mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Compare commits
102 Commits
improve-co
...
ryan/upsca
Author | SHA1 | Date | |
---|---|---|---|
59284c707e | |||
911792f258 | |||
9567c6e196 | |||
6e47bd14af | |||
9ac9b6a014 | |||
459d487620 | |||
787e1bbb5f | |||
bb5648983f | |||
da066979cf | |||
2c03a0fa53 | |||
ea9fc99ce7 | |||
a406fb725a | |||
fe4112c54e | |||
385ff0f86c | |||
5c3517e2a6 | |||
7cb7f5107e | |||
084ccccfff | |||
b2cf57d8ff | |||
f5bc616699 | |||
50021dad94 | |||
dda98f7a4b | |||
76c97ec411 | |||
78852228cd | |||
dec0ffd47c | |||
638bf33483 | |||
b961495b57 | |||
b35cde7db7 | |||
103e34691b | |||
0d90999a19 | |||
4cefa48307 | |||
6ade5df25c | |||
848ca79da8 | |||
9cba0dfac9 | |||
37b1f21bcf | |||
b2e005f6b5 | |||
52aac954c0 | |||
ff01ceae99 | |||
669d92d8db | |||
2903060154 | |||
4af8699a00 | |||
71fedd1a07 | |||
6bb1189c88 | |||
c7546bc82e | |||
14372e3818 | |||
64523c4b1b | |||
89a764a359 | |||
756108f6bd | |||
68d628dc14 | |||
93c9852142 | |||
493f81788c | |||
f13427e3f4 | |||
e28737fc8b | |||
7391c126d3 | |||
1c59fce6ad | |||
6b24424727 | |||
7153d846a9 | |||
9a0b77ad38 | |||
220d45967e | |||
038a482ef0 | |||
c325ad3432 | |||
449bc4dbe5 | |||
34d68a3663 | |||
8bb9571485 | |||
08bcc71e99 | |||
ff2b2fad83 | |||
0f0a6852f1 | |||
745140fa6b | |||
405fc46888 | |||
ca728ca29f | |||
d0fca53e67 | |||
ad9740d72d | |||
1c9c982b63 | |||
3cfd2755c2 | |||
8ea4067f83 | |||
940de6a5c5 | |||
dd74e89127 | |||
69da67e920 | |||
76b1f241d7 | |||
0e5336d8fa | |||
3501636018 | |||
e4ce188500 | |||
e976571fba | |||
0da36c1238 | |||
4ef8cbd9d0 | |||
8f8ddd620b | |||
1af53aed60 | |||
7a4bbd092e | |||
72bbcb2d94 | |||
c2eef93476 | |||
cfb12615e1 | |||
a983f27aad | |||
7cb32d3d83 | |||
ac56ab79a7 | |||
50d3030471 | |||
5beec8211a | |||
5a4d10467b | |||
7590f3005e | |||
2f9ebdec69 | |||
e257a72f94 | |||
843f82c837 | |||
66858effa2 | |||
21a60af881 |
4
Makefile
4
Makefile
@ -18,6 +18,7 @@ help:
|
||||
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
|
||||
@echo "installer-zip Build the installer .zip file for the current version"
|
||||
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
|
||||
@echo "openapi Generate the OpenAPI schema for the app, outputting to stdout"
|
||||
|
||||
# Runs ruff, fixing any safely-fixable errors and formatting
|
||||
ruff:
|
||||
@ -70,3 +71,6 @@ installer-zip:
|
||||
tag-release:
|
||||
cd installer && ./tag_release.sh
|
||||
|
||||
# Generate the OpenAPI Schema for the app
|
||||
openapi:
|
||||
python scripts/generate_openapi_schema.py
|
||||
|
@ -154,6 +154,18 @@ This is caused by an invalid setting in the `invokeai.yaml` configuration file.
|
||||
|
||||
Check the [configuration docs] for more detail about the settings and how to specify them.
|
||||
|
||||
## `ModuleNotFoundError: No module named 'controlnet_aux'`
|
||||
|
||||
`controlnet_aux` is a dependency of Invoke and appears to have been packaged or distributed strangely. Sometimes, it doesn't install correctly. This is outside our control.
|
||||
|
||||
If you encounter this error, the solution is to remove the package from the `pip` cache and re-run the Invoke installer so a fresh, working version of `controlnet_aux` can be downloaded and installed:
|
||||
|
||||
- Run the Invoke launcher
|
||||
- Choose the developer console option
|
||||
- Run this command: `pip cache remove controlnet_aux`
|
||||
- Close the terminal window
|
||||
- Download and run the [installer](https://github.com/invoke-ai/InvokeAI/releases/latest), selecting your current install location
|
||||
|
||||
## Out of Memory Issues
|
||||
|
||||
The models are large, VRAM is expensive, and you may find yourself
|
||||
|
@ -3,9 +3,7 @@ import logging
|
||||
import mimetypes
|
||||
import socket
|
||||
from contextlib import asynccontextmanager
|
||||
from inspect import signature
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import uvicorn
|
||||
@ -13,11 +11,9 @@ from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.middleware.gzip import GZipMiddleware
|
||||
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
|
||||
from fastapi.openapi.utils import get_openapi
|
||||
from fastapi.responses import HTMLResponse
|
||||
from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.middleware import EventHandlerASGIMiddleware
|
||||
from pydantic.json_schema import models_json_schema
|
||||
from torch.backends.mps import is_available as is_mps_available
|
||||
|
||||
# for PyCharm:
|
||||
@ -25,10 +21,8 @@ from torch.backends.mps import is_available as is_mps_available
|
||||
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
||||
import invokeai.frontend.web as web_dir
|
||||
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.services.events.events_common import EventBase
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
from invokeai.app.util.custom_openapi import get_openapi_func
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from ..backend.util.logging import InvokeAILogger
|
||||
@ -45,11 +39,6 @@ from .api.routers import (
|
||||
workflows,
|
||||
)
|
||||
from .api.sockets import SocketIO
|
||||
from .invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
UIConfigBase,
|
||||
)
|
||||
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
|
||||
|
||||
app_config = get_config()
|
||||
|
||||
@ -119,84 +108,7 @@ app.include_router(app_info.app_router, prefix="/api")
|
||||
app.include_router(session_queue.session_queue_router, prefix="/api")
|
||||
app.include_router(workflows.workflows_router, prefix="/api")
|
||||
|
||||
|
||||
# Build a custom OpenAPI to include all outputs
|
||||
# TODO: can outputs be included on metadata of invocation schemas somehow?
|
||||
def custom_openapi() -> dict[str, Any]:
|
||||
if app.openapi_schema:
|
||||
return app.openapi_schema
|
||||
openapi_schema = get_openapi(
|
||||
title=app.title,
|
||||
description="An API for invoking AI image operations",
|
||||
version="1.0.0",
|
||||
routes=app.routes,
|
||||
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
|
||||
)
|
||||
|
||||
# Add all outputs
|
||||
all_invocations = BaseInvocation.get_invocations()
|
||||
output_types = set()
|
||||
output_type_titles = {}
|
||||
for invoker in all_invocations:
|
||||
output_type = signature(invoker.invoke).return_annotation
|
||||
output_types.add(output_type)
|
||||
|
||||
output_schemas = models_json_schema(
|
||||
models=[(o, "serialization") for o in output_types], ref_template="#/components/schemas/{model}"
|
||||
)
|
||||
for schema_key, output_schema in output_schemas[1]["$defs"].items():
|
||||
# TODO: note that we assume the schema_key here is the TYPE.__name__
|
||||
# This could break in some cases, figure out a better way to do it
|
||||
output_type_titles[schema_key] = output_schema["title"]
|
||||
openapi_schema["components"]["schemas"][schema_key] = output_schema
|
||||
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
|
||||
|
||||
# Some models don't end up in the schemas as standalone definitions
|
||||
additional_schemas = models_json_schema(
|
||||
[
|
||||
(UIConfigBase, "serialization"),
|
||||
(InputFieldJSONSchemaExtra, "serialization"),
|
||||
(OutputFieldJSONSchemaExtra, "serialization"),
|
||||
(ModelIdentifierField, "serialization"),
|
||||
(ProgressImage, "serialization"),
|
||||
],
|
||||
ref_template="#/components/schemas/{model}",
|
||||
)
|
||||
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
|
||||
openapi_schema["components"]["schemas"][schema_key] = schema_json
|
||||
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
# Add a reference to the output type to additionalProperties of the invoker schema
|
||||
for invoker in all_invocations:
|
||||
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
|
||||
output_type = signature(obj=invoker.invoke).return_annotation
|
||||
output_type_title = output_type_titles[output_type.__name__]
|
||||
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
|
||||
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
|
||||
invoker_schema["output"] = outputs_ref
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["properties"][invoker.get_type()] = outputs_ref
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["required"].append(invoker.get_type())
|
||||
invoker_schema["class"] = "invocation"
|
||||
|
||||
# Add all event schemas
|
||||
for event in sorted(EventBase.get_events(), key=lambda e: e.__name__):
|
||||
json_schema = event.model_json_schema(mode="serialization", ref_template="#/components/schemas/{model}")
|
||||
if "$defs" in json_schema:
|
||||
for schema_key, schema in json_schema["$defs"].items():
|
||||
openapi_schema["components"]["schemas"][schema_key] = schema
|
||||
del json_schema["$defs"]
|
||||
openapi_schema["components"]["schemas"][event.__name__] = json_schema
|
||||
|
||||
app.openapi_schema = openapi_schema
|
||||
return app.openapi_schema
|
||||
|
||||
|
||||
app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid assignment
|
||||
app.openapi = get_openapi_func(app)
|
||||
|
||||
|
||||
@app.get("/docs", include_in_schema=False)
|
||||
|
@ -98,11 +98,13 @@ class BaseInvocationOutput(BaseModel):
|
||||
|
||||
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
|
||||
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
|
||||
_typeadapter_needs_update: ClassVar[bool] = False
|
||||
|
||||
@classmethod
|
||||
def register_output(cls, output: BaseInvocationOutput) -> None:
|
||||
"""Registers an invocation output."""
|
||||
cls._output_classes.add(output)
|
||||
cls._typeadapter_needs_update = True
|
||||
|
||||
@classmethod
|
||||
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
|
||||
@ -112,11 +114,12 @@ class BaseInvocationOutput(BaseModel):
|
||||
@classmethod
|
||||
def get_typeadapter(cls) -> TypeAdapter[Any]:
|
||||
"""Gets a pydantc TypeAdapter for the union of all invocation output types."""
|
||||
if not cls._typeadapter:
|
||||
InvocationOutputsUnion = TypeAliasType(
|
||||
"InvocationOutputsUnion", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
|
||||
if not cls._typeadapter or cls._typeadapter_needs_update:
|
||||
AnyInvocationOutput = TypeAliasType(
|
||||
"AnyInvocationOutput", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
|
||||
)
|
||||
cls._typeadapter = TypeAdapter(InvocationOutputsUnion)
|
||||
cls._typeadapter = TypeAdapter(AnyInvocationOutput)
|
||||
cls._typeadapter_needs_update = False
|
||||
return cls._typeadapter
|
||||
|
||||
@classmethod
|
||||
@ -125,12 +128,13 @@ class BaseInvocationOutput(BaseModel):
|
||||
return (i.get_type() for i in BaseInvocationOutput.get_outputs())
|
||||
|
||||
@staticmethod
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocationOutput]) -> None:
|
||||
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
|
||||
# Because we use a pydantic Literal field with default value for the invocation type,
|
||||
# it will be typed as optional in the OpenAPI schema. Make it required manually.
|
||||
if "required" not in schema or not isinstance(schema["required"], list):
|
||||
schema["required"] = []
|
||||
schema["class"] = "output"
|
||||
schema["required"].extend(["type"])
|
||||
|
||||
@classmethod
|
||||
@ -167,6 +171,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
|
||||
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
|
||||
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
|
||||
_typeadapter_needs_update: ClassVar[bool] = False
|
||||
|
||||
@classmethod
|
||||
def get_type(cls) -> str:
|
||||
@ -177,15 +182,17 @@ class BaseInvocation(ABC, BaseModel):
|
||||
def register_invocation(cls, invocation: BaseInvocation) -> None:
|
||||
"""Registers an invocation."""
|
||||
cls._invocation_classes.add(invocation)
|
||||
cls._typeadapter_needs_update = True
|
||||
|
||||
@classmethod
|
||||
def get_typeadapter(cls) -> TypeAdapter[Any]:
|
||||
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
|
||||
if not cls._typeadapter:
|
||||
InvocationsUnion = TypeAliasType(
|
||||
"InvocationsUnion", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
|
||||
if not cls._typeadapter or cls._typeadapter_needs_update:
|
||||
AnyInvocation = TypeAliasType(
|
||||
"AnyInvocation", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
|
||||
)
|
||||
cls._typeadapter = TypeAdapter(InvocationsUnion)
|
||||
cls._typeadapter = TypeAdapter(AnyInvocation)
|
||||
cls._typeadapter_needs_update = False
|
||||
return cls._typeadapter
|
||||
|
||||
@classmethod
|
||||
@ -221,7 +228,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
return signature(cls.invoke).return_annotation
|
||||
|
||||
@staticmethod
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel], *args, **kwargs) -> None:
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocation]) -> None:
|
||||
"""Adds various UI-facing attributes to the invocation's OpenAPI schema."""
|
||||
uiconfig = cast(UIConfigBase | None, getattr(model_class, "UIConfig", None))
|
||||
if uiconfig is not None:
|
||||
@ -237,6 +244,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
schema["version"] = uiconfig.version
|
||||
if "required" not in schema or not isinstance(schema["required"], list):
|
||||
schema["required"] = []
|
||||
schema["class"] = "invocation"
|
||||
schema["required"].extend(["type", "id"])
|
||||
|
||||
@abstractmethod
|
||||
@ -310,7 +318,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
protected_namespaces=(),
|
||||
validate_assignment=True,
|
||||
json_schema_extra=json_schema_extra,
|
||||
json_schema_serialization_defaults_required=True,
|
||||
json_schema_serialization_defaults_required=False,
|
||||
coerce_numbers_to_str=True,
|
||||
)
|
||||
|
||||
|
98
invokeai/app/invocations/blend_latents.py
Normal file
98
invokeai/app/invocations/blend_latents.py
Normal file
@ -0,0 +1,98 @@
|
||||
from typing import Any, Union
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"lblend",
|
||||
title="Blend Latents",
|
||||
tags=["latents", "blend"],
|
||||
category="latents",
|
||||
version="1.0.3",
|
||||
)
|
||||
class BlendLatentsInvocation(BaseInvocation):
|
||||
"""Blend two latents using a given alpha. Latents must have same size."""
|
||||
|
||||
latents_a: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
latents_b: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents_a = context.tensors.load(self.latents_a.latents_name)
|
||||
latents_b = context.tensors.load(self.latents_b.latents_name)
|
||||
|
||||
if latents_a.shape != latents_b.shape:
|
||||
raise Exception("Latents to blend must be the same size.")
|
||||
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
def slerp(
|
||||
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
|
||||
v0: Union[torch.Tensor, npt.NDArray[Any]],
|
||||
v1: Union[torch.Tensor, npt.NDArray[Any]],
|
||||
DOT_THRESHOLD: float = 0.9995,
|
||||
) -> Union[torch.Tensor, npt.NDArray[Any]]:
|
||||
"""
|
||||
Spherical linear interpolation
|
||||
Args:
|
||||
t (float/np.ndarray): Float value between 0.0 and 1.0
|
||||
v0 (np.ndarray): Starting vector
|
||||
v1 (np.ndarray): Final vector
|
||||
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
||||
colineal. Not recommended to alter this.
|
||||
Returns:
|
||||
v2 (np.ndarray): Interpolation vector between v0 and v1
|
||||
"""
|
||||
inputs_are_torch = False
|
||||
if not isinstance(v0, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v0 = v0.detach().cpu().numpy()
|
||||
if not isinstance(v1, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v1 = v1.detach().cpu().numpy()
|
||||
|
||||
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||||
if np.abs(dot) > DOT_THRESHOLD:
|
||||
v2 = (1 - t) * v0 + t * v1
|
||||
else:
|
||||
theta_0 = np.arccos(dot)
|
||||
sin_theta_0 = np.sin(theta_0)
|
||||
theta_t = theta_0 * t
|
||||
sin_theta_t = np.sin(theta_t)
|
||||
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||||
s1 = sin_theta_t / sin_theta_0
|
||||
v2 = s0 * v0 + s1 * v1
|
||||
|
||||
if inputs_are_torch:
|
||||
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
|
||||
return v2_torch
|
||||
else:
|
||||
assert isinstance(v2, np.ndarray)
|
||||
return v2
|
||||
|
||||
# blend
|
||||
bl = slerp(self.alpha, latents_a, latents_b)
|
||||
assert isinstance(bl, torch.Tensor)
|
||||
blended_latents: torch.Tensor = bl # for type checking convenience
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
blended_latents = blended_latents.to("cpu")
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=blended_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)
|
@ -1,6 +1,7 @@
|
||||
from typing import Literal
|
||||
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
LATENT_SCALE_FACTOR = 8
|
||||
"""
|
||||
@ -15,3 +16,5 @@ SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
|
||||
|
||||
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
||||
"""A literal type for PIL image modes supported by Invoke"""
|
||||
|
||||
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()
|
||||
|
80
invokeai/app/invocations/create_denoise_mask.py
Normal file
80
invokeai/app/invocations/create_denoise_mask.py
Normal file
@ -0,0 +1,80 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField
|
||||
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import DenoiseMaskOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
|
||||
|
||||
@invocation(
|
||||
"create_denoise_mask",
|
||||
title="Create Denoise Mask",
|
||||
tags=["mask", "denoise"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class CreateDenoiseMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
|
||||
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
|
||||
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
|
||||
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
|
||||
fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == torch.float32,
|
||||
description=FieldDescriptions.fp32,
|
||||
ui_order=4,
|
||||
)
|
||||
|
||||
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
|
||||
if mask_image.mode != "L":
|
||||
mask_image = mask_image.convert("L")
|
||||
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
|
||||
if mask_tensor.dim() == 3:
|
||||
mask_tensor = mask_tensor.unsqueeze(0)
|
||||
# if shape is not None:
|
||||
# mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR)
|
||||
return mask_tensor
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
|
||||
if self.image is not None:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
else:
|
||||
image_tensor = None
|
||||
|
||||
mask = self.prep_mask_tensor(
|
||||
context.images.get_pil(self.mask.image_name),
|
||||
)
|
||||
|
||||
if image_tensor is not None:
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
|
||||
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||||
# TODO:
|
||||
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
|
||||
|
||||
masked_latents_name = context.tensors.save(tensor=masked_latents)
|
||||
else:
|
||||
masked_latents_name = None
|
||||
|
||||
mask_name = context.tensors.save(tensor=mask)
|
||||
|
||||
return DenoiseMaskOutput.build(
|
||||
mask_name=mask_name,
|
||||
masked_latents_name=masked_latents_name,
|
||||
gradient=False,
|
||||
)
|
138
invokeai/app/invocations/create_gradient_mask.py
Normal file
138
invokeai/app/invocations/create_gradient_mask.py
Normal file
@ -0,0 +1,138 @@
|
||||
from typing import Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image, ImageFilter
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import (
|
||||
DenoiseMaskField,
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
OutputField,
|
||||
)
|
||||
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
||||
from invokeai.app.invocations.model import UNetField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
|
||||
|
||||
@invocation_output("gradient_mask_output")
|
||||
class GradientMaskOutput(BaseInvocationOutput):
|
||||
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
|
||||
|
||||
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
|
||||
expanded_mask_area: ImageField = OutputField(
|
||||
description="Image representing the total gradient area of the mask. For paste-back purposes."
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"create_gradient_mask",
|
||||
title="Create Gradient Mask",
|
||||
tags=["mask", "denoise"],
|
||||
category="latents",
|
||||
version="1.1.0",
|
||||
)
|
||||
class CreateGradientMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
|
||||
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
|
||||
edge_radius: int = InputField(
|
||||
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
|
||||
)
|
||||
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
|
||||
minimum_denoise: float = InputField(
|
||||
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
|
||||
)
|
||||
image: Optional[ImageField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] Image",
|
||||
ui_order=6,
|
||||
)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
title="[OPTIONAL] UNet",
|
||||
ui_order=5,
|
||||
)
|
||||
vae: Optional[VAEField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] VAE",
|
||||
input=Input.Connection,
|
||||
ui_order=7,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
|
||||
fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == torch.float32,
|
||||
description=FieldDescriptions.fp32,
|
||||
ui_order=9,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
|
||||
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
|
||||
if self.edge_radius > 0:
|
||||
if self.coherence_mode == "Box Blur":
|
||||
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
|
||||
else: # Gaussian Blur OR Staged
|
||||
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
|
||||
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
|
||||
|
||||
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
|
||||
|
||||
# redistribute blur so that the original edges are 0 and blur outwards to 1
|
||||
blur_tensor = (blur_tensor - 0.5) * 2
|
||||
|
||||
threshold = 1 - self.minimum_denoise
|
||||
|
||||
if self.coherence_mode == "Staged":
|
||||
# wherever the blur_tensor is less than fully masked, convert it to threshold
|
||||
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
|
||||
else:
|
||||
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
|
||||
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
|
||||
|
||||
else:
|
||||
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
|
||||
|
||||
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
|
||||
|
||||
# compute a [0, 1] mask from the blur_tensor
|
||||
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
|
||||
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
|
||||
expanded_image_dto = context.images.save(expanded_mask_image)
|
||||
|
||||
masked_latents_name = None
|
||||
if self.unet is not None and self.vae is not None and self.image is not None:
|
||||
# all three fields must be present at the same time
|
||||
main_model_config = context.models.get_config(self.unet.unet.key)
|
||||
assert isinstance(main_model_config, MainConfigBase)
|
||||
if main_model_config.variant is ModelVariantType.Inpaint:
|
||||
mask = blur_tensor
|
||||
vae_info: LoadedModel = context.models.load(self.vae.vae)
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||||
masked_latents = ImageToLatentsInvocation.vae_encode(
|
||||
vae_info, self.fp32, self.tiled, masked_image.clone()
|
||||
)
|
||||
masked_latents_name = context.tensors.save(tensor=masked_latents)
|
||||
|
||||
return GradientMaskOutput(
|
||||
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
|
||||
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
|
||||
)
|
61
invokeai/app/invocations/crop_latents.py
Normal file
61
invokeai/app/invocations/crop_latents.py
Normal file
@ -0,0 +1,61 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
# The Crop Latents node was copied from @skunkworxdark's implementation here:
|
||||
# https://github.com/skunkworxdark/XYGrid_nodes/blob/74647fa9c1fa57d317a94bd43ca689af7f0aae5e/images_to_grids.py#L1117C1-L1167C80
|
||||
@invocation(
|
||||
"crop_latents",
|
||||
title="Crop Latents",
|
||||
tags=["latents", "crop"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
# TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`.
|
||||
# Currently, if the class names conflict then 'GET /openapi.json' fails.
|
||||
class CropLatentsCoreInvocation(BaseInvocation):
|
||||
"""Crops a latent-space tensor to a box specified in image-space. The box dimensions and coordinates must be
|
||||
divisible by the latent scale factor of 8.
|
||||
"""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
x: int = InputField(
|
||||
ge=0,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The left x coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
y: int = InputField(
|
||||
ge=0,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The top y coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
width: int = InputField(
|
||||
ge=1,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The width (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
height: int = InputField(
|
||||
ge=1,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The height (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
x1 = self.x // LATENT_SCALE_FACTOR
|
||||
y1 = self.y // LATENT_SCALE_FACTOR
|
||||
x2 = x1 + (self.width // LATENT_SCALE_FACTOR)
|
||||
y2 = y1 + (self.height // LATENT_SCALE_FACTOR)
|
||||
|
||||
cropped_latents = latents[..., y1:y2, x1:x2]
|
||||
|
||||
name = context.tensors.save(tensor=cropped_latents)
|
||||
|
||||
return LatentsOutput.build(latents_name=name, latents=cropped_latents)
|
65
invokeai/app/invocations/ideal_size.py
Normal file
65
invokeai/app/invocations/ideal_size.py
Normal file
@ -0,0 +1,65 @@
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField
|
||||
from invokeai.app.invocations.model import UNetField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.config import BaseModelType
|
||||
|
||||
|
||||
@invocation_output("ideal_size_output")
|
||||
class IdealSizeOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output an image"""
|
||||
|
||||
width: int = OutputField(description="The ideal width of the image (in pixels)")
|
||||
height: int = OutputField(description="The ideal height of the image (in pixels)")
|
||||
|
||||
|
||||
@invocation(
|
||||
"ideal_size",
|
||||
title="Ideal Size",
|
||||
tags=["latents", "math", "ideal_size"],
|
||||
version="1.0.3",
|
||||
)
|
||||
class IdealSizeInvocation(BaseInvocation):
|
||||
"""Calculates the ideal size for generation to avoid duplication"""
|
||||
|
||||
width: int = InputField(default=1024, description="Final image width")
|
||||
height: int = InputField(default=576, description="Final image height")
|
||||
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
|
||||
multiplier: float = InputField(
|
||||
default=1.0,
|
||||
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in "
|
||||
"initial generation artifacts if too large)",
|
||||
)
|
||||
|
||||
def trim_to_multiple_of(self, *args: int, multiple_of: int = LATENT_SCALE_FACTOR) -> Tuple[int, ...]:
|
||||
return tuple((x - x % multiple_of) for x in args)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
aspect = self.width / self.height
|
||||
dimension: float = 512
|
||||
if unet_config.base == BaseModelType.StableDiffusion2:
|
||||
dimension = 768
|
||||
elif unet_config.base == BaseModelType.StableDiffusionXL:
|
||||
dimension = 1024
|
||||
dimension = dimension * self.multiplier
|
||||
min_dimension = math.floor(dimension * 0.5)
|
||||
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
|
||||
|
||||
if aspect > 1.0:
|
||||
init_height = max(min_dimension, math.sqrt(model_area / aspect))
|
||||
init_width = init_height * aspect
|
||||
else:
|
||||
init_width = max(min_dimension, math.sqrt(model_area * aspect))
|
||||
init_height = init_width / aspect
|
||||
|
||||
scaled_width, scaled_height = self.trim_to_multiple_of(
|
||||
math.floor(init_width),
|
||||
math.floor(init_height),
|
||||
)
|
||||
|
||||
return IdealSizeOutput(width=scaled_width, height=scaled_height)
|
125
invokeai/app/invocations/image_to_latents.py
Normal file
125
invokeai/app/invocations/image_to_latents.py
Normal file
@ -0,0 +1,125 @@
|
||||
from functools import singledispatchmethod
|
||||
|
||||
import einops
|
||||
import torch
|
||||
from diffusers.models.attention_processor import (
|
||||
AttnProcessor2_0,
|
||||
LoRAAttnProcessor2_0,
|
||||
LoRAXFormersAttnProcessor,
|
||||
XFormersAttnProcessor,
|
||||
)
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
|
||||
|
||||
@invocation(
|
||||
"i2l",
|
||||
title="Image to Latents",
|
||||
tags=["latents", "image", "vae", "i2l"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
|
||||
image: ImageField = InputField(
|
||||
description="The image to encode",
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@staticmethod
|
||||
def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
orig_dtype = vae.dtype
|
||||
if upcast:
|
||||
vae.to(dtype=torch.float32)
|
||||
|
||||
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
|
||||
vae.decoder.mid_block.attentions[0].processor,
|
||||
(
|
||||
AttnProcessor2_0,
|
||||
XFormersAttnProcessor,
|
||||
LoRAXFormersAttnProcessor,
|
||||
LoRAAttnProcessor2_0,
|
||||
),
|
||||
)
|
||||
# if xformers or torch_2_0 is used attention block does not need
|
||||
# to be in float32 which can save lots of memory
|
||||
if use_torch_2_0_or_xformers:
|
||||
vae.post_quant_conv.to(orig_dtype)
|
||||
vae.decoder.conv_in.to(orig_dtype)
|
||||
vae.decoder.mid_block.to(orig_dtype)
|
||||
# else:
|
||||
# latents = latents.float()
|
||||
|
||||
else:
|
||||
vae.to(dtype=torch.float16)
|
||||
# latents = latents.half()
|
||||
|
||||
if tiled:
|
||||
vae.enable_tiling()
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
# non_noised_latents_from_image
|
||||
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
|
||||
with torch.inference_mode():
|
||||
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
|
||||
|
||||
latents = vae.config.scaling_factor * latents
|
||||
latents = latents.to(dtype=orig_dtype)
|
||||
|
||||
return latents
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
name = context.tensors.save(tensor=latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
|
||||
|
||||
@singledispatchmethod
|
||||
@staticmethod
|
||||
def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
image_tensor_dist = vae.encode(image_tensor).latent_dist
|
||||
latents: torch.Tensor = image_tensor_dist.sample().to(
|
||||
dtype=vae.dtype
|
||||
) # FIXME: uses torch.randn. make reproducible!
|
||||
return latents
|
||||
|
||||
@_encode_to_tensor.register
|
||||
@staticmethod
|
||||
def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
latents: torch.FloatTensor = vae.encode(image_tensor).latents
|
||||
return latents
|
File diff suppressed because it is too large
Load Diff
127
invokeai/app/invocations/latents_to_image.py
Normal file
127
invokeai/app/invocations/latents_to_image.py
Normal file
@ -0,0 +1,127 @@
|
||||
import torch
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.models.attention_processor import (
|
||||
AttnProcessor2_0,
|
||||
LoRAAttnProcessor2_0,
|
||||
LoRAXFormersAttnProcessor,
|
||||
XFormersAttnProcessor,
|
||||
)
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel
|
||||
from invokeai.backend.stable_diffusion import set_seamless
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"l2i",
|
||||
title="Latents to Image",
|
||||
tags=["latents", "image", "vae", "l2i"],
|
||||
category="latents",
|
||||
version="1.2.2",
|
||||
)
|
||||
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@staticmethod
|
||||
def vae_decode(
|
||||
context: InvocationContext,
|
||||
vae_info: LoadedModel,
|
||||
seamless_axes: list[str],
|
||||
latents: torch.Tensor,
|
||||
use_fp32: bool,
|
||||
use_tiling: bool,
|
||||
) -> Image.Image:
|
||||
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
|
||||
with set_seamless(vae_info.model, seamless_axes), vae_info as vae:
|
||||
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
||||
latents = latents.to(vae.device)
|
||||
if use_fp32:
|
||||
vae.to(dtype=torch.float32)
|
||||
|
||||
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
|
||||
vae.decoder.mid_block.attentions[0].processor,
|
||||
(
|
||||
AttnProcessor2_0,
|
||||
XFormersAttnProcessor,
|
||||
LoRAXFormersAttnProcessor,
|
||||
LoRAAttnProcessor2_0,
|
||||
),
|
||||
)
|
||||
# if xformers or torch_2_0 is used attention block does not need
|
||||
# to be in float32 which can save lots of memory
|
||||
if use_torch_2_0_or_xformers:
|
||||
vae.post_quant_conv.to(latents.dtype)
|
||||
vae.decoder.conv_in.to(latents.dtype)
|
||||
vae.decoder.mid_block.to(latents.dtype)
|
||||
else:
|
||||
latents = latents.float()
|
||||
|
||||
else:
|
||||
vae.to(dtype=torch.float16)
|
||||
latents = latents.half()
|
||||
|
||||
if use_tiling or context.config.get().force_tiled_decode:
|
||||
vae.enable_tiling()
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
# clear memory as vae decode can request a lot
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
with torch.inference_mode():
|
||||
# copied from diffusers pipeline
|
||||
latents = latents / vae.config.scaling_factor
|
||||
image = vae.decode(latents, return_dict=False)[0]
|
||||
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
return image
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
|
||||
image = self.vae_decode(
|
||||
context=context,
|
||||
vae_info=vae_info,
|
||||
seamless_axes=self.vae.seamless_axes,
|
||||
latents=latents,
|
||||
use_fp32=self.fp32,
|
||||
use_tiling=self.tiled,
|
||||
)
|
||||
image_dto = context.images.save(image=image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
103
invokeai/app/invocations/resize_latents.py
Normal file
103
invokeai/app/invocations/resize_latents.py
Normal file
@ -0,0 +1,103 @@
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
|
||||
|
||||
|
||||
@invocation(
|
||||
"lresize",
|
||||
title="Resize Latents",
|
||||
tags=["latents", "resize"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class ResizeLatentsInvocation(BaseInvocation):
|
||||
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
width: int = InputField(
|
||||
ge=64,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description=FieldDescriptions.width,
|
||||
)
|
||||
height: int = InputField(
|
||||
ge=64,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description=FieldDescriptions.width,
|
||||
)
|
||||
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
|
||||
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
resized_latents = torch.nn.functional.interpolate(
|
||||
latents.to(device),
|
||||
size=(self.height // LATENT_SCALE_FACTOR, self.width // LATENT_SCALE_FACTOR),
|
||||
mode=self.mode,
|
||||
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
resized_latents = resized_latents.to("cpu")
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=resized_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
|
||||
|
||||
|
||||
@invocation(
|
||||
"lscale",
|
||||
title="Scale Latents",
|
||||
tags=["latents", "resize"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class ScaleLatentsInvocation(BaseInvocation):
|
||||
"""Scales latents by a given factor."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
scale_factor: float = InputField(gt=0, description=FieldDescriptions.scale_factor)
|
||||
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
|
||||
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
# resizing
|
||||
resized_latents = torch.nn.functional.interpolate(
|
||||
latents.to(device),
|
||||
scale_factor=self.scale_factor,
|
||||
mode=self.mode,
|
||||
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
resized_latents = resized_latents.to("cpu")
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=resized_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
|
34
invokeai/app/invocations/scheduler.py
Normal file
34
invokeai/app/invocations/scheduler.py
Normal file
@ -0,0 +1,34 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
InputField,
|
||||
OutputField,
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
@invocation_output("scheduler_output")
|
||||
class SchedulerOutput(BaseInvocationOutput):
|
||||
scheduler: SCHEDULER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
|
||||
|
||||
|
||||
@invocation(
|
||||
"scheduler",
|
||||
title="Scheduler",
|
||||
tags=["scheduler"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class SchedulerInvocation(BaseInvocation):
|
||||
"""Selects a scheduler."""
|
||||
|
||||
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SchedulerOutput:
|
||||
return SchedulerOutput(scheduler=self.scheduler)
|
384
invokeai/app/invocations/tiled_stable_diffusion_refine.py
Normal file
384
invokeai/app/invocations/tiled_stable_diffusion_refine.py
Normal file
@ -0,0 +1,384 @@
|
||||
from contextlib import ExitStack
|
||||
from typing import Iterator, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import torch
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
from PIL import Image
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
||||
from invokeai.app.invocations.latent import DenoiseLatentsInvocation, get_scheduler
|
||||
from invokeai.app.invocations.latents_to_image import LatentsToImageInvocation
|
||||
from invokeai.app.invocations.model import ModelIdentifierField, UNetField, VAEField
|
||||
from invokeai.app.invocations.noise import get_noise
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, prepare_control_image
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending
|
||||
from invokeai.backend.tiles.utils import Tile
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.hotfixes import ControlNetModel
|
||||
|
||||
|
||||
@invocation(
|
||||
"tiled_stable_diffusion_refine",
|
||||
title="Tiled Stable Diffusion Refine",
|
||||
tags=["upscale", "denoise"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class TiledStableDiffusionRefineInvocation(BaseInvocation):
|
||||
"""A tiled Stable Diffusion pipeline for refining high resolution images. This invocation is intended to be used to
|
||||
refine an image after upscaling i.e. it is the second step in a typical "tiled upscaling" workflow.
|
||||
"""
|
||||
|
||||
image: ImageField = InputField(description="Image to be refined.")
|
||||
|
||||
positive_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||
)
|
||||
negative_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.negative_cond, input=Input.Connection
|
||||
)
|
||||
# TODO(ryand): Add multiple-of validation.
|
||||
tile_height: int = InputField(default=512, gt=0, description="Height of the tiles.")
|
||||
tile_width: int = InputField(default=512, gt=0, description="Width of the tiles.")
|
||||
tile_overlap: int = InputField(
|
||||
default=16,
|
||||
gt=0,
|
||||
description="Target overlap between adjacent tiles (the last row/column may overlap more than this).",
|
||||
)
|
||||
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
|
||||
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
|
||||
denoising_start: float = InputField(
|
||||
default=0.65,
|
||||
ge=0,
|
||||
le=1,
|
||||
description=FieldDescriptions.denoising_start,
|
||||
)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
unet: UNetField = InputField(
|
||||
description=FieldDescriptions.unet,
|
||||
input=Input.Connection,
|
||||
title="UNet",
|
||||
)
|
||||
cfg_rescale_multiplier: float = InputField(
|
||||
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
vae_fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == torch.float32, description="Whether to use float32 precision when running the VAE."
|
||||
)
|
||||
# HACK(ryand): We probably want to allow the user to control all of the parameters in ControlField. But, we akwardly
|
||||
# don't want to use the image field. Figure out how best to handle this.
|
||||
# TODO(ryand): Currently, there is no ControlNet preprocessor applied to the tile images. In other words, we pretty
|
||||
# much assume that it is a tile ControlNet. We need to decide how we want to handle this. E.g. find a way to support
|
||||
# CN preprocessors, raise a clear warning when a non-tile CN model is selected, hardcode the supported CN models,
|
||||
# etc.
|
||||
control_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
|
||||
)
|
||||
control_weight: float = InputField(default=0.6)
|
||||
|
||||
@field_validator("cfg_scale")
|
||||
def ge_one(cls, v: list[float] | float) -> list[float] | float:
|
||||
"""Validate that all cfg_scale values are >= 1"""
|
||||
if isinstance(v, list):
|
||||
for i in v:
|
||||
if i < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
else:
|
||||
if v < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
return v
|
||||
|
||||
@staticmethod
|
||||
def crop_latents_to_tile(latents: torch.Tensor, image_tile: Tile) -> torch.Tensor:
|
||||
"""Crop the latent-space tensor to the area corresponding to the image-space tile.
|
||||
The tile coordinates must be divisible by the LATENT_SCALE_FACTOR.
|
||||
"""
|
||||
for coord in [image_tile.coords.top, image_tile.coords.left, image_tile.coords.right, image_tile.coords.bottom]:
|
||||
if coord % LATENT_SCALE_FACTOR != 0:
|
||||
raise ValueError(
|
||||
f"The tile coordinates must all be divisible by the latent scale factor"
|
||||
f" ({LATENT_SCALE_FACTOR}). {image_tile.coords=}."
|
||||
)
|
||||
assert latents.dim() == 4 # We expect: (batch_size, channels, height, width).
|
||||
|
||||
top = image_tile.coords.top // LATENT_SCALE_FACTOR
|
||||
left = image_tile.coords.left // LATENT_SCALE_FACTOR
|
||||
bottom = image_tile.coords.bottom // LATENT_SCALE_FACTOR
|
||||
right = image_tile.coords.right // LATENT_SCALE_FACTOR
|
||||
return latents[..., top:bottom, left:right]
|
||||
|
||||
def run_controlnet(
|
||||
self,
|
||||
image: Image.Image,
|
||||
controlnet_model: ControlNetModel,
|
||||
weight: float,
|
||||
do_classifier_free_guidance: bool,
|
||||
width: int,
|
||||
height: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
control_mode: CONTROLNET_MODE_VALUES = "balanced",
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
|
||||
) -> ControlNetData:
|
||||
control_image = prepare_control_image(
|
||||
image=image,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
width=width,
|
||||
height=height,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
control_mode=control_mode,
|
||||
resize_mode=resize_mode,
|
||||
)
|
||||
return ControlNetData(
|
||||
model=controlnet_model,
|
||||
image_tensor=control_image,
|
||||
weight=weight,
|
||||
begin_step_percent=0.0,
|
||||
end_step_percent=1.0,
|
||||
control_mode=control_mode,
|
||||
# Any resizing needed should currently be happening in prepare_control_image(), but adding resize_mode to
|
||||
# ControlNetData in case needed in the future.
|
||||
resize_mode=resize_mode,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# TODO(ryand): Expose the seed parameter.
|
||||
seed = 0
|
||||
|
||||
# Load the input image.
|
||||
input_image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
# Calculate the tile locations to cover the image.
|
||||
# We have selected this tiling strategy to make it easy to achieve tile coords that are multiples of 8. This
|
||||
# facilitates conversions between image space and latent space.
|
||||
# TODO(ryand): Expose these tiling parameters. (Keep in mind the multiple-of constraints on these params.)
|
||||
tiles = calc_tiles_with_overlap(
|
||||
image_height=input_image.height,
|
||||
image_width=input_image.width,
|
||||
tile_height=self.tile_height,
|
||||
tile_width=self.tile_width,
|
||||
overlap=self.tile_overlap,
|
||||
)
|
||||
|
||||
# Convert the input image to a torch.Tensor.
|
||||
input_image_torch = image_resized_to_grid_as_tensor(input_image.convert("RGB"), multiple_of=LATENT_SCALE_FACTOR)
|
||||
input_image_torch = input_image_torch.unsqueeze(0) # Add a batch dimension.
|
||||
# Validate our assumptions about the shape of input_image_torch.
|
||||
assert input_image_torch.dim() == 4 # We expect: (batch_size, channels, height, width).
|
||||
assert input_image_torch.shape[:2] == (1, 3)
|
||||
|
||||
# Split the input image into tiles in torch.Tensor format.
|
||||
image_tiles_torch: list[torch.Tensor] = []
|
||||
for tile in tiles:
|
||||
image_tile = input_image_torch[
|
||||
:,
|
||||
:,
|
||||
tile.coords.top : tile.coords.bottom,
|
||||
tile.coords.left : tile.coords.right,
|
||||
]
|
||||
image_tiles_torch.append(image_tile)
|
||||
|
||||
# Split the input image into tiles in numpy format.
|
||||
# TODO(ryand): We currently maintain both np.ndarray and torch.Tensor tiles. Ideally, all operations should work
|
||||
# with torch.Tensor tiles.
|
||||
input_image_np = np.array(input_image)
|
||||
image_tiles_np: list[npt.NDArray[np.uint8]] = []
|
||||
for tile in tiles:
|
||||
image_tile_np = input_image_np[
|
||||
tile.coords.top : tile.coords.bottom,
|
||||
tile.coords.left : tile.coords.right,
|
||||
:,
|
||||
]
|
||||
image_tiles_np.append(image_tile_np)
|
||||
|
||||
# VAE-encode each image tile independently.
|
||||
# TODO(ryand): Is there any advantage to VAE-encoding the entire image before splitting it into tiles? What
|
||||
# about for decoding?
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
latent_tiles: list[torch.Tensor] = []
|
||||
for image_tile_torch in image_tiles_torch:
|
||||
latent_tiles.append(
|
||||
ImageToLatentsInvocation.vae_encode(
|
||||
vae_info=vae_info, upcast=self.vae_fp32, tiled=False, image_tensor=image_tile_torch
|
||||
)
|
||||
)
|
||||
|
||||
# Generate noise with dimensions corresponding to the full image in latent space.
|
||||
# It is important that the noise tensor is generated at the full image dimension and then tiled, rather than
|
||||
# generating for each tile independently. This ensures that overlapping regions between tiles use the same
|
||||
# noise.
|
||||
assert input_image_torch.shape[2] % LATENT_SCALE_FACTOR == 0
|
||||
assert input_image_torch.shape[3] % LATENT_SCALE_FACTOR == 0
|
||||
global_noise = get_noise(
|
||||
width=input_image_torch.shape[3],
|
||||
height=input_image_torch.shape[2],
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
seed=seed,
|
||||
downsampling_factor=LATENT_SCALE_FACTOR,
|
||||
use_cpu=True,
|
||||
)
|
||||
|
||||
# Crop the global noise into tiles.
|
||||
noise_tiles = [self.crop_latents_to_tile(latents=global_noise, image_tile=t) for t in tiles]
|
||||
|
||||
# Prepare an iterator that yields the UNet's LoRA models and their weights.
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
# Load the UNet model.
|
||||
unet_info = context.models.load(self.unet.unet)
|
||||
|
||||
refined_latent_tiles: list[torch.Tensor] = []
|
||||
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
|
||||
assert isinstance(unet, UNet2DConditionModel)
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
)
|
||||
pipeline = DenoiseLatentsInvocation.create_pipeline(unet=unet, scheduler=scheduler)
|
||||
|
||||
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
|
||||
# Assume that all tiles have the same shape.
|
||||
_, _, latent_height, latent_width = latent_tiles[0].shape
|
||||
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
negative_conditioning_field=self.negative_conditioning,
|
||||
unet=unet,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
|
||||
# Load the ControlNet model.
|
||||
# TODO(ryand): Support multiple ControlNet models.
|
||||
controlnet_model = exit_stack.enter_context(context.models.load(self.control_model))
|
||||
assert isinstance(controlnet_model, ControlNetModel)
|
||||
|
||||
# Denoise (i.e. "refine") each tile independently.
|
||||
for image_tile_np, latent_tile, noise_tile in zip(image_tiles_np, latent_tiles, noise_tiles, strict=True):
|
||||
assert latent_tile.shape == noise_tile.shape
|
||||
|
||||
# Prepare a PIL Image for ControlNet processing.
|
||||
# TODO(ryand): This is a bit awkward that we have to prepare both torch.Tensor and PIL.Image versions of
|
||||
# the tiles. Ideally, the ControlNet code should be able to work with Tensors.
|
||||
image_tile_pil = Image.fromarray(image_tile_np)
|
||||
|
||||
# Run the ControlNet on the image tile.
|
||||
height, width, _ = image_tile_np.shape
|
||||
# The height and width must be evenly divisible by LATENT_SCALE_FACTOR. This is enforced earlier, but we
|
||||
# validate this assumption here.
|
||||
assert height % LATENT_SCALE_FACTOR == 0
|
||||
assert width % LATENT_SCALE_FACTOR == 0
|
||||
controlnet_data = self.run_controlnet(
|
||||
image=image_tile_pil,
|
||||
controlnet_model=controlnet_model,
|
||||
weight=self.control_weight,
|
||||
do_classifier_free_guidance=True,
|
||||
width=width,
|
||||
height=height,
|
||||
device=controlnet_model.device,
|
||||
dtype=controlnet_model.dtype,
|
||||
control_mode="balanced",
|
||||
resize_mode="just_resize_simple",
|
||||
)
|
||||
|
||||
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = (
|
||||
DenoiseLatentsInvocation.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
steps=self.steps,
|
||||
denoising_start=self.denoising_start,
|
||||
denoising_end=self.denoising_end,
|
||||
seed=seed,
|
||||
)
|
||||
)
|
||||
|
||||
# TODO(ryand): Think about when/if latents/noise should be moved off of the device to save VRAM.
|
||||
latent_tile = latent_tile.to(device=unet.device, dtype=unet.dtype)
|
||||
noise_tile = noise_tile.to(device=unet.device, dtype=unet.dtype)
|
||||
refined_latent_tile = pipeline.latents_from_embeddings(
|
||||
latents=latent_tile,
|
||||
timesteps=timesteps,
|
||||
init_timestep=init_timestep,
|
||||
noise=noise_tile,
|
||||
seed=seed,
|
||||
mask=None,
|
||||
masked_latents=None,
|
||||
gradient_mask=None,
|
||||
num_inference_steps=num_inference_steps,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=[controlnet_data],
|
||||
ip_adapter_data=None,
|
||||
t2i_adapter_data=None,
|
||||
callback=lambda x: None,
|
||||
)
|
||||
refined_latent_tiles.append(refined_latent_tile)
|
||||
|
||||
# VAE-decode each refined latent tile independently.
|
||||
refined_image_tiles: list[Image.Image] = []
|
||||
for refined_latent_tile in refined_latent_tiles:
|
||||
refined_image_tile = LatentsToImageInvocation.vae_decode(
|
||||
context=context,
|
||||
vae_info=vae_info,
|
||||
seamless_axes=self.vae.seamless_axes,
|
||||
latents=refined_latent_tile,
|
||||
use_fp32=self.vae_fp32,
|
||||
use_tiling=False,
|
||||
)
|
||||
refined_image_tiles.append(refined_image_tile)
|
||||
|
||||
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
# Merge the refined image tiles back into a single image.
|
||||
refined_image_tiles_np = [np.array(t) for t in refined_image_tiles]
|
||||
merged_image_np = np.zeros(shape=(input_image.height, input_image.width, 3), dtype=np.uint8)
|
||||
# TODO(ryand): Tune the blend_amount. Should this be exposed as a parameter?
|
||||
merge_tiles_with_linear_blending(
|
||||
dst_image=merged_image_np, tiles=tiles, tile_images=refined_image_tiles_np, blend_amount=self.tile_overlap
|
||||
)
|
||||
|
||||
# Save the refined image and return its reference.
|
||||
merged_image_pil = Image.fromarray(merged_image_np)
|
||||
image_dto = context.images.save(image=merged_image_pil)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
@ -3,9 +3,8 @@ from typing import TYPE_CHECKING, Any, ClassVar, Coroutine, Generic, Optional, P
|
||||
|
||||
from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.registry.payload_schema import registry as payload_schema
|
||||
from pydantic import BaseModel, ConfigDict, Field, SerializeAsAny, field_validator
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
@ -14,6 +13,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
SessionQueueItem,
|
||||
SessionQueueStatus,
|
||||
)
|
||||
from invokeai.app.services.shared.graph import AnyInvocation, AnyInvocationOutput
|
||||
from invokeai.app.util.misc import get_timestamp
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
@ -98,17 +98,9 @@ class InvocationEventBase(QueueItemEventBase):
|
||||
item_id: int = Field(description="The ID of the queue item")
|
||||
batch_id: str = Field(description="The ID of the queue batch")
|
||||
session_id: str = Field(description="The ID of the session (aka graph execution state)")
|
||||
invocation: SerializeAsAny[BaseInvocation] = Field(description="The ID of the invocation")
|
||||
invocation: AnyInvocation = Field(description="The ID of the invocation")
|
||||
invocation_source_id: str = Field(description="The ID of the prepared invocation's source node")
|
||||
|
||||
@field_validator("invocation", mode="plain")
|
||||
@classmethod
|
||||
def validate_invocation(cls, v: Any):
|
||||
"""Validates the invocation using the dynamic type adapter."""
|
||||
|
||||
invocation = BaseInvocation.get_typeadapter().validate_python(v)
|
||||
return invocation
|
||||
|
||||
|
||||
@payload_schema.register
|
||||
class InvocationStartedEvent(InvocationEventBase):
|
||||
@ -117,7 +109,7 @@ class InvocationStartedEvent(InvocationEventBase):
|
||||
__event_name__ = "invocation_started"
|
||||
|
||||
@classmethod
|
||||
def build(cls, queue_item: SessionQueueItem, invocation: BaseInvocation) -> "InvocationStartedEvent":
|
||||
def build(cls, queue_item: SessionQueueItem, invocation: AnyInvocation) -> "InvocationStartedEvent":
|
||||
return cls(
|
||||
queue_id=queue_item.queue_id,
|
||||
item_id=queue_item.item_id,
|
||||
@ -144,7 +136,7 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
|
||||
def build(
|
||||
cls,
|
||||
queue_item: SessionQueueItem,
|
||||
invocation: BaseInvocation,
|
||||
invocation: AnyInvocation,
|
||||
intermediate_state: PipelineIntermediateState,
|
||||
progress_image: ProgressImage,
|
||||
) -> "InvocationDenoiseProgressEvent":
|
||||
@ -182,19 +174,11 @@ class InvocationCompleteEvent(InvocationEventBase):
|
||||
|
||||
__event_name__ = "invocation_complete"
|
||||
|
||||
result: SerializeAsAny[BaseInvocationOutput] = Field(description="The result of the invocation")
|
||||
|
||||
@field_validator("result", mode="plain")
|
||||
@classmethod
|
||||
def validate_results(cls, v: Any):
|
||||
"""Validates the invocation result using the dynamic type adapter."""
|
||||
|
||||
result = BaseInvocationOutput.get_typeadapter().validate_python(v)
|
||||
return result
|
||||
result: AnyInvocationOutput = Field(description="The result of the invocation")
|
||||
|
||||
@classmethod
|
||||
def build(
|
||||
cls, queue_item: SessionQueueItem, invocation: BaseInvocation, result: BaseInvocationOutput
|
||||
cls, queue_item: SessionQueueItem, invocation: AnyInvocation, result: AnyInvocationOutput
|
||||
) -> "InvocationCompleteEvent":
|
||||
return cls(
|
||||
queue_id=queue_item.queue_id,
|
||||
@ -223,7 +207,7 @@ class InvocationErrorEvent(InvocationEventBase):
|
||||
def build(
|
||||
cls,
|
||||
queue_item: SessionQueueItem,
|
||||
invocation: BaseInvocation,
|
||||
invocation: AnyInvocation,
|
||||
error_type: str,
|
||||
error_message: str,
|
||||
error_traceback: str,
|
||||
|
@ -2,18 +2,19 @@
|
||||
|
||||
import copy
|
||||
import itertools
|
||||
from typing import Annotated, Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
|
||||
from typing import Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
|
||||
|
||||
import networkx as nx
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
GetCoreSchemaHandler,
|
||||
GetJsonSchemaHandler,
|
||||
ValidationError,
|
||||
field_validator,
|
||||
)
|
||||
from pydantic.fields import Field
|
||||
from pydantic.json_schema import JsonSchemaValue
|
||||
from pydantic_core import CoreSchema
|
||||
from pydantic_core import core_schema
|
||||
|
||||
# Importing * is bad karma but needed here for node detection
|
||||
from invokeai.app.invocations import * # noqa: F401 F403
|
||||
@ -277,73 +278,58 @@ class CollectInvocation(BaseInvocation):
|
||||
return CollectInvocationOutput(collection=copy.copy(self.collection))
|
||||
|
||||
|
||||
class AnyInvocation(BaseInvocation):
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(cls, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
def validate_invocation(v: Any) -> "AnyInvocation":
|
||||
return BaseInvocation.get_typeadapter().validate_python(v)
|
||||
|
||||
return core_schema.no_info_plain_validator_function(validate_invocation)
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(
|
||||
cls, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
|
||||
) -> JsonSchemaValue:
|
||||
# Nodes are too powerful, we have to make our own OpenAPI schema manually
|
||||
# No but really, because the schema is dynamic depending on loaded nodes, we need to generate it manually
|
||||
oneOf: list[dict[str, str]] = []
|
||||
names = [i.__name__ for i in BaseInvocation.get_invocations()]
|
||||
for name in sorted(names):
|
||||
oneOf.append({"$ref": f"#/components/schemas/{name}"})
|
||||
return {"oneOf": oneOf}
|
||||
|
||||
|
||||
class AnyInvocationOutput(BaseInvocationOutput):
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(cls, source_type: Any, handler: GetCoreSchemaHandler):
|
||||
def validate_invocation_output(v: Any) -> "AnyInvocationOutput":
|
||||
return BaseInvocationOutput.get_typeadapter().validate_python(v)
|
||||
|
||||
return core_schema.no_info_plain_validator_function(validate_invocation_output)
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(
|
||||
cls, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
|
||||
) -> JsonSchemaValue:
|
||||
# Nodes are too powerful, we have to make our own OpenAPI schema manually
|
||||
# No but really, because the schema is dynamic depending on loaded nodes, we need to generate it manually
|
||||
|
||||
oneOf: list[dict[str, str]] = []
|
||||
names = [i.__name__ for i in BaseInvocationOutput.get_outputs()]
|
||||
for name in sorted(names):
|
||||
oneOf.append({"$ref": f"#/components/schemas/{name}"})
|
||||
return {"oneOf": oneOf}
|
||||
|
||||
|
||||
class Graph(BaseModel):
|
||||
id: str = Field(description="The id of this graph", default_factory=uuid_string)
|
||||
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
|
||||
nodes: dict[str, BaseInvocation] = Field(description="The nodes in this graph", default_factory=dict)
|
||||
nodes: dict[str, AnyInvocation] = Field(description="The nodes in this graph", default_factory=dict)
|
||||
edges: list[Edge] = Field(
|
||||
description="The connections between nodes and their fields in this graph",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
@field_validator("nodes", mode="plain")
|
||||
@classmethod
|
||||
def validate_nodes(cls, v: dict[str, Any]):
|
||||
"""Validates the nodes in the graph by retrieving a union of all node types and validating each node."""
|
||||
|
||||
# Invocations register themselves as their python modules are executed. The union of all invocations is
|
||||
# constructed at runtime. We use pydantic to validate `Graph.nodes` using that union.
|
||||
#
|
||||
# It's possible that when `graph.py` is executed, not all invocation-containing modules will have executed. If
|
||||
# we construct the invocation union as `graph.py` is executed, we may miss some invocations. Those missing
|
||||
# invocations will cause a graph to fail if they are used.
|
||||
#
|
||||
# We can get around this by validating the nodes in the graph using a "plain" validator, which overrides the
|
||||
# pydantic validation entirely. This allows us to validate the nodes using the union of invocations at runtime.
|
||||
#
|
||||
# This same pattern is used in `GraphExecutionState`.
|
||||
|
||||
nodes: dict[str, BaseInvocation] = {}
|
||||
typeadapter = BaseInvocation.get_typeadapter()
|
||||
for node_id, node in v.items():
|
||||
nodes[node_id] = typeadapter.validate_python(node)
|
||||
return nodes
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(cls, core_schema: CoreSchema, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
|
||||
# We use a "plain" validator to validate the nodes in the graph. Pydantic is unable to create a JSON Schema for
|
||||
# fields that use "plain" validators, so we have to hack around this. Also, we need to add all invocations to
|
||||
# the generated schema as options for the `nodes` field.
|
||||
#
|
||||
# The workaround is to create a new BaseModel that has the same fields as `Graph` but without the validator and
|
||||
# with the invocation union as the type for the `nodes` field. Pydantic then generates the JSON Schema as
|
||||
# expected.
|
||||
#
|
||||
# You might be tempted to do something like this:
|
||||
#
|
||||
# ```py
|
||||
# cloned_model = create_model(cls.__name__, __base__=cls, nodes=...)
|
||||
# delattr(cloned_model, "validate_nodes")
|
||||
# cloned_model.model_rebuild(force=True)
|
||||
# json_schema = handler(cloned_model.__pydantic_core_schema__)
|
||||
# ```
|
||||
#
|
||||
# Unfortunately, this does not work. Calling `handler` here results in infinite recursion as pydantic attempts
|
||||
# to build the JSON Schema for the cloned model. Instead, we have to manually clone the model.
|
||||
#
|
||||
# This same pattern is used in `GraphExecutionState`.
|
||||
|
||||
class Graph(BaseModel):
|
||||
id: Optional[str] = Field(default=None, description="The id of this graph")
|
||||
nodes: dict[
|
||||
str, Annotated[Union[tuple(BaseInvocation._invocation_classes)], Field(discriminator="type")]
|
||||
] = Field(description="The nodes in this graph")
|
||||
edges: list[Edge] = Field(description="The connections between nodes and their fields in this graph")
|
||||
|
||||
json_schema = handler(Graph.__pydantic_core_schema__)
|
||||
json_schema = handler.resolve_ref_schema(json_schema)
|
||||
return json_schema
|
||||
|
||||
def add_node(self, node: BaseInvocation) -> None:
|
||||
"""Adds a node to a graph
|
||||
|
||||
@ -774,7 +760,7 @@ class GraphExecutionState(BaseModel):
|
||||
)
|
||||
|
||||
# The results of executed nodes
|
||||
results: dict[str, BaseInvocationOutput] = Field(description="The results of node executions", default_factory=dict)
|
||||
results: dict[str, AnyInvocationOutput] = Field(description="The results of node executions", default_factory=dict)
|
||||
|
||||
# Errors raised when executing nodes
|
||||
errors: dict[str, str] = Field(description="Errors raised when executing nodes", default_factory=dict)
|
||||
@ -791,52 +777,12 @@ class GraphExecutionState(BaseModel):
|
||||
default_factory=dict,
|
||||
)
|
||||
|
||||
@field_validator("results", mode="plain")
|
||||
@classmethod
|
||||
def validate_results(cls, v: dict[str, BaseInvocationOutput]):
|
||||
"""Validates the results in the GES by retrieving a union of all output types and validating each result."""
|
||||
|
||||
# See the comment in `Graph.validate_nodes` for an explanation of this logic.
|
||||
results: dict[str, BaseInvocationOutput] = {}
|
||||
typeadapter = BaseInvocationOutput.get_typeadapter()
|
||||
for result_id, result in v.items():
|
||||
results[result_id] = typeadapter.validate_python(result)
|
||||
return results
|
||||
|
||||
@field_validator("graph")
|
||||
def graph_is_valid(cls, v: Graph):
|
||||
"""Validates that the graph is valid"""
|
||||
v.validate_self()
|
||||
return v
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(cls, core_schema: CoreSchema, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
|
||||
# See the comment in `Graph.__get_pydantic_json_schema__` for an explanation of this logic.
|
||||
class GraphExecutionState(BaseModel):
|
||||
"""Tracks the state of a graph execution"""
|
||||
|
||||
id: str = Field(description="The id of the execution state")
|
||||
graph: Graph = Field(description="The graph being executed")
|
||||
execution_graph: Graph = Field(description="The expanded graph of activated and executed nodes")
|
||||
executed: set[str] = Field(description="The set of node ids that have been executed")
|
||||
executed_history: list[str] = Field(
|
||||
description="The list of node ids that have been executed, in order of execution"
|
||||
)
|
||||
results: dict[
|
||||
str, Annotated[Union[tuple(BaseInvocationOutput._output_classes)], Field(discriminator="type")]
|
||||
] = Field(description="The results of node executions")
|
||||
errors: dict[str, str] = Field(description="Errors raised when executing nodes")
|
||||
prepared_source_mapping: dict[str, str] = Field(
|
||||
description="The map of prepared nodes to original graph nodes"
|
||||
)
|
||||
source_prepared_mapping: dict[str, set[str]] = Field(
|
||||
description="The map of original graph nodes to prepared nodes"
|
||||
)
|
||||
|
||||
json_schema = handler(GraphExecutionState.__pydantic_core_schema__)
|
||||
json_schema = handler.resolve_ref_schema(json_schema)
|
||||
return json_schema
|
||||
|
||||
def next(self) -> Optional[BaseInvocation]:
|
||||
"""Gets the next node ready to execute."""
|
||||
|
||||
|
@ -289,7 +289,7 @@ def prepare_control_image(
|
||||
width: int,
|
||||
height: int,
|
||||
num_channels: int = 3,
|
||||
device: str = "cuda",
|
||||
device: str | torch.device = "cuda",
|
||||
dtype: torch.dtype = torch.float16,
|
||||
control_mode: CONTROLNET_MODE_VALUES = "balanced",
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
|
||||
@ -304,7 +304,7 @@ def prepare_control_image(
|
||||
num_channels (int, optional): The target number of image channels. This is achieved by converting the input
|
||||
image to RGB, then naively taking the first `num_channels` channels. The primary use case is converting a
|
||||
RGB image to a single-channel grayscale image. Raises if `num_channels` cannot be achieved. Defaults to 3.
|
||||
device (str, optional): The target device for the output image. Defaults to "cuda".
|
||||
device (str | torch.Device, optional): The target device for the output image. Defaults to "cuda".
|
||||
dtype (_type_, optional): The dtype for the output image. Defaults to torch.float16.
|
||||
do_classifier_free_guidance (bool, optional): If True, repeat the output image along the batch dimension.
|
||||
Defaults to True.
|
||||
|
116
invokeai/app/util/custom_openapi.py
Normal file
116
invokeai/app/util/custom_openapi.py
Normal file
@ -0,0 +1,116 @@
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
from fastapi import FastAPI
|
||||
from fastapi.openapi.utils import get_openapi
|
||||
from pydantic.json_schema import models_json_schema
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, UIConfigBase
|
||||
from invokeai.app.invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.events.events_common import EventBase
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
|
||||
|
||||
def move_defs_to_top_level(openapi_schema: dict[str, Any], component_schema: dict[str, Any]) -> None:
|
||||
"""Moves a component schema's $defs to the top level of the openapi schema. Useful when generating a schema
|
||||
for a single model that needs to be added back to the top level of the schema. Mutates openapi_schema and
|
||||
component_schema."""
|
||||
|
||||
defs = component_schema.pop("$defs", {})
|
||||
for schema_key, json_schema in defs.items():
|
||||
if schema_key in openapi_schema["components"]["schemas"]:
|
||||
continue
|
||||
openapi_schema["components"]["schemas"][schema_key] = json_schema
|
||||
|
||||
|
||||
def get_openapi_func(
|
||||
app: FastAPI, post_transform: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None
|
||||
) -> Callable[[], dict[str, Any]]:
|
||||
"""Gets the OpenAPI schema generator function.
|
||||
|
||||
Args:
|
||||
app (FastAPI): The FastAPI app to generate the schema for.
|
||||
post_transform (Optional[Callable[[dict[str, Any]], dict[str, Any]]], optional): A function to apply to the
|
||||
generated schema before returning it. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Callable[[], dict[str, Any]]: The OpenAPI schema generator function. When first called, the generated schema is
|
||||
cached in `app.openapi_schema`. On subsequent calls, the cached schema is returned. This caching behaviour
|
||||
matches FastAPI's default schema generation caching.
|
||||
"""
|
||||
|
||||
def openapi() -> dict[str, Any]:
|
||||
if app.openapi_schema:
|
||||
return app.openapi_schema
|
||||
|
||||
openapi_schema = get_openapi(
|
||||
title=app.title,
|
||||
description="An API for invoking AI image operations",
|
||||
version="1.0.0",
|
||||
routes=app.routes,
|
||||
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
|
||||
)
|
||||
|
||||
# We'll create a map of invocation type to output schema to make some types simpler on the client.
|
||||
invocation_output_map_properties: dict[str, Any] = {}
|
||||
invocation_output_map_required: list[str] = []
|
||||
|
||||
# We need to manually add all outputs to the schema - pydantic doesn't add them because they aren't used directly.
|
||||
for output in BaseInvocationOutput.get_outputs():
|
||||
json_schema = output.model_json_schema(mode="serialization", ref_template="#/components/schemas/{model}")
|
||||
move_defs_to_top_level(openapi_schema, json_schema)
|
||||
openapi_schema["components"]["schemas"][output.__name__] = json_schema
|
||||
|
||||
# Technically, invocations are added to the schema by pydantic, but we still need to manually set their output
|
||||
# property, so we'll just do it all manually.
|
||||
for invocation in BaseInvocation.get_invocations():
|
||||
json_schema = invocation.model_json_schema(
|
||||
mode="serialization", ref_template="#/components/schemas/{model}"
|
||||
)
|
||||
move_defs_to_top_level(openapi_schema, json_schema)
|
||||
output_title = invocation.get_output_annotation().__name__
|
||||
outputs_ref = {"$ref": f"#/components/schemas/{output_title}"}
|
||||
json_schema["output"] = outputs_ref
|
||||
openapi_schema["components"]["schemas"][invocation.__name__] = json_schema
|
||||
|
||||
# Add this invocation and its output to the output map
|
||||
invocation_type = invocation.get_type()
|
||||
invocation_output_map_properties[invocation_type] = json_schema["output"]
|
||||
invocation_output_map_required.append(invocation_type)
|
||||
|
||||
# Add the output map to the schema
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
|
||||
"type": "object",
|
||||
"properties": invocation_output_map_properties,
|
||||
"required": invocation_output_map_required,
|
||||
}
|
||||
|
||||
# Some models don't end up in the schemas as standalone definitions because they aren't used directly in the API.
|
||||
# We need to add them manually here. WARNING: Pydantic can choke if you call `model.model_json_schema()` to get
|
||||
# a schema. This has something to do with schema refs - not totally clear. For whatever reason, using
|
||||
# `models_json_schema` seems to work fine.
|
||||
additional_models = [
|
||||
*EventBase.get_events(),
|
||||
UIConfigBase,
|
||||
InputFieldJSONSchemaExtra,
|
||||
OutputFieldJSONSchemaExtra,
|
||||
ModelIdentifierField,
|
||||
ProgressImage,
|
||||
]
|
||||
|
||||
additional_schemas = models_json_schema(
|
||||
[(m, "serialization") for m in additional_models],
|
||||
ref_template="#/components/schemas/{model}",
|
||||
)
|
||||
# additional_schemas[1] is a dict of $defs that we need to add to the top level of the schema
|
||||
move_defs_to_top_level(openapi_schema, additional_schemas[1])
|
||||
|
||||
if post_transform is not None:
|
||||
openapi_schema = post_transform(openapi_schema)
|
||||
|
||||
openapi_schema["components"]["schemas"] = dict(sorted(openapi_schema["components"]["schemas"].items()))
|
||||
|
||||
app.openapi_schema = openapi_schema
|
||||
return app.openapi_schema
|
||||
|
||||
return openapi
|
@ -60,5 +60,5 @@ class ModelLocker(ModelLockerBase):
|
||||
|
||||
self._cache_entry.unlock()
|
||||
if not self._cache.lazy_offloading:
|
||||
self._cache.offload_unlocked_models(self._cache_entry.size)
|
||||
self._cache.offload_unlocked_models(0)
|
||||
self._cache.print_cuda_stats()
|
||||
|
@ -10,7 +10,7 @@ from picklescan.scanner import scan_file_path
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
|
||||
from invokeai.backend.util.util import SilenceWarnings
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
from .config import (
|
||||
AnyModelConfig,
|
||||
|
@ -11,7 +11,6 @@ import psutil
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.models.controlnet import ControlNetModel
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
from diffusers.schedulers import KarrasDiffusionSchedulers
|
||||
@ -26,6 +25,7 @@ from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion impor
|
||||
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
|
||||
from invokeai.backend.util.attention import auto_detect_slice_size
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.hotfixes import ControlNetModel
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -1,29 +1,36 @@
|
||||
"""Context class to silence transformers and diffusers warnings."""
|
||||
|
||||
import warnings
|
||||
from typing import Any
|
||||
from contextlib import ContextDecorator
|
||||
|
||||
from diffusers import logging as diffusers_logging
|
||||
from diffusers.utils import logging as diffusers_logging
|
||||
from transformers import logging as transformers_logging
|
||||
|
||||
|
||||
class SilenceWarnings(object):
|
||||
"""Use in context to temporarily turn off warnings from transformers & diffusers modules.
|
||||
# Inherit from ContextDecorator to allow using SilenceWarnings as both a context manager and a decorator.
|
||||
class SilenceWarnings(ContextDecorator):
|
||||
"""A context manager that disables warnings from transformers & diffusers modules while active.
|
||||
|
||||
As context manager:
|
||||
```
|
||||
with SilenceWarnings():
|
||||
# do something
|
||||
```
|
||||
|
||||
As decorator:
|
||||
```
|
||||
@SilenceWarnings()
|
||||
def some_function():
|
||||
# do something
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.transformers_verbosity = transformers_logging.get_verbosity()
|
||||
self.diffusers_verbosity = diffusers_logging.get_verbosity()
|
||||
|
||||
def __enter__(self) -> None:
|
||||
self._transformers_verbosity = transformers_logging.get_verbosity()
|
||||
self._diffusers_verbosity = diffusers_logging.get_verbosity()
|
||||
transformers_logging.set_verbosity_error()
|
||||
diffusers_logging.set_verbosity_error()
|
||||
warnings.simplefilter("ignore")
|
||||
|
||||
def __exit__(self, *args: Any) -> None:
|
||||
transformers_logging.set_verbosity(self.transformers_verbosity)
|
||||
diffusers_logging.set_verbosity(self.diffusers_verbosity)
|
||||
def __exit__(self, *args) -> None:
|
||||
transformers_logging.set_verbosity(self._transformers_verbosity)
|
||||
diffusers_logging.set_verbosity(self._diffusers_verbosity)
|
||||
warnings.simplefilter("default")
|
||||
|
@ -1,12 +1,9 @@
|
||||
import base64
|
||||
import io
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
from diffusers import logging as diffusers_logging
|
||||
from PIL import Image
|
||||
from transformers import logging as transformers_logging
|
||||
|
||||
# actual size of a gig
|
||||
GIG = 1073741824
|
||||
@ -51,21 +48,3 @@ class Chdir(object):
|
||||
|
||||
def __exit__(self, *args):
|
||||
os.chdir(self.original)
|
||||
|
||||
|
||||
class SilenceWarnings(object):
|
||||
"""Context manager to temporarily lower verbosity of diffusers & transformers warning messages."""
|
||||
|
||||
def __enter__(self):
|
||||
"""Set verbosity to error."""
|
||||
self.transformers_verbosity = transformers_logging.get_verbosity()
|
||||
self.diffusers_verbosity = diffusers_logging.get_verbosity()
|
||||
transformers_logging.set_verbosity_error()
|
||||
diffusers_logging.set_verbosity_error()
|
||||
warnings.simplefilter("ignore")
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
"""Restore logger verbosity to state before context was entered."""
|
||||
transformers_logging.set_verbosity(self.transformers_verbosity)
|
||||
diffusers_logging.set_verbosity(self.diffusers_verbosity)
|
||||
warnings.simplefilter("default")
|
||||
|
@ -1021,7 +1021,8 @@
|
||||
"float": "Kommazahlen",
|
||||
"enum": "Aufzählung",
|
||||
"fullyContainNodes": "Vollständig ausgewählte Nodes auswählen",
|
||||
"editMode": "Im Workflow-Editor bearbeiten"
|
||||
"editMode": "Im Workflow-Editor bearbeiten",
|
||||
"resetToDefaultValue": "Auf Standardwert zurücksetzen"
|
||||
},
|
||||
"hrf": {
|
||||
"enableHrf": "Korrektur für hohe Auflösungen",
|
||||
|
@ -148,6 +148,8 @@
|
||||
"viewingDesc": "Review images in a large gallery view",
|
||||
"editing": "Editing",
|
||||
"editingDesc": "Edit on the Control Layers canvas",
|
||||
"comparing": "Comparing",
|
||||
"comparingDesc": "Comparing two images",
|
||||
"enabled": "Enabled",
|
||||
"disabled": "Disabled"
|
||||
},
|
||||
@ -375,7 +377,23 @@
|
||||
"bulkDownloadRequestFailed": "Problem Preparing Download",
|
||||
"bulkDownloadFailed": "Download Failed",
|
||||
"problemDeletingImages": "Problem Deleting Images",
|
||||
"problemDeletingImagesDesc": "One or more images could not be deleted"
|
||||
"problemDeletingImagesDesc": "One or more images could not be deleted",
|
||||
"viewerImage": "Viewer Image",
|
||||
"compareImage": "Compare Image",
|
||||
"openInViewer": "Open in Viewer",
|
||||
"selectForCompare": "Select for Compare",
|
||||
"selectAnImageToCompare": "Select an Image to Compare",
|
||||
"slider": "Slider",
|
||||
"sideBySide": "Side-by-Side",
|
||||
"hover": "Hover",
|
||||
"swapImages": "Swap Images",
|
||||
"compareOptions": "Comparison Options",
|
||||
"stretchToFit": "Stretch to Fit",
|
||||
"exitCompare": "Exit Compare",
|
||||
"compareHelp1": "Hold <Kbd>Alt</Kbd> while clicking a gallery image or using the arrow keys to change the compare image.",
|
||||
"compareHelp2": "Press <Kbd>M</Kbd> to cycle through comparison modes.",
|
||||
"compareHelp3": "Press <Kbd>C</Kbd> to swap the compared images.",
|
||||
"compareHelp4": "Press <Kbd>Z</Kbd> or <Kbd>Esc</Kbd> to exit."
|
||||
},
|
||||
"hotkeys": {
|
||||
"searchHotkeys": "Search Hotkeys",
|
||||
|
@ -6,7 +6,7 @@
|
||||
"settingsLabel": "Ajustes",
|
||||
"img2img": "Imagen a Imagen",
|
||||
"unifiedCanvas": "Lienzo Unificado",
|
||||
"nodes": "Editor del flujo de trabajo",
|
||||
"nodes": "Flujos de trabajo",
|
||||
"upload": "Subir imagen",
|
||||
"load": "Cargar",
|
||||
"statusDisconnected": "Desconectado",
|
||||
@ -14,7 +14,7 @@
|
||||
"discordLabel": "Discord",
|
||||
"back": "Atrás",
|
||||
"loading": "Cargando",
|
||||
"postprocessing": "Tratamiento posterior",
|
||||
"postprocessing": "Postprocesado",
|
||||
"txt2img": "De texto a imagen",
|
||||
"accept": "Aceptar",
|
||||
"cancel": "Cancelar",
|
||||
@ -42,7 +42,42 @@
|
||||
"copy": "Copiar",
|
||||
"beta": "Beta",
|
||||
"on": "En",
|
||||
"aboutDesc": "¿Utilizas Invoke para trabajar? Mira aquí:"
|
||||
"aboutDesc": "¿Utilizas Invoke para trabajar? Mira aquí:",
|
||||
"installed": "Instalado",
|
||||
"green": "Verde",
|
||||
"editor": "Editor",
|
||||
"orderBy": "Ordenar por",
|
||||
"file": "Archivo",
|
||||
"goTo": "Ir a",
|
||||
"imageFailedToLoad": "No se puede cargar la imagen",
|
||||
"saveAs": "Guardar Como",
|
||||
"somethingWentWrong": "Algo salió mal",
|
||||
"nextPage": "Página Siguiente",
|
||||
"selected": "Seleccionado",
|
||||
"tab": "Tabulador",
|
||||
"positivePrompt": "Prompt Positivo",
|
||||
"negativePrompt": "Prompt Negativo",
|
||||
"error": "Error",
|
||||
"format": "formato",
|
||||
"unknown": "Desconocido",
|
||||
"input": "Entrada",
|
||||
"nodeEditor": "Editor de nodos",
|
||||
"template": "Plantilla",
|
||||
"prevPage": "Página Anterior",
|
||||
"red": "Rojo",
|
||||
"alpha": "Transparencia",
|
||||
"outputs": "Salidas",
|
||||
"editing": "Editando",
|
||||
"learnMore": "Aprende más",
|
||||
"enabled": "Activado",
|
||||
"disabled": "Desactivado",
|
||||
"folder": "Carpeta",
|
||||
"updated": "Actualizado",
|
||||
"created": "Creado",
|
||||
"save": "Guardar",
|
||||
"unknownError": "Error Desconocido",
|
||||
"blue": "Azul",
|
||||
"viewingDesc": "Revisar imágenes en una vista de galería grande"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Tamaño de la imagen",
|
||||
@ -467,7 +502,8 @@
|
||||
"about": "Acerca de",
|
||||
"createIssue": "Crear un problema",
|
||||
"resetUI": "Interfaz de usuario $t(accessibility.reset)",
|
||||
"mode": "Modo"
|
||||
"mode": "Modo",
|
||||
"submitSupportTicket": "Enviar Ticket de Soporte"
|
||||
},
|
||||
"nodes": {
|
||||
"zoomInNodes": "Acercar",
|
||||
@ -543,5 +579,17 @@
|
||||
"layers_one": "Capa",
|
||||
"layers_many": "Capas",
|
||||
"layers_other": "Capas"
|
||||
},
|
||||
"controlnet": {
|
||||
"crop": "Cortar",
|
||||
"delete": "Eliminar",
|
||||
"depthAnythingDescription": "Generación de mapa de profundidad usando la técnica de Depth Anything",
|
||||
"duplicate": "Duplicar",
|
||||
"colorMapDescription": "Genera un mapa de color desde la imagen",
|
||||
"depthMidasDescription": "Crea un mapa de profundidad con Midas",
|
||||
"balanced": "Equilibrado",
|
||||
"beginEndStepPercent": "Inicio / Final Porcentaje de pasos",
|
||||
"detectResolution": "Detectar resolución",
|
||||
"beginEndStepPercentShort": "Inicio / Final %"
|
||||
}
|
||||
}
|
||||
|
@ -45,7 +45,7 @@
|
||||
"outputs": "Risultati",
|
||||
"data": "Dati",
|
||||
"somethingWentWrong": "Qualcosa è andato storto",
|
||||
"copyError": "$t(gallery.copy) Errore",
|
||||
"copyError": "Errore $t(gallery.copy)",
|
||||
"input": "Ingresso",
|
||||
"notInstalled": "Non $t(common.installed)",
|
||||
"unknownError": "Errore sconosciuto",
|
||||
@ -85,7 +85,11 @@
|
||||
"viewing": "Visualizza",
|
||||
"viewingDesc": "Rivedi le immagini in un'ampia vista della galleria",
|
||||
"editing": "Modifica",
|
||||
"editingDesc": "Modifica nell'area Livelli di controllo"
|
||||
"editingDesc": "Modifica nell'area Livelli di controllo",
|
||||
"enabled": "Abilitato",
|
||||
"disabled": "Disabilitato",
|
||||
"comparingDesc": "Confronta due immagini",
|
||||
"comparing": "Confronta"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Dimensione dell'immagine",
|
||||
@ -122,14 +126,30 @@
|
||||
"bulkDownloadRequestedDesc": "La tua richiesta di download è in preparazione. L'operazione potrebbe richiedere alcuni istanti.",
|
||||
"bulkDownloadRequestFailed": "Problema durante la preparazione del download",
|
||||
"bulkDownloadFailed": "Scaricamento fallito",
|
||||
"alwaysShowImageSizeBadge": "Mostra sempre le dimensioni dell'immagine"
|
||||
"alwaysShowImageSizeBadge": "Mostra sempre le dimensioni dell'immagine",
|
||||
"openInViewer": "Apri nel visualizzatore",
|
||||
"selectForCompare": "Seleziona per il confronto",
|
||||
"selectAnImageToCompare": "Seleziona un'immagine da confrontare",
|
||||
"slider": "Cursore",
|
||||
"sideBySide": "Fianco a Fianco",
|
||||
"compareImage": "Immagine di confronto",
|
||||
"viewerImage": "Immagine visualizzata",
|
||||
"hover": "Al passaggio del mouse",
|
||||
"swapImages": "Scambia le immagini",
|
||||
"compareOptions": "Opzioni di confronto",
|
||||
"stretchToFit": "Scala per adattare",
|
||||
"exitCompare": "Esci dal confronto",
|
||||
"compareHelp1": "Tieni premuto <Kbd>Alt</Kbd> mentre fai clic su un'immagine della galleria o usi i tasti freccia per cambiare l'immagine di confronto.",
|
||||
"compareHelp2": "Premi <Kbd>M</Kbd> per scorrere le modalità di confronto.",
|
||||
"compareHelp3": "Premi <Kbd>C</Kbd> per scambiare le immagini confrontate.",
|
||||
"compareHelp4": "Premi <Kbd>Z</Kbd> o <Kbd>Esc</Kbd> per uscire."
|
||||
},
|
||||
"hotkeys": {
|
||||
"keyboardShortcuts": "Tasti di scelta rapida",
|
||||
"appHotkeys": "Applicazione",
|
||||
"generalHotkeys": "Generale",
|
||||
"galleryHotkeys": "Galleria",
|
||||
"unifiedCanvasHotkeys": "Tela Unificata",
|
||||
"unifiedCanvasHotkeys": "Tela",
|
||||
"invoke": {
|
||||
"title": "Invoke",
|
||||
"desc": "Genera un'immagine"
|
||||
@ -147,8 +167,8 @@
|
||||
"desc": "Apre e chiude il pannello delle opzioni"
|
||||
},
|
||||
"pinOptions": {
|
||||
"title": "Appunta le opzioni",
|
||||
"desc": "Blocca il pannello delle opzioni"
|
||||
"title": "Fissa le opzioni",
|
||||
"desc": "Fissa il pannello delle opzioni"
|
||||
},
|
||||
"toggleGallery": {
|
||||
"title": "Attiva/disattiva galleria",
|
||||
@ -332,14 +352,14 @@
|
||||
"title": "Annulla e cancella"
|
||||
},
|
||||
"resetOptionsAndGallery": {
|
||||
"title": "Ripristina Opzioni e Galleria",
|
||||
"desc": "Reimposta le opzioni e i pannelli della galleria"
|
||||
"title": "Ripristina le opzioni e la galleria",
|
||||
"desc": "Reimposta i pannelli delle opzioni e della galleria"
|
||||
},
|
||||
"searchHotkeys": "Cerca tasti di scelta rapida",
|
||||
"noHotkeysFound": "Nessun tasto di scelta rapida trovato",
|
||||
"toggleOptionsAndGallery": {
|
||||
"desc": "Apre e chiude le opzioni e i pannelli della galleria",
|
||||
"title": "Attiva/disattiva le Opzioni e la Galleria"
|
||||
"title": "Attiva/disattiva le opzioni e la galleria"
|
||||
},
|
||||
"clearSearch": "Cancella ricerca",
|
||||
"remixImage": {
|
||||
@ -348,7 +368,7 @@
|
||||
},
|
||||
"toggleViewer": {
|
||||
"title": "Attiva/disattiva il visualizzatore di immagini",
|
||||
"desc": "Passa dal Visualizzatore immagini all'area di lavoro per la scheda corrente."
|
||||
"desc": "Passa dal visualizzatore immagini all'area di lavoro per la scheda corrente."
|
||||
}
|
||||
},
|
||||
"modelManager": {
|
||||
@ -378,7 +398,7 @@
|
||||
"convertToDiffusers": "Converti in Diffusori",
|
||||
"convertToDiffusersHelpText2": "Questo processo sostituirà la voce in Gestione Modelli con la versione Diffusori dello stesso modello.",
|
||||
"convertToDiffusersHelpText4": "Questo è un processo una tantum. Potrebbero essere necessari circa 30-60 secondi a seconda delle specifiche del tuo computer.",
|
||||
"convertToDiffusersHelpText5": "Assicurati di avere spazio su disco sufficiente. I modelli generalmente variano tra 2 GB e 7 GB di dimensioni.",
|
||||
"convertToDiffusersHelpText5": "Assicurati di avere spazio su disco sufficiente. I modelli generalmente variano tra 2 GB e 7 GB in dimensione.",
|
||||
"convertToDiffusersHelpText6": "Vuoi convertire questo modello?",
|
||||
"modelConverted": "Modello convertito",
|
||||
"alpha": "Alpha",
|
||||
@ -528,7 +548,7 @@
|
||||
"layer": {
|
||||
"initialImageNoImageSelected": "Nessuna immagine iniziale selezionata",
|
||||
"t2iAdapterIncompatibleDimensions": "L'adattatore T2I richiede che la dimensione dell'immagine sia un multiplo di {{multiple}}",
|
||||
"controlAdapterNoModelSelected": "Nessun modello di Adattatore di Controllo selezionato",
|
||||
"controlAdapterNoModelSelected": "Nessun modello di adattatore di controllo selezionato",
|
||||
"controlAdapterIncompatibleBaseModel": "Il modello base dell'adattatore di controllo non è compatibile",
|
||||
"controlAdapterNoImageSelected": "Nessuna immagine dell'adattatore di controllo selezionata",
|
||||
"controlAdapterImageNotProcessed": "Immagine dell'adattatore di controllo non elaborata",
|
||||
@ -606,25 +626,25 @@
|
||||
"canvasMerged": "Tela unita",
|
||||
"sentToImageToImage": "Inviato a Generazione da immagine",
|
||||
"sentToUnifiedCanvas": "Inviato alla Tela",
|
||||
"parametersNotSet": "Parametri non impostati",
|
||||
"parametersNotSet": "Parametri non richiamati",
|
||||
"metadataLoadFailed": "Impossibile caricare i metadati",
|
||||
"serverError": "Errore del Server",
|
||||
"connected": "Connesso al Server",
|
||||
"connected": "Connesso al server",
|
||||
"canceled": "Elaborazione annullata",
|
||||
"uploadFailedInvalidUploadDesc": "Deve essere una singola immagine PNG o JPEG",
|
||||
"parameterSet": "{{parameter}} impostato",
|
||||
"parameterNotSet": "{{parameter}} non impostato",
|
||||
"parameterSet": "Parametro richiamato",
|
||||
"parameterNotSet": "Parametro non richiamato",
|
||||
"problemCopyingImage": "Impossibile copiare l'immagine",
|
||||
"baseModelChangedCleared_one": "Il modello base è stato modificato, cancellato o disabilitato {{count}} sotto-modello incompatibile",
|
||||
"baseModelChangedCleared_many": "Il modello base è stato modificato, cancellato o disabilitato {{count}} sotto-modelli incompatibili",
|
||||
"baseModelChangedCleared_other": "Il modello base è stato modificato, cancellato o disabilitato {{count}} sotto-modelli incompatibili",
|
||||
"baseModelChangedCleared_one": "Cancellato o disabilitato {{count}} sottomodello incompatibile",
|
||||
"baseModelChangedCleared_many": "Cancellati o disabilitati {{count}} sottomodelli incompatibili",
|
||||
"baseModelChangedCleared_other": "Cancellati o disabilitati {{count}} sottomodelli incompatibili",
|
||||
"imageSavingFailed": "Salvataggio dell'immagine non riuscito",
|
||||
"canvasSentControlnetAssets": "Tela inviata a ControlNet & Risorse",
|
||||
"problemCopyingCanvasDesc": "Impossibile copiare la tela",
|
||||
"loadedWithWarnings": "Flusso di lavoro caricato con avvisi",
|
||||
"canvasCopiedClipboard": "Tela copiata negli appunti",
|
||||
"maskSavedAssets": "Maschera salvata nelle risorse",
|
||||
"problemDownloadingCanvas": "Problema durante il download della tela",
|
||||
"problemDownloadingCanvas": "Problema durante lo scarico della tela",
|
||||
"problemMergingCanvas": "Problema nell'unione delle tele",
|
||||
"imageUploaded": "Immagine caricata",
|
||||
"addedToBoard": "Aggiunto alla bacheca",
|
||||
@ -658,7 +678,17 @@
|
||||
"problemDownloadingImage": "Impossibile scaricare l'immagine",
|
||||
"prunedQueue": "Coda ripulita",
|
||||
"modelImportCanceled": "Importazione del modello annullata",
|
||||
"parameters": "Parametri"
|
||||
"parameters": "Parametri",
|
||||
"parameterSetDesc": "{{parameter}} richiamato",
|
||||
"parameterNotSetDesc": "Impossibile richiamare {{parameter}}",
|
||||
"parameterNotSetDescWithMessage": "Impossibile richiamare {{parameter}}: {{message}}",
|
||||
"parametersSet": "Parametri richiamati",
|
||||
"errorCopied": "Errore copiato",
|
||||
"outOfMemoryError": "Errore di memoria esaurita",
|
||||
"baseModelChanged": "Modello base modificato",
|
||||
"sessionRef": "Sessione: {{sessionId}}",
|
||||
"somethingWentWrong": "Qualcosa è andato storto",
|
||||
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova."
|
||||
},
|
||||
"tooltip": {
|
||||
"feature": {
|
||||
@ -674,7 +704,7 @@
|
||||
"layer": "Livello",
|
||||
"base": "Base",
|
||||
"mask": "Maschera",
|
||||
"maskingOptions": "Opzioni di mascheramento",
|
||||
"maskingOptions": "Opzioni maschera",
|
||||
"enableMask": "Abilita maschera",
|
||||
"preserveMaskedArea": "Mantieni area mascherata",
|
||||
"clearMask": "Cancella maschera (Shift+C)",
|
||||
@ -745,7 +775,8 @@
|
||||
"mode": "Modalità",
|
||||
"resetUI": "$t(accessibility.reset) l'Interfaccia Utente",
|
||||
"createIssue": "Segnala un problema",
|
||||
"about": "Informazioni"
|
||||
"about": "Informazioni",
|
||||
"submitSupportTicket": "Invia ticket di supporto"
|
||||
},
|
||||
"nodes": {
|
||||
"zoomOutNodes": "Rimpicciolire",
|
||||
@ -790,7 +821,7 @@
|
||||
"workflowNotes": "Note",
|
||||
"versionUnknown": " Versione sconosciuta",
|
||||
"unableToValidateWorkflow": "Impossibile convalidare il flusso di lavoro",
|
||||
"updateApp": "Aggiorna App",
|
||||
"updateApp": "Aggiorna Applicazione",
|
||||
"unableToLoadWorkflow": "Impossibile caricare il flusso di lavoro",
|
||||
"updateNode": "Aggiorna nodo",
|
||||
"version": "Versione",
|
||||
@ -882,11 +913,14 @@
|
||||
"missingNode": "Nodo di invocazione mancante",
|
||||
"missingInvocationTemplate": "Modello di invocazione mancante",
|
||||
"missingFieldTemplate": "Modello di campo mancante",
|
||||
"singleFieldType": "{{name}} (Singola)"
|
||||
"singleFieldType": "{{name}} (Singola)",
|
||||
"imageAccessError": "Impossibile trovare l'immagine {{image_name}}, ripristino delle impostazioni predefinite",
|
||||
"boardAccessError": "Impossibile trovare la bacheca {{board_id}}, ripristino ai valori predefiniti",
|
||||
"modelAccessError": "Impossibile trovare il modello {{key}}, ripristino ai valori predefiniti"
|
||||
},
|
||||
"boards": {
|
||||
"autoAddBoard": "Aggiungi automaticamente bacheca",
|
||||
"menuItemAutoAdd": "Aggiungi automaticamente a questa Bacheca",
|
||||
"menuItemAutoAdd": "Aggiungi automaticamente a questa bacheca",
|
||||
"cancel": "Annulla",
|
||||
"addBoard": "Aggiungi Bacheca",
|
||||
"bottomMessage": "L'eliminazione di questa bacheca e delle sue immagini ripristinerà tutte le funzionalità che le stanno attualmente utilizzando.",
|
||||
@ -898,7 +932,7 @@
|
||||
"myBoard": "Bacheca",
|
||||
"searchBoard": "Cerca bacheche ...",
|
||||
"noMatching": "Nessuna bacheca corrispondente",
|
||||
"selectBoard": "Seleziona una Bacheca",
|
||||
"selectBoard": "Seleziona una bacheca",
|
||||
"uncategorized": "Non categorizzato",
|
||||
"downloadBoard": "Scarica la bacheca",
|
||||
"deleteBoardOnly": "solo la Bacheca",
|
||||
@ -919,7 +953,7 @@
|
||||
"control": "Controllo",
|
||||
"crop": "Ritaglia",
|
||||
"depthMidas": "Profondità (Midas)",
|
||||
"detectResolution": "Rileva risoluzione",
|
||||
"detectResolution": "Rileva la risoluzione",
|
||||
"controlMode": "Modalità di controllo",
|
||||
"cannyDescription": "Canny rilevamento bordi",
|
||||
"depthZoe": "Profondità (Zoe)",
|
||||
@ -930,7 +964,7 @@
|
||||
"showAdvanced": "Mostra opzioni Avanzate",
|
||||
"bgth": "Soglia rimozione sfondo",
|
||||
"importImageFromCanvas": "Importa immagine dalla Tela",
|
||||
"lineartDescription": "Converte l'immagine in lineart",
|
||||
"lineartDescription": "Converte l'immagine in linea",
|
||||
"importMaskFromCanvas": "Importa maschera dalla Tela",
|
||||
"hideAdvanced": "Nascondi opzioni avanzate",
|
||||
"resetControlImage": "Reimposta immagine di controllo",
|
||||
@ -946,7 +980,7 @@
|
||||
"pidiDescription": "Elaborazione immagini PIDI",
|
||||
"fill": "Riempie",
|
||||
"colorMapDescription": "Genera una mappa dei colori dall'immagine",
|
||||
"lineartAnimeDescription": "Elaborazione lineart in stile anime",
|
||||
"lineartAnimeDescription": "Elaborazione linea in stile anime",
|
||||
"imageResolution": "Risoluzione dell'immagine",
|
||||
"colorMap": "Colore",
|
||||
"lowThreshold": "Soglia inferiore",
|
||||
|
@ -87,7 +87,11 @@
|
||||
"viewing": "Просмотр",
|
||||
"editing": "Редактирование",
|
||||
"viewingDesc": "Просмотр изображений в режиме большой галереи",
|
||||
"editingDesc": "Редактировать на холсте слоёв управления"
|
||||
"editingDesc": "Редактировать на холсте слоёв управления",
|
||||
"enabled": "Включено",
|
||||
"disabled": "Отключено",
|
||||
"comparingDesc": "Сравнение двух изображений",
|
||||
"comparing": "Сравнение"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Размер изображений",
|
||||
@ -124,7 +128,23 @@
|
||||
"bulkDownloadRequested": "Подготовка к скачиванию",
|
||||
"bulkDownloadRequestedDesc": "Ваш запрос на скачивание готовится. Это может занять несколько минут.",
|
||||
"bulkDownloadRequestFailed": "Возникла проблема при подготовке скачивания",
|
||||
"alwaysShowImageSizeBadge": "Всегда показывать значок размера изображения"
|
||||
"alwaysShowImageSizeBadge": "Всегда показывать значок размера изображения",
|
||||
"openInViewer": "Открыть в просмотрщике",
|
||||
"selectForCompare": "Выбрать для сравнения",
|
||||
"hover": "Наведение",
|
||||
"swapImages": "Поменять местами",
|
||||
"stretchToFit": "Растягивание до нужного размера",
|
||||
"exitCompare": "Выйти из сравнения",
|
||||
"compareHelp4": "Нажмите <Kbd>Z</Kbd> или <Kbd>Esc</Kbd> для выхода.",
|
||||
"compareImage": "Сравнить изображение",
|
||||
"viewerImage": "Изображение просмотрщика",
|
||||
"selectAnImageToCompare": "Выберите изображение для сравнения",
|
||||
"slider": "Слайдер",
|
||||
"sideBySide": "Бок о бок",
|
||||
"compareOptions": "Варианты сравнения",
|
||||
"compareHelp1": "Удерживайте <Kbd>Alt</Kbd> при нажатии на изображение в галерее или при помощи клавиш со стрелками, чтобы изменить сравниваемое изображение.",
|
||||
"compareHelp2": "Нажмите <Kbd>M</Kbd>, чтобы переключиться между режимами сравнения.",
|
||||
"compareHelp3": "Нажмите <Kbd>C</Kbd>, чтобы поменять местами сравниваемые изображения."
|
||||
},
|
||||
"hotkeys": {
|
||||
"keyboardShortcuts": "Горячие клавиши",
|
||||
@ -528,7 +548,20 @@
|
||||
"missingFieldTemplate": "Отсутствует шаблон поля",
|
||||
"addingImagesTo": "Добавление изображений в",
|
||||
"invoke": "Создать",
|
||||
"imageNotProcessedForControlAdapter": "Изображение адаптера контроля №{{number}} не обрабатывается"
|
||||
"imageNotProcessedForControlAdapter": "Изображение адаптера контроля №{{number}} не обрабатывается",
|
||||
"layer": {
|
||||
"controlAdapterImageNotProcessed": "Изображение адаптера контроля не обработано",
|
||||
"ipAdapterNoModelSelected": "IP адаптер не выбран",
|
||||
"controlAdapterNoModelSelected": "не выбрана модель адаптера контроля",
|
||||
"controlAdapterIncompatibleBaseModel": "несовместимая базовая модель адаптера контроля",
|
||||
"controlAdapterNoImageSelected": "не выбрано изображение контрольного адаптера",
|
||||
"initialImageNoImageSelected": "начальное изображение не выбрано",
|
||||
"rgNoRegion": "регион не выбран",
|
||||
"rgNoPromptsOrIPAdapters": "нет текстовых запросов или IP-адаптеров",
|
||||
"ipAdapterIncompatibleBaseModel": "несовместимая базовая модель IP-адаптера",
|
||||
"t2iAdapterIncompatibleDimensions": "Адаптер T2I требует, чтобы размеры изображения были кратны {{multiple}}",
|
||||
"ipAdapterNoImageSelected": "изображение IP-адаптера не выбрано"
|
||||
}
|
||||
},
|
||||
"isAllowedToUpscale": {
|
||||
"useX2Model": "Изображение слишком велико для увеличения с помощью модели x4. Используйте модель x2",
|
||||
@ -606,12 +639,12 @@
|
||||
"connected": "Подключено к серверу",
|
||||
"canceled": "Обработка отменена",
|
||||
"uploadFailedInvalidUploadDesc": "Должно быть одно изображение в формате PNG или JPEG",
|
||||
"parameterNotSet": "Параметр {{parameter}} не задан",
|
||||
"parameterSet": "Параметр {{parameter}} задан",
|
||||
"parameterNotSet": "Параметр не задан",
|
||||
"parameterSet": "Параметр задан",
|
||||
"problemCopyingImage": "Не удается скопировать изображение",
|
||||
"baseModelChangedCleared_one": "Базовая модель изменила, очистила или отключила {{count}} несовместимую подмодель",
|
||||
"baseModelChangedCleared_few": "Базовая модель изменила, очистила или отключила {{count}} несовместимые подмодели",
|
||||
"baseModelChangedCleared_many": "Базовая модель изменила, очистила или отключила {{count}} несовместимых подмоделей",
|
||||
"baseModelChangedCleared_one": "Очищена или отключена {{count}} несовместимая подмодель",
|
||||
"baseModelChangedCleared_few": "Очищены или отключены {{count}} несовместимые подмодели",
|
||||
"baseModelChangedCleared_many": "Очищены или отключены {{count}} несовместимых подмоделей",
|
||||
"imageSavingFailed": "Не удалось сохранить изображение",
|
||||
"canvasSentControlnetAssets": "Холст отправлен в ControlNet и ресурсы",
|
||||
"problemCopyingCanvasDesc": "Невозможно экспортировать базовый слой",
|
||||
@ -652,7 +685,17 @@
|
||||
"resetInitialImage": "Сбросить начальное изображение",
|
||||
"prunedQueue": "Урезанная очередь",
|
||||
"modelImportCanceled": "Импорт модели отменен",
|
||||
"parameters": "Параметры"
|
||||
"parameters": "Параметры",
|
||||
"parameterSetDesc": "Задан {{parameter}}",
|
||||
"parameterNotSetDesc": "Невозможно задать {{parameter}}",
|
||||
"baseModelChanged": "Базовая модель сменена",
|
||||
"parameterNotSetDescWithMessage": "Не удалось задать {{parameter}}: {{message}}",
|
||||
"parametersSet": "Параметры заданы",
|
||||
"errorCopied": "Ошибка скопирована",
|
||||
"sessionRef": "Сессия: {{sessionId}}",
|
||||
"outOfMemoryError": "Ошибка нехватки памяти",
|
||||
"outOfMemoryErrorDesc": "Ваши текущие настройки генерации превышают возможности системы. Пожалуйста, измените настройки и повторите попытку.",
|
||||
"somethingWentWrong": "Что-то пошло не так"
|
||||
},
|
||||
"tooltip": {
|
||||
"feature": {
|
||||
@ -739,7 +782,8 @@
|
||||
"loadMore": "Загрузить больше",
|
||||
"resetUI": "$t(accessibility.reset) интерфейс",
|
||||
"createIssue": "Сообщить о проблеме",
|
||||
"about": "Об этом"
|
||||
"about": "Об этом",
|
||||
"submitSupportTicket": "Отправить тикет в службу поддержки"
|
||||
},
|
||||
"nodes": {
|
||||
"zoomInNodes": "Увеличьте масштаб",
|
||||
@ -832,7 +876,7 @@
|
||||
"workflowName": "Название",
|
||||
"collection": "Коллекция",
|
||||
"unknownErrorValidatingWorkflow": "Неизвестная ошибка при проверке рабочего процесса",
|
||||
"collectionFieldType": "Коллекция {{name}}",
|
||||
"collectionFieldType": "{{name}} (Коллекция)",
|
||||
"workflowNotes": "Примечания",
|
||||
"string": "Строка",
|
||||
"unknownNodeType": "Неизвестный тип узла",
|
||||
@ -848,7 +892,7 @@
|
||||
"targetNodeDoesNotExist": "Недопустимое ребро: целевой/входной узел {{node}} не существует",
|
||||
"mismatchedVersion": "Недопустимый узел: узел {{node}} типа {{type}} имеет несоответствующую версию (попробовать обновить?)",
|
||||
"unknownFieldType": "$t(nodes.unknownField) тип: {{type}}",
|
||||
"collectionOrScalarFieldType": "Коллекция | Скаляр {{name}}",
|
||||
"collectionOrScalarFieldType": "{{name}} (Один или коллекция)",
|
||||
"betaDesc": "Этот вызов находится в бета-версии. Пока он не станет стабильным, в нем могут происходить изменения при обновлении приложений. Мы планируем поддерживать этот вызов в течение длительного времени.",
|
||||
"nodeVersion": "Версия узла",
|
||||
"loadingNodes": "Загрузка узлов...",
|
||||
@ -870,7 +914,16 @@
|
||||
"noFieldsViewMode": "В этом рабочем процессе нет выбранных полей для отображения. Просмотрите полный рабочий процесс для настройки значений.",
|
||||
"graph": "График",
|
||||
"showEdgeLabels": "Показать метки на ребрах",
|
||||
"showEdgeLabelsHelp": "Показать метки на ребрах, указывающие на соединенные узлы"
|
||||
"showEdgeLabelsHelp": "Показать метки на ребрах, указывающие на соединенные узлы",
|
||||
"cannotMixAndMatchCollectionItemTypes": "Невозможно смешивать и сопоставлять типы элементов коллекции",
|
||||
"missingNode": "Отсутствует узел вызова",
|
||||
"missingInvocationTemplate": "Отсутствует шаблон вызова",
|
||||
"missingFieldTemplate": "Отсутствующий шаблон поля",
|
||||
"singleFieldType": "{{name}} (Один)",
|
||||
"noGraph": "Нет графика",
|
||||
"imageAccessError": "Невозможно найти изображение {{image_name}}, сбрасываем на значение по умолчанию",
|
||||
"boardAccessError": "Невозможно найти доску {{board_id}}, сбрасываем на значение по умолчанию",
|
||||
"modelAccessError": "Невозможно найти модель {{key}}, сброс на модель по умолчанию"
|
||||
},
|
||||
"controlnet": {
|
||||
"amult": "a_mult",
|
||||
@ -1441,7 +1494,16 @@
|
||||
"clearQueueAlertDialog2": "Вы уверены, что хотите очистить очередь?",
|
||||
"item": "Элемент",
|
||||
"graphFailedToQueue": "Не удалось поставить график в очередь",
|
||||
"openQueue": "Открыть очередь"
|
||||
"openQueue": "Открыть очередь",
|
||||
"prompts_one": "Запрос",
|
||||
"prompts_few": "Запроса",
|
||||
"prompts_many": "Запросов",
|
||||
"iterations_one": "Итерация",
|
||||
"iterations_few": "Итерации",
|
||||
"iterations_many": "Итераций",
|
||||
"generations_one": "Генерация",
|
||||
"generations_few": "Генерации",
|
||||
"generations_many": "Генераций"
|
||||
},
|
||||
"sdxl": {
|
||||
"refinerStart": "Запуск доработчика",
|
||||
|
@ -1,6 +1,6 @@
|
||||
{
|
||||
"common": {
|
||||
"nodes": "節點",
|
||||
"nodes": "工作流程",
|
||||
"img2img": "圖片轉圖片",
|
||||
"statusDisconnected": "已中斷連線",
|
||||
"back": "返回",
|
||||
@ -11,17 +11,239 @@
|
||||
"reportBugLabel": "回報錯誤",
|
||||
"githubLabel": "GitHub",
|
||||
"hotkeysLabel": "快捷鍵",
|
||||
"languagePickerLabel": "切換語言",
|
||||
"languagePickerLabel": "語言",
|
||||
"unifiedCanvas": "統一畫布",
|
||||
"cancel": "取消",
|
||||
"txt2img": "文字轉圖片"
|
||||
"txt2img": "文字轉圖片",
|
||||
"controlNet": "ControlNet",
|
||||
"advanced": "進階",
|
||||
"folder": "資料夾",
|
||||
"installed": "已安裝",
|
||||
"accept": "接受",
|
||||
"goTo": "前往",
|
||||
"input": "輸入",
|
||||
"random": "隨機",
|
||||
"selected": "已選擇",
|
||||
"communityLabel": "社群",
|
||||
"loading": "載入中",
|
||||
"delete": "刪除",
|
||||
"copy": "複製",
|
||||
"error": "錯誤",
|
||||
"file": "檔案",
|
||||
"format": "格式",
|
||||
"imageFailedToLoad": "無法載入圖片"
|
||||
},
|
||||
"accessibility": {
|
||||
"invokeProgressBar": "Invoke 進度條",
|
||||
"uploadImage": "上傳圖片",
|
||||
"reset": "重設",
|
||||
"reset": "重置",
|
||||
"nextImage": "下一張圖片",
|
||||
"previousImage": "上一張圖片",
|
||||
"menu": "選單"
|
||||
"menu": "選單",
|
||||
"loadMore": "載入更多",
|
||||
"about": "關於",
|
||||
"createIssue": "建立問題",
|
||||
"resetUI": "$t(accessibility.reset) 介面",
|
||||
"submitSupportTicket": "提交支援工單",
|
||||
"mode": "模式"
|
||||
},
|
||||
"boards": {
|
||||
"loading": "載入中…",
|
||||
"movingImagesToBoard_other": "正在移動 {{count}} 張圖片至板上:",
|
||||
"move": "移動",
|
||||
"uncategorized": "未分類",
|
||||
"cancel": "取消"
|
||||
},
|
||||
"metadata": {
|
||||
"workflow": "工作流程",
|
||||
"steps": "步數",
|
||||
"model": "模型",
|
||||
"seed": "種子",
|
||||
"vae": "VAE",
|
||||
"seamless": "無縫",
|
||||
"metadata": "元數據",
|
||||
"width": "寬度",
|
||||
"height": "高度"
|
||||
},
|
||||
"accordions": {
|
||||
"control": {
|
||||
"title": "控制"
|
||||
},
|
||||
"compositing": {
|
||||
"title": "合成"
|
||||
},
|
||||
"advanced": {
|
||||
"title": "進階",
|
||||
"options": "$t(accordions.advanced.title) 選項"
|
||||
}
|
||||
},
|
||||
"hotkeys": {
|
||||
"nodesHotkeys": "節點",
|
||||
"cancel": {
|
||||
"title": "取消"
|
||||
},
|
||||
"generalHotkeys": "一般",
|
||||
"keyboardShortcuts": "快捷鍵",
|
||||
"appHotkeys": "應用程式"
|
||||
},
|
||||
"modelManager": {
|
||||
"advanced": "進階",
|
||||
"allModels": "全部模型",
|
||||
"variant": "變體",
|
||||
"config": "配置",
|
||||
"model": "模型",
|
||||
"selected": "已選擇",
|
||||
"huggingFace": "HuggingFace",
|
||||
"install": "安裝",
|
||||
"metadata": "元數據",
|
||||
"delete": "刪除",
|
||||
"description": "描述",
|
||||
"cancel": "取消",
|
||||
"convert": "轉換",
|
||||
"manual": "手動",
|
||||
"none": "無",
|
||||
"name": "名稱",
|
||||
"load": "載入",
|
||||
"height": "高度",
|
||||
"width": "寬度",
|
||||
"search": "搜尋",
|
||||
"vae": "VAE",
|
||||
"settings": "設定"
|
||||
},
|
||||
"controlnet": {
|
||||
"mlsd": "M-LSD",
|
||||
"canny": "Canny",
|
||||
"duplicate": "重複",
|
||||
"none": "無",
|
||||
"pidi": "PIDI",
|
||||
"h": "H",
|
||||
"balanced": "平衡",
|
||||
"crop": "裁切",
|
||||
"processor": "處理器",
|
||||
"control": "控制",
|
||||
"f": "F",
|
||||
"lineart": "線條藝術",
|
||||
"w": "W",
|
||||
"hed": "HED",
|
||||
"delete": "刪除"
|
||||
},
|
||||
"queue": {
|
||||
"queue": "佇列",
|
||||
"canceled": "已取消",
|
||||
"failed": "已失敗",
|
||||
"completed": "已完成",
|
||||
"cancel": "取消",
|
||||
"session": "工作階段",
|
||||
"batch": "批量",
|
||||
"item": "項目",
|
||||
"completedIn": "完成於",
|
||||
"notReady": "無法排隊"
|
||||
},
|
||||
"parameters": {
|
||||
"cancel": {
|
||||
"cancel": "取消"
|
||||
},
|
||||
"height": "高度",
|
||||
"type": "類型",
|
||||
"symmetry": "對稱性",
|
||||
"images": "圖片",
|
||||
"width": "寬度",
|
||||
"coherenceMode": "模式",
|
||||
"seed": "種子",
|
||||
"general": "一般",
|
||||
"strength": "強度",
|
||||
"steps": "步數",
|
||||
"info": "資訊"
|
||||
},
|
||||
"settings": {
|
||||
"beta": "Beta",
|
||||
"developer": "開發者",
|
||||
"general": "一般",
|
||||
"models": "模型"
|
||||
},
|
||||
"popovers": {
|
||||
"paramModel": {
|
||||
"heading": "模型"
|
||||
},
|
||||
"compositingCoherenceMode": {
|
||||
"heading": "模式"
|
||||
},
|
||||
"paramSteps": {
|
||||
"heading": "步數"
|
||||
},
|
||||
"controlNetProcessor": {
|
||||
"heading": "處理器"
|
||||
},
|
||||
"paramVAE": {
|
||||
"heading": "VAE"
|
||||
},
|
||||
"paramHeight": {
|
||||
"heading": "高度"
|
||||
},
|
||||
"paramSeed": {
|
||||
"heading": "種子"
|
||||
},
|
||||
"paramWidth": {
|
||||
"heading": "寬度"
|
||||
},
|
||||
"refinerSteps": {
|
||||
"heading": "步數"
|
||||
}
|
||||
},
|
||||
"unifiedCanvas": {
|
||||
"undo": "復原",
|
||||
"mask": "遮罩",
|
||||
"eraser": "橡皮擦",
|
||||
"antialiasing": "抗鋸齒",
|
||||
"redo": "重做",
|
||||
"layer": "圖層",
|
||||
"accept": "接受",
|
||||
"brush": "刷子",
|
||||
"move": "移動",
|
||||
"brushSize": "大小"
|
||||
},
|
||||
"nodes": {
|
||||
"workflowName": "名稱",
|
||||
"notes": "註釋",
|
||||
"workflowVersion": "版本",
|
||||
"workflowNotes": "註釋",
|
||||
"executionStateError": "錯誤",
|
||||
"unableToUpdateNodes_other": "無法更新 {{count}} 個節點",
|
||||
"integer": "整數",
|
||||
"workflow": "工作流程",
|
||||
"enum": "枚舉",
|
||||
"edit": "編輯",
|
||||
"string": "字串",
|
||||
"workflowTags": "標籤",
|
||||
"node": "節點",
|
||||
"boolean": "布林值",
|
||||
"workflowAuthor": "作者",
|
||||
"version": "版本",
|
||||
"executionStateCompleted": "已完成",
|
||||
"edge": "邊緣",
|
||||
"versionUnknown": " 版本未知"
|
||||
},
|
||||
"sdxl": {
|
||||
"steps": "步數",
|
||||
"loading": "載入中…",
|
||||
"refiner": "精煉器"
|
||||
},
|
||||
"gallery": {
|
||||
"copy": "複製",
|
||||
"download": "下載",
|
||||
"loading": "載入中"
|
||||
},
|
||||
"ui": {
|
||||
"tabs": {
|
||||
"models": "模型",
|
||||
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
|
||||
"queue": "佇列"
|
||||
}
|
||||
},
|
||||
"models": {
|
||||
"loading": "載入中"
|
||||
},
|
||||
"workflows": {
|
||||
"name": "名稱"
|
||||
}
|
||||
}
|
||||
|
@ -19,6 +19,13 @@ function ThemeLocaleProvider({ children }: ThemeLocaleProviderProps) {
|
||||
return extendTheme({
|
||||
..._theme,
|
||||
direction,
|
||||
shadows: {
|
||||
..._theme.shadows,
|
||||
selectedForCompare:
|
||||
'0px 0px 0px 1px var(--invoke-colors-base-900), 0px 0px 0px 4px var(--invoke-colors-green-400)',
|
||||
hoverSelectedForCompare:
|
||||
'0px 0px 0px 1px var(--invoke-colors-base-900), 0px 0px 0px 4px var(--invoke-colors-green-300)',
|
||||
},
|
||||
});
|
||||
}, [direction]);
|
||||
|
||||
|
@ -13,7 +13,6 @@ import {
|
||||
isControlAdapterLayer,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
|
||||
import { isImageOutput } from 'features/nodes/types/common';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { isEqual } from 'lodash-es';
|
||||
@ -139,7 +138,7 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
|
||||
|
||||
// We still have to check the output type
|
||||
assert(
|
||||
isImageOutput(invocationCompleteAction.payload.data.result),
|
||||
invocationCompleteAction.payload.data.result.type === 'image_output',
|
||||
`Processor did not return an image output, got: ${invocationCompleteAction.payload.data.result}`
|
||||
);
|
||||
const { image_name } = invocationCompleteAction.payload.data.result.image;
|
||||
|
@ -9,7 +9,6 @@ import {
|
||||
selectControlAdapterById,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
|
||||
import { isImageOutput } from 'features/nodes/types/common';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
@ -74,7 +73,7 @@ export const addControlNetImageProcessedListener = (startAppListening: AppStartL
|
||||
);
|
||||
|
||||
// We still have to check the output type
|
||||
if (isImageOutput(invocationCompleteAction.payload.data.result)) {
|
||||
if (invocationCompleteAction.payload.data.result.type === 'image_output') {
|
||||
const { image_name } = invocationCompleteAction.payload.data.result.image;
|
||||
|
||||
// Wait for the ImageDTO to be received
|
||||
|
@ -1,7 +1,7 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { selectListImagesQueryArgs } from 'features/gallery/store/gallerySelectors';
|
||||
import { selectionChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { imageToCompareChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
import { imagesSelectors } from 'services/api/util';
|
||||
@ -11,6 +11,7 @@ export const galleryImageClicked = createAction<{
|
||||
shiftKey: boolean;
|
||||
ctrlKey: boolean;
|
||||
metaKey: boolean;
|
||||
altKey: boolean;
|
||||
}>('gallery/imageClicked');
|
||||
|
||||
/**
|
||||
@ -28,7 +29,7 @@ export const addGalleryImageClickedListener = (startAppListening: AppStartListen
|
||||
startAppListening({
|
||||
actionCreator: galleryImageClicked,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const { imageDTO, shiftKey, ctrlKey, metaKey } = action.payload;
|
||||
const { imageDTO, shiftKey, ctrlKey, metaKey, altKey } = action.payload;
|
||||
const state = getState();
|
||||
const queryArgs = selectListImagesQueryArgs(state);
|
||||
const { data: listImagesData } = imagesApi.endpoints.listImages.select(queryArgs)(state);
|
||||
@ -41,7 +42,13 @@ export const addGalleryImageClickedListener = (startAppListening: AppStartListen
|
||||
const imageDTOs = imagesSelectors.selectAll(listImagesData);
|
||||
const selection = state.gallery.selection;
|
||||
|
||||
if (shiftKey) {
|
||||
if (altKey) {
|
||||
if (state.gallery.imageToCompare?.image_name === imageDTO.image_name) {
|
||||
dispatch(imageToCompareChanged(null));
|
||||
} else {
|
||||
dispatch(imageToCompareChanged(imageDTO));
|
||||
}
|
||||
} else if (shiftKey) {
|
||||
const rangeEndImageName = imageDTO.image_name;
|
||||
const lastSelectedImage = selection[selection.length - 1]?.image_name;
|
||||
const lastClickedIndex = imageDTOs.findIndex((n) => n.image_name === lastSelectedImage);
|
||||
|
@ -14,7 +14,8 @@ import {
|
||||
rgLayerIPAdapterImageChanged,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { isValidDrop } from 'features/dnd/util/isValidDrop';
|
||||
import { imageSelected, imageToCompareChanged, isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
@ -30,6 +31,9 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('dnd');
|
||||
const { activeData, overData } = action.payload;
|
||||
if (!isValidDrop(overData, activeData)) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (activeData.payloadType === 'IMAGE_DTO') {
|
||||
log.debug({ activeData, overData }, 'Image dropped');
|
||||
@ -50,6 +54,7 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
dispatch(imageSelected(activeData.payload.imageDTO));
|
||||
dispatch(isImageViewerOpenChanged(true));
|
||||
return;
|
||||
}
|
||||
|
||||
@ -182,24 +187,18 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
}
|
||||
|
||||
/**
|
||||
* TODO
|
||||
* Image selection dropped on node image collection field
|
||||
* Image selected for compare
|
||||
*/
|
||||
// if (
|
||||
// overData.actionType === 'SET_MULTI_NODES_IMAGE' &&
|
||||
// activeData.payloadType === 'IMAGE_DTO' &&
|
||||
// activeData.payload.imageDTO
|
||||
// ) {
|
||||
// const { fieldName, nodeId } = overData.context;
|
||||
// dispatch(
|
||||
// fieldValueChanged({
|
||||
// nodeId,
|
||||
// fieldName,
|
||||
// value: [activeData.payload.imageDTO],
|
||||
// })
|
||||
// );
|
||||
// return;
|
||||
// }
|
||||
if (
|
||||
overData.actionType === 'SELECT_FOR_COMPARE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
const { imageDTO } = activeData.payload;
|
||||
dispatch(imageToCompareChanged(imageDTO));
|
||||
dispatch(isImageViewerOpenChanged(true));
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Image dropped on user board
|
||||
|
@ -11,7 +11,6 @@ import {
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
|
||||
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
|
||||
import { isImageOutput } from 'features/nodes/types/common';
|
||||
import { zNodeStatus } from 'features/nodes/types/invocation';
|
||||
import { CANVAS_OUTPUT } from 'features/nodes/util/graph/constants';
|
||||
import { boardsApi } from 'services/api/endpoints/boards';
|
||||
@ -33,7 +32,7 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
|
||||
|
||||
const { result, invocation_source_id } = data;
|
||||
// This complete event has an associated image output
|
||||
if (isImageOutput(data.result) && !nodeTypeDenylist.includes(data.invocation.type)) {
|
||||
if (data.result.type === 'image_output' && !nodeTypeDenylist.includes(data.invocation.type)) {
|
||||
const { image_name } = data.result.image;
|
||||
const { canvas, gallery } = getState();
|
||||
|
||||
|
@ -3,7 +3,7 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { workflowLoaded, workflowLoadRequested } from 'features/nodes/store/actions';
|
||||
import { $templates } from 'features/nodes/store/nodesSlice';
|
||||
import { $flow } from 'features/nodes/store/reactFlowInstance';
|
||||
import { $needsFit } from 'features/nodes/store/reactFlowInstance';
|
||||
import type { Templates } from 'features/nodes/store/types';
|
||||
import { WorkflowMigrationError, WorkflowVersionError } from 'features/nodes/types/error';
|
||||
import { graphToWorkflow } from 'features/nodes/util/workflow/graphToWorkflow';
|
||||
@ -65,9 +65,7 @@ export const addWorkflowLoadRequestedListener = (startAppListening: AppStartList
|
||||
});
|
||||
}
|
||||
|
||||
requestAnimationFrame(() => {
|
||||
$flow.get()?.fitView();
|
||||
});
|
||||
$needsFit.set(true);
|
||||
} catch (e) {
|
||||
if (e instanceof WorkflowVersionError) {
|
||||
// The workflow version was not recognized in the valid list of versions
|
||||
|
@ -35,6 +35,7 @@ type IAIDndImageProps = FlexProps & {
|
||||
draggableData?: TypesafeDraggableData;
|
||||
dropLabel?: ReactNode;
|
||||
isSelected?: boolean;
|
||||
isSelectedForCompare?: boolean;
|
||||
thumbnail?: boolean;
|
||||
noContentFallback?: ReactElement;
|
||||
useThumbailFallback?: boolean;
|
||||
@ -61,6 +62,7 @@ const IAIDndImage = (props: IAIDndImageProps) => {
|
||||
draggableData,
|
||||
dropLabel,
|
||||
isSelected = false,
|
||||
isSelectedForCompare = false,
|
||||
thumbnail = false,
|
||||
noContentFallback = defaultNoContentFallback,
|
||||
uploadElement = defaultUploadElement,
|
||||
@ -165,7 +167,11 @@ const IAIDndImage = (props: IAIDndImageProps) => {
|
||||
data-testid={dataTestId}
|
||||
/>
|
||||
{withMetadataOverlay && <ImageMetadataOverlay imageDTO={imageDTO} />}
|
||||
<SelectionOverlay isSelected={isSelected} isHovered={withHoverOverlay ? isHovered : false} />
|
||||
<SelectionOverlay
|
||||
isSelected={isSelected}
|
||||
isSelectedForCompare={isSelectedForCompare}
|
||||
isHovered={withHoverOverlay ? isHovered : false}
|
||||
/>
|
||||
</Flex>
|
||||
)}
|
||||
{!imageDTO && !isUploadDisabled && (
|
||||
|
@ -36,7 +36,7 @@ const IAIDroppable = (props: IAIDroppableProps) => {
|
||||
pointerEvents={active ? 'auto' : 'none'}
|
||||
>
|
||||
<AnimatePresence>
|
||||
{isValidDrop(data, active) && <IAIDropOverlay isOver={isOver} label={dropLabel} />}
|
||||
{isValidDrop(data, active?.data.current) && <IAIDropOverlay isOver={isOver} label={dropLabel} />}
|
||||
</AnimatePresence>
|
||||
</Box>
|
||||
);
|
||||
|
@ -3,10 +3,17 @@ import { memo, useMemo } from 'react';
|
||||
|
||||
type Props = {
|
||||
isSelected: boolean;
|
||||
isSelectedForCompare: boolean;
|
||||
isHovered: boolean;
|
||||
};
|
||||
const SelectionOverlay = ({ isSelected, isHovered }: Props) => {
|
||||
const SelectionOverlay = ({ isSelected, isSelectedForCompare, isHovered }: Props) => {
|
||||
const shadow = useMemo(() => {
|
||||
if (isSelectedForCompare && isHovered) {
|
||||
return 'hoverSelectedForCompare';
|
||||
}
|
||||
if (isSelectedForCompare && !isHovered) {
|
||||
return 'selectedForCompare';
|
||||
}
|
||||
if (isSelected && isHovered) {
|
||||
return 'hoverSelected';
|
||||
}
|
||||
@ -17,7 +24,7 @@ const SelectionOverlay = ({ isSelected, isHovered }: Props) => {
|
||||
return 'hoverUnselected';
|
||||
}
|
||||
return undefined;
|
||||
}, [isHovered, isSelected]);
|
||||
}, [isHovered, isSelected, isSelectedForCompare]);
|
||||
return (
|
||||
<Box
|
||||
className="selection-box"
|
||||
@ -27,7 +34,7 @@ const SelectionOverlay = ({ isSelected, isHovered }: Props) => {
|
||||
bottom={0}
|
||||
insetInlineStart={0}
|
||||
borderRadius="base"
|
||||
opacity={isSelected ? 1 : 0.7}
|
||||
opacity={isSelected || isSelectedForCompare ? 1 : 0.7}
|
||||
transitionProperty="common"
|
||||
transitionDuration="0.1s"
|
||||
pointerEvents="none"
|
||||
|
21
invokeai/frontend/web/src/common/hooks/useBoolean.ts
Normal file
21
invokeai/frontend/web/src/common/hooks/useBoolean.ts
Normal file
@ -0,0 +1,21 @@
|
||||
import { useCallback, useMemo, useState } from 'react';
|
||||
|
||||
export const useBoolean = (initialValue: boolean) => {
|
||||
const [isTrue, set] = useState(initialValue);
|
||||
const setTrue = useCallback(() => set(true), []);
|
||||
const setFalse = useCallback(() => set(false), []);
|
||||
const toggle = useCallback(() => set((v) => !v), []);
|
||||
|
||||
const api = useMemo(
|
||||
() => ({
|
||||
isTrue,
|
||||
set,
|
||||
setTrue,
|
||||
setFalse,
|
||||
toggle,
|
||||
}),
|
||||
[isTrue, set, setTrue, setFalse, toggle]
|
||||
);
|
||||
|
||||
return api;
|
||||
};
|
@ -1,3 +1,7 @@
|
||||
export const stopPropagation = (e: React.MouseEvent) => {
|
||||
e.stopPropagation();
|
||||
};
|
||||
|
||||
export const preventDefault = (e: React.MouseEvent) => {
|
||||
e.preventDefault();
|
||||
};
|
||||
|
@ -1,7 +1,13 @@
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { zModelIdentifierField } from 'features/nodes/types/common';
|
||||
import { merge, omit } from 'lodash-es';
|
||||
import type { BaseModelType, ControlNetModelConfig, Graph, ImageDTO, T2IAdapterModelConfig } from 'services/api/types';
|
||||
import type {
|
||||
AnyInvocation,
|
||||
BaseModelType,
|
||||
ControlNetModelConfig,
|
||||
ImageDTO,
|
||||
T2IAdapterModelConfig,
|
||||
} from 'services/api/types';
|
||||
import { z } from 'zod';
|
||||
|
||||
const zId = z.string().min(1);
|
||||
@ -147,7 +153,7 @@ const zBeginEndStepPct = z
|
||||
|
||||
const zControlAdapterBase = z.object({
|
||||
id: zId,
|
||||
weight: z.number().gte(0).lte(1),
|
||||
weight: z.number().gte(-1).lte(2),
|
||||
image: zImageWithDims.nullable(),
|
||||
processedImage: zImageWithDims.nullable(),
|
||||
processorConfig: zProcessorConfig.nullable(),
|
||||
@ -183,7 +189,7 @@ export const isIPMethodV2 = (v: unknown): v is IPMethodV2 => zIPMethodV2.safePar
|
||||
export const zIPAdapterConfigV2 = z.object({
|
||||
id: zId,
|
||||
type: z.literal('ip_adapter'),
|
||||
weight: z.number().gte(0).lte(1),
|
||||
weight: z.number().gte(-1).lte(2),
|
||||
method: zIPMethodV2,
|
||||
image: zImageWithDims.nullable(),
|
||||
model: zModelIdentifierField.nullable(),
|
||||
@ -216,10 +222,7 @@ type ProcessorData<T extends ProcessorTypeV2> = {
|
||||
labelTKey: string;
|
||||
descriptionTKey: string;
|
||||
buildDefaults(baseModel?: BaseModelType): Extract<ProcessorConfig, { type: T }>;
|
||||
buildNode(
|
||||
image: ImageWithDims,
|
||||
config: Extract<ProcessorConfig, { type: T }>
|
||||
): Extract<Graph['nodes'][string], { type: T }>;
|
||||
buildNode(image: ImageWithDims, config: Extract<ProcessorConfig, { type: T }>): Extract<AnyInvocation, { type: T }>;
|
||||
};
|
||||
|
||||
const minDim = (image: ImageWithDims): number => Math.min(image.width, image.height);
|
||||
|
@ -54,7 +54,7 @@ const BBOX_SELECTED_STROKE = 'rgba(78, 190, 255, 1)';
|
||||
const BRUSH_BORDER_INNER_COLOR = 'rgba(0,0,0,1)';
|
||||
const BRUSH_BORDER_OUTER_COLOR = 'rgba(255,255,255,0.8)';
|
||||
// This is invokeai/frontend/web/public/assets/images/transparent_bg.png as a dataURL
|
||||
const STAGE_BG_DATAURL =
|
||||
export const STAGE_BG_DATAURL =
|
||||
'';
|
||||
|
||||
const mapId = (object: { id: string }) => object.id;
|
||||
|
@ -18,7 +18,7 @@ type BaseDropData = {
|
||||
id: string;
|
||||
};
|
||||
|
||||
type CurrentImageDropData = BaseDropData & {
|
||||
export type CurrentImageDropData = BaseDropData & {
|
||||
actionType: 'SET_CURRENT_IMAGE';
|
||||
};
|
||||
|
||||
@ -79,6 +79,14 @@ export type RemoveFromBoardDropData = BaseDropData & {
|
||||
actionType: 'REMOVE_FROM_BOARD';
|
||||
};
|
||||
|
||||
export type SelectForCompareDropData = BaseDropData & {
|
||||
actionType: 'SELECT_FOR_COMPARE';
|
||||
context: {
|
||||
firstImageName?: string | null;
|
||||
secondImageName?: string | null;
|
||||
};
|
||||
};
|
||||
|
||||
export type TypesafeDroppableData =
|
||||
| CurrentImageDropData
|
||||
| ControlAdapterDropData
|
||||
@ -89,7 +97,8 @@ export type TypesafeDroppableData =
|
||||
| CALayerImageDropData
|
||||
| IPALayerImageDropData
|
||||
| RGLayerIPAdapterImageDropData
|
||||
| IILayerImageDropData;
|
||||
| IILayerImageDropData
|
||||
| SelectForCompareDropData;
|
||||
|
||||
type BaseDragData = {
|
||||
id: string;
|
||||
@ -134,7 +143,7 @@ export type UseDraggableTypesafeReturnValue = Omit<ReturnType<typeof useOriginal
|
||||
over: TypesafeOver | null;
|
||||
};
|
||||
|
||||
export interface TypesafeActive extends Omit<Active, 'data'> {
|
||||
interface TypesafeActive extends Omit<Active, 'data'> {
|
||||
data: React.MutableRefObject<TypesafeDraggableData | undefined>;
|
||||
}
|
||||
|
||||
|
@ -1,14 +1,14 @@
|
||||
import type { TypesafeActive, TypesafeDroppableData } from 'features/dnd/types';
|
||||
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
|
||||
|
||||
export const isValidDrop = (overData: TypesafeDroppableData | undefined, active: TypesafeActive | null) => {
|
||||
if (!overData || !active?.data.current) {
|
||||
export const isValidDrop = (overData?: TypesafeDroppableData | null, activeData?: TypesafeDraggableData | null) => {
|
||||
if (!overData || !activeData) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const { actionType } = overData;
|
||||
const { payloadType } = active.data.current;
|
||||
const { payloadType } = activeData;
|
||||
|
||||
if (overData.id === active.data.current.id) {
|
||||
if (overData.id === activeData.id) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -29,6 +29,8 @@ export const isValidDrop = (overData: TypesafeDroppableData | undefined, active:
|
||||
return payloadType === 'IMAGE_DTO';
|
||||
case 'SET_NODES_IMAGE':
|
||||
return payloadType === 'IMAGE_DTO';
|
||||
case 'SELECT_FOR_COMPARE':
|
||||
return payloadType === 'IMAGE_DTO';
|
||||
case 'ADD_TO_BOARD': {
|
||||
// If the board is the same, don't allow the drop
|
||||
|
||||
@ -40,7 +42,7 @@ export const isValidDrop = (overData: TypesafeDroppableData | undefined, active:
|
||||
|
||||
// Check if the image's board is the board we are dragging onto
|
||||
if (payloadType === 'IMAGE_DTO') {
|
||||
const { imageDTO } = active.data.current.payload;
|
||||
const { imageDTO } = activeData.payload;
|
||||
const currentBoard = imageDTO.board_id ?? 'none';
|
||||
const destinationBoard = overData.context.boardId;
|
||||
|
||||
@ -49,7 +51,7 @@ export const isValidDrop = (overData: TypesafeDroppableData | undefined, active:
|
||||
|
||||
if (payloadType === 'GALLERY_SELECTION') {
|
||||
// Assume all images are on the same board - this is true for the moment
|
||||
const currentBoard = active.data.current.payload.boardId;
|
||||
const currentBoard = activeData.payload.boardId;
|
||||
const destinationBoard = overData.context.boardId;
|
||||
return currentBoard !== destinationBoard;
|
||||
}
|
||||
@ -67,14 +69,14 @@ export const isValidDrop = (overData: TypesafeDroppableData | undefined, active:
|
||||
|
||||
// Check if the image's board is the board we are dragging onto
|
||||
if (payloadType === 'IMAGE_DTO') {
|
||||
const { imageDTO } = active.data.current.payload;
|
||||
const { imageDTO } = activeData.payload;
|
||||
const currentBoard = imageDTO.board_id ?? 'none';
|
||||
|
||||
return currentBoard !== 'none';
|
||||
}
|
||||
|
||||
if (payloadType === 'GALLERY_SELECTION') {
|
||||
const currentBoard = active.data.current.payload.boardId;
|
||||
const currentBoard = activeData.payload.boardId;
|
||||
return currentBoard !== 'none';
|
||||
}
|
||||
|
||||
|
@ -162,7 +162,7 @@ const GalleryBoard = ({ board, isSelected, setBoardToDelete }: GalleryBoardProps
|
||||
</Flex>
|
||||
)}
|
||||
{isSelectedForAutoAdd && <AutoAddIcon />}
|
||||
<SelectionOverlay isSelected={isSelected} isHovered={isHovered} />
|
||||
<SelectionOverlay isSelected={isSelected} isSelectedForCompare={false} isHovered={isHovered} />
|
||||
<Flex
|
||||
position="absolute"
|
||||
bottom={0}
|
||||
|
@ -117,7 +117,7 @@ const NoBoardBoard = memo(({ isSelected }: Props) => {
|
||||
>
|
||||
{boardName}
|
||||
</Flex>
|
||||
<SelectionOverlay isSelected={isSelected} isHovered={isHovered} />
|
||||
<SelectionOverlay isSelected={isSelected} isSelectedForCompare={false} isHovered={isHovered} />
|
||||
<IAIDroppable data={droppableData} dropLabel={<Text fontSize="md">{t('unifiedCanvas.move')}</Text>} />
|
||||
</Flex>
|
||||
</Tooltip>
|
||||
|
@ -10,6 +10,7 @@ import { iiLayerAdded } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { imagesToDeleteSelected } from 'features/deleteImageModal/store/slice';
|
||||
import { useImageActions } from 'features/gallery/hooks/useImageActions';
|
||||
import { sentImageToCanvas, sentImageToImg2Img } from 'features/gallery/store/actions';
|
||||
import { imageToCompareChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { $templates } from 'features/nodes/store/nodesSlice';
|
||||
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
@ -27,6 +28,7 @@ import {
|
||||
PiDownloadSimpleBold,
|
||||
PiFlowArrowBold,
|
||||
PiFoldersBold,
|
||||
PiImagesBold,
|
||||
PiPlantBold,
|
||||
PiQuotesBold,
|
||||
PiShareFatBold,
|
||||
@ -44,6 +46,7 @@ type SingleSelectionMenuItemsProps = {
|
||||
const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
const { imageDTO } = props;
|
||||
const optimalDimension = useAppSelector(selectOptimalDimension);
|
||||
const maySelectForCompare = useAppSelector((s) => s.gallery.imageToCompare?.image_name !== imageDTO.image_name);
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const isCanvasEnabled = useFeatureStatus('canvas');
|
||||
@ -117,6 +120,10 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
downloadImage(imageDTO.image_url, imageDTO.image_name);
|
||||
}, [downloadImage, imageDTO.image_name, imageDTO.image_url]);
|
||||
|
||||
const handleSelectImageForCompare = useCallback(() => {
|
||||
dispatch(imageToCompareChanged(imageDTO));
|
||||
}, [dispatch, imageDTO]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<MenuItem as="a" href={imageDTO.image_url} target="_blank" icon={<PiShareFatBold />}>
|
||||
@ -130,6 +137,9 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
<MenuItem icon={<PiDownloadSimpleBold />} onClickCapture={handleDownloadImage}>
|
||||
{t('parameters.downloadImage')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiImagesBold />} isDisabled={!maySelectForCompare} onClick={handleSelectImageForCompare}>
|
||||
{t('gallery.selectForCompare')}
|
||||
</MenuItem>
|
||||
<MenuDivider />
|
||||
<MenuItem
|
||||
icon={getAndLoadEmbeddedWorkflowResult.isLoading ? <SpinnerIcon /> : <PiFlowArrowBold />}
|
||||
|
@ -11,7 +11,7 @@ import type { GallerySelectionDraggableData, ImageDraggableData, TypesafeDraggab
|
||||
import { getGalleryImageDataTestId } from 'features/gallery/components/ImageGrid/getGalleryImageDataTestId';
|
||||
import { useMultiselect } from 'features/gallery/hooks/useMultiselect';
|
||||
import { useScrollIntoView } from 'features/gallery/hooks/useScrollIntoView';
|
||||
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { imageToCompareChanged, isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
|
||||
import type { MouseEvent } from 'react';
|
||||
import { memo, useCallback, useMemo, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
@ -46,6 +46,7 @@ const GalleryImage = (props: HoverableImageProps) => {
|
||||
const { t } = useTranslation();
|
||||
const selectedBoardId = useAppSelector((s) => s.gallery.selectedBoardId);
|
||||
const alwaysShowImageSizeBadge = useAppSelector((s) => s.gallery.alwaysShowImageSizeBadge);
|
||||
const isSelectedForCompare = useAppSelector((s) => s.gallery.imageToCompare?.image_name === imageName);
|
||||
const { handleClick, isSelected, areMultiplesSelected } = useMultiselect(imageDTO);
|
||||
|
||||
const customStarUi = useStore($customStarUI);
|
||||
@ -105,6 +106,7 @@ const GalleryImage = (props: HoverableImageProps) => {
|
||||
|
||||
const onDoubleClick = useCallback(() => {
|
||||
dispatch(isImageViewerOpenChanged(true));
|
||||
dispatch(imageToCompareChanged(null));
|
||||
}, [dispatch]);
|
||||
|
||||
const handleMouseOut = useCallback(() => {
|
||||
@ -152,6 +154,7 @@ const GalleryImage = (props: HoverableImageProps) => {
|
||||
imageDTO={imageDTO}
|
||||
draggableData={draggableData}
|
||||
isSelected={isSelected}
|
||||
isSelectedForCompare={isSelectedForCompare}
|
||||
minSize={0}
|
||||
imageSx={imageSx}
|
||||
isDropDisabled={true}
|
||||
|
@ -28,7 +28,9 @@ const ImageMetadataGraphTabContent = ({ image }: Props) => {
|
||||
return <IAINoContentFallback label={t('nodes.noGraph')} />;
|
||||
}
|
||||
|
||||
return <DataViewer data={graph} label={t('nodes.graph')} />;
|
||||
return (
|
||||
<DataViewer fileName={`${image.image_name.replace('.png', '')}_graph`} data={graph} label={t('nodes.graph')} />
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ImageMetadataGraphTabContent);
|
||||
|
@ -68,14 +68,22 @@ const ImageMetadataViewer = ({ image }: ImageMetadataViewerProps) => {
|
||||
</TabPanel>
|
||||
<TabPanel>
|
||||
{metadata ? (
|
||||
<DataViewer data={metadata} label={t('metadata.metadata')} />
|
||||
<DataViewer
|
||||
fileName={`${image.image_name.replace('.png', '')}_metadata`}
|
||||
data={metadata}
|
||||
label={t('metadata.metadata')}
|
||||
/>
|
||||
) : (
|
||||
<IAINoContentFallback label={t('metadata.noMetaData')} />
|
||||
)}
|
||||
</TabPanel>
|
||||
<TabPanel>
|
||||
{image ? (
|
||||
<DataViewer data={image} label={t('metadata.imageDetails')} />
|
||||
<DataViewer
|
||||
fileName={`${image.image_name.replace('.png', '')}_details`}
|
||||
data={image}
|
||||
label={t('metadata.imageDetails')}
|
||||
/>
|
||||
) : (
|
||||
<IAINoContentFallback label={t('metadata.noImageDetails')} />
|
||||
)}
|
||||
|
@ -28,7 +28,13 @@ const ImageMetadataWorkflowTabContent = ({ image }: Props) => {
|
||||
return <IAINoContentFallback label={t('nodes.noWorkflow')} />;
|
||||
}
|
||||
|
||||
return <DataViewer data={workflow} label={t('metadata.workflow')} />;
|
||||
return (
|
||||
<DataViewer
|
||||
fileName={`${image.image_name.replace('.png', '')}_workflow`}
|
||||
data={workflow}
|
||||
label={t('metadata.workflow')}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ImageMetadataWorkflowTabContent);
|
||||
|
@ -0,0 +1,140 @@
|
||||
import {
|
||||
Button,
|
||||
ButtonGroup,
|
||||
Flex,
|
||||
Icon,
|
||||
IconButton,
|
||||
Kbd,
|
||||
ListItem,
|
||||
Tooltip,
|
||||
UnorderedList,
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
comparedImagesSwapped,
|
||||
comparisonFitChanged,
|
||||
comparisonModeChanged,
|
||||
comparisonModeCycled,
|
||||
imageToCompareChanged,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { Trans, useTranslation } from 'react-i18next';
|
||||
import { PiArrowsOutBold, PiQuestion, PiSwapBold, PiXBold } from 'react-icons/pi';
|
||||
|
||||
export const CompareToolbar = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const comparisonMode = useAppSelector((s) => s.gallery.comparisonMode);
|
||||
const comparisonFit = useAppSelector((s) => s.gallery.comparisonFit);
|
||||
const setComparisonModeSlider = useCallback(() => {
|
||||
dispatch(comparisonModeChanged('slider'));
|
||||
}, [dispatch]);
|
||||
const setComparisonModeSideBySide = useCallback(() => {
|
||||
dispatch(comparisonModeChanged('side-by-side'));
|
||||
}, [dispatch]);
|
||||
const setComparisonModeHover = useCallback(() => {
|
||||
dispatch(comparisonModeChanged('hover'));
|
||||
}, [dispatch]);
|
||||
const swapImages = useCallback(() => {
|
||||
dispatch(comparedImagesSwapped());
|
||||
}, [dispatch]);
|
||||
useHotkeys('c', swapImages, [swapImages]);
|
||||
const toggleComparisonFit = useCallback(() => {
|
||||
dispatch(comparisonFitChanged(comparisonFit === 'contain' ? 'fill' : 'contain'));
|
||||
}, [dispatch, comparisonFit]);
|
||||
const exitCompare = useCallback(() => {
|
||||
dispatch(imageToCompareChanged(null));
|
||||
}, [dispatch]);
|
||||
useHotkeys('esc', exitCompare, [exitCompare]);
|
||||
const nextMode = useCallback(() => {
|
||||
dispatch(comparisonModeCycled());
|
||||
}, [dispatch]);
|
||||
useHotkeys('m', nextMode, [nextMode]);
|
||||
|
||||
return (
|
||||
<Flex w="full" gap={2}>
|
||||
<Flex flex={1} justifyContent="center">
|
||||
<Flex gap={2} marginInlineEnd="auto">
|
||||
<IconButton
|
||||
icon={<PiSwapBold />}
|
||||
aria-label={`${t('gallery.swapImages')} (C)`}
|
||||
tooltip={`${t('gallery.swapImages')} (C)`}
|
||||
onClick={swapImages}
|
||||
/>
|
||||
{comparisonMode !== 'side-by-side' && (
|
||||
<IconButton
|
||||
aria-label={t('gallery.stretchToFit')}
|
||||
tooltip={t('gallery.stretchToFit')}
|
||||
onClick={toggleComparisonFit}
|
||||
colorScheme={comparisonFit === 'fill' ? 'invokeBlue' : 'base'}
|
||||
variant="outline"
|
||||
icon={<PiArrowsOutBold />}
|
||||
/>
|
||||
)}
|
||||
</Flex>
|
||||
</Flex>
|
||||
<Flex flex={1} gap={4} justifyContent="center">
|
||||
<ButtonGroup variant="outline">
|
||||
<Button
|
||||
flexShrink={0}
|
||||
onClick={setComparisonModeSlider}
|
||||
colorScheme={comparisonMode === 'slider' ? 'invokeBlue' : 'base'}
|
||||
>
|
||||
{t('gallery.slider')}
|
||||
</Button>
|
||||
<Button
|
||||
flexShrink={0}
|
||||
onClick={setComparisonModeSideBySide}
|
||||
colorScheme={comparisonMode === 'side-by-side' ? 'invokeBlue' : 'base'}
|
||||
>
|
||||
{t('gallery.sideBySide')}
|
||||
</Button>
|
||||
<Button
|
||||
flexShrink={0}
|
||||
onClick={setComparisonModeHover}
|
||||
colorScheme={comparisonMode === 'hover' ? 'invokeBlue' : 'base'}
|
||||
>
|
||||
{t('gallery.hover')}
|
||||
</Button>
|
||||
</ButtonGroup>
|
||||
</Flex>
|
||||
<Flex flex={1} justifyContent="center">
|
||||
<Flex gap={2} marginInlineStart="auto" alignItems="center">
|
||||
<Tooltip label={<CompareHelp />}>
|
||||
<Flex alignItems="center">
|
||||
<Icon boxSize={8} color="base.500" as={PiQuestion} lineHeight={0} />
|
||||
</Flex>
|
||||
</Tooltip>
|
||||
<IconButton
|
||||
icon={<PiXBold />}
|
||||
aria-label={`${t('gallery.exitCompare')} (Esc)`}
|
||||
tooltip={`${t('gallery.exitCompare')} (Esc)`}
|
||||
onClick={exitCompare}
|
||||
/>
|
||||
</Flex>
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
CompareToolbar.displayName = 'CompareToolbar';
|
||||
|
||||
const CompareHelp = () => {
|
||||
return (
|
||||
<UnorderedList>
|
||||
<ListItem>
|
||||
<Trans i18nKey="gallery.compareHelp1" components={{ Kbd: <Kbd /> }}></Trans>
|
||||
</ListItem>
|
||||
<ListItem>
|
||||
<Trans i18nKey="gallery.compareHelp2" components={{ Kbd: <Kbd /> }}></Trans>
|
||||
</ListItem>
|
||||
<ListItem>
|
||||
<Trans i18nKey="gallery.compareHelp3" components={{ Kbd: <Kbd /> }}></Trans>
|
||||
</ListItem>
|
||||
<ListItem>
|
||||
<Trans i18nKey="gallery.compareHelp4" components={{ Kbd: <Kbd /> }}></Trans>
|
||||
</ListItem>
|
||||
</UnorderedList>
|
||||
);
|
||||
};
|
@ -4,7 +4,7 @@ import { skipToken } from '@reduxjs/toolkit/query';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIDndImage from 'common/components/IAIDndImage';
|
||||
import { IAINoContentFallback } from 'common/components/IAIImageFallback';
|
||||
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
|
||||
import type { TypesafeDraggableData } from 'features/dnd/types';
|
||||
import ImageMetadataViewer from 'features/gallery/components/ImageMetadataViewer/ImageMetadataViewer';
|
||||
import NextPrevImageButtons from 'features/gallery/components/NextPrevImageButtons';
|
||||
import { selectLastSelectedImage } from 'features/gallery/store/gallerySelectors';
|
||||
@ -22,21 +22,7 @@ const selectLastSelectedImageName = createSelector(
|
||||
(lastSelectedImage) => lastSelectedImage?.image_name
|
||||
);
|
||||
|
||||
type Props = {
|
||||
isDragDisabled?: boolean;
|
||||
isDropDisabled?: boolean;
|
||||
withNextPrevButtons?: boolean;
|
||||
withMetadata?: boolean;
|
||||
alwaysShowProgress?: boolean;
|
||||
};
|
||||
|
||||
const CurrentImagePreview = ({
|
||||
isDragDisabled = false,
|
||||
isDropDisabled = false,
|
||||
withNextPrevButtons = true,
|
||||
withMetadata = true,
|
||||
alwaysShowProgress = false,
|
||||
}: Props) => {
|
||||
const CurrentImagePreview = () => {
|
||||
const { t } = useTranslation();
|
||||
const shouldShowImageDetails = useAppSelector((s) => s.ui.shouldShowImageDetails);
|
||||
const imageName = useAppSelector(selectLastSelectedImageName);
|
||||
@ -55,14 +41,6 @@ const CurrentImagePreview = ({
|
||||
}
|
||||
}, [imageDTO]);
|
||||
|
||||
const droppableData = useMemo<TypesafeDroppableData | undefined>(
|
||||
() => ({
|
||||
id: 'current-image',
|
||||
actionType: 'SET_CURRENT_IMAGE',
|
||||
}),
|
||||
[]
|
||||
);
|
||||
|
||||
// Show and hide the next/prev buttons on mouse move
|
||||
const [shouldShowNextPrevButtons, setShouldShowNextPrevButtons] = useState<boolean>(false);
|
||||
const timeoutId = useRef(0);
|
||||
@ -86,30 +64,27 @@ const CurrentImagePreview = ({
|
||||
justifyContent="center"
|
||||
position="relative"
|
||||
>
|
||||
{hasDenoiseProgress && (shouldShowProgressInViewer || alwaysShowProgress) ? (
|
||||
{hasDenoiseProgress && shouldShowProgressInViewer ? (
|
||||
<ProgressImage />
|
||||
) : (
|
||||
<IAIDndImage
|
||||
imageDTO={imageDTO}
|
||||
droppableData={droppableData}
|
||||
draggableData={draggableData}
|
||||
isDragDisabled={isDragDisabled}
|
||||
isDropDisabled={isDropDisabled}
|
||||
isDropDisabled={true}
|
||||
isUploadDisabled={true}
|
||||
fitContainer
|
||||
useThumbailFallback
|
||||
dropLabel={t('gallery.setCurrentImage')}
|
||||
noContentFallback={<IAINoContentFallback icon={PiImageBold} label={t('gallery.noImageSelected')} />}
|
||||
dataTestId="image-preview"
|
||||
/>
|
||||
)}
|
||||
{shouldShowImageDetails && imageDTO && withMetadata && (
|
||||
{shouldShowImageDetails && imageDTO && (
|
||||
<Box position="absolute" opacity={0.8} top={0} width="full" height="full" borderRadius="base">
|
||||
<ImageMetadataViewer image={imageDTO} />
|
||||
</Box>
|
||||
)}
|
||||
<AnimatePresence>
|
||||
{withNextPrevButtons && shouldShowNextPrevButtons && imageDTO && (
|
||||
{shouldShowNextPrevButtons && imageDTO && (
|
||||
<Box
|
||||
as={motion.div}
|
||||
key="nextPrevButtons"
|
||||
|
@ -0,0 +1,41 @@
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { IAINoContentFallback } from 'common/components/IAIImageFallback';
|
||||
import type { Dimensions } from 'features/canvas/store/canvasTypes';
|
||||
import { selectComparisonImages } from 'features/gallery/components/ImageViewer/common';
|
||||
import { ImageComparisonHover } from 'features/gallery/components/ImageViewer/ImageComparisonHover';
|
||||
import { ImageComparisonSideBySide } from 'features/gallery/components/ImageViewer/ImageComparisonSideBySide';
|
||||
import { ImageComparisonSlider } from 'features/gallery/components/ImageViewer/ImageComparisonSlider';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiImagesBold } from 'react-icons/pi';
|
||||
|
||||
type Props = {
|
||||
containerDims: Dimensions;
|
||||
};
|
||||
|
||||
export const ImageComparison = memo(({ containerDims }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const comparisonMode = useAppSelector((s) => s.gallery.comparisonMode);
|
||||
const { firstImage, secondImage } = useAppSelector(selectComparisonImages);
|
||||
|
||||
if (!firstImage || !secondImage) {
|
||||
// Should rarely/never happen - we don't render this component unless we have images to compare
|
||||
return <IAINoContentFallback label={t('gallery.selectAnImageToCompare')} icon={PiImagesBold} />;
|
||||
}
|
||||
|
||||
if (comparisonMode === 'slider') {
|
||||
return <ImageComparisonSlider containerDims={containerDims} firstImage={firstImage} secondImage={secondImage} />;
|
||||
}
|
||||
|
||||
if (comparisonMode === 'side-by-side') {
|
||||
return (
|
||||
<ImageComparisonSideBySide containerDims={containerDims} firstImage={firstImage} secondImage={secondImage} />
|
||||
);
|
||||
}
|
||||
|
||||
if (comparisonMode === 'hover') {
|
||||
return <ImageComparisonHover containerDims={containerDims} firstImage={firstImage} secondImage={secondImage} />;
|
||||
}
|
||||
});
|
||||
|
||||
ImageComparison.displayName = 'ImageComparison';
|
@ -0,0 +1,47 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIDroppable from 'common/components/IAIDroppable';
|
||||
import type { CurrentImageDropData, SelectForCompareDropData } from 'features/dnd/types';
|
||||
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import { selectComparisonImages } from './common';
|
||||
|
||||
const setCurrentImageDropData: CurrentImageDropData = {
|
||||
id: 'current-image',
|
||||
actionType: 'SET_CURRENT_IMAGE',
|
||||
};
|
||||
|
||||
export const ImageComparisonDroppable = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const imageViewer = useImageViewer();
|
||||
const { firstImage, secondImage } = useAppSelector(selectComparisonImages);
|
||||
const selectForCompareDropData = useMemo<SelectForCompareDropData>(
|
||||
() => ({
|
||||
id: 'image-comparison',
|
||||
actionType: 'SELECT_FOR_COMPARE',
|
||||
context: {
|
||||
firstImageName: firstImage?.image_name,
|
||||
secondImageName: secondImage?.image_name,
|
||||
},
|
||||
}),
|
||||
[firstImage?.image_name, secondImage?.image_name]
|
||||
);
|
||||
|
||||
if (!imageViewer.isOpen) {
|
||||
return (
|
||||
<Flex position="absolute" top={0} right={0} bottom={0} left={0} gap={2} pointerEvents="none">
|
||||
<IAIDroppable data={setCurrentImageDropData} dropLabel={t('gallery.openInViewer')} />
|
||||
</Flex>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<Flex position="absolute" top={0} right={0} bottom={0} left={0} gap={2} pointerEvents="none">
|
||||
<IAIDroppable data={selectForCompareDropData} dropLabel={t('gallery.selectForCompare')} />
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
ImageComparisonDroppable.displayName = 'ImageComparisonDroppable';
|
@ -0,0 +1,117 @@
|
||||
import { Box, Flex, Image } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useBoolean } from 'common/hooks/useBoolean';
|
||||
import { preventDefault } from 'common/util/stopPropagation';
|
||||
import type { Dimensions } from 'features/canvas/store/canvasTypes';
|
||||
import { STAGE_BG_DATAURL } from 'features/controlLayers/util/renderers';
|
||||
import { ImageComparisonLabel } from 'features/gallery/components/ImageViewer/ImageComparisonLabel';
|
||||
import { memo, useMemo, useRef } from 'react';
|
||||
|
||||
import type { ComparisonProps } from './common';
|
||||
import { fitDimsToContainer, getSecondImageDims } from './common';
|
||||
|
||||
export const ImageComparisonHover = memo(({ firstImage, secondImage, containerDims }: ComparisonProps) => {
|
||||
const comparisonFit = useAppSelector((s) => s.gallery.comparisonFit);
|
||||
const imageContainerRef = useRef<HTMLDivElement>(null);
|
||||
const mouseOver = useBoolean(false);
|
||||
const fittedDims = useMemo<Dimensions>(
|
||||
() => fitDimsToContainer(containerDims, firstImage),
|
||||
[containerDims, firstImage]
|
||||
);
|
||||
const compareImageDims = useMemo<Dimensions>(
|
||||
() => getSecondImageDims(comparisonFit, fittedDims, firstImage, secondImage),
|
||||
[comparisonFit, fittedDims, firstImage, secondImage]
|
||||
);
|
||||
return (
|
||||
<Flex w="full" h="full" maxW="full" maxH="full" position="relative" alignItems="center" justifyContent="center">
|
||||
<Flex
|
||||
id="image-comparison-wrapper"
|
||||
w="full"
|
||||
h="full"
|
||||
maxW="full"
|
||||
maxH="full"
|
||||
position="absolute"
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
>
|
||||
<Box
|
||||
ref={imageContainerRef}
|
||||
position="relative"
|
||||
id="image-comparison-hover-image-container"
|
||||
w={fittedDims.width}
|
||||
h={fittedDims.height}
|
||||
maxW="full"
|
||||
maxH="full"
|
||||
userSelect="none"
|
||||
overflow="hidden"
|
||||
borderRadius="base"
|
||||
>
|
||||
<Image
|
||||
id="image-comparison-hover-first-image"
|
||||
src={firstImage.image_url}
|
||||
fallbackSrc={firstImage.thumbnail_url}
|
||||
w={fittedDims.width}
|
||||
h={fittedDims.height}
|
||||
maxW="full"
|
||||
maxH="full"
|
||||
objectFit="cover"
|
||||
objectPosition="top left"
|
||||
/>
|
||||
<ImageComparisonLabel type="first" opacity={mouseOver.isTrue ? 0 : 1} />
|
||||
|
||||
<Box
|
||||
id="image-comparison-hover-second-image-container"
|
||||
position="absolute"
|
||||
top={0}
|
||||
left={0}
|
||||
right={0}
|
||||
bottom={0}
|
||||
overflow="hidden"
|
||||
opacity={mouseOver.isTrue ? 1 : 0}
|
||||
transitionDuration="0.2s"
|
||||
transitionProperty="common"
|
||||
>
|
||||
<Box
|
||||
id="image-comparison-hover-bg"
|
||||
position="absolute"
|
||||
top={0}
|
||||
left={0}
|
||||
right={0}
|
||||
bottom={0}
|
||||
backgroundImage={STAGE_BG_DATAURL}
|
||||
backgroundRepeat="repeat"
|
||||
opacity={0.2}
|
||||
/>
|
||||
<Image
|
||||
position="relative"
|
||||
id="image-comparison-hover-second-image"
|
||||
src={secondImage.image_url}
|
||||
fallbackSrc={secondImage.thumbnail_url}
|
||||
w={compareImageDims.width}
|
||||
h={compareImageDims.height}
|
||||
maxW={fittedDims.width}
|
||||
maxH={fittedDims.height}
|
||||
objectFit={comparisonFit}
|
||||
objectPosition="top left"
|
||||
/>
|
||||
<ImageComparisonLabel type="second" opacity={mouseOver.isTrue ? 1 : 0} />
|
||||
</Box>
|
||||
<Box
|
||||
id="image-comparison-hover-interaction-overlay"
|
||||
position="absolute"
|
||||
top={0}
|
||||
right={0}
|
||||
bottom={0}
|
||||
left={0}
|
||||
onMouseOver={mouseOver.setTrue}
|
||||
onMouseOut={mouseOver.setFalse}
|
||||
onContextMenu={preventDefault}
|
||||
userSelect="none"
|
||||
/>
|
||||
</Box>
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
ImageComparisonHover.displayName = 'ImageComparisonHover';
|
@ -0,0 +1,33 @@
|
||||
import type { TextProps } from '@invoke-ai/ui-library';
|
||||
import { Text } from '@invoke-ai/ui-library';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import { DROP_SHADOW } from './common';
|
||||
|
||||
type Props = TextProps & {
|
||||
type: 'first' | 'second';
|
||||
};
|
||||
|
||||
export const ImageComparisonLabel = memo(({ type, ...rest }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
return (
|
||||
<Text
|
||||
position="absolute"
|
||||
bottom={4}
|
||||
insetInlineEnd={type === 'first' ? undefined : 4}
|
||||
insetInlineStart={type === 'first' ? 4 : undefined}
|
||||
textOverflow="clip"
|
||||
whiteSpace="nowrap"
|
||||
filter={DROP_SHADOW}
|
||||
color="base.50"
|
||||
transitionDuration="0.2s"
|
||||
transitionProperty="common"
|
||||
{...rest}
|
||||
>
|
||||
{type === 'first' ? t('gallery.viewerImage') : t('gallery.compareImage')}
|
||||
</Text>
|
||||
);
|
||||
});
|
||||
|
||||
ImageComparisonLabel.displayName = 'ImageComparisonLabel';
|
@ -0,0 +1,70 @@
|
||||
import { Flex, Image } from '@invoke-ai/ui-library';
|
||||
import type { ComparisonProps } from 'features/gallery/components/ImageViewer/common';
|
||||
import { ImageComparisonLabel } from 'features/gallery/components/ImageViewer/ImageComparisonLabel';
|
||||
import ResizeHandle from 'features/ui/components/tabs/ResizeHandle';
|
||||
import { memo, useCallback, useRef } from 'react';
|
||||
import type { ImperativePanelGroupHandle } from 'react-resizable-panels';
|
||||
import { Panel, PanelGroup } from 'react-resizable-panels';
|
||||
|
||||
export const ImageComparisonSideBySide = memo(({ firstImage, secondImage }: ComparisonProps) => {
|
||||
const panelGroupRef = useRef<ImperativePanelGroupHandle>(null);
|
||||
const onDoubleClickHandle = useCallback(() => {
|
||||
if (!panelGroupRef.current) {
|
||||
return;
|
||||
}
|
||||
panelGroupRef.current.setLayout([50, 50]);
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<Flex w="full" h="full" maxW="full" maxH="full" position="relative" alignItems="center" justifyContent="center">
|
||||
<Flex w="full" h="full" maxW="full" maxH="full" position="absolute" alignItems="center" justifyContent="center">
|
||||
<PanelGroup ref={panelGroupRef} direction="horizontal" id="image-comparison-side-by-side">
|
||||
<Panel minSize={20}>
|
||||
<Flex position="relative" w="full" h="full" alignItems="center" justifyContent="center">
|
||||
<Flex position="absolute" maxW="full" maxH="full" aspectRatio={firstImage.width / firstImage.height}>
|
||||
<Image
|
||||
id="image-comparison-side-by-side-first-image"
|
||||
w={firstImage.width}
|
||||
h={firstImage.height}
|
||||
maxW="full"
|
||||
maxH="full"
|
||||
src={firstImage.image_url}
|
||||
fallbackSrc={firstImage.thumbnail_url}
|
||||
objectFit="contain"
|
||||
borderRadius="base"
|
||||
/>
|
||||
<ImageComparisonLabel type="first" />
|
||||
</Flex>
|
||||
</Flex>
|
||||
</Panel>
|
||||
<ResizeHandle
|
||||
id="image-comparison-side-by-side-handle"
|
||||
onDoubleClick={onDoubleClickHandle}
|
||||
orientation="vertical"
|
||||
/>
|
||||
|
||||
<Panel minSize={20}>
|
||||
<Flex position="relative" w="full" h="full" alignItems="center" justifyContent="center">
|
||||
<Flex position="absolute" maxW="full" maxH="full" aspectRatio={secondImage.width / secondImage.height}>
|
||||
<Image
|
||||
id="image-comparison-side-by-side-first-image"
|
||||
w={secondImage.width}
|
||||
h={secondImage.height}
|
||||
maxW="full"
|
||||
maxH="full"
|
||||
src={secondImage.image_url}
|
||||
fallbackSrc={secondImage.thumbnail_url}
|
||||
objectFit="contain"
|
||||
borderRadius="base"
|
||||
/>
|
||||
<ImageComparisonLabel type="second" />
|
||||
</Flex>
|
||||
</Flex>
|
||||
</Panel>
|
||||
</PanelGroup>
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
ImageComparisonSideBySide.displayName = 'ImageComparisonSideBySide';
|
@ -0,0 +1,215 @@
|
||||
import { Box, Flex, Icon, Image } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { preventDefault } from 'common/util/stopPropagation';
|
||||
import type { Dimensions } from 'features/canvas/store/canvasTypes';
|
||||
import { STAGE_BG_DATAURL } from 'features/controlLayers/util/renderers';
|
||||
import { ImageComparisonLabel } from 'features/gallery/components/ImageViewer/ImageComparisonLabel';
|
||||
import { memo, useCallback, useEffect, useMemo, useRef, useState } from 'react';
|
||||
import { PiCaretLeftBold, PiCaretRightBold } from 'react-icons/pi';
|
||||
|
||||
import type { ComparisonProps } from './common';
|
||||
import { DROP_SHADOW, fitDimsToContainer, getSecondImageDims } from './common';
|
||||
|
||||
const INITIAL_POS = '50%';
|
||||
const HANDLE_WIDTH = 2;
|
||||
const HANDLE_WIDTH_PX = `${HANDLE_WIDTH}px`;
|
||||
const HANDLE_HITBOX = 20;
|
||||
const HANDLE_HITBOX_PX = `${HANDLE_HITBOX}px`;
|
||||
const HANDLE_INNER_LEFT_PX = `${HANDLE_HITBOX / 2 - HANDLE_WIDTH / 2}px`;
|
||||
const HANDLE_LEFT_INITIAL_PX = `calc(${INITIAL_POS} - ${HANDLE_HITBOX / 2}px)`;
|
||||
|
||||
export const ImageComparisonSlider = memo(({ firstImage, secondImage, containerDims }: ComparisonProps) => {
|
||||
const comparisonFit = useAppSelector((s) => s.gallery.comparisonFit);
|
||||
// How far the handle is from the left - this will be a CSS calculation that takes into account the handle width
|
||||
const [left, setLeft] = useState(HANDLE_LEFT_INITIAL_PX);
|
||||
// How wide the first image is
|
||||
const [width, setWidth] = useState(INITIAL_POS);
|
||||
const handleRef = useRef<HTMLDivElement>(null);
|
||||
// To manage aspect ratios, we need to know the size of the container
|
||||
const imageContainerRef = useRef<HTMLDivElement>(null);
|
||||
// To keep things smooth, we use RAF to update the handle position & gate it to 60fps
|
||||
const rafRef = useRef<number | null>(null);
|
||||
const lastMoveTimeRef = useRef<number>(0);
|
||||
|
||||
const fittedDims = useMemo<Dimensions>(
|
||||
() => fitDimsToContainer(containerDims, firstImage),
|
||||
[containerDims, firstImage]
|
||||
);
|
||||
|
||||
const compareImageDims = useMemo<Dimensions>(
|
||||
() => getSecondImageDims(comparisonFit, fittedDims, firstImage, secondImage),
|
||||
[comparisonFit, fittedDims, firstImage, secondImage]
|
||||
);
|
||||
|
||||
const updateHandlePos = useCallback((clientX: number) => {
|
||||
if (!handleRef.current || !imageContainerRef.current) {
|
||||
return;
|
||||
}
|
||||
lastMoveTimeRef.current = performance.now();
|
||||
const { x, width } = imageContainerRef.current.getBoundingClientRect();
|
||||
const rawHandlePos = ((clientX - x) * 100) / width;
|
||||
const handleWidthPct = (HANDLE_WIDTH * 100) / width;
|
||||
const newHandlePos = Math.min(100 - handleWidthPct, Math.max(0, rawHandlePos));
|
||||
setWidth(`${newHandlePos}%`);
|
||||
setLeft(`calc(${newHandlePos}% - ${HANDLE_HITBOX / 2}px)`);
|
||||
}, []);
|
||||
|
||||
const onMouseMove = useCallback(
|
||||
(e: MouseEvent) => {
|
||||
if (rafRef.current === null && performance.now() > lastMoveTimeRef.current + 1000 / 60) {
|
||||
rafRef.current = window.requestAnimationFrame(() => {
|
||||
updateHandlePos(e.clientX);
|
||||
rafRef.current = null;
|
||||
});
|
||||
}
|
||||
},
|
||||
[updateHandlePos]
|
||||
);
|
||||
|
||||
const onMouseUp = useCallback(() => {
|
||||
window.removeEventListener('mousemove', onMouseMove);
|
||||
}, [onMouseMove]);
|
||||
|
||||
const onMouseDown = useCallback(
|
||||
(e: React.MouseEvent<HTMLDivElement>) => {
|
||||
// Update the handle position immediately on click
|
||||
updateHandlePos(e.clientX);
|
||||
window.addEventListener('mouseup', onMouseUp, { once: true });
|
||||
window.addEventListener('mousemove', onMouseMove);
|
||||
},
|
||||
[onMouseMove, onMouseUp, updateHandlePos]
|
||||
);
|
||||
|
||||
useEffect(
|
||||
() => () => {
|
||||
if (rafRef.current !== null) {
|
||||
cancelAnimationFrame(rafRef.current);
|
||||
}
|
||||
},
|
||||
[]
|
||||
);
|
||||
|
||||
return (
|
||||
<Flex w="full" h="full" maxW="full" maxH="full" position="relative" alignItems="center" justifyContent="center">
|
||||
<Flex
|
||||
id="image-comparison-wrapper"
|
||||
w="full"
|
||||
h="full"
|
||||
maxW="full"
|
||||
maxH="full"
|
||||
position="absolute"
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
>
|
||||
<Box
|
||||
ref={imageContainerRef}
|
||||
position="relative"
|
||||
id="image-comparison-image-container"
|
||||
w={fittedDims.width}
|
||||
h={fittedDims.height}
|
||||
maxW="full"
|
||||
maxH="full"
|
||||
userSelect="none"
|
||||
overflow="hidden"
|
||||
borderRadius="base"
|
||||
>
|
||||
<Box
|
||||
id="image-comparison-bg"
|
||||
position="absolute"
|
||||
top={0}
|
||||
left={0}
|
||||
right={0}
|
||||
bottom={0}
|
||||
backgroundImage={STAGE_BG_DATAURL}
|
||||
backgroundRepeat="repeat"
|
||||
opacity={0.2}
|
||||
/>
|
||||
<Image
|
||||
position="relative"
|
||||
id="image-comparison-second-image"
|
||||
src={secondImage.image_url}
|
||||
fallbackSrc={secondImage.thumbnail_url}
|
||||
w={compareImageDims.width}
|
||||
h={compareImageDims.height}
|
||||
maxW={fittedDims.width}
|
||||
maxH={fittedDims.height}
|
||||
objectFit={comparisonFit}
|
||||
objectPosition="top left"
|
||||
/>
|
||||
<ImageComparisonLabel type="second" />
|
||||
<Box
|
||||
id="image-comparison-first-image-container"
|
||||
position="absolute"
|
||||
top={0}
|
||||
left={0}
|
||||
right={0}
|
||||
bottom={0}
|
||||
w={width}
|
||||
overflow="hidden"
|
||||
>
|
||||
<Image
|
||||
id="image-comparison-first-image"
|
||||
src={firstImage.image_url}
|
||||
fallbackSrc={firstImage.thumbnail_url}
|
||||
w={fittedDims.width}
|
||||
h={fittedDims.height}
|
||||
objectFit="cover"
|
||||
objectPosition="top left"
|
||||
/>
|
||||
<ImageComparisonLabel type="first" />
|
||||
</Box>
|
||||
<Flex
|
||||
id="image-comparison-handle"
|
||||
ref={handleRef}
|
||||
position="absolute"
|
||||
top={0}
|
||||
bottom={0}
|
||||
left={left}
|
||||
w={HANDLE_HITBOX_PX}
|
||||
cursor="ew-resize"
|
||||
filter={DROP_SHADOW}
|
||||
opacity={0.8}
|
||||
color="base.50"
|
||||
>
|
||||
<Box
|
||||
id="image-comparison-handle-divider"
|
||||
w={HANDLE_WIDTH_PX}
|
||||
h="full"
|
||||
bg="currentColor"
|
||||
shadow="dark-lg"
|
||||
position="absolute"
|
||||
top={0}
|
||||
left={HANDLE_INNER_LEFT_PX}
|
||||
/>
|
||||
<Flex
|
||||
id="image-comparison-handle-icons"
|
||||
gap={4}
|
||||
position="absolute"
|
||||
left="50%"
|
||||
top="50%"
|
||||
transform="translate(-50%, 0)"
|
||||
filter={DROP_SHADOW}
|
||||
>
|
||||
<Icon as={PiCaretLeftBold} />
|
||||
<Icon as={PiCaretRightBold} />
|
||||
</Flex>
|
||||
</Flex>
|
||||
<Box
|
||||
id="image-comparison-interaction-overlay"
|
||||
position="absolute"
|
||||
top={0}
|
||||
right={0}
|
||||
bottom={0}
|
||||
left={0}
|
||||
onMouseDown={onMouseDown}
|
||||
onContextMenu={preventDefault}
|
||||
userSelect="none"
|
||||
cursor="ew-resize"
|
||||
/>
|
||||
</Box>
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
ImageComparisonSlider.displayName = 'ImageComparisonSlider';
|
@ -1,36 +1,16 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { ToggleMetadataViewerButton } from 'features/gallery/components/ImageViewer/ToggleMetadataViewerButton';
|
||||
import { ToggleProgressButton } from 'features/gallery/components/ImageViewer/ToggleProgressButton';
|
||||
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
|
||||
import type { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { Box, Flex } from '@invoke-ai/ui-library';
|
||||
import { CompareToolbar } from 'features/gallery/components/ImageViewer/CompareToolbar';
|
||||
import CurrentImagePreview from 'features/gallery/components/ImageViewer/CurrentImagePreview';
|
||||
import { ImageComparison } from 'features/gallery/components/ImageViewer/ImageComparison';
|
||||
import { ViewerToolbar } from 'features/gallery/components/ImageViewer/ViewerToolbar';
|
||||
import { memo } from 'react';
|
||||
import { useMeasure } from 'react-use';
|
||||
|
||||
import CurrentImageButtons from './CurrentImageButtons';
|
||||
import CurrentImagePreview from './CurrentImagePreview';
|
||||
import { ViewerToggleMenu } from './ViewerToggleMenu';
|
||||
|
||||
const VIEWER_ENABLED_TABS: InvokeTabName[] = ['canvas', 'generation', 'workflows'];
|
||||
import { useImageViewer } from './useImageViewer';
|
||||
|
||||
export const ImageViewer = memo(() => {
|
||||
const { isOpen, onToggle, onClose } = useImageViewer();
|
||||
const activeTabName = useAppSelector(activeTabNameSelector);
|
||||
const isViewerEnabled = useMemo(() => VIEWER_ENABLED_TABS.includes(activeTabName), [activeTabName]);
|
||||
const shouldShowViewer = useMemo(() => {
|
||||
if (!isViewerEnabled) {
|
||||
return false;
|
||||
}
|
||||
return isOpen;
|
||||
}, [isOpen, isViewerEnabled]);
|
||||
|
||||
useHotkeys('z', onToggle, { enabled: isViewerEnabled }, [isViewerEnabled, onToggle]);
|
||||
useHotkeys('esc', onClose, { enabled: isViewerEnabled }, [isViewerEnabled, onClose]);
|
||||
|
||||
if (!shouldShowViewer) {
|
||||
return null;
|
||||
}
|
||||
const imageViewer = useImageViewer();
|
||||
const [containerRef, containerDims] = useMeasure<HTMLDivElement>();
|
||||
|
||||
return (
|
||||
<Flex
|
||||
@ -46,25 +26,13 @@ export const ImageViewer = memo(() => {
|
||||
rowGap={4}
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
zIndex={10} // reactflow puts its minimap at 5, so we need to be above that
|
||||
>
|
||||
<Flex w="full" gap={2}>
|
||||
<Flex flex={1} justifyContent="center">
|
||||
<Flex gap={2} marginInlineEnd="auto">
|
||||
<ToggleProgressButton />
|
||||
<ToggleMetadataViewerButton />
|
||||
</Flex>
|
||||
</Flex>
|
||||
<Flex flex={1} gap={2} justifyContent="center">
|
||||
<CurrentImageButtons />
|
||||
</Flex>
|
||||
<Flex flex={1} justifyContent="center">
|
||||
<Flex gap={2} marginInlineStart="auto">
|
||||
<ViewerToggleMenu />
|
||||
</Flex>
|
||||
</Flex>
|
||||
</Flex>
|
||||
<CurrentImagePreview />
|
||||
{imageViewer.isComparing && <CompareToolbar />}
|
||||
{!imageViewer.isComparing && <ViewerToolbar />}
|
||||
<Box ref={containerRef} w="full" h="full">
|
||||
{!imageViewer.isComparing && <CurrentImagePreview />}
|
||||
{imageViewer.isComparing && <ImageComparison containerDims={containerDims} />}
|
||||
</Box>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
@ -1,45 +0,0 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { ToggleMetadataViewerButton } from 'features/gallery/components/ImageViewer/ToggleMetadataViewerButton';
|
||||
import { ToggleProgressButton } from 'features/gallery/components/ImageViewer/ToggleProgressButton';
|
||||
import { memo } from 'react';
|
||||
|
||||
import CurrentImageButtons from './CurrentImageButtons';
|
||||
import CurrentImagePreview from './CurrentImagePreview';
|
||||
|
||||
export const ImageViewerWorkflows = memo(() => {
|
||||
return (
|
||||
<Flex
|
||||
layerStyle="first"
|
||||
borderRadius="base"
|
||||
position="absolute"
|
||||
flexDirection="column"
|
||||
top={0}
|
||||
right={0}
|
||||
bottom={0}
|
||||
left={0}
|
||||
p={2}
|
||||
rowGap={4}
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
zIndex={10} // reactflow puts its minimap at 5, so we need to be above that
|
||||
>
|
||||
<Flex w="full" gap={2}>
|
||||
<Flex flex={1} justifyContent="center">
|
||||
<Flex gap={2} marginInlineEnd="auto">
|
||||
<ToggleProgressButton />
|
||||
<ToggleMetadataViewerButton />
|
||||
</Flex>
|
||||
</Flex>
|
||||
<Flex flex={1} gap={2} justifyContent="center">
|
||||
<CurrentImageButtons />
|
||||
</Flex>
|
||||
<Flex flex={1} justifyContent="center">
|
||||
<Flex gap={2} marginInlineStart="auto" />
|
||||
</Flex>
|
||||
</Flex>
|
||||
<CurrentImagePreview />
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
ImageViewerWorkflows.displayName = 'ImageViewerWorkflows';
|
@ -9,33 +9,35 @@ import {
|
||||
PopoverTrigger,
|
||||
Text,
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiCaretDownBold, PiCheckBold, PiEyeBold, PiPencilBold } from 'react-icons/pi';
|
||||
|
||||
import { useImageViewer } from './useImageViewer';
|
||||
|
||||
export const ViewerToggleMenu = () => {
|
||||
const { t } = useTranslation();
|
||||
const { isOpen, onClose, onOpen } = useImageViewer();
|
||||
const imageViewer = useImageViewer();
|
||||
useHotkeys('z', imageViewer.onToggle, [imageViewer]);
|
||||
useHotkeys('esc', imageViewer.onClose, [imageViewer]);
|
||||
|
||||
return (
|
||||
<Popover isLazy>
|
||||
<PopoverTrigger>
|
||||
<Button variant="outline" data-testid="toggle-viewer-menu-button">
|
||||
<Button variant="outline" data-testid="toggle-viewer-menu-button" pointerEvents="auto">
|
||||
<Flex gap={3} w="full" alignItems="center">
|
||||
{isOpen ? <Icon as={PiEyeBold} /> : <Icon as={PiPencilBold} />}
|
||||
<Text fontSize="md">{isOpen ? t('common.viewing') : t('common.editing')}</Text>
|
||||
{imageViewer.isOpen ? <Icon as={PiEyeBold} /> : <Icon as={PiPencilBold} />}
|
||||
<Text fontSize="md">{imageViewer.isOpen ? t('common.viewing') : t('common.editing')}</Text>
|
||||
<Icon as={PiCaretDownBold} />
|
||||
</Flex>
|
||||
</Button>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent p={2}>
|
||||
<PopoverContent p={2} pointerEvents="auto">
|
||||
<PopoverArrow />
|
||||
<PopoverBody>
|
||||
<Flex flexDir="column">
|
||||
<Button onClick={onOpen} variant="ghost" h="auto" w="auto" p={2}>
|
||||
<Button onClick={imageViewer.onOpen} variant="ghost" h="auto" w="auto" p={2}>
|
||||
<Flex gap={2} w="full">
|
||||
<Icon as={PiCheckBold} visibility={isOpen ? 'visible' : 'hidden'} />
|
||||
<Icon as={PiCheckBold} visibility={imageViewer.isOpen ? 'visible' : 'hidden'} />
|
||||
<Flex flexDir="column" gap={2} alignItems="flex-start">
|
||||
<Text fontWeight="semibold" color="base.100">
|
||||
{t('common.viewing')}
|
||||
@ -46,9 +48,9 @@ export const ViewerToggleMenu = () => {
|
||||
</Flex>
|
||||
</Flex>
|
||||
</Button>
|
||||
<Button onClick={onClose} variant="ghost" h="auto" w="auto" p={2}>
|
||||
<Button onClick={imageViewer.onClose} variant="ghost" h="auto" w="auto" p={2}>
|
||||
<Flex gap={2} w="full">
|
||||
<Icon as={PiCheckBold} visibility={isOpen ? 'hidden' : 'visible'} />
|
||||
<Icon as={PiCheckBold} visibility={imageViewer.isOpen ? 'hidden' : 'visible'} />
|
||||
<Flex flexDir="column" gap={2} alignItems="flex-start">
|
||||
<Text fontWeight="semibold" color="base.100">
|
||||
{t('common.editing')}
|
||||
|
@ -0,0 +1,33 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { ToggleMetadataViewerButton } from 'features/gallery/components/ImageViewer/ToggleMetadataViewerButton';
|
||||
import { ToggleProgressButton } from 'features/gallery/components/ImageViewer/ToggleProgressButton';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { memo } from 'react';
|
||||
|
||||
import CurrentImageButtons from './CurrentImageButtons';
|
||||
import { ViewerToggleMenu } from './ViewerToggleMenu';
|
||||
|
||||
export const ViewerToolbar = memo(() => {
|
||||
const tab = useAppSelector(activeTabNameSelector);
|
||||
return (
|
||||
<Flex w="full" gap={2}>
|
||||
<Flex flex={1} justifyContent="center">
|
||||
<Flex gap={2} marginInlineEnd="auto">
|
||||
<ToggleProgressButton />
|
||||
<ToggleMetadataViewerButton />
|
||||
</Flex>
|
||||
</Flex>
|
||||
<Flex flex={1} gap={2} justifyContent="center">
|
||||
<CurrentImageButtons />
|
||||
</Flex>
|
||||
<Flex flex={1} justifyContent="center">
|
||||
<Flex gap={2} marginInlineStart="auto">
|
||||
{tab !== 'workflows' && <ViewerToggleMenu />}
|
||||
</Flex>
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
ViewerToolbar.displayName = 'ViewerToolbar';
|
@ -0,0 +1,64 @@
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import type { Dimensions } from 'features/canvas/store/canvasTypes';
|
||||
import { selectGallerySlice } from 'features/gallery/store/gallerySlice';
|
||||
import type { ComparisonFit } from 'features/gallery/store/types';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
export const DROP_SHADOW = 'drop-shadow(0px 0px 4px rgb(0, 0, 0)) drop-shadow(0px 0px 4px rgba(0, 0, 0, 0.3))';
|
||||
|
||||
export type ComparisonProps = {
|
||||
firstImage: ImageDTO;
|
||||
secondImage: ImageDTO;
|
||||
containerDims: Dimensions;
|
||||
};
|
||||
|
||||
export const fitDimsToContainer = (containerDims: Dimensions, imageDims: Dimensions): Dimensions => {
|
||||
// Fall back to the image's dimensions if the container has no dimensions
|
||||
if (containerDims.width === 0 || containerDims.height === 0) {
|
||||
return { width: imageDims.width, height: imageDims.height };
|
||||
}
|
||||
|
||||
// Fall back to the image's dimensions if the image fits within the container
|
||||
if (imageDims.width <= containerDims.width && imageDims.height <= containerDims.height) {
|
||||
return { width: imageDims.width, height: imageDims.height };
|
||||
}
|
||||
|
||||
const targetAspectRatio = containerDims.width / containerDims.height;
|
||||
const imageAspectRatio = imageDims.width / imageDims.height;
|
||||
|
||||
let width: number;
|
||||
let height: number;
|
||||
|
||||
if (imageAspectRatio > targetAspectRatio) {
|
||||
// Image is wider than container's aspect ratio
|
||||
width = containerDims.width;
|
||||
height = width / imageAspectRatio;
|
||||
} else {
|
||||
// Image is taller than container's aspect ratio
|
||||
height = containerDims.height;
|
||||
width = height * imageAspectRatio;
|
||||
}
|
||||
return { width, height };
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the dimensions of the second image in a comparison based on the comparison fit mode.
|
||||
*/
|
||||
export const getSecondImageDims = (
|
||||
comparisonFit: ComparisonFit,
|
||||
fittedDims: Dimensions,
|
||||
firstImageDims: Dimensions,
|
||||
secondImageDims: Dimensions
|
||||
): Dimensions => {
|
||||
const width =
|
||||
comparisonFit === 'fill' ? fittedDims.width : (fittedDims.width * secondImageDims.width) / firstImageDims.width;
|
||||
const height =
|
||||
comparisonFit === 'fill' ? fittedDims.height : (fittedDims.height * secondImageDims.height) / firstImageDims.height;
|
||||
|
||||
return { width, height };
|
||||
};
|
||||
export const selectComparisonImages = createMemoizedSelector(selectGallerySlice, (gallerySlice) => {
|
||||
const firstImage = gallerySlice.selection.slice(-1)[0] ?? null;
|
||||
const secondImage = gallerySlice.imageToCompare;
|
||||
return { firstImage, secondImage };
|
||||
});
|
@ -0,0 +1,31 @@
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { imageToCompareChanged, isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { useCallback } from 'react';
|
||||
|
||||
export const useImageViewer = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const isComparing = useAppSelector((s) => s.gallery.imageToCompare !== null);
|
||||
const isOpen = useAppSelector((s) => s.gallery.isImageViewerOpen);
|
||||
|
||||
const onClose = useCallback(() => {
|
||||
if (isComparing && isOpen) {
|
||||
dispatch(imageToCompareChanged(null));
|
||||
} else {
|
||||
dispatch(isImageViewerOpenChanged(false));
|
||||
}
|
||||
}, [dispatch, isComparing, isOpen]);
|
||||
|
||||
const onOpen = useCallback(() => {
|
||||
dispatch(isImageViewerOpenChanged(true));
|
||||
}, [dispatch]);
|
||||
|
||||
const onToggle = useCallback(() => {
|
||||
if (isComparing && isOpen) {
|
||||
dispatch(imageToCompareChanged(null));
|
||||
} else {
|
||||
dispatch(isImageViewerOpenChanged(!isOpen));
|
||||
}
|
||||
}, [dispatch, isComparing, isOpen]);
|
||||
|
||||
return { isOpen, onOpen, onClose, onToggle, isComparing };
|
||||
};
|
@ -1,22 +0,0 @@
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { useCallback } from 'react';
|
||||
|
||||
export const useImageViewer = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const isOpen = useAppSelector((s) => s.gallery.isImageViewerOpen);
|
||||
|
||||
const onClose = useCallback(() => {
|
||||
dispatch(isImageViewerOpenChanged(false));
|
||||
}, [dispatch]);
|
||||
|
||||
const onOpen = useCallback(() => {
|
||||
dispatch(isImageViewerOpenChanged(true));
|
||||
}, [dispatch]);
|
||||
|
||||
const onToggle = useCallback(() => {
|
||||
dispatch(isImageViewerOpenChanged(!isOpen));
|
||||
}, [dispatch, isOpen]);
|
||||
|
||||
return { isOpen, onOpen, onClose, onToggle };
|
||||
};
|
@ -14,7 +14,7 @@ const nextPrevButtonStyles: ChakraProps['sx'] = {
|
||||
const NextPrevImageButtons = () => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
const { handleLeftImage, handleRightImage, isOnFirstImage, isOnLastImage } = useGalleryNavigation();
|
||||
const { prevImage, nextImage, isOnFirstImage, isOnLastImage } = useGalleryNavigation();
|
||||
|
||||
const {
|
||||
areMoreImagesAvailable,
|
||||
@ -30,7 +30,7 @@ const NextPrevImageButtons = () => {
|
||||
aria-label={t('accessibility.previousImage')}
|
||||
icon={<PiCaretLeftBold size={64} />}
|
||||
variant="unstyled"
|
||||
onClick={handleLeftImage}
|
||||
onClick={prevImage}
|
||||
boxSize={16}
|
||||
sx={nextPrevButtonStyles}
|
||||
/>
|
||||
@ -42,7 +42,7 @@ const NextPrevImageButtons = () => {
|
||||
aria-label={t('accessibility.nextImage')}
|
||||
icon={<PiCaretRightBold size={64} />}
|
||||
variant="unstyled"
|
||||
onClick={handleRightImage}
|
||||
onClick={nextImage}
|
||||
boxSize={16}
|
||||
sx={nextPrevButtonStyles}
|
||||
/>
|
||||
|
@ -27,16 +27,16 @@ export const useGalleryHotkeys = () => {
|
||||
useGalleryNavigation();
|
||||
|
||||
useHotkeys(
|
||||
'left',
|
||||
() => {
|
||||
canNavigateGallery && handleLeftImage();
|
||||
['left', 'alt+left'],
|
||||
(e) => {
|
||||
canNavigateGallery && handleLeftImage(e.altKey);
|
||||
},
|
||||
[handleLeftImage, canNavigateGallery]
|
||||
);
|
||||
|
||||
useHotkeys(
|
||||
'right',
|
||||
() => {
|
||||
['right', 'alt+right'],
|
||||
(e) => {
|
||||
if (!canNavigateGallery) {
|
||||
return;
|
||||
}
|
||||
@ -45,29 +45,29 @@ export const useGalleryHotkeys = () => {
|
||||
return;
|
||||
}
|
||||
if (!isOnLastImage) {
|
||||
handleRightImage();
|
||||
handleRightImage(e.altKey);
|
||||
}
|
||||
},
|
||||
[isOnLastImage, areMoreImagesAvailable, handleLoadMoreImages, isFetching, handleRightImage, canNavigateGallery]
|
||||
);
|
||||
|
||||
useHotkeys(
|
||||
'up',
|
||||
() => {
|
||||
handleUpImage();
|
||||
['up', 'alt+up'],
|
||||
(e) => {
|
||||
handleUpImage(e.altKey);
|
||||
},
|
||||
{ preventDefault: true },
|
||||
[handleUpImage]
|
||||
);
|
||||
|
||||
useHotkeys(
|
||||
'down',
|
||||
() => {
|
||||
['down', 'alt+down'],
|
||||
(e) => {
|
||||
if (!areImagesBelowCurrent && areMoreImagesAvailable && !isFetching) {
|
||||
handleLoadMoreImages();
|
||||
return;
|
||||
}
|
||||
handleDownImage();
|
||||
handleDownImage(e.altKey);
|
||||
},
|
||||
{ preventDefault: true },
|
||||
[areImagesBelowCurrent, areMoreImagesAvailable, handleLoadMoreImages, isFetching, handleDownImage]
|
||||
|
@ -1,11 +1,11 @@
|
||||
import { useAltModifier } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { getGalleryImageDataTestId } from 'features/gallery/components/ImageGrid/getGalleryImageDataTestId';
|
||||
import { imageItemContainerTestId } from 'features/gallery/components/ImageGrid/ImageGridItemContainer';
|
||||
import { imageListContainerTestId } from 'features/gallery/components/ImageGrid/ImageGridListContainer';
|
||||
import { virtuosoGridRefs } from 'features/gallery/components/ImageGrid/types';
|
||||
import { useGalleryImages } from 'features/gallery/hooks/useGalleryImages';
|
||||
import { selectLastSelectedImage } from 'features/gallery/store/gallerySelectors';
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { imageSelected, imageToCompareChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { getIsVisible } from 'features/gallery/util/getIsVisible';
|
||||
import { getScrollToIndexAlign } from 'features/gallery/util/getScrollToIndexAlign';
|
||||
import { clamp } from 'lodash-es';
|
||||
@ -106,10 +106,12 @@ const getImageFuncs = {
|
||||
};
|
||||
|
||||
type UseGalleryNavigationReturn = {
|
||||
handleLeftImage: () => void;
|
||||
handleRightImage: () => void;
|
||||
handleUpImage: () => void;
|
||||
handleDownImage: () => void;
|
||||
handleLeftImage: (alt?: boolean) => void;
|
||||
handleRightImage: (alt?: boolean) => void;
|
||||
handleUpImage: (alt?: boolean) => void;
|
||||
handleDownImage: (alt?: boolean) => void;
|
||||
prevImage: () => void;
|
||||
nextImage: () => void;
|
||||
isOnFirstImage: boolean;
|
||||
isOnLastImage: boolean;
|
||||
areImagesBelowCurrent: boolean;
|
||||
@ -123,7 +125,15 @@ type UseGalleryNavigationReturn = {
|
||||
*/
|
||||
export const useGalleryNavigation = (): UseGalleryNavigationReturn => {
|
||||
const dispatch = useAppDispatch();
|
||||
const lastSelectedImage = useAppSelector(selectLastSelectedImage);
|
||||
const alt = useAltModifier();
|
||||
const lastSelectedImage = useAppSelector((s) => {
|
||||
const lastSelected = s.gallery.selection.slice(-1)[0] ?? null;
|
||||
if (alt) {
|
||||
return s.gallery.imageToCompare ?? lastSelected;
|
||||
} else {
|
||||
return lastSelected;
|
||||
}
|
||||
});
|
||||
const {
|
||||
queryResult: { data },
|
||||
} = useGalleryImages();
|
||||
@ -136,7 +146,7 @@ export const useGalleryNavigation = (): UseGalleryNavigationReturn => {
|
||||
}, [lastSelectedImage, data]);
|
||||
|
||||
const handleNavigation = useCallback(
|
||||
(direction: 'left' | 'right' | 'up' | 'down') => {
|
||||
(direction: 'left' | 'right' | 'up' | 'down', alt?: boolean) => {
|
||||
if (!data) {
|
||||
return;
|
||||
}
|
||||
@ -144,10 +154,14 @@ export const useGalleryNavigation = (): UseGalleryNavigationReturn => {
|
||||
if (!image || index === lastSelectedImageIndex) {
|
||||
return;
|
||||
}
|
||||
dispatch(imageSelected(image));
|
||||
if (alt) {
|
||||
dispatch(imageToCompareChanged(image));
|
||||
} else {
|
||||
dispatch(imageSelected(image));
|
||||
}
|
||||
scrollToImage(image.image_name, index);
|
||||
},
|
||||
[dispatch, lastSelectedImageIndex, data]
|
||||
[data, lastSelectedImageIndex, dispatch]
|
||||
);
|
||||
|
||||
const isOnFirstImage = useMemo(() => lastSelectedImageIndex === 0, [lastSelectedImageIndex]);
|
||||
@ -162,21 +176,41 @@ export const useGalleryNavigation = (): UseGalleryNavigationReturn => {
|
||||
return lastSelectedImageIndex + imagesPerRow < loadedImagesCount;
|
||||
}, [lastSelectedImageIndex, loadedImagesCount]);
|
||||
|
||||
const handleLeftImage = useCallback(() => {
|
||||
handleNavigation('left');
|
||||
}, [handleNavigation]);
|
||||
const handleLeftImage = useCallback(
|
||||
(alt?: boolean) => {
|
||||
handleNavigation('left', alt);
|
||||
},
|
||||
[handleNavigation]
|
||||
);
|
||||
|
||||
const handleRightImage = useCallback(() => {
|
||||
handleNavigation('right');
|
||||
}, [handleNavigation]);
|
||||
const handleRightImage = useCallback(
|
||||
(alt?: boolean) => {
|
||||
handleNavigation('right', alt);
|
||||
},
|
||||
[handleNavigation]
|
||||
);
|
||||
|
||||
const handleUpImage = useCallback(() => {
|
||||
handleNavigation('up');
|
||||
}, [handleNavigation]);
|
||||
const handleUpImage = useCallback(
|
||||
(alt?: boolean) => {
|
||||
handleNavigation('up', alt);
|
||||
},
|
||||
[handleNavigation]
|
||||
);
|
||||
|
||||
const handleDownImage = useCallback(() => {
|
||||
handleNavigation('down');
|
||||
}, [handleNavigation]);
|
||||
const handleDownImage = useCallback(
|
||||
(alt?: boolean) => {
|
||||
handleNavigation('down', alt);
|
||||
},
|
||||
[handleNavigation]
|
||||
);
|
||||
|
||||
const nextImage = useCallback(() => {
|
||||
handleRightImage();
|
||||
}, [handleRightImage]);
|
||||
|
||||
const prevImage = useCallback(() => {
|
||||
handleLeftImage();
|
||||
}, [handleLeftImage]);
|
||||
|
||||
return {
|
||||
handleLeftImage,
|
||||
@ -186,5 +220,7 @@ export const useGalleryNavigation = (): UseGalleryNavigationReturn => {
|
||||
isOnFirstImage,
|
||||
isOnLastImage,
|
||||
areImagesBelowCurrent,
|
||||
nextImage,
|
||||
prevImage,
|
||||
};
|
||||
};
|
||||
|
@ -36,6 +36,7 @@ export const useMultiselect = (imageDTO?: ImageDTO) => {
|
||||
shiftKey: e.shiftKey,
|
||||
ctrlKey: e.ctrlKey,
|
||||
metaKey: e.metaKey,
|
||||
altKey: e.altKey,
|
||||
})
|
||||
);
|
||||
},
|
||||
|
@ -6,7 +6,7 @@ import { boardsApi } from 'services/api/endpoints/boards';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
import type { BoardId, GalleryState, GalleryView } from './types';
|
||||
import type { BoardId, ComparisonMode, GalleryState, GalleryView } from './types';
|
||||
import { IMAGE_LIMIT, INITIAL_IMAGE_LIMIT } from './types';
|
||||
|
||||
const initialGalleryState: GalleryState = {
|
||||
@ -22,6 +22,9 @@ const initialGalleryState: GalleryState = {
|
||||
limit: INITIAL_IMAGE_LIMIT,
|
||||
offset: 0,
|
||||
isImageViewerOpen: true,
|
||||
imageToCompare: null,
|
||||
comparisonMode: 'slider',
|
||||
comparisonFit: 'fill',
|
||||
};
|
||||
|
||||
export const gallerySlice = createSlice({
|
||||
@ -34,6 +37,28 @@ export const gallerySlice = createSlice({
|
||||
selectionChanged: (state, action: PayloadAction<ImageDTO[]>) => {
|
||||
state.selection = uniqBy(action.payload, (i) => i.image_name);
|
||||
},
|
||||
imageToCompareChanged: (state, action: PayloadAction<ImageDTO | null>) => {
|
||||
state.imageToCompare = action.payload;
|
||||
if (action.payload) {
|
||||
state.isImageViewerOpen = true;
|
||||
}
|
||||
},
|
||||
comparisonModeChanged: (state, action: PayloadAction<ComparisonMode>) => {
|
||||
state.comparisonMode = action.payload;
|
||||
},
|
||||
comparisonModeCycled: (state) => {
|
||||
switch (state.comparisonMode) {
|
||||
case 'slider':
|
||||
state.comparisonMode = 'side-by-side';
|
||||
break;
|
||||
case 'side-by-side':
|
||||
state.comparisonMode = 'hover';
|
||||
break;
|
||||
case 'hover':
|
||||
state.comparisonMode = 'slider';
|
||||
break;
|
||||
}
|
||||
},
|
||||
shouldAutoSwitchChanged: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldAutoSwitch = action.payload;
|
||||
},
|
||||
@ -79,6 +104,16 @@ export const gallerySlice = createSlice({
|
||||
isImageViewerOpenChanged: (state, action: PayloadAction<boolean>) => {
|
||||
state.isImageViewerOpen = action.payload;
|
||||
},
|
||||
comparedImagesSwapped: (state) => {
|
||||
if (state.imageToCompare) {
|
||||
const oldSelection = state.selection;
|
||||
state.selection = [state.imageToCompare];
|
||||
state.imageToCompare = oldSelection[0] ?? null;
|
||||
}
|
||||
},
|
||||
comparisonFitChanged: (state, action: PayloadAction<'contain' | 'fill'>) => {
|
||||
state.comparisonFit = action.payload;
|
||||
},
|
||||
},
|
||||
extraReducers: (builder) => {
|
||||
builder.addMatcher(isAnyBoardDeleted, (state, action) => {
|
||||
@ -117,6 +152,11 @@ export const {
|
||||
moreImagesLoaded,
|
||||
alwaysShowImageSizeBadgeChanged,
|
||||
isImageViewerOpenChanged,
|
||||
imageToCompareChanged,
|
||||
comparisonModeChanged,
|
||||
comparedImagesSwapped,
|
||||
comparisonFitChanged,
|
||||
comparisonModeCycled,
|
||||
} = gallerySlice.actions;
|
||||
|
||||
const isAnyBoardDeleted = isAnyOf(
|
||||
@ -138,5 +178,13 @@ export const galleryPersistConfig: PersistConfig<GalleryState> = {
|
||||
name: gallerySlice.name,
|
||||
initialState: initialGalleryState,
|
||||
migrate: migrateGalleryState,
|
||||
persistDenylist: ['selection', 'selectedBoardId', 'galleryView', 'offset', 'limit', 'isImageViewerOpen'],
|
||||
persistDenylist: [
|
||||
'selection',
|
||||
'selectedBoardId',
|
||||
'galleryView',
|
||||
'offset',
|
||||
'limit',
|
||||
'isImageViewerOpen',
|
||||
'imageToCompare',
|
||||
],
|
||||
};
|
||||
|
@ -7,6 +7,8 @@ export const IMAGE_LIMIT = 20;
|
||||
|
||||
export type GalleryView = 'images' | 'assets';
|
||||
export type BoardId = 'none' | (string & Record<never, never>);
|
||||
export type ComparisonMode = 'slider' | 'side-by-side' | 'hover';
|
||||
export type ComparisonFit = 'contain' | 'fill';
|
||||
|
||||
export type GalleryState = {
|
||||
selection: ImageDTO[];
|
||||
@ -20,5 +22,8 @@ export type GalleryState = {
|
||||
offset: number;
|
||||
limit: number;
|
||||
alwaysShowImageSizeBadge: boolean;
|
||||
imageToCompare: ImageDTO | null;
|
||||
comparisonMode: ComparisonMode;
|
||||
comparisonFit: ComparisonFit;
|
||||
isImageViewerOpen: boolean;
|
||||
};
|
||||
|
@ -1,4 +1,7 @@
|
||||
import { getStore } from 'app/store/nanostores/store';
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { objectKeys } from 'common/util/objectKeys';
|
||||
import { shouldConcatPromptsChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { Layer } from 'features/controlLayers/store/types';
|
||||
import type { LoRA } from 'features/lora/store/loraSlice';
|
||||
import type {
|
||||
@ -16,6 +19,7 @@ import { validators } from 'features/metadata/util/validators';
|
||||
import type { ModelIdentifierField } from 'features/nodes/types/common';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { size } from 'lodash-es';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { parsers } from './parsers';
|
||||
@ -376,54 +380,25 @@ export const handlers = {
|
||||
}),
|
||||
} as const;
|
||||
|
||||
type ParsedValue = Awaited<ReturnType<(typeof handlers)[keyof typeof handlers]['parse']>>;
|
||||
type RecallResults = Partial<Record<keyof typeof handlers, ParsedValue>>;
|
||||
|
||||
export const parseAndRecallPrompts = async (metadata: unknown) => {
|
||||
const results = await Promise.allSettled([
|
||||
handlers.positivePrompt.parse(metadata).then((positivePrompt) => {
|
||||
if (!handlers.positivePrompt.recall) {
|
||||
return;
|
||||
}
|
||||
handlers.positivePrompt?.recall(positivePrompt);
|
||||
}),
|
||||
handlers.negativePrompt.parse(metadata).then((negativePrompt) => {
|
||||
if (!handlers.negativePrompt.recall) {
|
||||
return;
|
||||
}
|
||||
handlers.negativePrompt?.recall(negativePrompt);
|
||||
}),
|
||||
handlers.sdxlPositiveStylePrompt.parse(metadata).then((sdxlPositiveStylePrompt) => {
|
||||
if (!handlers.sdxlPositiveStylePrompt.recall) {
|
||||
return;
|
||||
}
|
||||
handlers.sdxlPositiveStylePrompt?.recall(sdxlPositiveStylePrompt);
|
||||
}),
|
||||
handlers.sdxlNegativeStylePrompt.parse(metadata).then((sdxlNegativeStylePrompt) => {
|
||||
if (!handlers.sdxlNegativeStylePrompt.recall) {
|
||||
return;
|
||||
}
|
||||
handlers.sdxlNegativeStylePrompt?.recall(sdxlNegativeStylePrompt);
|
||||
}),
|
||||
]);
|
||||
if (results.some((result) => result.status === 'fulfilled')) {
|
||||
const keysToRecall: (keyof typeof handlers)[] = [
|
||||
'positivePrompt',
|
||||
'negativePrompt',
|
||||
'sdxlPositiveStylePrompt',
|
||||
'sdxlNegativeStylePrompt',
|
||||
];
|
||||
const recalled = await recallKeys(keysToRecall, metadata);
|
||||
if (size(recalled) > 0) {
|
||||
parameterSetToast(t('metadata.allPrompts'));
|
||||
}
|
||||
};
|
||||
|
||||
export const parseAndRecallImageDimensions = async (metadata: unknown) => {
|
||||
const results = await Promise.allSettled([
|
||||
handlers.width.parse(metadata).then((width) => {
|
||||
if (!handlers.width.recall) {
|
||||
return;
|
||||
}
|
||||
handlers.width?.recall(width);
|
||||
}),
|
||||
handlers.height.parse(metadata).then((height) => {
|
||||
if (!handlers.height.recall) {
|
||||
return;
|
||||
}
|
||||
handlers.height?.recall(height);
|
||||
}),
|
||||
]);
|
||||
if (results.some((result) => result.status === 'fulfilled')) {
|
||||
const recalled = recallKeys(['width', 'height'], metadata);
|
||||
if (size(recalled) > 0) {
|
||||
parameterSetToast(t('metadata.imageDimensions'));
|
||||
}
|
||||
};
|
||||
@ -438,28 +413,20 @@ export const parseAndRecallAllMetadata = async (
|
||||
toControlLayers: boolean,
|
||||
skip: (keyof typeof handlers)[] = []
|
||||
) => {
|
||||
const skipKeys = skip ?? [];
|
||||
const skipKeys = deepClone(skip);
|
||||
if (toControlLayers) {
|
||||
skipKeys.push(...TO_CONTROL_LAYERS_SKIP_KEYS);
|
||||
} else {
|
||||
skipKeys.push(...NOT_TO_CONTROL_LAYERS_SKIP_KEYS);
|
||||
}
|
||||
const results = await Promise.allSettled(
|
||||
objectKeys(handlers)
|
||||
.filter((key) => !skipKeys.includes(key))
|
||||
.map((key) => {
|
||||
const { parse, recall } = handlers[key];
|
||||
return parse(metadata).then((value) => {
|
||||
if (!recall) {
|
||||
return;
|
||||
}
|
||||
/* @ts-expect-error The return type of parse and the input type of recall are guaranteed to be compatible. */
|
||||
recall(value);
|
||||
});
|
||||
})
|
||||
);
|
||||
|
||||
if (results.some((result) => result.status === 'fulfilled')) {
|
||||
// We may need to take some further action depending on what was recalled. For example, we need to disable SDXL prompt
|
||||
// concat if the negative or positive style prompt was set. Because the recalling is all async, we need to collect all
|
||||
// results
|
||||
const keysToRecall = objectKeys(handlers).filter((key) => !skipKeys.includes(key));
|
||||
const recalled = await recallKeys(keysToRecall, metadata);
|
||||
|
||||
if (size(recalled) > 0) {
|
||||
toast({
|
||||
id: 'PARAMETER_SET',
|
||||
title: t('toast.parametersSet'),
|
||||
@ -473,3 +440,43 @@ export const parseAndRecallAllMetadata = async (
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Recalls a set of keys from metadata.
|
||||
* Includes special handling for some metadata where recalling may have side effects. For example, recalling a "style"
|
||||
* prompt that is different from the "positive" or "negative" prompt should disable prompt concatenation.
|
||||
* @param keysToRecall An array of keys to recall.
|
||||
* @param metadata The metadata to recall from
|
||||
* @returns A promise that resolves to an object containing the recalled values.
|
||||
*/
|
||||
const recallKeys = async (keysToRecall: (keyof typeof handlers)[], metadata: unknown): Promise<RecallResults> => {
|
||||
const { dispatch } = getStore();
|
||||
const recalled: RecallResults = {};
|
||||
for (const key of keysToRecall) {
|
||||
const { parse, recall } = handlers[key];
|
||||
if (!recall) {
|
||||
continue;
|
||||
}
|
||||
try {
|
||||
const value = await parse(metadata);
|
||||
/* @ts-expect-error The return type of parse and the input type of recall are guaranteed to be compatible. */
|
||||
await recall(value);
|
||||
recalled[key] = value;
|
||||
} catch {
|
||||
// no-op
|
||||
}
|
||||
}
|
||||
|
||||
if (
|
||||
(recalled['sdxlPositiveStylePrompt'] && recalled['sdxlPositiveStylePrompt'] !== recalled['positivePrompt']) ||
|
||||
(recalled['sdxlNegativeStylePrompt'] && recalled['sdxlNegativeStylePrompt'] !== recalled['negativePrompt'])
|
||||
) {
|
||||
// If we set the negative style prompt or positive style prompt, we should disable prompt concat
|
||||
dispatch(shouldConcatPromptsChanged(false));
|
||||
} else {
|
||||
// Otherwise, we should enable prompt concat
|
||||
dispatch(shouldConcatPromptsChanged(true));
|
||||
}
|
||||
|
||||
return recalled;
|
||||
};
|
||||
|
@ -1,6 +1,7 @@
|
||||
import { getStore } from 'app/store/nanostores/store';
|
||||
import type { ModelIdentifierField } from 'features/nodes/types/common';
|
||||
import { isModelIdentifier, isModelIdentifierV2 } from 'features/nodes/types/common';
|
||||
import type { ModelIdentifier } from 'features/nodes/types/v2/common';
|
||||
import { modelsApi } from 'services/api/endpoints/models';
|
||||
import type { AnyModelConfig, BaseModelType, ModelType } from 'services/api/types';
|
||||
|
||||
@ -107,19 +108,30 @@ export const fetchModelConfigWithTypeGuard = async <T extends AnyModelConfig>(
|
||||
|
||||
/**
|
||||
* Fetches the model key from a model identifier. This includes fetching the key for MM1 format model identifiers.
|
||||
* @param modelIdentifier The model identifier. The MM2 format `{key: string}` simply extracts the key. The MM1 format
|
||||
* `{model_name: string, base_model: BaseModelType}` must do a network request to fetch the key.
|
||||
* @param modelIdentifier The model identifier. This can be a MM1 or MM2 identifier. In every case, we attempt to fetch
|
||||
* the model config from the server to ensure that the model identifier is valid and represents an installed model.
|
||||
* @param type The type of model to fetch. This is used to fetch the key for MM1 format model identifiers.
|
||||
* @param message An optional custom message to include in the error if the model identifier is invalid.
|
||||
* @returns A promise that resolves to the model key.
|
||||
* @throws {InvalidModelConfigError} If the model identifier is invalid.
|
||||
*/
|
||||
export const getModelKey = async (modelIdentifier: unknown, type: ModelType, message?: string): Promise<string> => {
|
||||
export const getModelKey = async (
|
||||
modelIdentifier: unknown | ModelIdentifierField | ModelIdentifier,
|
||||
type: ModelType,
|
||||
message?: string
|
||||
): Promise<string> => {
|
||||
if (isModelIdentifier(modelIdentifier)) {
|
||||
return modelIdentifier.key;
|
||||
}
|
||||
if (isModelIdentifierV2(modelIdentifier)) {
|
||||
try {
|
||||
// Check if the model exists by key
|
||||
return (await fetchModelConfig(modelIdentifier.key)).key;
|
||||
} catch {
|
||||
// If not, fetch the model key by name and base model
|
||||
return (await fetchModelConfigByAttrs(modelIdentifier.name, modelIdentifier.base, type)).key;
|
||||
}
|
||||
} else if (isModelIdentifierV2(modelIdentifier)) {
|
||||
// Try by old-format model identifier
|
||||
return (await fetchModelConfigByAttrs(modelIdentifier.model_name, modelIdentifier.base_model, type)).key;
|
||||
}
|
||||
// Nope, couldn't find it
|
||||
throw new InvalidModelConfigError(message || `Invalid model identifier: ${modelIdentifier}`);
|
||||
};
|
||||
|
@ -19,7 +19,7 @@ import {
|
||||
redo,
|
||||
undo,
|
||||
} from 'features/nodes/store/nodesSlice';
|
||||
import { $flow } from 'features/nodes/store/reactFlowInstance';
|
||||
import { $flow, $needsFit } from 'features/nodes/store/reactFlowInstance';
|
||||
import { connectionToEdge } from 'features/nodes/store/util/reactFlowUtil';
|
||||
import type { CSSProperties, MouseEvent } from 'react';
|
||||
import { memo, useCallback, useMemo, useRef } from 'react';
|
||||
@ -68,6 +68,7 @@ export const Flow = memo(() => {
|
||||
const nodes = useAppSelector((s) => s.nodes.present.nodes);
|
||||
const edges = useAppSelector((s) => s.nodes.present.edges);
|
||||
const viewport = useStore($viewport);
|
||||
const needsFit = useStore($needsFit);
|
||||
const mayUndo = useAppSelector((s) => s.nodes.past.length > 0);
|
||||
const mayRedo = useAppSelector((s) => s.nodes.future.length > 0);
|
||||
const shouldSnapToGrid = useAppSelector((s) => s.workflowSettings.shouldSnapToGrid);
|
||||
@ -92,8 +93,16 @@ export const Flow = memo(() => {
|
||||
const onNodesChange: OnNodesChange = useCallback(
|
||||
(nodeChanges) => {
|
||||
dispatch(nodesChanged(nodeChanges));
|
||||
const flow = $flow.get();
|
||||
if (!flow) {
|
||||
return;
|
||||
}
|
||||
if (needsFit) {
|
||||
$needsFit.set(false);
|
||||
flow.fitView();
|
||||
}
|
||||
},
|
||||
[dispatch]
|
||||
[dispatch, needsFit]
|
||||
);
|
||||
|
||||
const onEdgesChange: OnEdgesChange = useCallback(
|
||||
|
@ -15,27 +15,20 @@ const ViewportControls = () => {
|
||||
const { t } = useTranslation();
|
||||
const { zoomIn, zoomOut, fitView } = useReactFlow();
|
||||
const dispatch = useAppDispatch();
|
||||
// const shouldShowFieldTypeLegend = useAppSelector(
|
||||
// (s) => s.nodes.present.shouldShowFieldTypeLegend
|
||||
// );
|
||||
const shouldShowMinimapPanel = useAppSelector((s) => s.workflowSettings.shouldShowMinimapPanel);
|
||||
|
||||
const handleClickedZoomIn = useCallback(() => {
|
||||
zoomIn();
|
||||
zoomIn({ duration: 300 });
|
||||
}, [zoomIn]);
|
||||
|
||||
const handleClickedZoomOut = useCallback(() => {
|
||||
zoomOut();
|
||||
zoomOut({ duration: 300 });
|
||||
}, [zoomOut]);
|
||||
|
||||
const handleClickedFitView = useCallback(() => {
|
||||
fitView();
|
||||
fitView({ duration: 300 });
|
||||
}, [fitView]);
|
||||
|
||||
// const handleClickedToggleFieldTypeLegend = useCallback(() => {
|
||||
// dispatch(shouldShowFieldTypeLegendChanged(!shouldShowFieldTypeLegend));
|
||||
// }, [shouldShowFieldTypeLegend, dispatch]);
|
||||
|
||||
const handleClickedToggleMiniMapPanel = useCallback(() => {
|
||||
dispatch(shouldShowMinimapPanelChanged(!shouldShowMinimapPanel));
|
||||
}, [shouldShowMinimapPanel, dispatch]);
|
||||
|
@ -1,9 +1,7 @@
|
||||
import 'reactflow/dist/style.css';
|
||||
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { selectWorkflowSlice } from 'features/nodes/store/workflowSlice';
|
||||
import QueueControls from 'features/queue/components/QueueControls';
|
||||
import ResizeHandle from 'features/ui/components/tabs/ResizeHandle';
|
||||
import { usePanelStorage } from 'features/ui/hooks/usePanelStorage';
|
||||
@ -21,14 +19,8 @@ import { WorkflowName } from './WorkflowName';
|
||||
|
||||
const panelGroupStyles: CSSProperties = { height: '100%', width: '100%' };
|
||||
|
||||
const selector = createMemoizedSelector(selectWorkflowSlice, (workflow) => {
|
||||
return {
|
||||
mode: workflow.mode,
|
||||
};
|
||||
});
|
||||
|
||||
const NodeEditorPanelGroup = () => {
|
||||
const { mode } = useAppSelector(selector);
|
||||
const mode = useAppSelector((s) => s.workflow.mode);
|
||||
const panelGroupRef = useRef<ImperativePanelGroupHandle>(null);
|
||||
const panelStorage = usePanelStorage();
|
||||
|
||||
|
@ -1,20 +1,12 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import SaveWorkflowButton from 'features/nodes/components/flow/panels/TopPanel/SaveWorkflowButton';
|
||||
import { selectWorkflowSlice } from 'features/nodes/store/workflowSlice';
|
||||
import { NewWorkflowButton } from 'features/workflowLibrary/components/NewWorkflowButton';
|
||||
|
||||
import { ModeToggle } from './ModeToggle';
|
||||
|
||||
const selector = createMemoizedSelector(selectWorkflowSlice, (workflow) => {
|
||||
return {
|
||||
mode: workflow.mode,
|
||||
};
|
||||
});
|
||||
|
||||
export const WorkflowMenu = () => {
|
||||
const { mode } = useAppSelector(selector);
|
||||
const mode = useAppSelector((s) => s.workflow.mode);
|
||||
|
||||
return (
|
||||
<Flex gap="2" alignItems="center">
|
||||
|
@ -11,8 +11,7 @@ import { selectLastSelectedNode } from 'features/nodes/store/selectors';
|
||||
import { isInvocationNode } from 'features/nodes/types/invocation';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import type { ImageOutput } from 'services/api/types';
|
||||
import type { AnyResult } from 'services/events/types';
|
||||
import type { AnyInvocationOutput, ImageOutput } from 'services/api/types';
|
||||
|
||||
import ImageOutputPreview from './outputs/ImageOutputPreview';
|
||||
|
||||
@ -66,4 +65,4 @@ const InspectorOutputsTab = () => {
|
||||
|
||||
export default memo(InspectorOutputsTab);
|
||||
|
||||
const getKey = (result: AnyResult, i: number) => `${result.type}-${i}`;
|
||||
const getKey = (result: AnyInvocationOutput, i: number) => `${result.type}-${i}`;
|
||||
|
@ -2,3 +2,4 @@ import { atom } from 'nanostores';
|
||||
import type { ReactFlowInstance } from 'reactflow';
|
||||
|
||||
export const $flow = atom<ReactFlowInstance | null>(null);
|
||||
export const $needsFit = atom<boolean>(true);
|
||||
|
@ -144,5 +144,4 @@ const zImageOutput = z.object({
|
||||
type: z.literal('image_output'),
|
||||
});
|
||||
export type ImageOutput = z.infer<typeof zImageOutput>;
|
||||
export const isImageOutput = (output: unknown): output is ImageOutput => zImageOutput.safeParse(output).success;
|
||||
// #endregion
|
||||
|
@ -1,8 +1,7 @@
|
||||
import type { NodesState } from 'features/nodes/store/types';
|
||||
import { isInvocationNode } from 'features/nodes/types/invocation';
|
||||
import { omit, reduce } from 'lodash-es';
|
||||
import type { Graph } from 'services/api/types';
|
||||
import type { AnyInvocation } from 'services/events/types';
|
||||
import type { AnyInvocation, Graph } from 'services/api/types';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
|
||||
/**
|
||||
|
@ -1,6 +1,7 @@
|
||||
import { Box } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { ImageViewerWorkflows } from 'features/gallery/components/ImageViewer/ImageViewerWorkflows';
|
||||
import { ImageComparisonDroppable } from 'features/gallery/components/ImageViewer/ImageComparisonDroppable';
|
||||
import { ImageViewer } from 'features/gallery/components/ImageViewer/ImageViewer';
|
||||
import NodeEditor from 'features/nodes/components/NodeEditor';
|
||||
import { memo } from 'react';
|
||||
import { ReactFlowProvider } from 'reactflow';
|
||||
@ -10,7 +11,8 @@ const NodesTab = () => {
|
||||
if (mode === 'view') {
|
||||
return (
|
||||
<Box layerStyle="first" position="relative" w="full" h="full" p={2} borderRadius="base">
|
||||
<ImageViewerWorkflows />
|
||||
<ImageViewer />
|
||||
<ImageComparisonDroppable />
|
||||
</Box>
|
||||
);
|
||||
}
|
||||
|
@ -1,13 +1,17 @@
|
||||
import { Box } from '@invoke-ai/ui-library';
|
||||
import { ControlLayersEditor } from 'features/controlLayers/components/ControlLayersEditor';
|
||||
import { ImageComparisonDroppable } from 'features/gallery/components/ImageViewer/ImageComparisonDroppable';
|
||||
import { ImageViewer } from 'features/gallery/components/ImageViewer/ImageViewer';
|
||||
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
|
||||
import { memo } from 'react';
|
||||
|
||||
const TextToImageTab = () => {
|
||||
const imageViewer = useImageViewer();
|
||||
return (
|
||||
<Box layerStyle="first" position="relative" w="full" h="full" p={2} borderRadius="base">
|
||||
<ControlLayersEditor />
|
||||
<ImageViewer />
|
||||
{imageViewer.isOpen && <ImageViewer />}
|
||||
<ImageComparisonDroppable />
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
@ -41,7 +41,7 @@ const UnifiedCanvasTab = () => {
|
||||
>
|
||||
<IAICanvasToolbar />
|
||||
<IAICanvas />
|
||||
{isValidDrop(droppableData, active) && (
|
||||
{isValidDrop(droppableData, active?.data.current) && (
|
||||
<IAIDropOverlay isOver={isOver} label={t('toast.setCanvasInitialImage')} />
|
||||
)}
|
||||
</Flex>
|
||||
|
File diff suppressed because one or more lines are too long
@ -122,7 +122,6 @@ export type ModelInstallStatus = S['InstallStatus'];
|
||||
// Graphs
|
||||
export type Graph = S['Graph'];
|
||||
export type NonNullableGraph = O.Required<Graph, 'nodes' | 'edges'>;
|
||||
export type GraphExecutionState = S['GraphExecutionState'];
|
||||
export type Batch = S['Batch'];
|
||||
export type SessionQueueItemDTO = S['SessionQueueItemDTO'];
|
||||
export type WorkflowRecordOrderBy = S['WorkflowRecordOrderBy'];
|
||||
@ -132,14 +131,14 @@ export type WorkflowRecordListItemDTO = S['WorkflowRecordListItemDTO'];
|
||||
type KeysOfUnion<T> = T extends T ? keyof T : never;
|
||||
|
||||
export type AnyInvocation = Exclude<
|
||||
Graph['nodes'][string],
|
||||
NonNullable<S['Graph']['nodes']>[string],
|
||||
S['CoreMetadataInvocation'] | S['MetadataInvocation'] | S['MetadataItemInvocation'] | S['MergeMetadataInvocation']
|
||||
>;
|
||||
export type AnyInvocationIncMetadata = S['Graph']['nodes'][string];
|
||||
export type AnyInvocationIncMetadata = NonNullable<S['Graph']['nodes']>[string];
|
||||
|
||||
export type InvocationType = AnyInvocation['type'];
|
||||
type InvocationOutputMap = S['InvocationOutputMap'];
|
||||
type AnyInvocationOutput = InvocationOutputMap[InvocationType];
|
||||
export type AnyInvocationOutput = InvocationOutputMap[InvocationType];
|
||||
|
||||
export type Invocation<T extends InvocationType> = Extract<AnyInvocation, { type: T }>;
|
||||
// export type InvocationOutput<T extends InvocationType> = InvocationOutputMap[T];
|
||||
|
@ -1,21 +1,12 @@
|
||||
import type { Graph, GraphExecutionState, S } from 'services/api/types';
|
||||
|
||||
export type AnyInvocation = NonNullable<NonNullable<Graph['nodes']>[string]>;
|
||||
|
||||
export type AnyResult = NonNullable<GraphExecutionState['results'][string]>;
|
||||
import type { S } from 'services/api/types';
|
||||
|
||||
export type ModelLoadStartedEvent = S['ModelLoadStartedEvent'];
|
||||
export type ModelLoadCompleteEvent = S['ModelLoadCompleteEvent'];
|
||||
|
||||
export type InvocationStartedEvent = Omit<S['InvocationStartedEvent'], 'invocation'> & { invocation: AnyInvocation };
|
||||
export type InvocationDenoiseProgressEvent = Omit<S['InvocationDenoiseProgressEvent'], 'invocation'> & {
|
||||
invocation: AnyInvocation;
|
||||
};
|
||||
export type InvocationCompleteEvent = Omit<S['InvocationCompleteEvent'], 'result' | 'invocation'> & {
|
||||
result: AnyResult;
|
||||
invocation: AnyInvocation;
|
||||
};
|
||||
export type InvocationErrorEvent = Omit<S['InvocationErrorEvent'], 'invocation'> & { invocation: AnyInvocation };
|
||||
export type InvocationStartedEvent = S['InvocationStartedEvent'];
|
||||
export type InvocationDenoiseProgressEvent = S['InvocationDenoiseProgressEvent'];
|
||||
export type InvocationCompleteEvent = S['InvocationCompleteEvent'];
|
||||
export type InvocationErrorEvent = S['InvocationErrorEvent'];
|
||||
export type ProgressImage = InvocationDenoiseProgressEvent['progress_image'];
|
||||
|
||||
export type ModelInstallDownloadProgressEvent = S['ModelInstallDownloadProgressEvent'];
|
||||
|
@ -1 +1 @@
|
||||
__version__ = "4.2.3"
|
||||
__version__ = "4.2.4"
|
||||
|
@ -55,10 +55,10 @@ dependencies = [
|
||||
|
||||
# Core application dependencies, pinned for reproducible builds.
|
||||
"fastapi-events==0.11.0",
|
||||
"fastapi==0.110.0",
|
||||
"fastapi==0.111.0",
|
||||
"huggingface-hub==0.23.1",
|
||||
"pydantic-settings==2.2.1",
|
||||
"pydantic==2.6.3",
|
||||
"pydantic==2.7.2",
|
||||
"python-socketio==5.11.1",
|
||||
"uvicorn[standard]==0.28.0",
|
||||
|
||||
|
@ -7,9 +7,10 @@ def main():
|
||||
# Change working directory to the repo root
|
||||
os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
||||
|
||||
from invokeai.app.api_app import custom_openapi
|
||||
from invokeai.app.api_app import app
|
||||
from invokeai.app.util.custom_openapi import get_openapi_func
|
||||
|
||||
schema = custom_openapi()
|
||||
schema = get_openapi_func(app)()
|
||||
json.dump(schema, sys.stdout, indent=2)
|
||||
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
import pytest
|
||||
from pydantic import TypeAdapter
|
||||
from pydantic.json_schema import models_json_schema
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
@ -713,4 +714,4 @@ def test_iterate_accepts_collection():
|
||||
def test_graph_can_generate_schema():
|
||||
# Not throwing on this line is sufficient
|
||||
# NOTE: if this test fails, it's PROBABLY because a new invocation type is breaking schema generation
|
||||
_ = Graph.model_json_schema()
|
||||
models_json_schema([(Graph, "serialization")])
|
||||
|
Reference in New Issue
Block a user