, MIN_LINES):
raise WindowTooSmallException(
"Could not increase terminal size. Try running again with a larger window or smaller font size."
)
# the install-models application spawns a subprocess to install
# models, and will crash unless this is set before running.
@ -654,10 +697,13 @@ def migrate_init_file(legacy_format: Path):
old = legacy_parser.parse_args([f"@{str(legacy_format)}"])
new = InvokeAIAppConfig.get_config()
fields = list(get_type_hints(InvokeAIAppConfig).keys())
fields = [x for x, y in InvokeAIAppConfig.__fields__.items() if y.field_info.extra.get("category") != "DEPRECATED"]
for attr in fields:
if hasattr(old, attr):
setattr(new, attr, getattr(old, attr))
try:
setattr(new, attr, getattr(old, attr))
except ValidationError as e:
print(f"* Ignoring incompatible value for field {attr}:\n {str(e)}")
# a few places where the field names have changed and we have to
# manually add in the new names/values
@ -777,6 +823,7 @@ def main():
models_to_download = default_user_selections(opt)
new_init_file = config.root_path / "invokeai.yaml"
if opt.yes_to_all:
write_default_options(opt, new_init_file)
init_options = Namespace(precision="float32" if opt.full_precision else "float16")
@ -802,6 +849,8 @@ def main():
postscript(errors=errors)
if not opt.yes_to_all:
input("Press any key to continue...")
except WindowTooSmallException as e:
logger.error(str(e))
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")

View File

@ -595,9 +595,10 @@ class ModelManager(object):
the combined format of the list_models() method.
"""
models = self.list_models(base_model, model_type, model_name)
if len(models) > 1:
if len(models) >= 1:
return models[0]
return None
else:
return None
def list_models(
self,
@ -990,7 +991,9 @@ class ModelManager(object):
raise DuplicateModelException(f"Model with key {model_key} added twice")
model_path = self.relative_model_path(model_path)
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
model_config: ModelConfigBase = model_class.probe_config(
str(model_path), model_base=cur_base_model
)
self.models[model_key] = model_config
new_models_found = True
except DuplicateModelException as e:

View File

@ -80,8 +80,10 @@ class StableDiffusionXLModel(DiffusersModel):
raise Exception("Unkown stable diffusion 2.* model format")
if ckpt_config_path is None:
# TO DO: implement picking
pass
# avoid circular import
from .stable_diffusion import _select_ckpt_config
ckpt_config_path = _select_ckpt_config(kwargs.get("model_base", BaseModelType.StableDiffusionXL), variant)
return cls.create_config(
path=path,

View File

@ -28,7 +28,6 @@ from npyscreen import widget
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.install.model_install_backend import (
ModelInstallList,
InstallSelections,
ModelInstall,
SchedulerPredictionType,
@ -41,12 +40,12 @@ from invokeai.frontend.install.widgets import (
SingleSelectColumns,
TextBox,
BufferBox,
FileBox,
set_min_terminal_size,
select_stable_diffusion_config_file,
CyclingForm,
MIN_COLS,
MIN_LINES,
WindowTooSmallException,
)
from invokeai.app.services.config import InvokeAIAppConfig
@ -156,7 +155,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
BufferBox,
name="Log Messages",
editable=False,
max_height=15,
max_height=6,
)
self.nextrely += 1
@ -693,7 +692,11 @@ def select_and_download_models(opt: Namespace):
# needed to support the probe() method running under a subprocess
torch.multiprocessing.set_start_method("spawn")
set_min_terminal_size(MIN_COLS, MIN_LINES)
if not set_min_terminal_size(MIN_COLS, MIN_LINES):
raise WindowTooSmallException(
"Could not increase terminal size. Try running again with a larger window or smaller font size."
)
installApp = AddModelApplication(opt)
try:
installApp.run()
@ -787,6 +790,8 @@ def main():
curses.echo()
curses.endwin()
logger.info("Goodbye! Come back soon.")
except WindowTooSmallException as e:
logger.error(str(e))
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
logger.error("Insufficient vertical space for the interface. Please make your window taller and try again")

View File

@ -21,31 +21,40 @@ MIN_COLS = 130
MIN_LINES = 38
class WindowTooSmallException(Exception):
pass
# -------------------------------------
def set_terminal_size(columns: int, lines: int):
ts = get_terminal_size()
width = max(columns, ts.columns)
height = max(lines, ts.lines)
def set_terminal_size(columns: int, lines: int) -> bool:
OS = platform.uname().system
if OS == "Windows":
pass
# not working reliably - ask user to adjust the window
# _set_terminal_size_powershell(width,height)
elif OS in ["Darwin", "Linux"]:
_set_terminal_size_unix(width, height)
screen_ok = False
while not screen_ok:
ts = get_terminal_size()
width = max(columns, ts.columns)
height = max(lines, ts.lines)
# check whether it worked....
ts = get_terminal_size()
pause = False
if ts.columns < columns:
print("\033[1mThis window is too narrow for the user interface.\033[0m")
pause = True
if ts.lines < lines:
print("\033[1mThis window is too short for the user interface.\033[0m")
pause = True
if pause:
input("Maximize the window then press any key to continue..")
if OS == "Windows":
pass
# not working reliably - ask user to adjust the window
# _set_terminal_size_powershell(width,height)
elif OS in ["Darwin", "Linux"]:
_set_terminal_size_unix(width, height)
# check whether it worked....
ts = get_terminal_size()
if ts.columns < columns or ts.lines < lines:
print(
f"\033[1mThis window is too small for the interface. InvokeAI requires {columns}x{lines} (w x h) characters, but window is {ts.columns}x{ts.lines}\033[0m"
)
resp = input(
"Maximize the window and/or decrease the font size then press any key to continue. Type [Q] to give up.."
)
if resp.upper().startswith("Q"):
break
else:
screen_ok = True
return screen_ok
def _set_terminal_size_powershell(width: int, height: int):
@ -80,14 +89,14 @@ def _set_terminal_size_unix(width: int, height: int):
sys.stdout.flush()
def set_min_terminal_size(min_cols: int, min_lines: int):
def set_min_terminal_size(min_cols: int, min_lines: int) -> bool:
# make sure there's enough room for the ui
term_cols, term_lines = get_terminal_size()
if term_cols >= min_cols and term_lines >= min_lines:
return
return True
cols = max(term_cols, min_cols)
lines = max(term_lines, min_lines)
set_terminal_size(cols, lines)
return set_terminal_size(cols, lines)
class IntSlider(npyscreen.Slider):
@ -164,7 +173,7 @@ class FloatSlider(npyscreen.Slider):
class FloatTitleSlider(npyscreen.TitleText):
_entry_type = FloatSlider
_entry_type = npyscreen.Slider
class SelectColumnBase:

File diff suppressed because one or more lines are too long

View File

@ -1,4 +1,4 @@
import{B as m,g7 as Je,A as y,a5 as Ka,g8 as Xa,af as va,aj as d,g9 as b,ga as t,gb as Ya,gc as h,gd as ua,ge as Ja,gf as Qa,aL as Za,gg as et,ad as rt,gh as at}from"./index-de589048.js";import{s as fa,n as o,t as tt,o as ha,p as ot,q as ma,v as ga,w as ya,x as it,y as Sa,z as pa,A as xr,B as nt,D as lt,E as st,F as xa,G as $a,H as ka,J as dt,K as _a,L as ct,M as bt,N as vt,O as ut,Q as wa,R as ft,S as ht,T as mt,U as gt,V as yt,W as St,e as pt,X as xt}from"./menu-11348abc.js";var za=String.raw,Ca=za`
import{B as m,g7 as Je,A as y,a5 as Ka,g8 as Xa,af as va,aj as d,g9 as b,ga as t,gb as Ya,gc as h,gd as ua,ge as Ja,gf as Qa,aL as Za,gg as et,ad as rt,gh as at}from"./index-dd054634.js";import{s as fa,n as o,t as tt,o as ha,p as ot,q as ma,v as ga,w as ya,x as it,y as Sa,z as pa,A as xr,B as nt,D as lt,E as st,F as xa,G as $a,H as ka,J as dt,K as _a,L as ct,M as bt,N as vt,O as ut,Q as wa,R as ft,S as ht,T as mt,U as gt,V as yt,W as St,e as pt,X as xt}from"./menu-b42141e3.js";var za=String.raw,Ca=za`
:root,
:host {
--chakra-vh: 100vh;

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -12,7 +12,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-de589048.js"></script>
<script type="module" crossorigin src="./assets/index-dd054634.js"></script>
</head>
<body dir="ltr">

View File

@ -96,7 +96,8 @@ export type AppFeature =
| 'consoleLogging'
| 'dynamicPrompting'
| 'batches'
| 'syncModels';
| 'syncModels'
| 'multiselect';
/**
* A disable-able Stable Diffusion feature

View File

@ -9,6 +9,7 @@ import { useListImagesQuery } from 'services/api/endpoints/images';
import { ImageDTO } from 'services/api/types';
import { selectionChanged } from '../store/gallerySlice';
import { imagesSelectors } from 'services/api/util';
import { useFeatureStatus } from '../../system/hooks/useFeatureStatus';
const selector = createSelector(
[stateSelector, selectListImagesBaseQueryArgs],
@ -33,11 +34,18 @@ export const useMultiselect = (imageDTO?: ImageDTO) => {
}),
});
const isMultiSelectEnabled = useFeatureStatus('multiselect').isFeatureEnabled;
const handleClick = useCallback(
(e: MouseEvent<HTMLDivElement>) => {
if (!imageDTO) {
return;
}
if (!isMultiSelectEnabled) {
dispatch(selectionChanged([imageDTO]));
return;
}
if (e.shiftKey) {
const rangeEndImageName = imageDTO.image_name;
const lastSelectedImage = selection[selection.length - 1]?.image_name;
@ -71,7 +79,7 @@ export const useMultiselect = (imageDTO?: ImageDTO) => {
dispatch(selectionChanged([imageDTO]));
}
},
[dispatch, imageDTO, imageDTOs, selection]
[dispatch, imageDTO, imageDTOs, selection, isMultiSelectEnabled]
);
const isSelected = useMemo(

View File

@ -31,7 +31,7 @@ const ParamLoraCollapse = () => {
}
return (
<IAICollapse label={'LoRA'} activeLabel={activeLabel}>
<IAICollapse label="LoRA" activeLabel={activeLabel}>
<Flex sx={{ flexDir: 'column', gap: 2 }}>
<ParamLoRASelect />
<ParamLoraList />

View File

@ -1,3 +1,4 @@
import { Divider } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
@ -8,20 +9,21 @@ import ParamLora from './ParamLora';
const selector = createSelector(
stateSelector,
({ lora }) => {
const { loras } = lora;
return { loras };
return { lorasArray: map(lora.loras) };
},
defaultSelectorOptions
);
const ParamLoraList = () => {
const { loras } = useAppSelector(selector);
const { lorasArray } = useAppSelector(selector);
return (
<>
{map(loras, (lora) => (
<ParamLora key={lora.model_name} lora={lora} />
{lorasArray.map((lora, i) => (
<>
{i > 0 && <Divider key={`${lora.model_name}-divider`} pt={1} />}
<ParamLora key={lora.model_name} lora={lora} />
</>
))}
</>
);

View File

@ -9,7 +9,6 @@ import {
CLIP_SKIP,
LORA_LOADER,
MAIN_MODEL_LOADER,
ONNX_MODEL_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
POSITIVE_CONDITIONING,
@ -36,15 +35,11 @@ export const addLoRAsToGraph = (
| undefined;
if (loraCount > 0) {
// Remove MAIN_MODEL_LOADER unet connection to feed it to LoRAs
// Remove modelLoaderNodeId unet connection to feed it to LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(
e.source.node_id === MAIN_MODEL_LOADER &&
['unet'].includes(e.source.field)
) &&
!(
e.source.node_id === ONNX_MODEL_LOADER &&
e.source.node_id === modelLoaderNodeId &&
['unet'].includes(e.source.field)
)
);

View File

@ -0,0 +1,212 @@
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import { forEach, size } from 'lodash-es';
import {
MetadataAccumulatorInvocation,
SDXLLoraLoaderInvocation,
} from 'services/api/types';
import {
LORA_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
POSITIVE_CONDITIONING,
SDXL_MODEL_LOADER,
} from './constants';
export const addSDXLLoRAsToGraph = (
state: RootState,
graph: NonNullableGraph,
baseNodeId: string,
modelLoaderNodeId: string = SDXL_MODEL_LOADER
): void => {
/**
* LoRA nodes get the UNet and CLIP models from the main model loader and apply the LoRA to them.
* They then output the UNet and CLIP models references on to either the next LoRA in the chain,
* or to the inference/conditioning nodes.
*
* So we need to inject a LoRA chain into the graph.
*/
const { loras } = state.lora;
const loraCount = size(loras);
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
| MetadataAccumulatorInvocation
| undefined;
if (loraCount > 0) {
// Remove modelLoaderNodeId unet/clip/clip2 connections to feed it to LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(
e.source.node_id === modelLoaderNodeId &&
['unet'].includes(e.source.field)
) &&
!(
e.source.node_id === modelLoaderNodeId &&
['clip'].includes(e.source.field)
) &&
!(
e.source.node_id === modelLoaderNodeId &&
['clip2'].includes(e.source.field)
)
);
}
// we need to remember the last lora so we can chain from it
let lastLoraNodeId = '';
let currentLoraIndex = 0;
forEach(loras, (lora) => {
const { model_name, base_model, weight } = lora;
const currentLoraNodeId = `${LORA_LOADER}_${model_name.replace('.', '_')}`;
const loraLoaderNode: SDXLLoraLoaderInvocation = {
type: 'sdxl_lora_loader',
id: currentLoraNodeId,
is_intermediate: true,
lora: { model_name, base_model },
weight,
};
// add the lora to the metadata accumulator
if (metadataAccumulator) {
metadataAccumulator.loras.push({
lora: { model_name, base_model },
weight,
});
}
// add to graph
graph.nodes[currentLoraNodeId] = loraLoaderNode;
if (currentLoraIndex === 0) {
// first lora = start the lora chain, attach directly to model loader
graph.edges.push({
source: {
node_id: modelLoaderNodeId,
field: 'unet',
},
destination: {
node_id: currentLoraNodeId,
field: 'unet',
},
});
graph.edges.push({
source: {
node_id: modelLoaderNodeId,
field: 'clip',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip',
},
});
graph.edges.push({
source: {
node_id: modelLoaderNodeId,
field: 'clip2',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip2',
},
});
} else {
// we are in the middle of the lora chain, instead connect to the previous lora
graph.edges.push({
source: {
node_id: lastLoraNodeId,
field: 'unet',
},
destination: {
node_id: currentLoraNodeId,
field: 'unet',
},
});
graph.edges.push({
source: {
node_id: lastLoraNodeId,
field: 'clip',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip',
},
});
graph.edges.push({
source: {
node_id: lastLoraNodeId,
field: 'clip2',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip2',
},
});
}
if (currentLoraIndex === loraCount - 1) {
// final lora, end the lora chain - we need to connect up to inference and conditioning nodes
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'unet',
},
destination: {
node_id: baseNodeId,
field: 'unet',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip2',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip2',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip2',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip2',
},
});
}
// increment the lora for the next one in the chain
lastLoraNodeId = currentLoraNodeId;
currentLoraIndex += 1;
});
};

View File

@ -22,6 +22,7 @@ import {
SDXL_LATENTS_TO_LATENTS,
SDXL_MODEL_LOADER,
} from './constants';
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
/**
* Builds the Image to Image tab graph.
@ -364,6 +365,8 @@ export const buildLinearSDXLImageToImageGraph = (
},
});
addSDXLLoRAsToGraph(state, graph, SDXL_LATENTS_TO_LATENTS, SDXL_MODEL_LOADER);
// Add Refiner if enabled
if (shouldUseSDXLRefiner) {
addSDXLRefinerToGraph(state, graph, SDXL_LATENTS_TO_LATENTS);

View File

@ -4,6 +4,7 @@ import { NonNullableGraph } from 'features/nodes/types/types';
import { initialGenerationState } from 'features/parameters/store/generationSlice';
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import {
@ -246,6 +247,8 @@ export const buildLinearSDXLTextToImageGraph = (
},
});
addSDXLLoRAsToGraph(state, graph, SDXL_TEXT_TO_LATENTS, SDXL_MODEL_LOADER);
// Add Refiner if enabled
if (shouldUseSDXLRefiner) {
addSDXLRefinerToGraph(state, graph, SDXL_TEXT_TO_LATENTS);

View File

@ -4,6 +4,7 @@ import ProcessButtons from 'features/parameters/components/ProcessButtons/Proces
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
import SDXLImageToImageTabCoreParameters from './SDXLImageToImageTabCoreParameters';
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
const SDXLImageToImageTabParameters = () => {
return (
@ -12,6 +13,7 @@ const SDXLImageToImageTabParameters = () => {
<ProcessButtons />
<SDXLImageToImageTabCoreParameters />
<ParamSDXLRefinerCollapse />
<ParamLoraCollapse />
<ParamDynamicPromptsCollapse />
<ParamNoiseCollapse />
</>

View File

@ -4,6 +4,7 @@ import ProcessButtons from 'features/parameters/components/ProcessButtons/Proces
import TextToImageTabCoreParameters from 'features/ui/components/tabs/TextToImage/TextToImageTabCoreParameters';
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
const SDXLTextToImageTabParameters = () => {
return (
@ -12,6 +13,7 @@ const SDXLTextToImageTabParameters = () => {
<ProcessButtons />
<TextToImageTabCoreParameters />
<ParamSDXLRefinerCollapse />
<ParamLoraCollapse />
<ParamDynamicPromptsCollapse />
<ParamNoiseCollapse />
</>

View File

@ -4,6 +4,7 @@ import {
ASSETS_CATEGORIES,
BoardId,
IMAGE_CATEGORIES,
IMAGE_LIMIT,
} from 'features/gallery/store/types';
import { keyBy } from 'lodash';
import { ApiFullTagDescription, LIST_TAG, api } from '..';
@ -167,7 +168,14 @@ export const imagesApi = api.injectEndpoints({
},
};
},
invalidatesTags: (result, error, imageDTOs) => [],
invalidatesTags: (result, error, { imageDTOs }) => {
// for now, assume bulk delete is all on one board
const boardId = imageDTOs[0]?.board_id;
return [
{ type: 'BoardImagesTotal', id: boardId ?? 'none' },
{ type: 'BoardAssetsTotal', id: boardId ?? 'none' },
];
},
async onQueryStarted({ imageDTOs }, { dispatch, queryFulfilled }) {
/**
* Cache changes for `deleteImages`:
@ -889,18 +897,25 @@ export const imagesApi = api.injectEndpoints({
board_id,
},
}),
invalidatesTags: (result, error, { board_id }) => [
// update the destination board
{ type: 'Board', id: board_id ?? 'none' },
// update old board totals
{ type: 'BoardImagesTotal', id: board_id ?? 'none' },
{ type: 'BoardAssetsTotal', id: board_id ?? 'none' },
// update the no_board totals
{ type: 'BoardImagesTotal', id: 'none' },
{ type: 'BoardAssetsTotal', id: 'none' },
],
invalidatesTags: (result, error, { imageDTOs, board_id }) => {
//assume all images are being moved from one board for now
const oldBoardId = imageDTOs[0]?.board_id;
return [
// update the destination board
{ type: 'Board', id: board_id ?? 'none' },
// update new board totals
{ type: 'BoardImagesTotal', id: board_id ?? 'none' },
{ type: 'BoardAssetsTotal', id: board_id ?? 'none' },
// update old board totals
{ type: 'BoardImagesTotal', id: oldBoardId ?? 'none' },
{ type: 'BoardAssetsTotal', id: oldBoardId ?? 'none' },
// update the no_board totals
{ type: 'BoardImagesTotal', id: 'none' },
{ type: 'BoardAssetsTotal', id: 'none' },
];
},
async onQueryStarted(
{ board_id, imageDTOs },
{ board_id: new_board_id, imageDTOs },
{ dispatch, queryFulfilled, getState }
) {
try {
@ -920,7 +935,7 @@ export const imagesApi = api.injectEndpoints({
'getImageDTO',
image_name,
(draft) => {
draft.board_id = board_id;
draft.board_id = new_board_id;
}
)
);
@ -946,7 +961,7 @@ export const imagesApi = api.injectEndpoints({
);
const queryArgs = {
board_id,
board_id: new_board_id,
categories,
};
@ -954,23 +969,24 @@ export const imagesApi = api.injectEndpoints({
queryArgs
)(getState());
const { data: total } = IMAGE_CATEGORIES.includes(
const { data: previousTotal } = IMAGE_CATEGORIES.includes(
imageDTO.image_category
)
? boardsApi.endpoints.getBoardImagesTotal.select(
imageDTO.board_id ?? 'none'
new_board_id ?? 'none'
)(getState())
: boardsApi.endpoints.getBoardAssetsTotal.select(
imageDTO.board_id ?? 'none'
new_board_id ?? 'none'
)(getState());
const isCacheFullyPopulated =
currentCache.data && currentCache.data.ids.length >= (total ?? 0);
currentCache.data &&
currentCache.data.ids.length >= (previousTotal ?? 0);
const isInDateRange = getIsImageInDateRange(
currentCache.data,
imageDTO
);
const isInDateRange =
(previousTotal || 0) >= IMAGE_LIMIT
? getIsImageInDateRange(currentCache.data, imageDTO)
: true;
if (isCacheFullyPopulated || isInDateRange) {
// *upsert* to $cache
@ -981,7 +997,7 @@ export const imagesApi = api.injectEndpoints({
(draft) => {
imagesAdapter.upsertOne(draft, {
...imageDTO,
board_id,
board_id: new_board_id,
});
}
)
@ -1097,10 +1113,10 @@ export const imagesApi = api.injectEndpoints({
const isCacheFullyPopulated =
currentCache.data && currentCache.data.ids.length >= (total ?? 0);
const isInDateRange = getIsImageInDateRange(
currentCache.data,
imageDTO
);
const isInDateRange =
(total || 0) >= IMAGE_LIMIT
? getIsImageInDateRange(currentCache.data, imageDTO)
: true;
if (isCacheFullyPopulated || isInDateRange) {
// *upsert* to $cache
@ -1111,7 +1127,7 @@ export const imagesApi = api.injectEndpoints({
(draft) => {
imagesAdapter.upsertOne(draft, {
...imageDTO,
board_id: undefined,
board_id: 'none',
});
}
)

View File

@ -1443,7 +1443,7 @@ export type components = {
* @description The nodes in this graph
*/
nodes?: {
[key: string]: (components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
[key: string]: (components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["SDXLLoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["ImageHueAdjustmentInvocation"] | components["schemas"]["ImageLuminosityAdjustmentInvocation"] | components["schemas"]["ImageSaturationAdjustmentInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
};
/**
* Edges
@ -1486,7 +1486,7 @@ export type components = {
* @description The results of node executions
*/
results: {
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["SDXLModelLoaderOutput"] | components["schemas"]["SDXLRefinerModelLoaderOutput"] | components["schemas"]["ONNXModelLoaderOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["StringOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["SDXLLoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["SDXLModelLoaderOutput"] | components["schemas"]["SDXLRefinerModelLoaderOutput"] | components["schemas"]["ONNXModelLoaderOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["StringOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
};
/**
* Errors
@ -1904,6 +1904,40 @@ export type components = {
*/
image_name: string;
};
/**
* ImageHueAdjustmentInvocation
* @description Adjusts the Hue of an image.
*/
ImageHueAdjustmentInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default img_hue_adjust
* @enum {string}
*/
type?: "img_hue_adjust";
/**
* Image
* @description The image to adjust
*/
image?: components["schemas"]["ImageField"];
/**
* Hue
* @description The degrees by which to rotate the hue, 0-360
* @default 0
*/
hue?: number;
};
/**
* ImageInverseLerpInvocation
* @description Inverse linear interpolation of all pixels of an image
@ -1984,6 +2018,40 @@ export type components = {
*/
max?: number;
};
/**
* ImageLuminosityAdjustmentInvocation
* @description Adjusts the Luminosity (Value) of an image.
*/
ImageLuminosityAdjustmentInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default img_luminosity_adjust
* @enum {string}
*/
type?: "img_luminosity_adjust";
/**
* Image
* @description The image to adjust
*/
image?: components["schemas"]["ImageField"];
/**
* Luminosity
* @description The factor by which to adjust the luminosity (value)
* @default 1
*/
luminosity?: number;
};
/**
* ImageMetadata
* @description An image's generation metadata
@ -2239,6 +2307,40 @@ export type components = {
*/
resample_mode?: "nearest" | "box" | "bilinear" | "hamming" | "bicubic" | "lanczos";
};
/**
* ImageSaturationAdjustmentInvocation
* @description Adjusts the Saturation of an image.
*/
ImageSaturationAdjustmentInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default img_saturation_adjust
* @enum {string}
*/
type?: "img_saturation_adjust";
/**
* Image
* @description The image to adjust
*/
image?: components["schemas"]["ImageField"];
/**
* Saturation
* @description The factor by which to adjust the saturation
* @default 1
*/
saturation?: number;
};
/**
* ImageScaleInvocation
* @description Scales an image by a factor
@ -4912,6 +5014,82 @@ export type components = {
*/
denoising_end?: number;
};
/**
* SDXLLoraLoaderInvocation
* @description Apply selected lora to unet and text_encoder.
*/
SDXLLoraLoaderInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default sdxl_lora_loader
* @enum {string}
*/
type?: "sdxl_lora_loader";
/**
* Lora
* @description Lora model name
*/
lora?: components["schemas"]["LoRAModelField"];
/**
* Weight
* @description With what weight to apply lora
* @default 0.75
*/
weight?: number;
/**
* Unet
* @description UNet model for applying lora
*/
unet?: components["schemas"]["UNetField"];
/**
* Clip
* @description Clip model for applying lora
*/
clip?: components["schemas"]["ClipField"];
/**
* Clip2
* @description Clip2 model for applying lora
*/
clip2?: components["schemas"]["ClipField"];
};
/**
* SDXLLoraLoaderOutput
* @description Model loader output
*/
SDXLLoraLoaderOutput: {
/**
* Type
* @default sdxl_lora_loader_output
* @enum {string}
*/
type?: "sdxl_lora_loader_output";
/**
* Unet
* @description UNet submodel
*/
unet?: components["schemas"]["UNetField"];
/**
* Clip
* @description Tokenizer and text_encoder submodels
*/
clip?: components["schemas"]["ClipField"];
/**
* Clip2
* @description Tokenizer2 and text_encoder2 submodels
*/
clip2?: components["schemas"]["ClipField"];
};
/**
* SDXLModelLoaderInvocation
* @description Loads an sdxl base model, outputting its submodels.
@ -5961,6 +6139,24 @@ export type components = {
*/
image?: components["schemas"]["ImageField"];
};
/**
* ControlNetModelFormat
* @description An enumeration.
* @enum {string}
*/
ControlNetModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusionXLModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusionXLModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusion1ModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusionOnnxModelFormat
* @description An enumeration.
@ -5973,24 +6169,6 @@ export type components = {
* @enum {string}
*/
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusion1ModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusionXLModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusionXLModelFormat: "checkpoint" | "diffusers";
/**
* ControlNetModelFormat
* @description An enumeration.
* @enum {string}
*/
ControlNetModelFormat: "checkpoint" | "diffusers";
};
responses: never;
parameters: never;
@ -6101,7 +6279,7 @@ export type operations = {
};
requestBody: {
content: {
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["SDXLLoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["ImageHueAdjustmentInvocation"] | components["schemas"]["ImageLuminosityAdjustmentInvocation"] | components["schemas"]["ImageSaturationAdjustmentInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
};
};
responses: {
@ -6138,7 +6316,7 @@ export type operations = {
};
requestBody: {
content: {
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["SDXLLoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["ImageHueAdjustmentInvocation"] | components["schemas"]["ImageLuminosityAdjustmentInvocation"] | components["schemas"]["ImageSaturationAdjustmentInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
};
};
responses: {

View File

@ -166,6 +166,9 @@ export type OnnxModelLoaderInvocation = TypeReq<
export type LoraLoaderInvocation = TypeReq<
components['schemas']['LoraLoaderInvocation']
>;
export type SDXLLoraLoaderInvocation = TypeReq<
components['schemas']['SDXLLoraLoaderInvocation']
>;
export type MetadataAccumulatorInvocation = TypeReq<
components['schemas']['MetadataAccumulatorInvocation']
>;

View File

@ -1 +1 @@
__version__ = "3.0.2a1"
__version__ = "3.0.2"