Compare commits

..

61 Commits

Author SHA1 Message Date
90d37eac03 update requirements to address #1149 2022-10-18 16:00:59 -04:00
230de023ff resolve doc conflicts during merge 2022-10-18 08:27:33 -04:00
febf86dedf Merge branch 'fix-gh-actions' of github.com:mauwii/stable-diffusion into fix-gh-actions 2022-10-18 13:26:03 +02:00
76ae17abac update cache steps
remove restore-keys, make keys uniuqe
2022-10-18 13:25:51 +02:00
339ff4b464 fix conda pkg cache name
also change content of hashFile-function
2022-10-18 13:25:51 +02:00
00c0e487dd move export behind the tests, upload with artifact
also switch to python between 3.9-3.10 and use conda-forge again
2022-10-18 13:25:50 +02:00
5c8dfa38be readd pip dependencie in environment-ma.yml 2022-10-18 13:25:50 +02:00
acf85c66a5 add current branch to push trigger 2022-10-18 13:25:50 +02:00
3619918954 rename step to export conda env 2022-10-18 13:25:50 +02:00
65b14683a8 unpin conda package versions in environment.yml 2022-10-18 13:25:50 +02:00
f4fc02a3da switch to default channel in environment-mac.yml 2022-10-18 13:25:50 +02:00
c334170a93 pin versions only for pip packages 2022-10-18 13:25:50 +02:00
deab6c64fc export conda env instead of only print versions 2022-10-18 13:25:50 +02:00
e1c9503951 list conda packages after activating env
also want to show how much faster it will run now with cached pkgs
2022-10-18 13:25:50 +02:00
9a21812bf5 revert changes to environment.yml
@tildebyte this would not have been pointed out without PR-Validation
2022-10-18 13:25:50 +02:00
347b5ce452 fix expression 2022-10-18 13:25:50 +02:00
b39029521b use very short validation for Pull Requests 2022-10-18 13:25:49 +02:00
97b26f3de2 remove doubled checkpoint cache 2022-10-18 13:25:49 +02:00
e19a7a990d unpin versions in environment
as asked by @tildebyte
2022-10-18 13:25:49 +02:00
3e424e1046 remove pip from dependencies 2022-10-18 13:25:49 +02:00
db20b4af9c remove pr trigger 2022-10-18 13:25:15 +02:00
44ff8f8531 squash merge update-gh-actions into fix-gh-actions
* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* remove 4gotten trigger

* Update-gh-actions (#6)

* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* use macos-latest

* try to update conda before creating mac env

* better conda update trial

* re-pin streamlit version

* re-added trigger to run workflow in current branch

* try to find out if conda mac env could be updated

* install cmake, protobuf and rust b4 conda

* add yes to conda update

* lets try anaconda3-2022.05

* try environment.yml for mac as well

* reenable conda mac env, add pip install
also fix gitignore by changing from dream to invoke

* remove
- unecesary virtualenv creation
- conda update

change != macos back to == linux

* remove cmake from brew install since pre-installed

* disable opencv-python pip requirement

* fixed commands to find latest package versions

* update requirements for mac env

* back to the roots - only install conda env
depending on runner_os with or without extra env variables

* check out macOS in azure-pipelines
since becoming kind of tired of the GitHub Runner which is broken as ...

* let's try to setup python and update conda env

* initialize conda before using it

* add trigger in azure-pipelines.yml

* And another go for update first ....

* update azure-pipelines.yml
- add caching
- add checkpoint download
- add paths to trigger
and more

* unquote checkpoint-url

* fix chekpoint-url variable

* mkdir before downloading model

* set pr trigger to main, rename anaconda cache

* unique cacheHitVariables

* try to use macos-latest instead of macos-12

* update test-invoke-conda.yml:
- remove unecesarry echo step
- use s-weigand/setup-conda@v1
- remove conda update from install deps step since updated with action

* update test-invoke-conda.yml:
- rename conda env cache from ldm to invokeai
- reorder steps:
  1. checkout sources
  2. setup python
  3. setup conda
  4. keep order after set platform variables

* change macos back to 12 since also fails with 11

* update condition in run the tests
make difference between main or not main

* fix path to cache invokeai conda env

* fix invokeai conda env cache path

* update mkdocs-flow.yml

* change conda-channel priority

* update create-caches

* update conda env also when cache was used

* os dependend conda env cache path

* use existing CONDA env pointing to conda root

* create CONDA_ROOT output from $CONDA

* use output variable to define test prompts

* use setup-python v4, get rid of PYTHON_BIN env

* add runner.os to result artifacts name

* update test-invoke-conda.yml:
- reuse macos-latest
- disable setup python 3.9
- setup conda with default python version
- create or update conda environment depending on cache success
- remove name parameter from conda update since name is set in env yml

* improve mkdocs-flow.yml

* disable cache-hugginface-torch
since preload_models.py downloads to more than one location

* update mkdocs-flow.yml with new name

* rename mkdocs action to mkdocs-material

* try to ignore error when creating conda env
maybe it would still be usable, lets see ;P

* remove bloat

* update environment-mac.yml
to match dependencies of invoke-ai/InvokeAI's main branch

* disable conda update, tweak prompt condition

* try to set some env vars for macOS to fix conda

* stop ignoring error, use env instead of outputs

* tweak `[[` connditions

* update python and pip dependencie
makes a difference of 1 sec per itteration compared to 3.9!!!
also I see no reason why using a old pip version would be beneficial

* remove unecesarry env for macOS
everything was pre-tested on my MacBook Air 2020 with M1

* update conda env in setup step

* activate conda env after installation

* update test-invoke-conda.yml
- set conda env dependent on matrix.os
- set CONDA_ENV_NAME to prevent breaking action when renaming conda env
- fix conda env activation

* fix activate conda env

* set bash -l as default shell

* use action to activate conda env

* add conda env file to env activation

* try to replace s-weigeand with conda-incubator

* remove azure-pipelines.yml
funniest part is that the macos runner is the same as the one on github!

* include environment-file in matrix
- also disable auto-activate-base and auto-update-conda
- include macos-latest and macos-12 for debugging purpose
- set miniforge-version in matrix

* fix miniforge-variant, set fail-fast to false

* add step to setup miniconda
- make default shell a matrix variable
- remove bloat

* use a mac env yml without pinned versions

* unpin nomkl, pytorch and torchvision
also removed opencv-pyhton

* cache conda pkgs dir instead of conda env

* use python 3.10, exclude macos-12 from cache

* fix expression

* prepare for PR

* fix doubled id

* reuse pinned versions in mac conda env
- updated python pip version
- unpined pytorch and torchvision
- removed opencv-python
- updated versions to most recent (tested locally)

* fix classical copy/paste error

* remove unused env from shell-block comment

* fix hashFiles function to determine restore-keys

* reenable caching `~.cache`, update create-caches

* unpin all versions in mac conda env file
this was the only way I got it working in the action, also works locally
tested on MacBook Air 2020 M1
remove environment-mac-unpinned.yml

* prepare merge by removing this branch from trigger

* include pull_request trigger for main and dev

* remove pull_request trigger
2022-10-18 13:25:15 +02:00
a8b794d7e0 update precision info 2022-10-17 22:27:27 -04:00
f868362ca8 fix prompt in README.md 2022-10-17 22:27:27 -04:00
8858f7e97c (re-) fix a lot in mkdocs 2022-10-17 22:27:27 -04:00
2db4969e18 Merge branch 'main' into fix-gh-actions 2022-10-17 23:41:36 +02:00
2ecc1abf21 fix links to point to invoke-ai.github.io 2022-10-17 17:40:31 -04:00
703bc9494a Merge remote-tracking branch 'upstream/main' into fix-gh-actions-fork 2022-10-17 21:40:16 +02:00
e5ab07091d adding license using GitHub template
Did not attempt to add additional copyright information.
2022-10-17 12:09:24 -04:00
891678b656 remove license files temporarily 2022-10-17 12:08:09 -04:00
39ea2a257c remove additional copyrights from license file
Trying to get GitHub to recognize our MIT license. Perhaps the additional copyrights are confusing it.
2022-10-17 12:07:00 -04:00
2d68eae16b Second try at getting GitHub to register license 2022-10-17 12:05:42 -04:00
d65948c423 Update gitignore to ignore codeformer weights at new location
Eventually making it slightly more flexible
2022-10-17 11:54:45 -04:00
9910a0b004 Fix broken links to CLI.md
* Looks like there was a bad paste
2022-10-16 23:40:27 -04:00
ff96358cb3 Correct typo in the subtitle of the project
* “Formally” means that there is a formality such as a rule or declaration, “formerly” refers to a prior state.  The latter is almost certainly what is meant here.
2022-10-16 23:40:27 -04:00
edf471f655 update cache steps
remove restore-keys, make keys uniuqe
2022-10-17 04:43:06 +02:00
5b02c8ca4a fix conda pkg cache name
also change content of hashFile-function
2022-10-17 04:02:38 +02:00
e7688c53b8 move export behind the tests, upload with artifact
also switch to python between 3.9-3.10 and use conda-forge again
2022-10-17 03:27:15 +02:00
87cada42db readd pip dependencie in environment-ma.yml 2022-10-17 02:22:19 +02:00
6fe67ee426 add current branch to push trigger 2022-10-17 02:12:46 +02:00
5fbc81885a rename step to export conda env 2022-10-17 02:08:08 +02:00
25ba5451f2 unpin conda package versions in environment.yml 2022-10-17 02:07:17 +02:00
138c9cf7a8 switch to default channel in environment-mac.yml 2022-10-17 02:05:59 +02:00
87981306a3 pin versions only for pip packages 2022-10-17 01:50:19 +02:00
f7893b3ea9 export conda env instead of only print versions 2022-10-17 01:48:22 +02:00
87395fe6fe list conda packages after activating env
also want to show how much faster it will run now with cached pkgs
2022-10-16 22:48:53 +02:00
15f876c66c revert changes to environment.yml
@tildebyte this would not have been pointed out without PR-Validation
2022-10-16 22:02:58 +02:00
522c35ac5b fix expression 2022-10-16 21:52:49 +02:00
bb2d6d640f use very short validation for Pull Requests 2022-10-16 21:50:57 +02:00
2412d8dec1 remove doubled checkpoint cache 2022-10-16 20:53:07 +02:00
2ab5a43663 unpin versions in environment
as asked by @tildebyte
2022-10-16 20:48:31 +02:00
0ec3d6c10a remove pip from dependencies 2022-10-16 20:36:33 +02:00
d208e1b0f5 Merge branch 'fix-gh-actions' of github.com:mauwii/stable-diffusion into fix-gh-actions 2022-10-16 20:35:57 +02:00
8a6ba6a212 remove pr trigger 2022-10-16 13:56:45 -04:00
b793d69ff3 squash merge update-gh-actions into fix-gh-actions
* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* remove 4gotten trigger

* Update-gh-actions (#6)

* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* use macos-latest

* try to update conda before creating mac env

* better conda update trial

* re-pin streamlit version

* re-added trigger to run workflow in current branch

* try to find out if conda mac env could be updated

* install cmake, protobuf and rust b4 conda

* add yes to conda update

* lets try anaconda3-2022.05

* try environment.yml for mac as well

* reenable conda mac env, add pip install
also fix gitignore by changing from dream to invoke

* remove
- unecesary virtualenv creation
- conda update

change != macos back to == linux

* remove cmake from brew install since pre-installed

* disable opencv-python pip requirement

* fixed commands to find latest package versions

* update requirements for mac env

* back to the roots - only install conda env
depending on runner_os with or without extra env variables

* check out macOS in azure-pipelines
since becoming kind of tired of the GitHub Runner which is broken as ...

* let's try to setup python and update conda env

* initialize conda before using it

* add trigger in azure-pipelines.yml

* And another go for update first ....

* update azure-pipelines.yml
- add caching
- add checkpoint download
- add paths to trigger
and more

* unquote checkpoint-url

* fix chekpoint-url variable

* mkdir before downloading model

* set pr trigger to main, rename anaconda cache

* unique cacheHitVariables

* try to use macos-latest instead of macos-12

* update test-invoke-conda.yml:
- remove unecesarry echo step
- use s-weigand/setup-conda@v1
- remove conda update from install deps step since updated with action

* update test-invoke-conda.yml:
- rename conda env cache from ldm to invokeai
- reorder steps:
  1. checkout sources
  2. setup python
  3. setup conda
  4. keep order after set platform variables

* change macos back to 12 since also fails with 11

* update condition in run the tests
make difference between main or not main

* fix path to cache invokeai conda env

* fix invokeai conda env cache path

* update mkdocs-flow.yml

* change conda-channel priority

* update create-caches

* update conda env also when cache was used

* os dependend conda env cache path

* use existing CONDA env pointing to conda root

* create CONDA_ROOT output from $CONDA

* use output variable to define test prompts

* use setup-python v4, get rid of PYTHON_BIN env

* add runner.os to result artifacts name

* update test-invoke-conda.yml:
- reuse macos-latest
- disable setup python 3.9
- setup conda with default python version
- create or update conda environment depending on cache success
- remove name parameter from conda update since name is set in env yml

* improve mkdocs-flow.yml

* disable cache-hugginface-torch
since preload_models.py downloads to more than one location

* update mkdocs-flow.yml with new name

* rename mkdocs action to mkdocs-material

* try to ignore error when creating conda env
maybe it would still be usable, lets see ;P

* remove bloat

* update environment-mac.yml
to match dependencies of invoke-ai/InvokeAI's main branch

* disable conda update, tweak prompt condition

* try to set some env vars for macOS to fix conda

* stop ignoring error, use env instead of outputs

* tweak `[[` connditions

* update python and pip dependencie
makes a difference of 1 sec per itteration compared to 3.9!!!
also I see no reason why using a old pip version would be beneficial

* remove unecesarry env for macOS
everything was pre-tested on my MacBook Air 2020 with M1

* update conda env in setup step

* activate conda env after installation

* update test-invoke-conda.yml
- set conda env dependent on matrix.os
- set CONDA_ENV_NAME to prevent breaking action when renaming conda env
- fix conda env activation

* fix activate conda env

* set bash -l as default shell

* use action to activate conda env

* add conda env file to env activation

* try to replace s-weigeand with conda-incubator

* remove azure-pipelines.yml
funniest part is that the macos runner is the same as the one on github!

* include environment-file in matrix
- also disable auto-activate-base and auto-update-conda
- include macos-latest and macos-12 for debugging purpose
- set miniforge-version in matrix

* fix miniforge-variant, set fail-fast to false

* add step to setup miniconda
- make default shell a matrix variable
- remove bloat

* use a mac env yml without pinned versions

* unpin nomkl, pytorch and torchvision
also removed opencv-pyhton

* cache conda pkgs dir instead of conda env

* use python 3.10, exclude macos-12 from cache

* fix expression

* prepare for PR

* fix doubled id

* reuse pinned versions in mac conda env
- updated python pip version
- unpined pytorch and torchvision
- removed opencv-python
- updated versions to most recent (tested locally)

* fix classical copy/paste error

* remove unused env from shell-block comment

* fix hashFiles function to determine restore-keys

* reenable caching `~.cache`, update create-caches

* unpin all versions in mac conda env file
this was the only way I got it working in the action, also works locally
tested on MacBook Air 2020 M1
remove environment-mac-unpinned.yml

* prepare merge by removing this branch from trigger

* include pull_request trigger for main and dev

* remove pull_request trigger
2022-10-16 13:56:45 -04:00
54f55471df remove pr trigger 2022-10-16 19:34:31 +02:00
cec7fb7dc6 squash merge update-gh-actions into fix-gh-actions
* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* remove 4gotten trigger

* Update-gh-actions (#6)

* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* use macos-latest

* try to update conda before creating mac env

* better conda update trial

* re-pin streamlit version

* re-added trigger to run workflow in current branch

* try to find out if conda mac env could be updated

* install cmake, protobuf and rust b4 conda

* add yes to conda update

* lets try anaconda3-2022.05

* try environment.yml for mac as well

* reenable conda mac env, add pip install
also fix gitignore by changing from dream to invoke

* remove
- unecesary virtualenv creation
- conda update

change != macos back to == linux

* remove cmake from brew install since pre-installed

* disable opencv-python pip requirement

* fixed commands to find latest package versions

* update requirements for mac env

* back to the roots - only install conda env
depending on runner_os with or without extra env variables

* check out macOS in azure-pipelines
since becoming kind of tired of the GitHub Runner which is broken as ...

* let's try to setup python and update conda env

* initialize conda before using it

* add trigger in azure-pipelines.yml

* And another go for update first ....

* update azure-pipelines.yml
- add caching
- add checkpoint download
- add paths to trigger
and more

* unquote checkpoint-url

* fix chekpoint-url variable

* mkdir before downloading model

* set pr trigger to main, rename anaconda cache

* unique cacheHitVariables

* try to use macos-latest instead of macos-12

* update test-invoke-conda.yml:
- remove unecesarry echo step
- use s-weigand/setup-conda@v1
- remove conda update from install deps step since updated with action

* update test-invoke-conda.yml:
- rename conda env cache from ldm to invokeai
- reorder steps:
  1. checkout sources
  2. setup python
  3. setup conda
  4. keep order after set platform variables

* change macos back to 12 since also fails with 11

* update condition in run the tests
make difference between main or not main

* fix path to cache invokeai conda env

* fix invokeai conda env cache path

* update mkdocs-flow.yml

* change conda-channel priority

* update create-caches

* update conda env also when cache was used

* os dependend conda env cache path

* use existing CONDA env pointing to conda root

* create CONDA_ROOT output from $CONDA

* use output variable to define test prompts

* use setup-python v4, get rid of PYTHON_BIN env

* add runner.os to result artifacts name

* update test-invoke-conda.yml:
- reuse macos-latest
- disable setup python 3.9
- setup conda with default python version
- create or update conda environment depending on cache success
- remove name parameter from conda update since name is set in env yml

* improve mkdocs-flow.yml

* disable cache-hugginface-torch
since preload_models.py downloads to more than one location

* update mkdocs-flow.yml with new name

* rename mkdocs action to mkdocs-material

* try to ignore error when creating conda env
maybe it would still be usable, lets see ;P

* remove bloat

* update environment-mac.yml
to match dependencies of invoke-ai/InvokeAI's main branch

* disable conda update, tweak prompt condition

* try to set some env vars for macOS to fix conda

* stop ignoring error, use env instead of outputs

* tweak `[[` connditions

* update python and pip dependencie
makes a difference of 1 sec per itteration compared to 3.9!!!
also I see no reason why using a old pip version would be beneficial

* remove unecesarry env for macOS
everything was pre-tested on my MacBook Air 2020 with M1

* update conda env in setup step

* activate conda env after installation

* update test-invoke-conda.yml
- set conda env dependent on matrix.os
- set CONDA_ENV_NAME to prevent breaking action when renaming conda env
- fix conda env activation

* fix activate conda env

* set bash -l as default shell

* use action to activate conda env

* add conda env file to env activation

* try to replace s-weigeand with conda-incubator

* remove azure-pipelines.yml
funniest part is that the macos runner is the same as the one on github!

* include environment-file in matrix
- also disable auto-activate-base and auto-update-conda
- include macos-latest and macos-12 for debugging purpose
- set miniforge-version in matrix

* fix miniforge-variant, set fail-fast to false

* add step to setup miniconda
- make default shell a matrix variable
- remove bloat

* use a mac env yml without pinned versions

* unpin nomkl, pytorch and torchvision
also removed opencv-pyhton

* cache conda pkgs dir instead of conda env

* use python 3.10, exclude macos-12 from cache

* fix expression

* prepare for PR

* fix doubled id

* reuse pinned versions in mac conda env
- updated python pip version
- unpined pytorch and torchvision
- removed opencv-python
- updated versions to most recent (tested locally)

* fix classical copy/paste error

* remove unused env from shell-block comment

* fix hashFiles function to determine restore-keys

* reenable caching `~.cache`, update create-caches

* unpin all versions in mac conda env file
this was the only way I got it working in the action, also works locally
tested on MacBook Air 2020 M1
remove environment-mac-unpinned.yml

* prepare merge by removing this branch from trigger

* include pull_request trigger for main and dev

* remove pull_request trigger
2022-10-16 19:19:49 +02:00
b0b82efffe restore inline images
<div> around the inline images works great in gh-pages, but breaks plain old markdown in GitHub code display. This removes the <div>s, causing slight degradation in quality of gh-page appearance.
2022-10-16 12:07:21 -04:00
e599604294 restore inline images
<div> seems to be messing with the ability of the plain-old markdown processor to display inline images. Slightly degrades appearance of gh-pages.
2022-10-16 12:05:33 -04:00
57a3ea9d7b Update 'ldm' env to 'invokeai' in troubleshooting steps 2022-10-16 11:23:00 -04:00
a3a50bb886 Update generate.py
Fixed spelling mistake (open source king)
2022-10-15 16:02:14 -04:00
377 changed files with 9917 additions and 32995 deletions

View File

@ -1,3 +0,0 @@
*
!environment*.yml
!docker-build

View File

@ -1,102 +0,0 @@
name: 🐞 Bug Report
description: File a bug report
title: '[bug]: '
labels: ['bug']
# assignees:
# - moderator_bot
# - lstein
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this Bug Report!
- type: checkboxes
attributes:
label: Is there an existing issue for this?
description: |
Please use the [search function](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
irst to see if an issue already exists for the bug you encountered.
options:
- label: I have searched the existing issues
required: true
- type: markdown
attributes:
value: __Describe your environment__
- type: dropdown
id: os_dropdown
attributes:
label: OS
description: Which operating System did you use when the bug occured
multiple: false
options:
- 'Linux'
- 'Windows'
- 'macOS'
validations:
required: true
- type: dropdown
id: gpu_dropdown
attributes:
label: GPU
description: Which kind of Graphic-Adapter is your System using
multiple: false
options:
- 'cuda'
- 'amd'
- 'mps'
- 'cpu'
validations:
required: true
- type: input
id: vram
attributes:
label: VRAM
description: Size of the VRAM if known
placeholder: 8GB
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: |
Briefly describe what happened, what you expected to happen and how to reproduce this bug.
placeholder: When using the webinterface and right-clicking on button X instead of the popup-menu there error Y appears
validations:
required: true
- type: textarea
attributes:
label: Screenshots
description: If applicable, add screenshots to help explain your problem
placeholder: this is what the result looked like <screenshot>
validations:
required: false
- type: textarea
attributes:
label: Additional context
description: Add any other context about the problem here
placeholder: Only happens when there is full moon and Friday the 13th on Christmas Eve 🎅🏻
validations:
required: false
- type: input
id: contact
attributes:
label: Contact Details
description: __OPTIONAL__ How can we get in touch with you if we need more info (besides this issue)?
placeholder: ex. email@example.com, discordname, twitter, ...
validations:
required: false

View File

@ -1,56 +0,0 @@
name: Feature Request
description: Commit a idea or Request a new feature
title: '[enhancement]: '
labels: ['enhancement']
# assignees:
# - lstein
# - tildebyte
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this Feature request!
- type: checkboxes
attributes:
label: Is there an existing issue for this?
description: |
Please make use of the [search function](https://github.com/invoke-ai/InvokeAI/labels/enhancement)
to see if a simmilar issue already exists for the feature you want to request
options:
- label: I have searched the existing issues
required: true
- type: input
id: contact
attributes:
label: Contact Details
description: __OPTIONAL__ How could we get in touch with you if we need more info (besides this issue)?
placeholder: ex. email@example.com, discordname, twitter, ...
validations:
required: false
- type: textarea
id: whatisexpected
attributes:
label: What should this feature add?
description: Please try to explain the functionality this feature should add
placeholder: |
Instead of one huge textfield, it would be nice to have forms for bug-reports, feature-requests, ...
Great benefits with automatic labeling, assigning and other functionalitys not available in that form
via old-fashioned markdown-templates. I would also love to see the use of a moderator bot 🤖 like
https://github.com/marketplace/actions/issue-moderator-with-commands to auto close old issues and other things
validations:
required: true
- type: textarea
attributes:
label: Alternatives
description: Describe alternatives you've considered
placeholder: A clear and concise description of any alternative solutions or features you've considered.
- type: textarea
attributes:
label: Aditional Content
description: Add any other context or screenshots about the feature request here.
placeholder: This is a Mockup of the design how I imagine it <screenshot>

36
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@ -0,0 +1,36 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe your environment**
- GPU: [cuda/amd/mps/cpu]
- VRAM: [if known]
- CPU arch: [x86/arm]
- OS: [Linux/Windows/macOS]
- Python: [Anaconda/miniconda/miniforge/pyenv/other (explain)]
- Branch: [if `git status` says anything other than "On branch main" paste it here]
- Commit: [run `git show` and paste the line that starts with "Merge" here]
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Additional context**
Add any other context about the problem here.

View File

@ -1,14 +0,0 @@
blank_issues_enabled: false
contact_links:
- name: Project-Documentation
url: https://invoke-ai.github.io/InvokeAI/
about: Should be your first place to go when looking for manuals/FAQs regarding our InvokeAI Toolkit
- name: Discord
url: https://discord.gg/ZmtBAhwWhy
about: Our Discord Community could maybe help you out via live-chat
- name: GitHub Community Support
url: https://github.com/orgs/community/discussions
about: Please ask and answer questions regarding the GitHub Platform here.
- name: GitHub Security Bug Bounty
url: https://bounty.github.com/
about: Please report security vulnerabilities of the GitHub Platform here.

View File

@ -0,0 +1,20 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@ -1,42 +0,0 @@
# Building the Image without pushing to confirm it is still buildable
# confirum functionality would unfortunately need way more resources
name: build container image
on:
push:
branches:
- 'main'
- 'development'
pull_request:
branches:
- 'main'
- 'development'
jobs:
docker:
runs-on: ubuntu-latest
steps:
- name: prepare docker-tag
env:
repository: ${{ github.repository }}
run: echo "dockertag=${repository,,}" >> $GITHUB_ENV
- name: Checkout
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Cache Docker layers
uses: actions/cache@v2
with:
path: /tmp/.buildx-cache
key: buildx-${{ hashFiles('docker-build/Dockerfile') }}
- name: Build container
uses: docker/build-push-action@v3
with:
context: .
file: docker-build/Dockerfile
platforms: linux/amd64
push: false
tags: ${{ env.dockertag }}:latest
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache

View File

@ -54,10 +54,27 @@ jobs:
[[ -d models/ldm/stable-diffusion-v1 ]] \
|| mkdir -p models/ldm/stable-diffusion-v1
[[ -r models/ldm/stable-diffusion-v1/model.ckpt ]] \
|| curl \
-H "Authorization: Bearer ${{ secrets.HUGGINGFACE_TOKEN }}" \
-o models/ldm/stable-diffusion-v1/model.ckpt \
-L https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
|| curl -o models/ldm/stable-diffusion-v1/model.ckpt ${{ secrets.SD_V1_4_URL }}
- name: Use cached Conda Environment
uses: actions/cache@v3
env:
cache-name: cache-conda-env-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA_ROOT }}/envs/${{ env.CONDA_ENV_NAME }}
key: ${{ env.cache-name }}
restore-keys: ${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Use cached Conda Packages
uses: actions/cache@v3
env:
cache-name: cache-conda-env-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA_PKGS_DIR }}
key: ${{ env.cache-name }}
restore-keys: ${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Activate Conda Env
uses: conda-incubator/setup-miniconda@v2

View File

@ -1,4 +1,4 @@
name: Test invoke.py
name: Test Invoke with Conda
on:
push:
branches:
@ -11,57 +11,31 @@ on:
- 'development'
jobs:
matrix:
os_matrix:
strategy:
fail-fast: false
matrix:
stable-diffusion-model:
# - 'https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt'
- 'https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt'
os:
- ubuntu-latest
- macOS-12
os: [ubuntu-latest, macos-latest]
include:
- os: ubuntu-latest
environment-file: environment.yml
default-shell: bash -l {0}
- os: macOS-12
- os: macos-latest
environment-file: environment-mac.yml
default-shell: bash -l {0}
# - stable-diffusion-model: https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
# stable-diffusion-model-dl-path: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
# stable-diffusion-model-switch: stable-diffusion-1.4
- stable-diffusion-model: https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt
stable-diffusion-model-dl-path: models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt
stable-diffusion-model-switch: stable-diffusion-1.5
name: ${{ matrix.os }} with ${{ matrix.stable-diffusion-model-switch }}
name: Test invoke.py on ${{ matrix.os }} with conda
runs-on: ${{ matrix.os }}
env:
CONDA_ENV_NAME: invokeai
defaults:
run:
shell: ${{ matrix.default-shell }}
steps:
- name: Checkout sources
id: checkout-sources
uses: actions/checkout@v3
- name: create models.yaml from example
run: cp configs/models.yaml.example configs/models.yaml
- name: Use cached conda packages
id: use-cached-conda-packages
uses: actions/cache@v3
with:
path: ~/conda_pkgs_dir
key: conda-pkgs-${{ runner.os }}-${{ runner.arch }}-${{ hashFiles(matrix.environment-file) }}
- name: Activate Conda Env
id: activate-conda-env
- name: setup miniconda
uses: conda-incubator/setup-miniconda@v2
with:
activate-environment: ${{ env.CONDA_ENV_NAME }}
environment-file: ${{ matrix.environment-file }}
auto-activate-base: false
auto-update-conda: false
miniconda-version: latest
- name: set test prompt to main branch validation
@ -74,40 +48,79 @@ jobs:
- name: set test prompt to Pull Request validation
if: ${{ github.ref != 'refs/heads/main' && github.ref != 'refs/heads/development' }}
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> $GITHUB_ENV
run: echo "TEST_PROMPTS=tests/pr_prompt.txt" >> $GITHUB_ENV
- name: Download ${{ matrix.stable-diffusion-model-switch }}
id: download-stable-diffusion-model
- name: set conda environment name
run: echo "CONDA_ENV_NAME=invokeai" >> $GITHUB_ENV
- name: Use Cached Stable Diffusion v1.4 Model
id: cache-sd-v1-4
uses: actions/cache@v3
env:
cache-name: cache-sd-v1-4
with:
path: models/ldm/stable-diffusion-v1/model.ckpt
key: ${{ env.cache-name }}
restore-keys: ${{ env.cache-name }}
- name: Download Stable Diffusion v1.4 Model
if: ${{ steps.cache-sd-v1-4.outputs.cache-hit != 'true' }}
run: |
[[ -d models/ldm/stable-diffusion-v1 ]] \
|| mkdir -p models/ldm/stable-diffusion-v1
curl \
-H "Authorization: Bearer ${{ secrets.HUGGINGFACE_TOKEN }}" \
-o ${{ matrix.stable-diffusion-model-dl-path }} \
-L ${{ matrix.stable-diffusion-model }}
[[ -r models/ldm/stable-diffusion-v1/model.ckpt ]] \
|| curl -o models/ldm/stable-diffusion-v1/model.ckpt ${{ secrets.SD_V1_4_URL }}
- name: Use cached Conda Environment
uses: actions/cache@v3
env:
cache-name: cache-conda-env-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA }}/envs/${{ env.CONDA_ENV_NAME }}
key: env-${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Use cached Conda Packages
uses: actions/cache@v3
env:
cache-name: cache-conda-pkgs-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA_PKGS_DIR }}
key: pkgs-${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Activate Conda Env
uses: conda-incubator/setup-miniconda@v2
with:
activate-environment: ${{ env.CONDA_ENV_NAME }}
environment-file: ${{ matrix.environment-file }}
- name: Use Cached Huggingface and Torch models
id: cache-hugginface-torch
uses: actions/cache@v3
env:
cache-name: cache-hugginface-torch
with:
path: ~/.cache
key: ${{ env.cache-name }}
restore-keys: |
${{ env.cache-name }}-${{ hashFiles('scripts/preload_models.py') }}
- name: run preload_models.py
id: run-preload-models
run: |
python scripts/preload_models.py \
--no-interactive
run: python scripts/preload_models.py
- name: Run the tests
id: run-tests
run: |
time python scripts/invoke.py \
--model ${{ matrix.stable-diffusion-model-switch }} \
--from_file ${{ env.TEST_PROMPTS }}
- name: export conda env
id: export-conda-env
run: |
mkdir -p outputs/img-samples
conda env export --name ${{ env.CONDA_ENV_NAME }} > outputs/img-samples/environment-${{ runner.os }}-${{ runner.arch }}.yml
conda env export --name ${{ env.CONDA_ENV_NAME }} > outputs/img-samples/environment-${{ runner.os }}.yml
- name: Archive results
id: archive-results
uses: actions/upload-artifact@v3
with:
name: results_${{ matrix.os }}_${{ matrix.stable-diffusion-model-switch }}
name: results_${{ matrix.os }}
path: outputs/img-samples

13
.gitignore vendored
View File

@ -1,10 +1,7 @@
# ignore default image save location and model symbolic link
outputs/
models/ldm/stable-diffusion-v1/model.ckpt
ldm/invoke/restoration/codeformer/weights
# ignore user models config
configs/models.user.yaml
config/models.user.yml
**/restoration/codeformer/weights
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
@ -198,13 +195,7 @@ checkpoints
.scratch/
.vscode/
gfpgan/
models/ldm/stable-diffusion-v1/*.sha256
models/ldm/stable-diffusion-v1/model.sha256
# GFPGAN model files
gfpgan/
# config file (will be created by installer)
configs/models.yaml
# weights (will be created by installer)
models/ldm/stable-diffusion-v1/*.ckpt

View File

@ -2,7 +2,7 @@
# InvokeAI: A Stable Diffusion Toolkit
_Formerly known as lstein/stable-diffusion_
_Formally known as lstein/stable-diffusion_
![project logo](docs/assets/logo.png)
@ -42,7 +42,7 @@ generation process. It runs on Windows, Mac and Linux machines, with
GPU cards with as little as 4 GB of RAM. It provides both a polished
Web interface (see below), and an easy-to-use command-line interface.
**Quick links**: [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
**Quick links**: [<a href="https://discord.gg/NwVCmKwY">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
<div align="center"><img src="docs/assets/invoke-web-server-1.png" width=640></div>
@ -133,19 +133,6 @@ you can try starting `invoke.py` with the `--precision=float32` flag:
### Latest Changes
### v2.1.0 major changes <small>(2 November 2022)</small>
- [Inpainting](https://invoke-ai.github.io/InvokeAI/features/INPAINTING/) support in the WebGUI
- Greatly improved navigation and user experience in the [WebGUI](https://invoke-ai.github.io/InvokeAI/features/WEB/)
- The prompt syntax has been enhanced with [prompt weighting, cross-attention and prompt merging](https://invoke-ai.github.io/InvokeAI/features/PROMPTS/).
- You can now load [multiple models and switch among them quickly](https://docs.google.com/presentation/d/1WywGA1rny7bpFh7CLSdTr4nNpVKdlUeT0Bj0jCsILyU/edit?usp=sharing) without leaving the CLI.
- The installation process (via `scripts/preload_models.py`) now lets you select among several popular [Stable Diffusion models](https://invoke-ai.github.io/InvokeAI/installation/INSTALLING_MODELS/) and downloads and installs them on your behalf. Among other models, this script will install the current Stable Diffusion 1.5 model as well as a StabilityAI variable autoencoder (VAE) which improves face generation.
- Tired of struggling with photoeditors to get the masked region of for inpainting just right? Let the AI make the mask for you using [text masking](https://docs.google.com/presentation/d/1pWoY510hCVjz0M6X9CBbTznZgW2W5BYNKrmZm7B45q8/edit#slide=id.p). This feature allows you to specify the part of the image to paint over using just English-language phrases.
- Tired of seeing the head of your subjects cropped off? Uncrop them in the CLI with the [outcrop feature](https://invoke-ai.github.io/InvokeAI/features/OUTPAINTING/#outcrop).
- Tired of seeing your subject's bodies duplicated or mangled when generating larger-dimension images? Check out the `--hires` option in the CLI, or select the corresponding toggle in the WebGUI.
- We now support textual inversion and fine-tune .bin styles and subjects from the Hugging Face archive of [SD Concepts](https://huggingface.co/sd-concepts-library). Load the .bin file using the `--embedding_path` option. (The next version will support merging and loading of multiple simultaneous models).
<a href="https://invoke-ai.github.io/InvokeAI/CHANGELOG/>Complete Changelog</a>
- v2.0.1 (13 October 2022)
- fix noisy images at high step count when using k* samplers
- dream.py script now calls invoke.py module directly rather than

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

File diff suppressed because it is too large Load Diff

822
backend/server.py Normal file
View File

@ -0,0 +1,822 @@
import mimetypes
import transformers
import json
import os
import traceback
import eventlet
import glob
import shlex
import math
import shutil
import sys
sys.path.append(".")
from argparse import ArgumentTypeError
from modules.create_cmd_parser import create_cmd_parser
parser = create_cmd_parser()
opt = parser.parse_args()
from flask_socketio import SocketIO
from flask import Flask, send_from_directory, url_for, jsonify
from pathlib import Path
from PIL import Image
from pytorch_lightning import logging
from threading import Event
from uuid import uuid4
from send2trash import send2trash
from ldm.generate import Generate
from ldm.invoke.restoration import Restoration
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata
from ldm.invoke.args import APP_ID, APP_VERSION, calculate_init_img_hash
from ldm.invoke.conditioning import split_weighted_subprompts
from modules.parameters import parameters_to_command
"""
USER CONFIG
"""
if opt.cors and "*" in opt.cors:
raise ArgumentTypeError('"*" is not an allowed CORS origin')
output_dir = "outputs/" # Base output directory for images
host = opt.host # Web & socket.io host
port = opt.port # Web & socket.io port
verbose = opt.verbose # enables copious socket.io logging
precision = opt.precision
free_gpu_mem = opt.free_gpu_mem
embedding_path = opt.embedding_path
additional_allowed_origins = (
opt.cors if opt.cors else []
) # additional CORS allowed origins
model = "stable-diffusion-1.4"
"""
END USER CONFIG
"""
print("* Initializing, be patient...\n")
"""
SERVER SETUP
"""
# fix missing mimetypes on windows due to registry wonkiness
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
app = Flask(__name__, static_url_path="", static_folder="../frontend/dist/")
app.config["OUTPUTS_FOLDER"] = "../outputs"
@app.route("/outputs/<path:filename>")
def outputs(filename):
return send_from_directory(app.config["OUTPUTS_FOLDER"], filename)
@app.route("/", defaults={"path": ""})
def serve(path):
return send_from_directory(app.static_folder, "index.html")
logger = True if verbose else False
engineio_logger = True if verbose else False
# default 1,000,000, needs to be higher for socketio to accept larger images
max_http_buffer_size = 10000000
cors_allowed_origins = [f"http://{host}:{port}"] + additional_allowed_origins
socketio = SocketIO(
app,
logger=logger,
engineio_logger=engineio_logger,
max_http_buffer_size=max_http_buffer_size,
cors_allowed_origins=cors_allowed_origins,
ping_interval=(50, 50),
ping_timeout=60,
)
"""
END SERVER SETUP
"""
"""
APP SETUP
"""
class CanceledException(Exception):
pass
try:
gfpgan, codeformer, esrgan = None, None, None
from ldm.invoke.restoration.base import Restoration
restoration = Restoration()
gfpgan, codeformer = restoration.load_face_restore_models()
esrgan = restoration.load_esrgan()
# coreformer.process(self, image, strength, device, seed=None, fidelity=0.75)
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
canceled = Event()
# reduce logging outputs to error
transformers.logging.set_verbosity_error()
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
# Initialize and load model
generate = Generate(
model,
precision=precision,
embedding_path=embedding_path,
)
generate.free_gpu_mem = free_gpu_mem
generate.load_model()
# location for "finished" images
result_path = os.path.join(output_dir, "img-samples/")
# temporary path for intermediates
intermediate_path = os.path.join(result_path, "intermediates/")
# path for user-uploaded init images and masks
init_image_path = os.path.join(result_path, "init-images/")
mask_image_path = os.path.join(result_path, "mask-images/")
# txt log
log_path = os.path.join(result_path, "invoke_log.txt")
# make all output paths
[
os.makedirs(path, exist_ok=True)
for path in [result_path, intermediate_path, init_image_path, mask_image_path]
]
"""
END APP SETUP
"""
"""
SOCKET.IO LISTENERS
"""
@socketio.on("requestSystemConfig")
def handle_request_capabilities():
print(f">> System config requested")
config = get_system_config()
socketio.emit("systemConfig", config)
@socketio.on("requestImages")
def handle_request_images(page=1, offset=0, last_mtime=None):
chunk_size = 50
if last_mtime:
print(f">> Latest images requested")
else:
print(
f">> Page {page} of images requested (page size {chunk_size} offset {offset})"
)
paths = glob.glob(os.path.join(result_path, "*.png"))
sorted_paths = sorted(paths, key=lambda x: os.path.getmtime(x), reverse=True)
if last_mtime:
image_paths = filter(lambda x: os.path.getmtime(x) > last_mtime, sorted_paths)
else:
image_paths = sorted_paths[
slice(chunk_size * (page - 1) + offset, chunk_size * page + offset)
]
page = page + 1
image_array = []
for path in image_paths:
metadata = retrieve_metadata(path)
image_array.append(
{
"url": path,
"mtime": os.path.getmtime(path),
"metadata": metadata["sd-metadata"],
}
)
socketio.emit(
"galleryImages",
{
"images": image_array,
"nextPage": page,
"offset": offset,
"onlyNewImages": True if last_mtime else False,
},
)
@socketio.on("generateImage")
def handle_generate_image_event(
generation_parameters, esrgan_parameters, gfpgan_parameters
):
print(
f">> Image generation requested: {generation_parameters}\nESRGAN parameters: {esrgan_parameters}\nGFPGAN parameters: {gfpgan_parameters}"
)
generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters)
@socketio.on("runESRGAN")
def handle_run_esrgan_event(original_image, esrgan_parameters):
print(
f'>> ESRGAN upscale requested for "{original_image["url"]}": {esrgan_parameters}'
)
progress = {
"currentStep": 1,
"totalSteps": 1,
"currentIteration": 1,
"totalIterations": 1,
"currentStatus": "Preparing",
"isProcessing": True,
"currentStatusHasSteps": False,
}
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = Image.open(original_image["url"])
seed = (
original_image["metadata"]["seed"]
if "seed" in original_image["metadata"]
else "unknown_seed"
)
progress["currentStatus"] = "Upscaling"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = esrgan.process(
image=image,
upsampler_scale=esrgan_parameters["upscale"][0],
strength=esrgan_parameters["upscale"][1],
seed=seed,
)
progress["currentStatus"] = "Saving image"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
esrgan_parameters["seed"] = seed
metadata = parameters_to_post_processed_image_metadata(
parameters=esrgan_parameters,
original_image_path=original_image["url"],
type="esrgan",
)
command = parameters_to_command(esrgan_parameters)
path = save_image(image, command, metadata, result_path, postprocessing="esrgan")
write_log_message(f'[Upscaled] "{original_image["url"]}" > "{path}": {command}')
progress["currentStatus"] = "Finished"
progress["currentStep"] = 0
progress["totalSteps"] = 0
progress["currentIteration"] = 0
progress["totalIterations"] = 0
progress["isProcessing"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
socketio.emit(
"esrganResult",
{
"url": os.path.relpath(path),
"mtime": os.path.getmtime(path),
"metadata": metadata,
},
)
@socketio.on("runGFPGAN")
def handle_run_gfpgan_event(original_image, gfpgan_parameters):
print(
f'>> GFPGAN face fix requested for "{original_image["url"]}": {gfpgan_parameters}'
)
progress = {
"currentStep": 1,
"totalSteps": 1,
"currentIteration": 1,
"totalIterations": 1,
"currentStatus": "Preparing",
"isProcessing": True,
"currentStatusHasSteps": False,
}
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = Image.open(original_image["url"])
seed = (
original_image["metadata"]["seed"]
if "seed" in original_image["metadata"]
else "unknown_seed"
)
progress["currentStatus"] = "Fixing faces"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = gfpgan.process(
image=image, strength=gfpgan_parameters["facetool_strength"], seed=seed
)
progress["currentStatus"] = "Saving image"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
gfpgan_parameters["seed"] = seed
metadata = parameters_to_post_processed_image_metadata(
parameters=gfpgan_parameters,
original_image_path=original_image["url"],
type="gfpgan",
)
command = parameters_to_command(gfpgan_parameters)
path = save_image(image, command, metadata, result_path, postprocessing="gfpgan")
write_log_message(f'[Fixed faces] "{original_image["url"]}" > "{path}": {command}')
progress["currentStatus"] = "Finished"
progress["currentStep"] = 0
progress["totalSteps"] = 0
progress["currentIteration"] = 0
progress["totalIterations"] = 0
progress["isProcessing"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
socketio.emit(
"gfpganResult",
{
"url": os.path.relpath(path),
"mtime": os.path.mtime(path),
"metadata": metadata,
},
)
@socketio.on("cancel")
def handle_cancel():
print(f">> Cancel processing requested")
canceled.set()
socketio.emit("processingCanceled")
# TODO: I think this needs a safety mechanism.
@socketio.on("deleteImage")
def handle_delete_image(path, uuid):
print(f'>> Delete requested "{path}"')
send2trash(path)
socketio.emit("imageDeleted", {"url": path, "uuid": uuid})
# TODO: I think this needs a safety mechanism.
@socketio.on("uploadInitialImage")
def handle_upload_initial_image(bytes, name):
print(f'>> Init image upload requested "{name}"')
uuid = uuid4().hex
split = os.path.splitext(name)
name = f"{split[0]}.{uuid}{split[1]}"
file_path = os.path.join(init_image_path, name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
newFile = open(file_path, "wb")
newFile.write(bytes)
socketio.emit("initialImageUploaded", {"url": file_path, "uuid": ""})
# TODO: I think this needs a safety mechanism.
@socketio.on("uploadMaskImage")
def handle_upload_mask_image(bytes, name):
print(f'>> Mask image upload requested "{name}"')
uuid = uuid4().hex
split = os.path.splitext(name)
name = f"{split[0]}.{uuid}{split[1]}"
file_path = os.path.join(mask_image_path, name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
newFile = open(file_path, "wb")
newFile.write(bytes)
socketio.emit("maskImageUploaded", {"url": file_path, "uuid": ""})
"""
END SOCKET.IO LISTENERS
"""
"""
ADDITIONAL FUNCTIONS
"""
def get_system_config():
return {
"model": "stable diffusion",
"model_id": model,
"model_hash": generate.model_hash,
"app_id": APP_ID,
"app_version": APP_VERSION,
}
def parameters_to_post_processed_image_metadata(parameters, original_image_path, type):
# top-level metadata minus `image` or `images`
metadata = get_system_config()
orig_hash = calculate_init_img_hash(original_image_path)
image = {"orig_path": original_image_path, "orig_hash": orig_hash}
if type == "esrgan":
image["type"] = "esrgan"
image["scale"] = parameters["upscale"][0]
image["strength"] = parameters["upscale"][1]
elif type == "gfpgan":
image["type"] = "gfpgan"
image["strength"] = parameters["facetool_strength"]
else:
raise TypeError(f"Invalid type: {type}")
metadata["image"] = image
return metadata
def parameters_to_generated_image_metadata(parameters):
# top-level metadata minus `image` or `images`
metadata = get_system_config()
# remove any image keys not mentioned in RFC #266
rfc266_img_fields = [
"type",
"postprocessing",
"sampler",
"prompt",
"seed",
"variations",
"steps",
"cfg_scale",
"threshold",
"perlin",
"step_number",
"width",
"height",
"extra",
"seamless",
"hires_fix",
]
rfc_dict = {}
for item in parameters.items():
key, value = item
if key in rfc266_img_fields:
rfc_dict[key] = value
postprocessing = []
# 'postprocessing' is either null or an
if "facetool_strength" in parameters:
postprocessing.append(
{"type": "gfpgan", "strength": float(parameters["facetool_strength"])}
)
if "upscale" in parameters:
postprocessing.append(
{
"type": "esrgan",
"scale": int(parameters["upscale"][0]),
"strength": float(parameters["upscale"][1]),
}
)
rfc_dict["postprocessing"] = postprocessing if len(postprocessing) > 0 else None
# semantic drift
rfc_dict["sampler"] = parameters["sampler_name"]
# display weighted subprompts (liable to change)
subprompts = split_weighted_subprompts(parameters["prompt"])
subprompts = [{"prompt": x[0], "weight": x[1]} for x in subprompts]
rfc_dict["prompt"] = subprompts
# 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs
variations = []
if "with_variations" in parameters:
variations = [
{"seed": x[0], "weight": x[1]} for x in parameters["with_variations"]
]
rfc_dict["variations"] = variations
if "init_img" in parameters:
rfc_dict["type"] = "img2img"
rfc_dict["strength"] = parameters["strength"]
rfc_dict["fit"] = parameters["fit"] # TODO: Noncompliant
rfc_dict["orig_hash"] = calculate_init_img_hash(parameters["init_img"])
rfc_dict["init_image_path"] = parameters["init_img"] # TODO: Noncompliant
rfc_dict["sampler"] = "ddim" # TODO: FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
if "init_mask" in parameters:
rfc_dict["mask_hash"] = calculate_init_img_hash(
parameters["init_mask"]
) # TODO: Noncompliant
rfc_dict["mask_image_path"] = parameters["init_mask"] # TODO: Noncompliant
else:
rfc_dict["type"] = "txt2img"
metadata["image"] = rfc_dict
return metadata
def make_unique_init_image_filename(name):
uuid = uuid4().hex
split = os.path.splitext(name)
name = f"{split[0]}.{uuid}{split[1]}"
return name
def write_log_message(message, log_path=log_path):
"""Logs the filename and parameters used to generate or process that image to log file"""
message = f"{message}\n"
with open(log_path, "a", encoding="utf-8") as file:
file.writelines(message)
def save_image(
image, command, metadata, output_dir, step_index=None, postprocessing=False
):
pngwriter = PngWriter(output_dir)
prefix = pngwriter.unique_prefix()
seed = "unknown_seed"
if "image" in metadata:
if "seed" in metadata["image"]:
seed = metadata["image"]["seed"]
filename = f"{prefix}.{seed}"
if step_index:
filename += f".{step_index}"
if postprocessing:
filename += f".postprocessed"
filename += ".png"
path = pngwriter.save_image_and_prompt_to_png(
image=image, dream_prompt=command, metadata=metadata, name=filename
)
return path
def calculate_real_steps(steps, strength, has_init_image):
return math.floor(strength * steps) if has_init_image else steps
def generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters):
canceled.clear()
step_index = 1
prior_variations = (
generation_parameters["with_variations"]
if "with_variations" in generation_parameters
else []
)
"""
If a result image is used as an init image, and then deleted, we will want to be
able to use it as an init image in the future. Need to copy it.
If the init/mask image doesn't exist in the init_image_path/mask_image_path,
make a unique filename for it and copy it there.
"""
if "init_img" in generation_parameters:
filename = os.path.basename(generation_parameters["init_img"])
if not os.path.exists(os.path.join(init_image_path, filename)):
unique_filename = make_unique_init_image_filename(filename)
new_path = os.path.join(init_image_path, unique_filename)
shutil.copy(generation_parameters["init_img"], new_path)
generation_parameters["init_img"] = new_path
if "init_mask" in generation_parameters:
filename = os.path.basename(generation_parameters["init_mask"])
if not os.path.exists(os.path.join(mask_image_path, filename)):
unique_filename = make_unique_init_image_filename(filename)
new_path = os.path.join(init_image_path, unique_filename)
shutil.copy(generation_parameters["init_img"], new_path)
generation_parameters["init_mask"] = new_path
totalSteps = calculate_real_steps(
steps=generation_parameters["steps"],
strength=generation_parameters["strength"]
if "strength" in generation_parameters
else None,
has_init_image="init_img" in generation_parameters,
)
progress = {
"currentStep": 1,
"totalSteps": totalSteps,
"currentIteration": 1,
"totalIterations": generation_parameters["iterations"],
"currentStatus": "Preparing",
"isProcessing": True,
"currentStatusHasSteps": False,
}
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
def image_progress(sample, step):
if canceled.is_set():
raise CanceledException
nonlocal step_index
nonlocal generation_parameters
nonlocal progress
progress["currentStep"] = step + 1
progress["currentStatus"] = "Generating"
progress["currentStatusHasSteps"] = True
if (
generation_parameters["progress_images"]
and step % 5 == 0
and step < generation_parameters["steps"] - 1
):
image = generate.sample_to_image(sample)
metadata = parameters_to_generated_image_metadata(generation_parameters)
command = parameters_to_command(generation_parameters)
path = save_image(image, command, metadata, intermediate_path, step_index=step_index, postprocessing=False)
step_index += 1
socketio.emit(
"intermediateResult",
{
"url": os.path.relpath(path),
"mtime": os.path.getmtime(path),
"metadata": metadata,
},
)
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
def image_done(image, seed, first_seed):
nonlocal generation_parameters
nonlocal esrgan_parameters
nonlocal gfpgan_parameters
nonlocal progress
step_index = 1
nonlocal prior_variations
progress["currentStatus"] = "Generation complete"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
all_parameters = generation_parameters
postprocessing = False
if (
"variation_amount" in all_parameters
and all_parameters["variation_amount"] > 0
):
first_seed = first_seed or seed
this_variation = [[seed, all_parameters["variation_amount"]]]
all_parameters["with_variations"] = prior_variations + this_variation
all_parameters["seed"] = first_seed
elif ("with_variations" in all_parameters):
all_parameters["seed"] = first_seed
else:
all_parameters["seed"] = seed
if esrgan_parameters:
progress["currentStatus"] = "Upscaling"
progress["currentStatusHasSteps"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = esrgan.process(
image=image,
upsampler_scale=esrgan_parameters["level"],
strength=esrgan_parameters["strength"],
seed=seed,
)
postprocessing = True
all_parameters["upscale"] = [
esrgan_parameters["level"],
esrgan_parameters["strength"],
]
if gfpgan_parameters:
progress["currentStatus"] = "Fixing faces"
progress["currentStatusHasSteps"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
image = gfpgan.process(
image=image, strength=gfpgan_parameters["strength"], seed=seed
)
postprocessing = True
all_parameters["facetool_strength"] = gfpgan_parameters["strength"]
progress["currentStatus"] = "Saving image"
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
metadata = parameters_to_generated_image_metadata(all_parameters)
command = parameters_to_command(all_parameters)
path = save_image(
image, command, metadata, result_path, postprocessing=postprocessing
)
print(f'>> Image generated: "{path}"')
write_log_message(f'[Generated] "{path}": {command}')
if progress["totalIterations"] > progress["currentIteration"]:
progress["currentStep"] = 1
progress["currentIteration"] += 1
progress["currentStatus"] = "Iteration finished"
progress["currentStatusHasSteps"] = False
else:
progress["currentStep"] = 0
progress["totalSteps"] = 0
progress["currentIteration"] = 0
progress["totalIterations"] = 0
progress["currentStatus"] = "Finished"
progress["isProcessing"] = False
socketio.emit("progressUpdate", progress)
eventlet.sleep(0)
socketio.emit(
"generationResult",
{
"url": os.path.relpath(path),
"mtime": os.path.getmtime(path),
"metadata": metadata,
},
)
eventlet.sleep(0)
try:
generate.prompt2image(
**generation_parameters,
step_callback=image_progress,
image_callback=image_done,
)
except KeyboardInterrupt:
raise
except CanceledException:
pass
except Exception as e:
socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
"""
END ADDITIONAL FUNCTIONS
"""
if __name__ == "__main__":
print(f">> Starting server at http://{host}:{port}")
socketio.run(app, host=host, port=port)

View File

@ -0,0 +1,54 @@
model:
base_learning_rate: 4.5e-6
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: "val/rec_loss"
embed_dim: 16
lossconfig:
target: ldm.modules.losses.LPIPSWithDiscriminator
params:
disc_start: 50001
kl_weight: 0.000001
disc_weight: 0.5
ddconfig:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,1,2,2,4] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [16]
dropout: 0.0
data:
target: main.DataModuleFromConfig
params:
batch_size: 12
wrap: True
train:
target: ldm.data.imagenet.ImageNetSRTrain
params:
size: 256
degradation: pil_nearest
validation:
target: ldm.data.imagenet.ImageNetSRValidation
params:
size: 256
degradation: pil_nearest
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 1000
max_images: 8
increase_log_steps: True
trainer:
benchmark: True
accumulate_grad_batches: 2

View File

@ -0,0 +1,53 @@
model:
base_learning_rate: 4.5e-6
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: "val/rec_loss"
embed_dim: 4
lossconfig:
target: ldm.modules.losses.LPIPSWithDiscriminator
params:
disc_start: 50001
kl_weight: 0.000001
disc_weight: 0.5
ddconfig:
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
data:
target: main.DataModuleFromConfig
params:
batch_size: 12
wrap: True
train:
target: ldm.data.imagenet.ImageNetSRTrain
params:
size: 256
degradation: pil_nearest
validation:
target: ldm.data.imagenet.ImageNetSRValidation
params:
size: 256
degradation: pil_nearest
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 1000
max_images: 8
increase_log_steps: True
trainer:
benchmark: True
accumulate_grad_batches: 2

View File

@ -0,0 +1,54 @@
model:
base_learning_rate: 4.5e-6
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: "val/rec_loss"
embed_dim: 3
lossconfig:
target: ldm.modules.losses.LPIPSWithDiscriminator
params:
disc_start: 50001
kl_weight: 0.000001
disc_weight: 0.5
ddconfig:
double_z: True
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
data:
target: main.DataModuleFromConfig
params:
batch_size: 12
wrap: True
train:
target: ldm.data.imagenet.ImageNetSRTrain
params:
size: 256
degradation: pil_nearest
validation:
target: ldm.data.imagenet.ImageNetSRValidation
params:
size: 256
degradation: pil_nearest
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 1000
max_images: 8
increase_log_steps: True
trainer:
benchmark: True
accumulate_grad_batches: 2

View File

@ -0,0 +1,53 @@
model:
base_learning_rate: 4.5e-6
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: "val/rec_loss"
embed_dim: 64
lossconfig:
target: ldm.modules.losses.LPIPSWithDiscriminator
params:
disc_start: 50001
kl_weight: 0.000001
disc_weight: 0.5
ddconfig:
double_z: True
z_channels: 64
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,1,2,2,4,4] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [16,8]
dropout: 0.0
data:
target: main.DataModuleFromConfig
params:
batch_size: 12
wrap: True
train:
target: ldm.data.imagenet.ImageNetSRTrain
params:
size: 256
degradation: pil_nearest
validation:
target: ldm.data.imagenet.ImageNetSRValidation
params:
size: 256
degradation: pil_nearest
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 1000
max_images: 8
increase_log_steps: True
trainer:
benchmark: True
accumulate_grad_batches: 2

View File

@ -0,0 +1,86 @@
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
image_size: 64
channels: 3
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
# note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 64 for f4
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ckpt_path: models/first_stage_models/vq-f4/model.ckpt
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 48
num_workers: 5
wrap: false
train:
target: taming.data.faceshq.CelebAHQTrain
params:
size: 256
validation:
target: taming.data.faceshq.CelebAHQValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -0,0 +1,98 @@
model:
base_learning_rate: 1.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: class_label
image_size: 32
channels: 4
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 256
attention_resolutions:
#note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 32 for f8
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 4
num_head_channels: 32
use_spatial_transformer: true
transformer_depth: 1
context_dim: 512
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 4
n_embed: 16384
ckpt_path: configs/first_stage_models/vq-f8/model.yaml
ddconfig:
double_z: false
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 2
- 4
num_res_blocks: 2
attn_resolutions:
- 32
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.ClassEmbedder
params:
embed_dim: 512
key: class_label
data:
target: main.DataModuleFromConfig
params:
batch_size: 64
num_workers: 12
wrap: false
train:
target: ldm.data.imagenet.ImageNetTrain
params:
config:
size: 256
validation:
target: ldm.data.imagenet.ImageNetValidation
params:
config:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -0,0 +1,68 @@
model:
base_learning_rate: 0.0001
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: class_label
image_size: 64
channels: 3
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss
use_ema: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 192
attention_resolutions:
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 5
num_heads: 1
use_spatial_transformer: true
transformer_depth: 1
context_dim: 512
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.ClassEmbedder
params:
n_classes: 1001
embed_dim: 512
key: class_label

View File

@ -0,0 +1,85 @@
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
image_size: 64
channels: 3
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
# note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 64 for f4
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 42
num_workers: 5
wrap: false
train:
target: taming.data.faceshq.FFHQTrain
params:
size: 256
validation:
target: taming.data.faceshq.FFHQValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -0,0 +1,85 @@
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
image_size: 64
channels: 3
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
# note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 64 for f4
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 48
num_workers: 5
wrap: false
train:
target: ldm.data.lsun.LSUNBedroomsTrain
params:
size: 256
validation:
target: ldm.data.lsun.LSUNBedroomsValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -0,0 +1,91 @@
model:
base_learning_rate: 5.0e-5 # set to target_lr by starting main.py with '--scale_lr False'
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0155
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
loss_type: l1
first_stage_key: "image"
cond_stage_key: "image"
image_size: 32
channels: 4
cond_stage_trainable: False
concat_mode: False
scale_by_std: True
monitor: 'val/loss_simple_ema'
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [10000]
cycle_lengths: [10000000000000]
f_start: [1.e-6]
f_max: [1.]
f_min: [ 1.]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 192
attention_resolutions: [ 1, 2, 4, 8 ] # 32, 16, 8, 4
num_res_blocks: 2
channel_mult: [ 1,2,2,4,4 ] # 32, 16, 8, 4, 2
num_heads: 8
use_scale_shift_norm: True
resblock_updown: True
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: "val/rec_loss"
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
ddconfig:
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: "__is_unconditional__"
data:
target: main.DataModuleFromConfig
params:
batch_size: 96
num_workers: 5
wrap: False
train:
target: ldm.data.lsun.LSUNChurchesTrain
params:
size: 256
validation:
target: ldm.data.lsun.LSUNChurchesValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@ -0,0 +1,71 @@
model:
base_learning_rate: 5.0e-05
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.012
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: caption
image_size: 32
channels: 4
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions:
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 4
- 4
num_heads: 8
use_spatial_transformer: true
transformer_depth: 1
context_dim: 1280
use_checkpoint: true
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.BERTEmbedder
params:
n_embed: 1280
n_layer: 32

20
configs/models.yaml Normal file
View File

@ -0,0 +1,20 @@
# This file describes the alternative machine learning models
# available to the dream script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
laion400m:
config: configs/latent-diffusion/txt2img-1p4B-eval.yaml
weights: models/ldm/text2img-large/model.ckpt
description: Latent Diffusion LAION400M model
width: 256
height: 256
stable-diffusion-1.4:
config: configs/stable-diffusion/v1-inference.yaml
weights: models/ldm/stable-diffusion-v1/model.ckpt
description: Stable Diffusion inference model version 1.4
width: 512
height: 512

View File

@ -1,27 +0,0 @@
# This file describes the alternative machine learning models
# available to InvokeAI script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
stable-diffusion-1.5:
description: The newest Stable Diffusion version 1.5 weight file (4.27 GB)
weights: ./models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt
config: ./configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512
vae: ./models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
default: true
stable-diffusion-1.4:
description: Stable Diffusion inference model version 1.4
config: configs/stable-diffusion/v1-inference.yaml
weights: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
width: 512
height: 512
inpainting-1.5:
weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
description: RunwayML SD 1.5 model optimized for inpainting

View File

@ -0,0 +1,68 @@
model:
base_learning_rate: 0.0001
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.015
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: jpg
cond_stage_key: nix
image_size: 48
channels: 16
cond_stage_trainable: false
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_by_std: false
scale_factor: 0.22765929
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 48
in_channels: 16
out_channels: 16
model_channels: 448
attention_resolutions:
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
use_scale_shift_norm: false
resblock_updown: false
num_head_channels: 32
use_spatial_transformer: true
transformer_depth: 1
context_dim: 768
use_checkpoint: true
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: val/rec_loss
embed_dim: 16
ddconfig:
double_z: true
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 1
- 2
- 2
- 4
num_res_blocks: 2
attn_resolutions:
- 16
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: torch.nn.Identity

View File

@ -76,4 +76,4 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.WeightedFrozenCLIPEmbedder
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder

View File

@ -1,79 +0,0 @@
model:
base_learning_rate: 7.5e-05
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: hybrid # important
monitor: val/loss_simple_ema
scale_factor: 0.18215
finetune_keys: null
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
personalization_config:
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ['face', 'man', 'photo', 'africanmale']
per_image_tokens: false
num_vectors_per_token: 1
progressive_words: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.WeightedFrozenCLIPEmbedder

View File

@ -1,74 +1,57 @@
FROM ubuntu AS get_miniconda
FROM debian
SHELL ["/bin/bash", "-c"]
ARG gsd
ENV GITHUB_STABLE_DIFFUSION $gsd
# install wget
RUN apt-get update \
&& apt-get install -y \
wget \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
ARG rsd
ENV REQS $rsd
# download and install miniconda
ARG conda_version=py39_4.12.0-Linux-x86_64
ARG conda_prefix=/opt/conda
RUN wget --progress=dot:giga -O /miniconda.sh \
https://repo.anaconda.com/miniconda/Miniconda3-${conda_version}.sh \
&& bash /miniconda.sh -b -p ${conda_prefix} \
&& rm -f /miniconda.sh
ARG cs
ENV CONDA_SUBDIR $cs
FROM ubuntu AS invokeai
ENV PIP_EXISTS_ACTION="w"
# use bash
SHELL [ "/bin/bash", "-c" ]
# TODO: Optimize image size
# clean bashrc
RUN echo "" > ~/.bashrc
SHELL ["/bin/bash", "-c"]
# Install necesarry packages
RUN apt-get update \
&& apt-get install -y \
--no-install-recommends \
gcc \
git \
libgl1-mesa-glx \
libglib2.0-0 \
pip \
python3 \
python3-dev \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
WORKDIR /
RUN apt update && apt upgrade -y \
&& apt install -y \
git \
libgl1-mesa-glx \
libglib2.0-0 \
pip \
python3 \
&& git clone $GITHUB_STABLE_DIFFUSION
# clone repository and create symlinks
ARG invokeai_git=https://github.com/invoke-ai/InvokeAI.git
ARG project_name=invokeai
RUN git clone ${invokeai_git} /${project_name} \
&& mkdir /${project_name}/models/ldm/stable-diffusion-v1 \
&& ln -s /data/models/sd-v1-4.ckpt /${project_name}/models/ldm/stable-diffusion-v1/model.ckpt \
&& ln -s /data/outputs/ /${project_name}/outputs
# Install Anaconda or Miniconda
COPY anaconda.sh .
RUN bash anaconda.sh -b -u -p /anaconda && /anaconda/bin/conda init bash
# set workdir
WORKDIR /${project_name}
# SD
WORKDIR /stable-diffusion
RUN source ~/.bashrc \
&& conda create -y --name ldm && conda activate ldm \
&& conda config --env --set subdir $CONDA_SUBDIR \
&& pip3 install -r $REQS \
&& pip3 install basicsr facexlib realesrgan \
&& mkdir models/ldm/stable-diffusion-v1 \
&& ln -s "/data/sd-v1-4.ckpt" models/ldm/stable-diffusion-v1/model.ckpt
# install conda env and preload models
ARG conda_prefix=/opt/conda
ARG conda_env_file=environment.yml
COPY --from=get_miniconda ${conda_prefix} ${conda_prefix}
RUN source ${conda_prefix}/etc/profile.d/conda.sh \
&& conda init bash \
&& source ~/.bashrc \
&& conda env create \
--name ${project_name} \
--file ${conda_env_file} \
&& rm -Rf ~/.cache \
&& conda clean -afy \
&& echo "conda activate ${project_name}" >> ~/.bashrc \
&& ln -s /data/models/GFPGANv1.4.pth ./src/gfpgan/experiments/pretrained_models/GFPGANv1.4.pth \
&& conda activate ${project_name} \
&& python scripts/preload_models.py
# Face restoreation
# by default expected in a sibling directory to stable-diffusion
WORKDIR /
RUN git clone https://github.com/TencentARC/GFPGAN.git
# Copy entrypoint and set env
ENV CONDA_PREFIX=${conda_prefix}
ENV PROJECT_NAME=${project_name}
COPY docker-build/entrypoint.sh /
ENTRYPOINT [ "/entrypoint.sh" ]
WORKDIR /GFPGAN
RUN pip3 install -r requirements.txt \
&& python3 setup.py develop \
&& ln -s "/data/GFPGANv1.4.pth" experiments/pretrained_models/GFPGANv1.4.pth
WORKDIR /stable-diffusion
RUN python3 scripts/preload_models.py
WORKDIR /
COPY entrypoint.sh .
ENTRYPOINT ["/entrypoint.sh"]

View File

@ -1,81 +0,0 @@
#!/usr/bin/env bash
set -e
# IMPORTANT: You need to have a token on huggingface.co to be able to download the checkpoint!!!
# configure values by using env when executing build.sh
# f.e. env ARCH=aarch64 GITHUB_INVOKE_AI=https://github.com/yourname/yourfork.git ./build.sh
source ./docker-build/env.sh || echo "please run from repository root" || exit 1
invokeai_conda_version=${INVOKEAI_CONDA_VERSION:-py39_4.12.0-${platform/\//-}}
invokeai_conda_prefix=${INVOKEAI_CONDA_PREFIX:-\/opt\/conda}
invokeai_conda_env_file=${INVOKEAI_CONDA_ENV_FILE:-environment.yml}
invokeai_git=${INVOKEAI_GIT:-https://github.com/invoke-ai/InvokeAI.git}
huggingface_token=${HUGGINGFACE_TOKEN?}
# print the settings
echo "You are using these values:"
echo -e "project_name:\t\t ${project_name}"
echo -e "volumename:\t\t ${volumename}"
echo -e "arch:\t\t\t ${arch}"
echo -e "platform:\t\t ${platform}"
echo -e "invokeai_conda_version:\t ${invokeai_conda_version}"
echo -e "invokeai_conda_prefix:\t ${invokeai_conda_prefix}"
echo -e "invokeai_conda_env_file: ${invokeai_conda_env_file}"
echo -e "invokeai_git:\t\t ${invokeai_git}"
echo -e "invokeai_tag:\t\t ${invokeai_tag}\n"
_runAlpine() {
docker run \
--rm \
--interactive \
--tty \
--mount source="$volumename",target=/data \
--workdir /data \
alpine "$@"
}
_copyCheckpoints() {
echo "creating subfolders for models and outputs"
_runAlpine mkdir models
_runAlpine mkdir outputs
echo -n "downloading sd-v1-4.ckpt"
_runAlpine wget --header="Authorization: Bearer ${huggingface_token}" -O models/sd-v1-4.ckpt https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
echo "done"
echo "downloading GFPGANv1.4.pth"
_runAlpine wget -O models/GFPGANv1.4.pth https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
}
_checkVolumeContent() {
_runAlpine ls -lhA /data/models
}
_getModelMd5s() {
_runAlpine \
alpine sh -c "md5sum /data/models/*"
}
if [[ -n "$(docker volume ls -f name="${volumename}" -q)" ]]; then
echo "Volume already exists"
if [[ -z "$(_checkVolumeContent)" ]]; then
echo "looks empty, copying checkpoint"
_copyCheckpoints
fi
echo "Models in ${volumename}:"
_checkVolumeContent
else
echo -n "createing docker volume "
docker volume create "${volumename}"
_copyCheckpoints
fi
# Build Container
docker build \
--platform="${platform}" \
--tag "${invokeai_tag}" \
--build-arg project_name="${project_name}" \
--build-arg conda_version="${invokeai_conda_version}" \
--build-arg conda_prefix="${invokeai_conda_prefix}" \
--build-arg conda_env_file="${invokeai_conda_env_file}" \
--build-arg invokeai_git="${invokeai_git}" \
--file ./docker-build/Dockerfile \
.

View File

@ -1,8 +1,10 @@
#!/bin/bash
set -e
source "${CONDA_PREFIX}/etc/profile.d/conda.sh"
conda activate "${PROJECT_NAME}"
cd /stable-diffusion
python scripts/invoke.py \
${@:---web --host=0.0.0.0}
if [ $# -eq 0 ]; then
python3 scripts/dream.py --full_precision -o /data
# bash
else
python3 scripts/dream.py --full_precision -o /data "$@"
fi

View File

@ -1,13 +0,0 @@
#!/usr/bin/env bash
project_name=${PROJECT_NAME:-invokeai}
volumename=${VOLUMENAME:-${project_name}_data}
arch=${ARCH:-x86_64}
platform=${PLATFORM:-Linux/${arch}}
invokeai_tag=${INVOKEAI_TAG:-${project_name}-${arch}}
export project_name
export volumename
export arch
export platform
export invokeai_tag

View File

@ -1,15 +0,0 @@
#!/usr/bin/env bash
set -e
source ./docker-build/env.sh || echo "please run from repository root" || exit 1
docker run \
--interactive \
--tty \
--rm \
--platform "$platform" \
--name "$project_name" \
--hostname "$project_name" \
--mount source="$volumename",target=/data \
--publish 9090:9090 \
"$invokeai_tag" ${1:+$@}

View File

@ -4,94 +4,6 @@ title: Changelog
# :octicons-log-16: **Changelog**
## v2.1.0 (2 November 2022)
- update mac instructions to use invokeai for env name by @willwillems in https://github.com/invoke-ai/InvokeAI/pull/1030
- Update .gitignore by @blessedcoolant in https://github.com/invoke-ai/InvokeAI/pull/1040
- reintroduce fix for m1 from https://github.com/invoke-ai/InvokeAI/pull/579 missing after merge by @skurovec in https://github.com/invoke-ai/InvokeAI/pull/1056
- Update Stable_Diffusion_AI_Notebook.ipynb (Take 2) by @ChloeL19 in https://github.com/invoke-ai/InvokeAI/pull/1060
- Print out the device type which is used by @manzke in https://github.com/invoke-ai/InvokeAI/pull/1073
- Hires Addition by @hipsterusername in https://github.com/invoke-ai/InvokeAI/pull/1063
- fix for "1 leaked semaphore objects to clean up at shutdown" on M1 by @skurovec in https://github.com/invoke-ai/InvokeAI/pull/1081
- Forward dream.py to invoke.py using the same interpreter, add deprecation warning by @db3000 in https://github.com/invoke-ai/InvokeAI/pull/1077
- fix noisy images at high step counts by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1086
- Generalize facetool strength argument by @db3000 in https://github.com/invoke-ai/InvokeAI/pull/1078
- Enable fast switching among models at the invoke> command line by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1066
- Fix Typo, committed changing ldm environment to invokeai by @jdries3 in https://github.com/invoke-ai/InvokeAI/pull/1095
- Update generate.py by @unreleased in https://github.com/invoke-ai/InvokeAI/pull/1109
- Update 'ldm' env to 'invokeai' in troubleshooting steps by @19wolf in https://github.com/invoke-ai/InvokeAI/pull/1125
- Fixed documentation typos and resolved merge conflicts by @rupeshs in https://github.com/invoke-ai/InvokeAI/pull/1123
- Fix broken doc links, fix malaprop in the project subtitle by @majick in https://github.com/invoke-ai/InvokeAI/pull/1131
- Only output facetool parameters if enhancing faces by @db3000 in https://github.com/invoke-ai/InvokeAI/pull/1119
- Update gitignore to ignore codeformer weights at new location by @spezialspezial in https://github.com/invoke-ai/InvokeAI/pull/1136
- fix links to point to invoke-ai.github.io #1117 by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1143
- Rework-mkdocs by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1144
- add option to CLI and pngwriter that allows user to set PNG compression level by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1127
- Fix img2img DDIM index out of bound by @wfng92 in https://github.com/invoke-ai/InvokeAI/pull/1137
- Fix gh actions by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1128
- update mac instructions to use invokeai for env name by @willwillems in https://github.com/invoke-ai/InvokeAI/pull/1030
- Update .gitignore by @blessedcoolant in https://github.com/invoke-ai/InvokeAI/pull/1040
- reintroduce fix for m1 from https://github.com/invoke-ai/InvokeAI/pull/579 missing after merge by @skurovec in https://github.com/invoke-ai/InvokeAI/pull/1056
- Update Stable_Diffusion_AI_Notebook.ipynb (Take 2) by @ChloeL19 in https://github.com/invoke-ai/InvokeAI/pull/1060
- Print out the device type which is used by @manzke in https://github.com/invoke-ai/InvokeAI/pull/1073
- Hires Addition by @hipsterusername in https://github.com/invoke-ai/InvokeAI/pull/1063
- fix for "1 leaked semaphore objects to clean up at shutdown" on M1 by @skurovec in https://github.com/invoke-ai/InvokeAI/pull/1081
- Forward dream.py to invoke.py using the same interpreter, add deprecation warning by @db3000 in https://github.com/invoke-ai/InvokeAI/pull/1077
- fix noisy images at high step counts by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1086
- Generalize facetool strength argument by @db3000 in https://github.com/invoke-ai/InvokeAI/pull/1078
- Enable fast switching among models at the invoke> command line by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1066
- Fix Typo, committed changing ldm environment to invokeai by @jdries3 in https://github.com/invoke-ai/InvokeAI/pull/1095
- Fixed documentation typos and resolved merge conflicts by @rupeshs in https://github.com/invoke-ai/InvokeAI/pull/1123
- Only output facetool parameters if enhancing faces by @db3000 in https://github.com/invoke-ai/InvokeAI/pull/1119
- add option to CLI and pngwriter that allows user to set PNG compression level by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1127
- Fix img2img DDIM index out of bound by @wfng92 in https://github.com/invoke-ai/InvokeAI/pull/1137
- Add text prompt to inpaint mask support by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1133
- Respect http[s] protocol when making socket.io middleware by @damian0815 in https://github.com/invoke-ai/InvokeAI/pull/976
- WebUI: Adds Codeformer support by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1151
- Skips normalizing prompts for web UI metadata by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1165
- Add Asymmetric Tiling by @carson-katri in https://github.com/invoke-ai/InvokeAI/pull/1132
- Web UI: Increases max CFG Scale to 200 by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1172
- Corrects color channels in face restoration; Fixes #1167 by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1175
- Flips channels using array slicing instead of using OpenCV by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1178
- Fix typo in docs: s/Formally/Formerly by @noodlebox in https://github.com/invoke-ai/InvokeAI/pull/1176
- fix clipseg loading problems by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1177
- Correct color channels in upscale using array slicing by @wfng92 in https://github.com/invoke-ai/InvokeAI/pull/1181
- Web UI: Filters existing images when adding new images; Fixes #1085 by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1171
- fix a number of bugs in textual inversion by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1190
- Improve !fetch, add !replay command by @ArDiouscuros in https://github.com/invoke-ai/InvokeAI/pull/882
- Fix generation of image with s>1000 by @holstvoogd in https://github.com/invoke-ai/InvokeAI/pull/951
- Web UI: Gallery improvements by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1198
- Update CLI.md by @krummrey in https://github.com/invoke-ai/InvokeAI/pull/1211
- outcropping improvements by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1207
- add support for loading VAE autoencoders by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1216
- remove duplicate fix_func for MPS by @wfng92 in https://github.com/invoke-ai/InvokeAI/pull/1210
- Metadata storage and retrieval fixes by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1204
- nix: add shell.nix file by @Cloudef in https://github.com/invoke-ai/InvokeAI/pull/1170
- Web UI: Changes vite dist asset paths to relative by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1185
- Web UI: Removes isDisabled from PromptInput by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1187
- Allow user to generate images with initial noise as on M1 / mps system by @ArDiouscuros in https://github.com/invoke-ai/InvokeAI/pull/981
- feat: adding filename format template by @plucked in https://github.com/invoke-ai/InvokeAI/pull/968
- Web UI: Fixes broken bundle by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1242
- Support runwayML custom inpainting model by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1243
- Update IMG2IMG.md by @talitore in https://github.com/invoke-ai/InvokeAI/pull/1262
- New dockerfile - including a build- and a run- script as well as a GH-Action by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1233
- cut over from karras to model noise schedule for higher steps by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1222
- Prompt tweaks by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1268
- Outpainting implementation by @Kyle0654 in https://github.com/invoke-ai/InvokeAI/pull/1251
- fixing aspect ratio on hires by @tjennings in https://github.com/invoke-ai/InvokeAI/pull/1249
- Fix-build-container-action by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1274
- handle all unicode characters by @damian0815 in https://github.com/invoke-ai/InvokeAI/pull/1276
- adds models.user.yml to .gitignore by @JakeHL in https://github.com/invoke-ai/InvokeAI/pull/1281
- remove debug branch, set fail-fast to false by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1284
- Protect-secrets-on-pr by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1285
- Web UI: Adds initial inpainting implementation by @psychedelicious in https://github.com/invoke-ai/InvokeAI/pull/1225
- fix environment-mac.yml - tested on x64 and arm64 by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1289
- Use proper authentication to download model by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1287
- Prevent indexing error for mode RGB by @spezialspezial in https://github.com/invoke-ai/InvokeAI/pull/1294
- Integrate sd-v1-5 model into test matrix (easily expandable), remove unecesarry caches by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1293
- add --no-interactive to preload_models step by @mauwii in https://github.com/invoke-ai/InvokeAI/pull/1302
- 1-click installer and updater. Uses micromamba to install git and conda into a contained environment (if necessary) before running the normal installation script by @cmdr2 in https://github.com/invoke-ai/InvokeAI/pull/1253
- preload_models.py script downloads the weight files by @lstein in https://github.com/invoke-ai/InvokeAI/pull/1290
## v2.0.1 (13 October 2022)
- fix noisy images at high step count when using k* samplers

Binary file not shown.

Before

Width:  |  Height:  |  Size: 519 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 519 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 439 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 635 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 284 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 252 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 428 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 331 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 369 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 362 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 329 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 329 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 377 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 328 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 380 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 372 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 401 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 441 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 451 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 338 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 271 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 353 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 330 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 439 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 463 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 444 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 468 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 466 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 475 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 429 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 429 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 477 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 476 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 434 KiB

View File

@ -1,116 +0,0 @@
## 000001.1863159593.png
![](000001.1863159593.png)
banana sushi -s 50 -S 1863159593 -W 512 -H 512 -C 7.5 -A k_lms
## 000002.1151955949.png
![](000002.1151955949.png)
banana sushi -s 50 -S 1151955949 -W 512 -H 512 -C 7.5 -A plms
## 000003.2736230502.png
![](000003.2736230502.png)
banana sushi -s 50 -S 2736230502 -W 512 -H 512 -C 7.5 -A ddim
## 000004.42.png
![](000004.42.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
## 000005.42.png
![](000005.42.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
## 000006.478163327.png
![](000006.478163327.png)
banana sushi -s 50 -S 478163327 -W 640 -H 448 -C 7.5 -A k_lms
## 000007.2407640369.png
![](000007.2407640369.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2407640369:0.1
## 000008.2772421987.png
![](000008.2772421987.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2772421987:0.1
## 000009.3532317557.png
![](000009.3532317557.png)
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 3532317557:0.1
## 000010.2028635318.png
![](000010.2028635318.png)
banana sushi -s 50 -S 2028635318 -W 512 -H 512 -C 7.5 -A k_lms
## 000011.1111168647.png
![](000011.1111168647.png)
pond with waterlillies -s 50 -S 1111168647 -W 512 -H 512 -C 7.5 -A k_lms
## 000012.1476370516.png
![](000012.1476370516.png)
pond with waterlillies -s 50 -S 1476370516 -W 512 -H 512 -C 7.5 -A k_lms
## 000013.4281108706.png
![](000013.4281108706.png)
banana sushi -s 50 -S 4281108706 -W 960 -H 960 -C 7.5 -A k_lms
## 000014.2396987386.png
![](000014.2396987386.png)
old sea captain with crow on shoulder -s 50 -S 2396987386 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_lms -f 0.75
## 000015.1252923272.png
![](000015.1252923272.png)
old sea captain with crow on shoulder -s 50 -S 1252923272 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512-transparent.png -A k_lms -f 0.75
## 000016.2633891320.png
![](000016.2633891320.png)
old sea captain with crow on shoulder -s 50 -S 2633891320 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A plms -f 0.75
## 000017.1134411920.png
![](000017.1134411920.png)
old sea captain with crow on shoulder -s 50 -S 1134411920 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_euler_a -f 0.75
## 000018.47.png
![](000018.47.png)
big red dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000019.47.png
![](000019.47.png)
big red++++ dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000020.47.png
![](000020.47.png)
big red dog playing with cat+++ -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000021.47.png
![](000021.47.png)
big (red dog).swap(tiger) playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000022.47.png
![](000022.47.png)
dog:1,cat:2 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000023.47.png
![](000023.47.png)
dog:2,cat:1 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
## 000024.1029061431.png
![](000024.1029061431.png)
medusa with cobras -s 50 -S 1029061431 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm hair
## 000025.1284519352.png
![](000025.1284519352.png)
bearded man -s 50 -S 1284519352 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm face
## curly.942491079.gfpgan.png
![](curly.942491079.gfpgan.png)
!fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8 -ft gfpgan -U 2.0 0.75
## curly.942491079.outcrop.png
![](curly.942491079.outcrop.png)
!fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64
## curly.942491079.outpaint.png
![](curly.942491079.outpaint.png)
!fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -D top 64
## curly.942491079.outcrop-01.png
![](curly.942491079.outcrop-01.png)
!fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64

View File

@ -1,29 +0,0 @@
outputs/preflight/000001.1863159593.png: banana sushi -s 50 -S 1863159593 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000002.1151955949.png: banana sushi -s 50 -S 1151955949 -W 512 -H 512 -C 7.5 -A plms
outputs/preflight/000003.2736230502.png: banana sushi -s 50 -S 2736230502 -W 512 -H 512 -C 7.5 -A ddim
outputs/preflight/000004.42.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000005.42.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000006.478163327.png: banana sushi -s 50 -S 478163327 -W 640 -H 448 -C 7.5 -A k_lms
outputs/preflight/000007.2407640369.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2407640369:0.1
outputs/preflight/000008.2772421987.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2772421987:0.1
outputs/preflight/000009.3532317557.png: banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 3532317557:0.1
outputs/preflight/000010.2028635318.png: banana sushi -s 50 -S 2028635318 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000011.1111168647.png: pond with waterlillies -s 50 -S 1111168647 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000012.1476370516.png: pond with waterlillies -s 50 -S 1476370516 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000013.4281108706.png: banana sushi -s 50 -S 4281108706 -W 960 -H 960 -C 7.5 -A k_lms
outputs/preflight/000014.2396987386.png: old sea captain with crow on shoulder -s 50 -S 2396987386 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_lms -f 0.75
outputs/preflight/000015.1252923272.png: old sea captain with crow on shoulder -s 50 -S 1252923272 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512-transparent.png -A k_lms -f 0.75
outputs/preflight/000016.2633891320.png: old sea captain with crow on shoulder -s 50 -S 2633891320 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A plms -f 0.75
outputs/preflight/000017.1134411920.png: old sea captain with crow on shoulder -s 50 -S 1134411920 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_euler_a -f 0.75
outputs/preflight/000018.47.png: big red dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000019.47.png: big red++++ dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000020.47.png: big red dog playing with cat+++ -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000021.47.png: big (red dog).swap(tiger) playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000022.47.png: dog:1,cat:2 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000023.47.png: dog:2,cat:1 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
outputs/preflight/000024.1029061431.png: medusa with cobras -s 50 -S 1029061431 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm hair
outputs/preflight/000025.1284519352.png: bearded man -s 50 -S 1284519352 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm face
outputs/preflight/curly.942491079.gfpgan.png: !fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8 -ft gfpgan -U 2.0 0.75
outputs/preflight/curly.942491079.outcrop.png: !fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64
outputs/preflight/curly.942491079.outpaint.png: !fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -D top 64
outputs/preflight/curly.942491079.outcrop-01.png: !fix ./docs/assets/preflight-checks/inputs/curly.png -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64

View File

@ -1,61 +0,0 @@
# outputs/preflight/000001.1863159593.png
banana sushi -s 50 -S 1863159593 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000002.1151955949.png
banana sushi -s 50 -S 1151955949 -W 512 -H 512 -C 7.5 -A plms
# outputs/preflight/000003.2736230502.png
banana sushi -s 50 -S 2736230502 -W 512 -H 512 -C 7.5 -A ddim
# outputs/preflight/000004.42.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000005.42.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000006.478163327.png
banana sushi -s 50 -S 478163327 -W 640 -H 448 -C 7.5 -A k_lms
# outputs/preflight/000007.2407640369.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2407640369:0.1
# outputs/preflight/000007.2772421987.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 2772421987:0.1
# outputs/preflight/000007.3532317557.png
banana sushi -s 50 -S 42 -W 512 -H 512 -C 7.5 -A k_lms -V 3532317557:0.1
# outputs/preflight/000008.2028635318.png
banana sushi -s 50 -S 2028635318 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000009.1111168647.png
pond with waterlillies -s 50 -S 1111168647 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000010.1476370516.png
pond with waterlillies -s 50 -S 1476370516 -W 512 -H 512 -C 7.5 -A k_lms --seamless
# outputs/preflight/000011.4281108706.png
banana sushi -s 50 -S 4281108706 -W 960 -H 960 -C 7.5 -A k_lms
# outputs/preflight/000012.2396987386.png
old sea captain with crow on shoulder -s 50 -S 2396987386 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_lms -f 0.75
# outputs/preflight/000013.1252923272.png
old sea captain with crow on shoulder -s 50 -S 1252923272 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512-transparent.png -A k_lms -f 0.75
# outputs/preflight/000014.2633891320.png
old sea captain with crow on shoulder -s 50 -S 2633891320 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A plms -f 0.75
# outputs/preflight/000015.1134411920.png
old sea captain with crow on shoulder -s 50 -S 1134411920 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/Lincoln-and-Parrot-512.png -A k_euler_a -f 0.75
# outputs/preflight/000016.42.png
big red dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000017.42.png
big red++++ dog playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000018.42.png
big red dog playing with cat+++ -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000019.42.png
big (red dog).swap(tiger) playing with cat -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000020.42.png
dog:1,cat:2 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000021.42.png
dog:2,cat:1 -s 50 -S 47 -W 512 -H 512 -C 7.5 -A k_lms
# outputs/preflight/000022.1029061431.png
medusa with cobras -s 50 -S 1029061431 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm hair
# outputs/preflight/000023.1284519352.png
bearded man -s 50 -S 1284519352 -W 512 -H 512 -C 7.5 -I docs/assets/preflight-checks/inputs/curly.png -A k_lms -f 0.75 -tm face
# outputs/preflight/000024.curly.hair.deselected.png
!mask -I docs/assets/preflight-checks/inputs/curly.png -tm hair
# outputs/preflight/curly.942491079.gfpgan.png
!fix ./docs/assets/preflight-checks/inputs/curly.png -U2 -G0.8
# outputs/preflight/curly.942491079.outcrop.png
!fix ./docs/assets/preflight-checks/inputs/curly.png -c top 64
# outputs/preflight/curly.942491079.outpaint.png
!fix ./docs/assets/preflight-checks/inputs/curly.png -D top 64
# outputs/preflight/curly.942491079.outcrop-01.png
!switch inpainting-1.5
!fix ./docs/assets/preflight-checks/inputs/curly.png -c top 64

Binary file not shown.

Before

Width:  |  Height:  |  Size: 587 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 572 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 557 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 571 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 570 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 568 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 527 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 489 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 503 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 488 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 499 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 524 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 593 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 598 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 488 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 487 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 489 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 338 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 59 KiB

View File

@ -8,7 +8,7 @@ hide:
## **Interactive Command Line Interface**
The `invoke.py` script, located in `scripts/`, provides an interactive
The `invoke.py` script, located in `scripts/dream.py`, provides an interactive
interface to image generation similar to the "invoke mothership" bot that Stable
AI provided on its Discord server.
@ -86,7 +86,6 @@ overridden on a per-prompt basis (see [List of prompt arguments](#list-of-prompt
| `--model <modelname>` | | `stable-diffusion-1.4` | Loads model specified in configs/models.yaml. Currently one of "stable-diffusion-1.4" or "laion400m" |
| `--full_precision` | `-F` | `False` | Run in slower full-precision mode. Needed for Macintosh M1/M2 hardware and some older video cards. |
| `--png_compression <0-9>` | `-z<0-9>` | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--safety-checker` | | False | Activate safety checker for NSFW and other potentially disturbing imagery |
| `--web` | | `False` | Start in web server mode |
| `--host <ip addr>` | | `localhost` | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
| `--port <port>` | | `9090` | Which port web server should listen for requests on. |
@ -98,6 +97,7 @@ overridden on a per-prompt basis (see [List of prompt arguments](#list-of-prompt
| `--embedding_path <path>` | | `None` | Path to pre-trained embedding manager checkpoints, for custom models |
| `--gfpgan_dir` | | `src/gfpgan` | Path to where GFPGAN is installed. |
| `--gfpgan_model_path` | | `experiments/pretrained_models/GFPGANv1.4.pth` | Path to GFPGAN model file, relative to `--gfpgan_dir`. |
| `--device <device>` | `-d<device>` | `torch.cuda.current_device()` | Device to run SD on, e.g. "cuda:0" |
| `--free_gpu_mem` | | `False` | Free GPU memory after sampling, to allow image decoding and saving in low VRAM conditions |
| `--precision` | | `auto` | Set model precision, default is selected by device. Options: auto, float32, float16, autocast |
@ -151,14 +151,12 @@ Here are the invoke> command that apply to txt2img:
| --cfg_scale <float>| -C<float> | 7.5 | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
| --seed <int> | -S<int> | None | Set the random seed for the next series of images. This can be used to recreate an image generated previously.|
| --sampler <sampler>| -A<sampler>| k_lms | Sampler to use. Use -h to get list of available samplers. |
| --karras_max <int> | | 29 | When using k_* samplers, set the maximum number of steps before shifting from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts) This value is sticky. [29] |
| --hires_fix | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
| --png_compression <0-9> | -z<0-9> | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--png_compression <0-9>` | `-z<0-9>` | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| --grid | -g | False | Turn on grid mode to return a single image combining all the images generated by this prompt |
| --individual | -i | True | Turn off grid mode (deprecated; leave off --grid instead) |
| --outdir <path> | -o<path> | outputs/img_samples | Temporarily change the location of these images |
| --seamless | | False | Activate seamless tiling for interesting effects |
| --seamless_axes | | x,y | Specify which axes to use circular convolution on. |
| --log_tokenization | -t | False | Display a color-coded list of the parsed tokens derived from the prompt |
| --skip_normalization| -x | False | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
| --upscale <int> <float> | -U <int> <float> | -U 1 0.75| Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
@ -212,40 +210,11 @@ accepts additional options:
[Inpainting](./INPAINTING.md) for details.
inpainting accepts all the arguments used for txt2img and img2img, as
well as the --mask (-M) and --text_mask (-tm) arguments:
well as the --mask (-M) argument:
| Argument <img width="100" align="right"/> | Shortcut | Default | Description |
|--------------------|------------|---------------------|--------------|
| `--init_mask <path>` | `-M<path>` | `None` |Path to an image the same size as the initial_image, with areas for inpainting made transparent.|
| `--invert_mask ` | | False |If true, invert the mask so that transparent areas are opaque and vice versa.|
| `--text_mask <prompt> [<float>]` | `-tm <prompt> [<float>]` | <none> | Create a mask from a text prompt describing part of the image|
The mask may either be an image with transparent areas, in which case
the inpainting will occur in the transparent areas only, or a black
and white image, in which case all black areas will be painted into.
`--text_mask` (short form `-tm`) is a way to generate a mask using a
text description of the part of the image to replace. For example, if
you have an image of a breakfast plate with a bagel, toast and
scrambled eggs, you can selectively mask the bagel and replace it with
a piece of cake this way:
~~~
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel
~~~
The algorithm uses <a
href="https://github.com/timojl/clipseg">clipseg</a> to classify
different regions of the image. The classifier puts out a confidence
score for each region it identifies. Generally regions that score
above 0.5 are reliable, but if you are getting too much or too little
masking you can adjust the threshold down (to get more mask), or up
(to get less). In this example, by passing `-tm` a higher value, we
are insisting on a more stringent classification.
~~~
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel 0.6
~~~
# Other Commands
@ -287,20 +256,12 @@ Some examples:
Outputs:
[1] outputs/img-samples/000017.4829112.gfpgan-00.png: !fix "outputs/img-samples/0000045.4829112.png" -s 50 -S -W 512 -H 512 -C 7.5 -A k_lms -G 0.8
### !mask
This command takes an image, a text prompt, and uses the `clipseg`
algorithm to automatically generate a mask of the area that matches
the text prompt. It is useful for debugging the text masking process
prior to inpainting with the `--text_mask` argument. See
[INPAINTING.md] for details.
## Model selection and importation
# Model selection and importation
The CLI allows you to add new models on the fly, as well as to switch
among them rapidly without leaving the script.
### !models
## !models
This prints out a list of the models defined in `config/models.yaml'.
The active model is bold-faced
@ -312,7 +273,7 @@ laion400m not loaded <no description>
waifu-diffusion not loaded Waifu Diffusion v1.3
</pre>
### !switch <model>
## !switch <model>
This quickly switches from one model to another without leaving the
CLI script. `invoke.py` uses a memory caching system; once a model
@ -358,7 +319,7 @@ laion400m not loaded <no description>
waifu-diffusion cached Waifu Diffusion v1.3
</pre>
### !import_model <path/to/model/weights>
## !import_model <path/to/model/weights>
This command imports a new model weights file into InvokeAI, makes it
available for image generation within the script, and writes out the
@ -383,7 +344,7 @@ automatically.
Example:
<pre>
invoke> <b>!import_model models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt</b>
invoke> <b>!import_model models/ldm/stable-diffusion-v1/ model-epoch08-float16.ckpt</b>
>> Model import in process. Please enter the values needed to configure this model:
Name for this model: <b>waifu-diffusion</b>
@ -410,7 +371,7 @@ OK to import [n]? <b>y</b>
invoke>
</pre>
###!edit_model <name_of_model>
##!edit_model <name_of_model>
The `!edit_model` command can be used to modify a model that is
already defined in `config/models.yaml`. Call it with the short
@ -446,12 +407,20 @@ OK to import [n]? y
Outputs:
[2] outputs/img-samples/000018.2273800735.embiggen-00.png: !fix "outputs/img-samples/000017.243781548.gfpgan-00.png" -s 50 -S 2273800735 -W 512 -H 512 -C 7.5 -A k_lms --embiggen 3.0 0.75 0.25
```
## History processing
# History processing
The CLI provides a series of convenient commands for reviewing previous
actions, retrieving them, modifying them, and re-running them.
```bash
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
```
### !history
Note that this command may behave unexpectedly if given a PNG file that
was not generated by InvokeAI.
### `!history`
The invoke script keeps track of all the commands you issue during a
session, allowing you to re-run them. On Mac and Linux systems, it
@ -476,41 +445,20 @@ invoke> !20
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
### !fetch
## !fetch
This command retrieves the generation parameters from a previously
generated image and either loads them into the command line
(Linux|Mac), or prints them out in a comment for copy-and-paste
(Windows). You may provide either the name of a file in the current
output directory, or a full file path. Specify path to a folder with
image png files, and wildcard *.png to retrieve the dream command used
to generate the images, and save them to a file commands.txt for
further processing.
generated image and either loads them into the command line. You may
provide either the name of a file in the current output directory, or
a full file path.
This example loads the generation command for a single png file:
```bash
~~~
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
```
This one fetches the generation commands from a batch of files and
stores them into `selected.txt`:
```bash
invoke> !fetch outputs\selected-imgs\*.png selected.txt
```
### !replay
This command replays a text file generated by !fetch or created manually
~~~
invoke> !replay outputs\selected-imgs\selected.txt
~~~
Note that these commands may behave unexpectedly if given a PNG file that
Note that this command may behave unexpectedly if given a PNG file that
was not generated by InvokeAI.
### !search <search string>

View File

@ -120,6 +120,8 @@ Both of the outputs look kind of like what I was thinking of. With the strength
If you want to try this out yourself, all of these are using a seed of `1592514025` with a width/height of `384`, step count `10`, the default sampler (`k_lms`), and the single-word prompt `"fire"`:
If you want to try this out yourself, all of these are using a seed of `1592514025` with a width/height of `384`, step count `10`, the default sampler (`k_lms`), and the single-word prompt `fire`:
```commandline
invoke> "fire" -s10 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png --strength 0.7
```

View File

@ -9,7 +9,7 @@ title: Inpainting
Inpainting is really cool. To do it, you start with an initial image
and use a photoeditor to make one or more regions transparent
(i.e. they have a "hole" in them). You then provide the path to this
image at the invoke> command line using the `-I` switch. Stable
image at the dream> command line using the `-I` switch. Stable
Diffusion will only paint within the transparent region.
There's a catch. In the current implementation, you have to prepare
@ -25,7 +25,7 @@ color information is preserved. There is often an option in the export
dialog that lets you specify this.
If your photoeditor is erasing the underlying color information,
`invoke.py` will give you a big fat warning. If you can't find a way to
`dream.py` will give you a big fat warning. If you can't find a way to
coax your photoeditor to retain color values under transparent areas,
then you can combine the `-I` and `-M` switches to provide both the
original unedited image and the masked (partially transparent) image:
@ -34,188 +34,9 @@ original unedited image and the masked (partially transparent) image:
invoke> "man with cat on shoulder" -I./images/man.png -M./images/man-transparent.png
```
## **Masking using Text**
We are hoping to get rid of the need for this workaround in an upcoming release.
You can also create a mask using a text prompt to select the part of
the image you want to alter, using the <a
href="https://github.com/timojl/clipseg">clipseg</a> algorithm. This
works on any image, not just ones generated by InvokeAI.
The `--text_mask` (short form `-tm`) option takes two arguments. The
first argument is a text description of the part of the image you wish
to mask (paint over). If the text description contains a space, you must
surround it with quotation marks. The optional second argument is the
minimum threshold for the mask classifier's confidence score, described
in more detail below.
To see how this works in practice, here's an image of a still life
painting that I got off the web.
<img src="../assets/still-life-scaled.jpg">
You can selectively mask out the
orange and replace it with a baseball in this way:
~~~
invoke> a baseball -I /path/to/still_life.png -tm orange
~~~
<img src="../assets/still-life-inpainted.png">
The clipseg classifier produces a confidence score for each region it
identifies. Generally regions that score above 0.5 are reliable, but
if you are getting too much or too little masking you can adjust the
threshold down (to get more mask), or up (to get less). In this
example, by passing `-tm` a higher value, we are insisting on a tigher
mask. However, if you make it too high, the orange may not be picked
up at all!
~~~
invoke> a baseball -I /path/to/breakfast.png -tm orange 0.6
~~~
The `!mask` command may be useful for debugging problems with the
text2mask feature. The syntax is `!mask /path/to/image.png -tm <text>
<threshold>`
It will generate three files:
- The image with the selected area highlighted.
- it will be named XXXXX.<imagename>.<prompt>.selected.png
- The image with the un-selected area highlighted.
- it will be named XXXXX.<imagename>.<prompt>.deselected.png
- The image with the selected area converted into a black and white
image according to the threshold level
- it will be named XXXXX.<imagename>.<prompt>.masked.png
The `.masked.png` file can then be directly passed to the `invoke>`
prompt in the CLI via the `-M` argument. Do not attempt this with
the `selected.png` or `deselected.png` files, as they contain some
transparency throughout the image and will not produce the desired
results.
Here is an example of how `!mask` works:
```
invoke> !mask ./test-pictures/curly.png -tm hair 0.5
>> generating masks from ./test-pictures/curly.png
>> Initializing clipseg model for text to mask inference
Outputs:
[941.1] outputs/img-samples/000019.curly.hair.deselected.png: !mask ./test-pictures/curly.png -tm hair 0.5
[941.2] outputs/img-samples/000019.curly.hair.selected.png: !mask ./test-pictures/curly.png -tm hair 0.5
[941.3] outputs/img-samples/000019.curly.hair.masked.png: !mask ./test-pictures/curly.png -tm hair 0.5
```
**Original image "curly.png"**
<img src="../assets/outpainting/curly.png">
**000019.curly.hair.selected.png**
<img src="../assets/inpainting/000019.curly.hair.selected.png">
**000019.curly.hair.deselected.png**
<img src="../assets/inpainting/000019.curly.hair.deselected.png">
**000019.curly.hair.masked.png**
<img src="../assets/inpainting/000019.curly.hair.masked.png">
It looks like we selected the hair pretty well at the 0.5 threshold
(which is the default, so we didn't actually have to specify it), so
let's have some fun:
```
invoke> medusa with cobras -I ./test-pictures/curly.png -M 000019.curly.hair.masked.png -C20
>> loaded input image of size 512x512 from ./test-pictures/curly.png
...
Outputs:
[946] outputs/img-samples/000024.801380492.png: "medusa with cobras" -s 50 -S 801380492 -W 512 -H 512 -C 20.0 -I ./test-pictures/curly.png -A k_lms -f 0.75
```
<img src="../assets/inpainting/000024.801380492.png">
You can also skip the `!mask` creation step and just select the masked
region directly:
```
invoke> medusa with cobras -I ./test-pictures/curly.png -tm hair -C20
```
## Using the RunwayML inpainting model
The [RunwayML Inpainting Model
v1.5](https://huggingface.co/runwayml/stable-diffusion-inpainting) is
a specialized version of [Stable Diffusion
v1.5](https://huggingface.co/spaces/runwayml/stable-diffusion-v1-5)
that contains extra channels specifically designed to enhance
inpainting and outpainting. While it can do regular `txt2img` and
`img2img`, it really shines when filling in missing regions. It has an
almost uncanny ability to blend the new regions with existing ones in
a semantically coherent way.
To install the inpainting model, follow the
[instructions](INSTALLING-MODELS.md) for installing a new model. You
may use either the CLI (`invoke.py` script) or directly edit the
`configs/models.yaml` configuration file to do this. The main thing to
watch out for is that the the model `config` option must be set up to
use `v1-inpainting-inference.yaml` rather than the `v1-inference.yaml`
file that is used by Stable Diffusion 1.4 and 1.5.
After installation, your `models.yaml` should contain an entry that
looks like this one:
inpainting-1.5:
weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
description: SD inpainting v1.5
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
width: 512
height: 512
As shown in the example, you may include a VAE fine-tuning weights
file as well. This is strongly recommended.
To use the custom inpainting model, launch `invoke.py` with the
argument `--model inpainting-1.5` or alternatively from within the
script use the `!switch inpainting-1.5` command to load and switch to
the inpainting model.
You can now do inpainting and outpainting exactly as described above,
but there will (likely) be a noticeable improvement in
coherence. Txt2img and Img2img will work as well.
There are a few caveats to be aware of:
1. The inpainting model is larger than the standard model, and will
use nearly 4 GB of GPU VRAM. This makes it unlikely to run on
a 4 GB graphics card.
2. When operating in Img2img mode, the inpainting model is much less
steerable than the standard model. It is great for making small
changes, such as changing the pattern of a fabric, or slightly
changing a subject's expression or hair, but the model will
resist making the dramatic alterations that the standard
model lets you do.
3. While the `--hires` option works fine with the inpainting model,
some special features, such as `--embiggen` are disabled.
4. Prompt weighting (`banana++ sushi`) and merging work well with
the inpainting model, but prompt swapping (a ("fluffy cat").swap("smiling dog") eating a hotdog`)
will not have any effect due to the way the model is set up.
You may use text masking (with `-tm thing-to-mask`) as an
effective replacement.
5. The model tends to oversharpen image if you use high step or CFG
values. If you need to do large steps, use the standard model.
6. The `--strength` (`-f`) option has no effect on the inpainting
model due to its fundamental differences with the standard
model. It will always take the full number of steps you specify.
## Troubleshooting
Here are some troubleshooting tips for inpainting and outpainting.
## Inpainting is not changing the masked region enough!
### Inpainting is not changing the masked region enough!
One of the things to understand about how inpainting works is that it
is equivalent to running img2img on just the masked (transparent)

View File

@ -26,12 +26,6 @@ for each `invoke>` prompt as shown here:
invoke> "pond garden with lotus by claude monet" --seamless -s100 -n4
```
By default this will tile on both the X and Y axes. However, you can also specify specific axes to tile on with `--seamless_axes`.
Possible values are `x`, `y`, and `x,y`:
```python
invoke> "pond garden with lotus by claude monet" --seamless --seamless_axes=x -s100 -n4
```
---
## **Shortcuts: Reusing Seeds**
@ -75,23 +69,6 @@ combination of integers and floating point numbers, and they do not need to add
---
## **Filename Format**
The argument `--fnformat` allows to specify the filename of the
image. Supported wildcards are all arguments what can be set such as
`perlin`, `seed`, `threshold`, `height`, `width`, `gfpgan_strength`,
`sampler_name`, `steps`, `model`, `upscale`, `prompt`, `cfg_scale`,
`prefix`.
The following prompt
```bash
dream> a red car --steps 25 -C 9.8 --perlin 0.1 --fnformat {prompt}_steps.{steps}_cfg.{cfg_scale}_perlin.{perlin}.png
```
generates a file with the name: `outputs/img-samples/a red car_steps.25_cfg.9.8_perlin.0.1.png`
---
## **Thresholding and Perlin Noise Initialization Options**
Two new options are the thresholding (`--threshold`) and the perlin noise initialization (`--perlin`) options. Thresholding limits the range of the latent values during optimization, which helps combat oversaturation with higher CFG scale values. Perlin noise initialization starts with a percentage (a value ranging from 0 to 1) of perlin noise mixed into the initial noise. Both features allow for more variations and options in the course of generating images.

View File

@ -15,52 +15,13 @@ InvokeAI supports two versions of outpainting, one called "outpaint"
and the other "outcrop." They work slightly differently and each has
its advantages and drawbacks.
### Outpainting
Outpainting is the same as inpainting, except that the painting occurs
in the regions outside of the original image. To outpaint using the
`invoke.py` command line script, prepare an image in which the borders
to be extended are pure black. Add an alpha channel (if there isn't one
already), and make the borders completely transparent and the interior
completely opaque. If you wish to modify the interior as well, you may
create transparent holes in the transparency layer, which `img2img` will
paint into as usual.
Pass the image as the argument to the `-I` switch as you would for
regular inpainting:
invoke> a stream by a river -I /path/to/transparent_img.png
You'll likely be delighted by the results.
### Tips
1. Do not try to expand the image too much at once. Generally it is best
to expand the margins in 64-pixel increments. 128 pixels often works,
but your mileage may vary depending on the nature of the image you are
trying to outpaint into.
2. There are a series of switches that can be used to adjust how the
inpainting algorithm operates. In particular, you can use these to
minimize the seam that sometimes appears between the original image
and the extended part. These switches are:
--seam_size SEAM_SIZE Size of the mask around the seam between original and outpainted image (0)
--seam_blur SEAM_BLUR The amount to blur the seam inwards (0)
--seam_strength STRENGTH The img2img strength to use when filling the seam (0.7)
--seam_steps SEAM_STEPS The number of steps to use to fill the seam. (10)
--tile_size TILE_SIZE The tile size to use for filling outpaint areas (32)
### Outcrop
The `outcrop` extension gives you a convenient `!fix` postprocessing
command that allows you to extend a previously-generated image in 64
pixel increments in any direction. You can apply the module to any
image previously-generated by InvokeAI. Note that it works with
arbitrary PNG photographs, but not currently with JPG or other
formats. Outcropping is particularly effective when combined with the
[runwayML custom inpainting
model](INPAINTING.md#using-the-runwayml-inpainting-model).
The `outcrop` extension allows you to extend the image in 64 pixel
increments in any dimension. You can apply the module to any image
previously-generated by InvokeAI. Note that it will **not** work with
arbitrary photographs or Stable Diffusion images created by other
implementations.
Consider this image:
@ -72,24 +33,23 @@ Pretty nice, but it's annoying that the top of her head is cut
off. She's also a bit off center. Let's fix that!
```bash
invoke> !fix images/curly.png --outcrop top 128 right 64 bottom 64
invoke> !fix images/curly.png --outcrop top 64 right 64
```
This is saying to apply the `outcrop` extension by extending the top
of the image by 128 pixels, and the right and bottom of the image by
64 pixels. You can use any combination of top|left|right|bottom, and
of the image by 64 pixels, and the right of the image by the same
amount. You can use any combination of top|left|right|bottom, and
specify any number of pixels to extend. You can also abbreviate
`--outcrop` to `-c`.
The result looks like this:
<figure markdown>
![curly_woman_outcrop](../assets/outpainting/curly-outcrop-2.png)
![curly_woman_outcrop](../assets/outpainting/curly-outcrop.png)
</figure>
The new image is larger than the original (576x704)
because 64 pixels were added to the top and right sides. You will
need enough VRAM to process an image of this size.
The new image is actually slightly larger than the original (576x576,
because 64 pixels were added to the top and right sides.)
A number of caveats:
@ -104,17 +64,6 @@ you'll get a slightly different result. You can run it repeatedly
until you get an image you like. Unfortunately `!fix` does not
currently respect the `-n` (`--iterations`) argument.
3. Your results will be _much_ better if you use the `inpaint-1.5`
model released by runwayML and installed by default by
`scripts/preload_models.py`. This model was trained specifically to
harmoniously fill in image gaps. The standard model will work as well,
but you may notice color discontinuities at the border.
4. When using the `inpaint-1.5` model, you may notice subtle changes
to the area within the original image. This is because the model
performs an encoding/decoding on the image as a whole. This does not
occur with the standard model.
## Outpaint
The `outpaint` extension does the same thing, but with subtle

Some files were not shown because too many files have changed in this diff Show More