Compare commits

..

347 Commits

Author SHA1 Message Date
80fd3d3f3c cleanup: Remove manual offload from Depth Anything Processor (#5812)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Merge Plan

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2024-03-01 23:13:06 +05:30
41b77cd5ff fix: minor fixes to types in the DA Detector 2024-03-01 23:08:41 +05:30
6f77477a1c cleanup: remove manual offload from depth anything 2024-03-01 23:08:41 +05:30
7cfbe5a62a docs: add v3 -> v4 migration, invocation API docs 2024-02-29 15:33:13 -05:00
68344ecac9 docs(nodes): update all docstrings for public nodes API 2024-02-29 15:33:13 -05:00
84dc5c5c7b fix: make invocation_context.py accessible to mkdocs
Needs an `__init__.py`.
2024-02-29 15:33:13 -05:00
691ecb1f5b docs: update mkdocs config 2024-02-29 15:33:13 -05:00
90b84c650f docs: bump mkdocs, add mkdocstrings
Also remove ancient requirements file - the docs dependencies are in the pyproject.toml file.
2024-02-29 15:33:13 -05:00
014be0ab67 feat(nodes): revise model load API args 2024-02-29 15:33:13 -05:00
e5d9f33f7b Next: Remove deprecated app.on_event usage in api runner 2024-02-29 20:06:07 +11:00
5a87e7b3f8 chore: ruff 2024-02-29 20:05:39 +11:00
f8b673dc85 fix: Assertion issue with SDXL Compel 2024-02-29 20:05:39 +11:00
cb8e0cbf35 Fix merge with next 2024-02-29 00:35:48 -05:00
33bd9da26c Switch absolute path to as_posix in _walk_directory 2024-02-29 00:35:48 -05:00
9190abd487 Ruff checks 2024-02-29 00:35:48 -05:00
ff47334f22 Fix directory called on _walk_directory 2024-02-29 00:35:48 -05:00
a8c3efd98a Switch ModelSearch from os.walk to os.scandir 2024-02-29 00:35:48 -05:00
8c6860a2c5 Ruff format 2024-02-28 09:49:56 -05:00
fa8263e6f0 Ruff check 2024-02-28 09:49:56 -05:00
e4b8cb1d34 Extract TI loading logic into util, disallow it from ever failing a generation 2024-02-28 09:49:56 -05:00
408a800593 Fix one last reference to the uncasted model 2024-02-28 09:49:56 -05:00
9e5e3f1019 Allow TIs to be either a key or a name in the prompt during our transition to using keys 2024-02-28 09:49:56 -05:00
98a13aa7dc handle change to Civitai metadata schema for commercial usage 2024-02-28 16:15:29 +11:00
4418c118db added add all button to scan models (#5811)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Merge Plan

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2024-02-27 09:56:23 -05:00
110b0bc8fe updated to use new import model mutation 2024-02-27 09:48:41 -05:00
175cfe41a4 Merge branch 'next' into chainchompa/add-all-scan 2024-02-27 09:44:35 -05:00
a12d54afb9 added add all button to scan models 2024-02-27 09:43:02 -05:00
18af5348a2 fix(ui): merge conflict 2024-02-27 08:38:37 -05:00
b18c8e1c96 chore(ui): bump deps
The only major version is `query-string`. The breaking change for it is dropping support for old versions of node. Not a problem for us.
2024-02-27 08:38:37 -05:00
ea1e647174 ci: change frontend check to dpdm 2024-02-27 08:38:37 -05:00
af059f2cff feat(ui): move from madge to dpdm for circular dependencies 2024-02-27 08:38:37 -05:00
d8e21091e7 tidy(ui): fix circular dependencies in listeners 2024-02-27 08:38:37 -05:00
344041fd3a tidy: remove some traces of ONNX 2024-02-27 08:38:37 -05:00
588a220dd4 chore(ui): typegen, update knip config
Knip should never touch the autogenerated types
2024-02-27 08:38:37 -05:00
770d4092b9 chore(ui): update pnpm-lock.yaml
Forgot to run `pnpm i` earlier after removing packages.
2024-02-27 08:38:37 -05:00
33fe02bdff ci: add knip to ui check workflow 2024-02-27 08:38:37 -05:00
8a353bc1e3 feat(ui): configure knip 2024-02-27 08:38:37 -05:00
240f4801db tidy(ui): clean up unused code 6
unused files
2024-02-27 08:38:37 -05:00
da50507b2d tidy(ui): clean up unused code 5
variables, types and schemas
2024-02-27 08:38:37 -05:00
67d150ab66 tidy(ui): clean up unused code 4
variables, types and schemas
2024-02-27 08:38:37 -05:00
40d70add76 tidy(ui): clean up unused code 3
variables, types and schemas
2024-02-27 08:38:37 -05:00
7bd9bf3ba5 tidy(ui): clean up unused code 2
types and schemas
2024-02-27 08:38:37 -05:00
c94d607089 feat(mm): add log stmt for download complete event 2024-02-27 08:38:37 -05:00
ad801e54d4 fix(ui): model install progress sets total bytes correctly 2024-02-27 08:38:37 -05:00
fb4db83911 chore(ui): lint 2024-02-27 08:38:37 -05:00
cc229c3ea0 fix(ui): fix remaining TS issues 2024-02-27 08:38:37 -05:00
ca00fabd79 fix(ui): fix up MM queries & types (wip) 2024-02-27 08:38:37 -05:00
b361fabf81 tidy(api): remove non-heuristic install route 2024-02-27 08:38:37 -05:00
00669200c7 tidy(mm): remove ONNX from AnyModelConfig 2024-02-27 08:38:37 -05:00
fa07e82d2a tidy(ui): clean up unused code 1
- Only export when necessary
- Remove totally usused functions, variables, state, etc
- Remove unused packages
2024-02-27 08:38:37 -05:00
3632c5cd57 feat(ui): add knip + minimal config
https://knip.dev/

Replaces `unimported`
2024-02-27 08:38:37 -05:00
daef68d3c1 fix(ui): fix missing component import 2024-02-27 08:38:37 -05:00
ba29376fba ui: split the canvas mask blur and edge size setting 2024-02-27 07:32:13 -05:00
3efd9465eb feat(ui): create metadata types for control adapters
These are the same as the existing control adapter types, but the model field is non-nullable, simplifying handling of these objects.
2024-02-26 14:49:38 -05:00
a3b11c04cb fix(ui): model metadata handlers use model identifiers, not configs
Model metadata includes the main model, VAE and refiner model.

These used full model configs, as returned by the server, as their metadata type.

LoRA and control adapter metadata only use the metadata identifier.

This created a difference in handling. After parsing a model/vae/refiner, we have its name and can display it. But for LoRAs and control adapters, we only have the model key and must query for the full model config to get the name.

This change makes main model/vae/refiner metadata only have the model key, like LoRAs and control adapters.

The render function is now async so fetching can occur within it. All metadata fields with models now only contain the identifier, and fetch the model name to render their values.
2024-02-26 14:49:38 -05:00
8f9e3ac795 fix(ui): CanvasPasteBack types 2024-02-26 14:49:38 -05:00
2367f53367 tidy(ui): remove unused metadata schemas 2024-02-26 14:49:38 -05:00
8b9f0a9551 feat(nodes): update LoRAMetadataItem model
LoRA model now at under `model` not `lora.
2024-02-26 14:49:38 -05:00
ab57976e42 tidy(ui): tidy model identifier logic
- Move some files around
- Use util to extract key and base from model config
2024-02-26 14:49:38 -05:00
3c103c89f3 feat(ui): optimize model query caching
When we retrieve a list of models, upsert that data into the `getModelConfig` and `getModelConfigByAttrs` query caches.

With this change, calls to those two queries are almost always going to be free, because their caches will already have all models in them. The exception is queries for models that no longer exist.
2024-02-26 14:49:38 -05:00
0f19176944 fix(ui): fix lora metadata item type 2024-02-26 14:49:38 -05:00
fc09a954b5 fix(ui): fix node type 2024-02-26 14:49:38 -05:00
e7eee29825 feat(ui): add transformation to width/height parameter schemas to round to multiple of 8
This allows image dimensions that are not multiples of 8 to still be recalled with best effort.
2024-02-26 14:49:38 -05:00
2c1ba23f61 fix(ui): fix lora metadata rendering 2024-02-26 14:49:38 -05:00
58ef6dc6ce fix(ui): fix type issues related to change in LoRA type 2024-02-26 14:49:38 -05:00
8faefa89fe feat(ui): migrate all metadata recall logic to new system 2024-02-26 14:49:38 -05:00
02f59a3831 fix(ui): use id for component key in control adapter components 2024-02-26 14:49:38 -05:00
2555be3058 feat(ui): no JSX in metadata handlers 2024-02-26 14:49:38 -05:00
e174ce038f feat(ui): refactor metadata handling (again)
Add concepts for metadata handlers. Handlers include parsers, recallers and validators for different metadata types:
- Parsers parse a raw metadata object of any shape to a structured object.
- Recallers load the parsed metadata into state. Recallers are optional, as some metadata types don't need to be loaded into state.
- Validators provide an additional layer of validation before recalling the metadata. This is needed because a metadata object may be valid, but not able to be recalled due to some other requirement, like base model compatibility. Validators are optional.

Sometimes metadata is not a single object but a list of items - like LoRAs. Metadata handlers may implement an optional set of "item" handlers which operate on individual items in the list.

Parsers and validators are async to allow fetching additional data, like a model config. Recallers are synchronous.

The these handlers are composed into a public API, exported as a `handlers` object. Besides the handlers functions, a metadata handler set includes:
- A function to get the label of the metadata type.
- An optional function to render the value of the metadata type.
- An optional function to render the _item_ value of the metadata type.
2024-02-26 14:49:38 -05:00
0f10faf0d4 build(ui): do not fail build on eslint error in dev mode 2024-02-26 14:49:38 -05:00
393e32f8a7 chore(ui): typegen 2024-02-26 14:49:38 -05:00
70412464c8 feat(api): add MM get_by_attrs route
Gets the first model that matches the given name, base and type. Raises 404 if there isn't one.

This will be used for backwards compatibility with old metadata.
2024-02-26 14:49:38 -05:00
30fdb9dbfd undo 2024-02-26 14:44:37 -05:00
66f6013436 fix literal strings in MM UI 2024-02-26 14:44:37 -05:00
49b04f7db8 fix TI appearing as key in prompt 2024-02-26 14:20:28 -05:00
253dc5d43d fix base model grouping in combobox 2024-02-26 14:20:28 -05:00
3ccb4e6ff9 fix(mm): fix ModelCacheBase method name 2024-02-26 17:38:31 +11:00
200a9d1801 chore: ruff 2024-02-26 17:38:31 +11:00
b09a76ea0d recover gracefuly from GPU out of memory errors (next version) 2024-02-26 17:38:31 +11:00
8a2030e78a clear out VRAM when an OOM occurs 2024-02-26 17:38:31 +11:00
dfa5505ed8 feat(ui): bulk download click to download 2024-02-25 22:23:15 -05:00
f8b731b900 fix(ui): fix node types for canvas graphs 2024-02-24 19:38:16 +11:00
fd9ab0fb7d chore(ui): typegen 2024-02-24 19:38:16 +11:00
f504a5c96e tidy(nodes): rename canvas paste back 2024-02-24 19:38:16 +11:00
afe6639b9c fix: outpaint result not getting pasted back correctly 2024-02-24 19:38:16 +11:00
1f1bf15099 fix: lint errors 2024-02-24 19:38:16 +11:00
8fa238f100 canvas: improve paste back (or try to) 2024-02-24 19:38:16 +11:00
30b6a0ee23 wip(ui): Replace 2 Layer Coherence pass with Gradient Mask 2024-02-24 19:38:16 +11:00
784878c300 chore: ruff 2024-02-24 19:04:52 +11:00
b51b163400 fix(ui): fix merge issue 2024-02-24 19:04:52 +11:00
7e13224ec8 fix(ui): use new scan_folder response instead of hook to determine if models are installed already 2024-02-24 19:04:52 +11:00
7bc454209c chore(ui): typegen 2024-02-24 19:04:52 +11:00
cc7f6c7048 feat(mm): add logic to scan_folder route to check if a model is already installed
This was done in the frontend before but it's something the backend should handle.

The logic compares the found model paths to the path and source of all installed models. It excludes core models.
2024-02-24 19:04:52 +11:00
8b8d950137 chore(ui): lint 2024-02-24 19:04:52 +11:00
24fd7f41ff build(ui): restore i18n eslint rule 2024-02-24 19:04:52 +11:00
7c5e458372 chore: ruff 2024-02-24 19:04:52 +11:00
a5dba4b0d9 fix(ui): fix metadata route 2024-02-24 19:04:52 +11:00
72fb1cefff chore(ui): typegen 2024-02-24 19:04:52 +11:00
a64f1c0b20 feat(api): mm metadata route "meta" -> "metadata" 2024-02-24 19:04:52 +11:00
974658107d lint fix 2024-02-24 19:04:52 +11:00
07fb5d5c19 updated translations 2024-02-24 19:04:52 +11:00
20c75e7a7e fix convert endpoint logic 2024-02-24 19:04:52 +11:00
cfcb68696c clean up old model manager components and endpoints 2024-02-24 19:04:52 +11:00
7b1b6d3235 add model convert to checkpoint main models 2024-02-24 19:04:52 +11:00
aefba52a0a fix logic to see if scanned models are already installed, style tweaks 2024-02-24 19:04:52 +11:00
6af46f9c5f add error_reason to ModelInstallJob 2024-02-24 19:04:52 +11:00
190702d011 add error_reason to UI if import fails 2024-02-24 19:04:52 +11:00
7785e8ff79 fix types for ImportQueue, add QuickAdd for scan models 2024-02-24 19:04:52 +11:00
b3beaefa04 refactored and fixed issues with advanced import form 2024-02-24 19:04:52 +11:00
98be81354a fix(ui): misc MM cleanup 2024-02-24 19:04:52 +11:00
2a2a5eb775 chore(ui): temp disable eslint i18 rule 2024-02-24 19:04:52 +11:00
4a42b15b42 fix(ui): fix ImportMainModelResponse type 2024-02-24 19:04:52 +11:00
f24d5e5e31 fix(ui): simplify model install event listeners 2024-02-24 19:04:52 +11:00
4b106bc903 fix(ui): fix model install event types 2024-02-24 19:04:52 +11:00
135ef9066f added advanced import forms, not fully working yet 2024-02-24 19:04:52 +11:00
0567f98e4a get positioning/scrolling working for scan results list 2024-02-24 19:04:52 +11:00
5b66baa3ec basic scan working and renders results 2024-02-24 19:04:52 +11:00
a022aaf258 add scan model endpoint, break add model into tabs 2024-02-24 19:04:52 +11:00
94065b090a update metadata endpoint 2024-02-24 19:04:52 +11:00
091bf9220b allow metadata-less models to be used for GET metadata endpoint 2024-02-24 19:04:52 +11:00
8d243b1fca added status to import queue model 2024-02-24 19:04:52 +11:00
23c412e011 delete model imports and prune all finished, update state with socket messages 2024-02-24 19:04:52 +11:00
66692f02aa fix sync model endpoint 2024-02-24 19:04:52 +11:00
38af1c3a81 form error handling 2024-02-24 19:04:52 +11:00
7b4b7e3781 finish model update 2024-02-24 19:04:52 +11:00
02a3472505 added socket listeners, added more info to ui 2024-02-24 19:04:52 +11:00
909d354a38 edit view for model, depending on type and valid values 2024-02-24 19:04:52 +11:00
7801b8c42f hook up Add Model button 2024-02-24 19:04:52 +11:00
4fd259bb89 single model view 2024-02-24 19:04:52 +11:00
b8b3ef9725 added import model form and importqueue 2024-02-24 19:04:52 +11:00
3a8d5dc349 model list, filtering, searching 2024-02-24 19:04:52 +11:00
358cac9674 workspace for mary and jenn 2024-02-24 19:04:52 +11:00
bdc2b8069b get old UI working somewhat with new endpoints 2024-02-24 19:04:52 +11:00
09295ae43b Allow passing in key on register 2024-02-23 14:47:14 -05:00
80ad14d89f Remove passing keys in on register 2024-02-23 14:33:49 -05:00
c674eb3168 Run ruff 2024-02-23 14:33:49 -05:00
63138640a7 Allow users to run model manager without cuda 2024-02-23 14:33:49 -05:00
d103ff0d6e fix(ui): roll back utility-types
It's `Required` util does not distribute over unions as expected. Also we have `ts-toolbelt` already for some utils.
2024-02-23 07:53:45 +11:00
94931e8ac0 feat(ui): refactor metadata handling
Refactor of metadata recall handling. This is in preparation for a backwards compatibility layer for models.

- Create helpers to fetch a model outside react (e.g. not in a hook)
- Created helpers to parse model metadata
- Renamed a lot of types that were confusing and/or had naming collisions
2024-02-23 07:53:45 +11:00
b409f3aaf9 chore(ui): typegen 2024-02-23 07:53:45 +11:00
f96b7f2e11 fix(nodes): make fields on ModelConfigBase required
The setup of `ModelConfigBase` means autogenerated types have critical fields flagged as nullable (like `key` and `base`). Need to manually flag them as required.
2024-02-23 07:53:45 +11:00
de3be4bd30 feat(ui): replace type-fest with utility-types
- The new package has more useful types
- Only used `JsonObject` from `type-fest`; added an implementation of that type
2024-02-23 07:53:45 +11:00
cc12f57a5a several small model install enhancements
- Support extended HF repoid syntax in TUI. This allows
  installation of subfolders and safetensors files, as in
  `XpucT/Deliberate::Deliberate_v5.safetensors`

- Add `error` and `error_traceback` properties to the install
  job objects.

- Rename the `heuristic_import` route to `heuristic_install`.

- Fix the example `config` input in the `heuristic_install` route.
2024-02-23 07:48:23 +11:00
613f11a3ac use official Deliberate download repo 2024-02-23 07:48:04 +11:00
a6e2d2c5e0 fix repo-id for the Deliberate v5 model
prevent lora and embedding file suffixes from being stripped during installation

apply psychedelicious patch to get compel to load proper TI embedding
2024-02-23 07:48:04 +11:00
ae14df97d6 remove startup dependency on legacy models.yaml file 2024-02-23 07:47:39 +11:00
a6e1ac6096 chore: typing 2024-02-22 10:04:33 -05:00
8530635540 chore: typing fix 2024-02-22 10:04:33 -05:00
b2b7aed030 feat(nodes): added gradient mask node 2024-02-22 10:04:33 -05:00
970d45f691 Run ruff 2024-02-22 09:50:02 -05:00
19b9a22d93 rename endpoint for scanning 2024-02-22 09:50:02 -05:00
c0d9990344 Create /search endpoint, update model object structure in scan model page 2024-02-22 09:50:02 -05:00
4ac5e307c4 chore(ui): bump deps
Notable updates:
- Minor version of RTK includes customizable selectors for RTK Query, so we can remove the patch that was added to ensure only the LRU memoize function was used for perf reasons. Updated to use the LRU memoize function.
- Major version of react-resizable-panels. No breaking changes, works great, and you can now resize all panels when dragging at the intersection point of panels. Cool!
- Minor (?) version of nanostores. `action` API is removed, we were using it in one spot. Fixed.
- @invoke-ai/eslint-config-react has all deps bumped and now has its dependent plugins/configs listed as normal dependencies (as opposed to peer deps). This means we can remove those packages from explicit dev deps.
2024-02-22 07:27:28 +11:00
2815f737fe tidy(ui): remove debugging stmt 2024-02-22 07:26:47 +11:00
63e96fd1ea fix(ui): handle new model format for metadata 2024-02-22 07:26:47 +11:00
66ab56246a fix(ui): use model names in badges 2024-02-22 07:26:47 +11:00
20a56bc757 fix(nodes): fix TI loading 2024-02-22 07:26:47 +11:00
82925e1539 fix(ui): fix package build 2024-02-21 08:31:55 -05:00
0137a0db7b feat(ui): do not subscribe to bulk download sio room if baseUrl is set 2024-02-21 00:00:25 +11:00
b410793684 feat(ui): revise bulk download listeners
- Use a single listener for all of the to keep them in one spot
- Use the bulk download item name as a toast id so we can update the existing toasts
- Update handling to work with other environments
- Move all bulk download handling from components to listener
2024-02-21 00:00:25 +11:00
894e9f127b chore(ui): typegen 2024-02-21 00:00:25 +11:00
dd9b1c8eec feat(bulk_download): update response model, messages 2024-02-21 00:00:25 +11:00
8d9c566656 implementing download for bulk_download events 2024-02-21 00:00:25 +11:00
9db7e073a3 setting up event listeners for bulk download socket 2024-02-21 00:00:25 +11:00
5f64ed5bd5 test: clean up & fix tests
- Deduplicate the mock invocation services. This is possible now that the import order issue is resolved.
- Merge `DummyEventService` into `TestEventService` and update all tests to use `TestEventService`.
2024-02-20 23:39:30 +11:00
7f75f6226b tidy(bulk_download): don't store events service separately
Using the invoker object directly leaves no ambiguity as to what `_events_bus` actually is.
2024-02-20 23:39:30 +11:00
6dc819fd47 tidy(bulk_download): do not rely on pagination API to get all images for board
We can get all images for the board as a list of image names, then pass that to `_image_handler` to get the DTOs, decoupling from the pagination API.
2024-02-20 23:39:30 +11:00
0cc81e5d63 tidy(bulk_download): nit - use or as a coalescing operator
Just a bit cleaner.
2024-02-20 23:39:30 +11:00
daecc54153 tidy(bulk_download): use single underscore for private attrs
Double underscores are used in the app but it doesn't actually do or convey anything that single underscores don't already do. Considered unpythonic except for actual dunder/magic methods.
2024-02-20 23:39:30 +11:00
4c31c7f9f1 tidy(bulk_download): remove class-level attr annotations
These can be misleading as they shadow actual assigned class attributes. This pattern is in the rest of the app but it shouldn't be.
2024-02-20 23:39:30 +11:00
d709c5519f tidy(bulk_download): remove extraneous abstract methods
`start`, `stop` and `__init__` are not required in implementations of an ABC or service.
2024-02-20 23:39:30 +11:00
5d84ecef49 tidy(bulk_download): clean up comments 2024-02-20 23:39:30 +11:00
641d246213 adding bulk_download_item_name to socket events 2024-02-20 23:39:30 +11:00
2e53aa48c9 refactoring handlers to do null check 2024-02-20 23:39:30 +11:00
ef12631450 removing dependency on an output folder, embrace python temp folder for bulk download 2024-02-20 23:39:30 +11:00
d9eb626b62 relocating event_service fixture due to import ordering 2024-02-20 23:39:30 +11:00
8033589629 moving the responsibility of cleaning up board names to the service not the route 2024-02-20 23:39:30 +11:00
124075ae7a updating imports to satisfy ruff 2024-02-20 23:39:30 +11:00
0bde933c89 using temp directory for downloads 2024-02-20 23:39:30 +11:00
fc5c5b6bdd returning the bulk_download_item_name on response for possible polling 2024-02-20 23:39:30 +11:00
ff53563152 narrowing bulk_download stop service scope 2024-02-20 23:39:30 +11:00
12b0d735e7 adding test coverage for new bulk download routes 2024-02-20 23:39:30 +11:00
d06ee94fd3 cleaning up bulk download zip after the response is complete 2024-02-20 23:39:30 +11:00
9dbdb6cf7c replacing import removed during rebase 2024-02-20 23:39:30 +11:00
7c091570fe 97% test coverage on bulk_download 2024-02-20 23:39:30 +11:00
e99f3482cc refactoring bulk_download to be better managed 2024-02-20 23:39:30 +11:00
d999c9ffd6 refactoring dummy event service, DRY principal; adding bulk_download_event to existing invoker tests 2024-02-20 23:39:30 +11:00
888db8ac46 refactoring bulkdownload to consider image category 2024-02-20 23:39:30 +11:00
7deef2cb27 fixing issue where default board did not return images 2024-02-20 23:39:30 +11:00
ada807af0c using the board name to download boards 2024-02-20 23:39:30 +11:00
aa132fb9e3 reworking some of the logic to use a default room, adding endpoint to download file on complete 2024-02-20 23:39:30 +11:00
98a01368b8 linted and styling 2024-02-20 23:39:30 +11:00
fc9a62dbf5 implementation of bulkdownload background task 2024-02-20 23:39:30 +11:00
4d8bec1605 adding socket events for bulk download 2024-02-20 23:39:30 +11:00
cf9dad83bc groundwork for the bulk_download_service 2024-02-20 23:39:30 +11:00
0d0a2a5c91 fix(ui): get workflow editor model selects working 2024-02-20 13:33:31 +11:00
0cab636ab0 fix(ui): get refiner model select working 2024-02-20 13:33:31 +11:00
de097ec58a fix(ui): get vae model select working 2024-02-20 13:33:31 +11:00
bb6f426162 fix(ui): get embedding select working 2024-02-20 13:33:31 +11:00
663f135b3c fix(ui): get lora select working 2024-02-20 13:33:31 +11:00
2f2097662a chore(ui): bump @invoke-ai/ui-library 2024-02-20 13:33:31 +11:00
458c29cfa5 fix(ui): fix low-hanging fruit types 2024-02-20 13:33:31 +11:00
4bec01d6f2 Add a few convenience targets to Makefile
- "test" to run pytests
- "frontend-install" to reinstall pnpm's node modeuls
2024-02-20 10:02:46 +11:00
9d79ee8dc4 chore(nodes): update TODO comment 2024-02-20 09:54:01 +11:00
78dd460348 tidy(nodes): clean up profiler/stats in processor, better comments 2024-02-20 09:54:01 +11:00
9d27d354cf fix(nodes): fix typing on stats service context manager 2024-02-20 09:54:01 +11:00
e8725a1099 fix(nodes): fix model load events
was accessing incorrect properties in event data
2024-02-20 09:54:01 +11:00
479d65b6e1 feat(nodes): making invocation class var in processor 2024-02-20 09:54:01 +11:00
5d4b388dfd feat(nodes): improved error messages in processor 2024-02-20 09:54:01 +11:00
4956fa282b feat(nodes): make processor thread limit and polling interval configurable 2024-02-20 09:54:01 +11:00
51133522b7 tests(nodes): fix tests following removal of services 2024-02-20 09:54:01 +11:00
6d5cc8b1ff chore(nodes): better comments for invocation context 2024-02-20 09:54:01 +11:00
08a5bb90e2 chore(nodes): "context_data" -> "data"
Changed within InvocationContext, for brevity.
2024-02-20 09:54:01 +11:00
39bdf5c4e9 refactor(nodes): move is_canceled to context.util 2024-02-20 09:54:01 +11:00
f31e4205aa feat(nodes): add whole queue_item to InvocationContextData
No reason to not have the whole thing in there.
2024-02-20 09:54:01 +11:00
4d05c4ff66 tidy(nodes): remove extraneous comments 2024-02-20 09:54:01 +11:00
7e88d2a7f1 feat(nodes): better invocation error messages 2024-02-20 09:54:01 +11:00
556f6aa174 chore(nodes): add comments for cancel state 2024-02-20 09:54:01 +11:00
6a74048af8 feat(nodes): promote is_canceled to public node API 2024-02-20 09:54:01 +11:00
2cb51bff11 refactor(nodes): merge processors
Consolidate graph processing logic into session processor.

With graphs as the unit of work, and the session queue distributing graphs, we no longer need the invocation queue or processor.

Instead, the session processor dequeues the next session and processes it in a simple loop, greatly simplifying the app.

- Remove `graph_execution_manager` service.
- Remove `queue` (invocation queue) service.
- Remove `processor` (invocation processor) service.
- Remove queue-related logic from `Invoker`. It now only starts and stops the services, providing them with access to other services.
- Remove unused `invocation_retrieval_error` and `session_retrieval_error` events, these are no longer needed.
- Clean up stats service now that it is less coupled to the rest of the app.
- Refactor cancellation logic - cancellations now originate from session queue (i.e. HTTP cancel endpoint) and are emitted as events. Processor gets the events and sets the canceled event. Access to this event is provided to the invocation context for e.g. the step callback.
- Remove `sessions` router; it provided access to `graph_executions` but that no longer exists.
2024-02-20 09:54:01 +11:00
851e835e0e tidy(nodes): remove commented tests 2024-02-20 09:48:14 +11:00
fe04f28841 chore(ui): typegen 2024-02-20 09:48:14 +11:00
258fc006ec tidy(nodes): remove no-op model_config
Because we now customize the JSON Schema creation for GraphExecutionState, the model_config did nothing.
2024-02-20 09:48:14 +11:00
dcb4ee47d5 tidy(nodes): remove LibraryGraphs
The workflow library supersedes this unused feature.
2024-02-20 09:48:14 +11:00
1a56f5aaf9 tidy(nodes): move node tests to parent dir
Thanks to the resolution of the import vs union issue, we can put tests anywhere.
2024-02-20 09:48:14 +11:00
5fc745653a tidy(nodes): remove GraphInvocation
`GraphInvocation` is a node that can contain a whole graph. It is removed for a number of reasons:

1. This feature was unused (the UI doesn't support it) and there is no plan for it to be used.

The use-case it served is known in other node execution engines as "node groups" or "blocks" - a self-contained group of nodes, which has group inputs and outputs. This is a planned feature that will be handled client-side.

2. It adds substantial complexity to the graph processing logic. It's probably not enough to have a measurable performance impact but it does make it harder to work in the graph logic.

3. It allows for graphs to be recursive, and the improved invocations union handling does not play well with it. Actually, it works fine within `graph.py` but not in the tests for some reason. I do not understand why. There's probably a workaround, but I took this as encouragement to remove `GraphInvocation` from the app since we don't use it.
2024-02-20 09:48:14 +11:00
47b5a90177 fix(nodes): fix OpenAPI schema generation
The change to `Graph.nodes` and `GraphExecutionState.results` validation requires some fanagling to get the OpenAPI schema generation to work. See new comments for a details.
2024-02-20 09:48:14 +11:00
81518ee1af feat(nodes): JIT graph nodes validation
We use pydantic to validate a union of valid invocations when instantiating a graph.

Previously, we constructed the union while creating the `Graph` class. This introduces a dependency on the order of imports.

For example, consider a setup where we have 3 invocations in the app:

- Python executes the module where `FirstInvocation` is defined, registering `FirstInvocation`.
- Python executes the module where `SecondInvocation` is defined, registering `SecondInvocation`.
- Python executes the module where `Graph` is defined. A union of invocations is created and used to define the `Graph.nodes` field. The union contains `FirstInvocation` and `SecondInvocation`.
- Python executes the module where `ThirdInvocation` is defined, registering `ThirdInvocation`.
- A graph is created that includes `ThirdInvocation`. Pydantic validates the graph using the union, which does not know about `ThirdInvocation`, raising a `ValidationError` about an unknown invocation type.

This scenario has been particularly problematic in tests, where we may create invocations dynamically. The test files have to be structured in such a way that the imports happen in the right order. It's a major pain.

This PR refactors the validation of graph nodes to resolve this issue:

- `BaseInvocation` gets a new method `get_typeadapter`. This builds a pydantic `TypeAdapter` for the union of all registered invocations, caching it after the first call.
- `Graph.nodes`'s type is widened to `dict[str, BaseInvocation]`. This actually is a nice bonus, because we get better type hints whenever we reference `some_graph.nodes`.
- A "plain" field validator takes over the validation logic for `Graph.nodes`. "Plain" validators totally override pydantic's own validation logic. The validator grabs the `TypeAdapter` from `BaseInvocation`, then validates each node with it. The validation is identical to the previous implementation - we get the same errors.

`BaseInvocationOutput` gets the same treatment.
2024-02-20 09:48:14 +11:00
b06d63fb34 remove errant def that was crashing invokeai-configure 2024-02-19 17:31:53 +11:00
5278a64301 one more redundant RGB convert removed 2024-02-19 17:31:08 +11:00
4de4473c0f chore: ruff formatting 2024-02-19 17:31:08 +11:00
2c28a850ca chore(invocations): remove redundant RGB conversions 2024-02-19 17:31:08 +11:00
6dada3326d chore(invocations): use IMAGE_MODES constant literal 2024-02-19 17:31:08 +11:00
2dfdc02ec8 fix: removed custom module 2024-02-19 17:31:08 +11:00
1f19db4c6a fix(nodes): canny preprocessor uses RGBA again 2024-02-19 17:31:08 +11:00
7c150c27f2 feat(nodes): format option for get_image method
Also default CNet preprocessors to "RGB"
2024-02-19 17:31:08 +11:00
248916c190 fix: Alpha channel causing issue with DW Processor 2024-02-19 08:17:56 +11:00
be8b99eed5 final tidying before marking PR as ready for review
- Replace AnyModelLoader with ModelLoaderRegistry
- Fix type check errors in multiple files
- Remove apparently unneeded `get_model_config_enum()` method from model manager
- Remove last vestiges of old model manager
- Updated tests and documentation

resolve conflict with seamless.py
2024-02-19 08:16:56 +11:00
2ad0752582 Tidy names and locations of modules
- Rename old "model_management" directory to "model_management_OLD" in order to catch
  dangling references to original model manager.
- Caught and fixed most dangling references (still checking)
- Rename lora, textual_inversion and model_patcher modules
- Introduce a RawModel base class to simplfy the Union returned by the
  model loaders.
- Tidy up the model manager 2-related tests. Add useful fixtures, and
  a finalizer to the queue and installer fixtures that will stop the
  services and release threads.
2024-02-19 08:16:56 +11:00
ba1f8878dd Fix issues identified during PR review by RyanjDick and brandonrising
- ModelMetadataStoreService is now injected into ModelRecordStoreService
  (these two services are really joined at the hip, and should someday be merged)
- ModelRecordStoreService is now injected into ModelManagerService
- Reduced timeout value for the various installer and download wait*() methods
- Introduced a Mock modelmanager for testing
- Removed bare print() statement with _logger in the install helper backend.
- Removed unused code from model loader init file
- Made `locker` a private variable in the `LoadedModel` object.
- Fixed up model merge frontend (will be deprecated anyway!)
2024-02-19 08:16:56 +11:00
bc524026f9 feat(ui): update model identifiers to use key (#5730)
## What type of PR is this? (check all applicable)

- [x] Refactor

## Description

- Update zod schemas & types to use key instead of name/base/type
- Use new `CustomSelect` component instead of `ComboBox` for main model
select and control adapter model selects (less jank, will switch to
ComboBox based on CustomSelect for v4 so you can search the select)

## QA Instructions, Screenshots, Recordings

If you hold your breath, you should be able to generate with a control
adapter.

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Merge Plan

This PR can be merged when approved. Frontend tests not passing.

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->
2024-02-16 11:17:35 -05:00
ad7c571983 fix(nodes): fix t2i adapter model loading (#5731)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

Fixes t2i adapter loading

## Merge Plan

This PR can be merged when approved

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->
2024-02-16 11:17:21 -05:00
8559c6a392 fix(nodes): fix t2i adapter model loading 2024-02-16 22:51:47 +11:00
c7904a32f4 chore(ui): lint 2024-02-16 22:42:15 +11:00
17f5484f5b feat(ui): fix main model & control adapter model selects 2024-02-16 22:41:09 +11:00
86a372b02f refactor(ui): url builders for each router
The MM2 router is at `api/v2/models`. URL builder utils make this a bit easier to manage.
2024-02-16 21:57:30 +11:00
2e9aa9391d feat(ui): update model identifier to be key (wip)
- Update most model identifiers to be `{key: string}` instead of name/base/type. Doesn't change the model select components yet.
- Update model _parameters_, stored in redux, to be `{key: string, base: BaseModel}` - we need to store the base model to be able to check model compatibility. May want to store the whole config? Not sure...
2024-02-16 18:56:02 +11:00
0c8112cf28 fix(ui): update model types 2024-02-15 22:17:16 +11:00
019898c7be tests(ui): add type tests 2024-02-15 22:16:55 +11:00
2b1ff8d196 tests(ui): enable vitest type testing
This is useful for the zod schemas and types we have created to match the backend.
2024-02-15 22:16:11 +11:00
79fb691b4d chore(ui): typegen 2024-02-15 22:15:21 +11:00
560ae17e21 feat(ui): export components type 2024-02-15 21:16:25 +11:00
2bd1ab2f1c fix(ui): fix type issues 2024-02-15 20:53:41 +11:00
ed43472582 chore: lint 2024-02-15 20:52:44 +11:00
6e5e9176c0 chore: ruff 2024-02-15 20:50:47 +11:00
4c6bcdbc18 feat(nodes): update invocation context for mm2, update nodes model usage 2024-02-15 20:43:41 +11:00
20e6d4fa3c Raise InvalidModelConfigException when unable to detect load class in ModelLoader 2024-02-15 18:00:16 +11:00
8e51392910 Update _get_hf_load_class to support clipvision models 2024-02-15 18:00:16 +11:00
0b1c2acd61 References to context.services.model_manager.store.get_model can only accept keys, remove invalid assertion 2024-02-15 18:00:16 +11:00
86ac55ab5f Remove references to model_records service, change submodel property on ModelInfo to submodel_type to support new params in model manager 2024-02-15 18:00:16 +11:00
3e82f63c7e improve swagger documentation 2024-02-15 18:00:08 +11:00
631f6cae19 fix a number of typechecking errors 2024-02-15 18:00:08 +11:00
0845a0ed84 add route for model conversion from safetensors to diffusers
- Begin to add SwaggerUI documentation for AnyModelConfig and other
  discriminated Unions.
2024-02-15 18:00:08 +11:00
46c8ce9fed add a JIT download_and_cache() call to the model installer 2024-02-15 18:00:08 +11:00
13a9ea35b5 add back the heuristic_import() method and extend repo_ids to arbitrary file paths 2024-02-15 18:00:08 +11:00
94e8d1b6d5 make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-02-15 18:00:08 +11:00
2b1dc74080 consolidate model manager parts into a single class 2024-02-15 17:57:14 +11:00
f7e558d165 probe for required encoder for IPAdapters and add to config 2024-02-15 17:56:01 +11:00
d959276217 fix invokeai_configure script to work with new mm; rename CLIs 2024-02-15 17:56:01 +11:00
dfcf38be91 BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings

- Finish implementation loaders for all models currently supported by
  InvokeAI.

- Move lora, textual_inversion, and model patching support into
  backend/embeddings.

- Restore support for model cache statistics collection (a little ugly,
  needs work).

- Fixed up invocations that load and patch models.

- Move seamless and silencewarnings utils into better location
2024-02-15 17:56:01 +11:00
fbded1c0f2 Multiple refinements on loaders:
- Cache stat collection enabled.
- Implemented ONNX loading.
- Add ability to specify the repo version variant in installer CLI.
- If caller asks for a repo version that doesn't exist, will fall back
  to empty version rather than raising an error.
2024-02-15 17:51:07 +11:00
ad2926a24c added textual inversion and lora loaders 2024-02-15 17:51:07 +11:00
34d5cad4c9 loaders for main, controlnet, ip-adapter, clipvision and t2i 2024-02-15 17:51:07 +11:00
60aa3d4893 model loading and conversion implemented for vaes 2024-02-15 17:50:51 +11:00
5c2884569e add ram cache module and support files 2024-02-15 17:50:31 +11:00
a1307b9f2e add concept of repo variant 2024-02-15 17:50:31 +11:00
f505ec64ba tests(ui): add parseFieldType.test.ts 2024-02-15 17:32:38 +11:00
f22eb368a3 feat(ui): add more types of FieldParseError
Unfortunately you cannot test for both a specific type of error and match its message. Splitting the error classes makes it easier to test expected error conditions.
2024-02-15 17:32:38 +11:00
96ae22c7e0 feat(ui): add vitest
- Add vitest.
- Consolidate vite configs into single file (easier to config everything based on env for testing)
2024-02-15 17:32:38 +11:00
f5447cdc23 feat(ui): workflow schema v3 (WIP)
The changes aim to deduplicate data between workflows and node templates, decoupling workflows from internal implementation details. A good amount of data that was needlessly duplicated from the node template to the workflow is removed.

These changes substantially reduce the file size of workflows (and therefore the images with embedded workflows):

- Default T2I SD1.5 workflow JSON is reduced from 23.7kb (798 lines) to 10.9kb (407 lines).
- Default tiled upscale workflow JSON is reduced from 102.7kb (3341 lines) to 51.9kb (1774 lines).

The trade-off is that we need to reference node templates to get things like the field type and other things. In practice, this is a non-issue, because we need a node template to do anything with a node anyways.

- Field types are not included in the workflow. They are always pulled from the node templates.

The field type is now properly an internal implementation detail and we can change it as needed. Previously this would require a migration for the workflow itself. With the v3 schema, the structure of a field type is an internal implementation detail that we are free to change as we see fit.

- Workflow nodes no long have an `outputs` property and there is no longer such a thing as a `FieldOutputInstance`. These are only on the templates.

These were never referenced at a time when we didn't also have the templates available, and there'd be no reason to do so.

- Node width and height are no longer stored in the node.

These weren't used. Also, per https://reactflow.dev/api-reference/types/node, we shouldn't be programmatically changing these properties. A future enhancement can properly add node resizing.

- `nodeTemplates` slice is merged back into `nodesSlice` as `nodes.templates`. Turns out it's just a hassle having these separate in separate slices.

- Workflow migration logic updated to support the new schema. V1 workflows migrate all the way to v3 now.

- Changes throughout the nodes code to accommodate the above changes.
2024-02-15 17:32:38 +11:00
c76a6bd65f chore(ui): regen types 2024-02-15 17:30:03 +11:00
6c4eeaa569 feat(nodes): add more missing exports to invocation_api
Crawled through a few custom nodes to figure out what I had missed.
2024-02-15 17:30:03 +11:00
1bbd13ead7 chore(nodes): "SAMPLER_NAME_VALUES" -> "SCHEDULER_NAME_VALUES"
This was named inaccurately.
2024-02-15 17:30:03 +11:00
321b939d0e chore(nodes): remove deprecation logic for nodes API 2024-02-15 17:30:03 +11:00
8fb77e431e chore(nodes): export model-related objects from invocation_api 2024-02-15 17:30:03 +11:00
083a4f3faa chore(backend): rename ModelInfo -> LoadedModelInfo
We have two different classes named `ModelInfo` which might need to be used by API consumers. We need to export both but have to deal with this naming collision.

The `ModelInfo` I've renamed here is the one that is returned when a model is loaded. It's the object least likely to be used by API consumers.
2024-02-15 17:30:03 +11:00
2005411f7e feat(nodes): use LATENT_SCALE_FACTOR in primitives.py, noise.py
- LatentsOutput.build
- NoiseOutput.build
- Noise.width, Noise.height multiple_of
2024-02-15 17:30:03 +11:00
ba7b1b2665 feat(nodes): extract LATENT_SCALE_FACTOR to constants.py 2024-02-15 17:30:03 +11:00
b7ffd36cc6 feat(nodes): use TemporaryDirectory to handle ephemeral storage in ObjectSerializerDisk
Replace `delete_on_startup: bool` & associated logic with `ephemeral: bool` and `TemporaryDirectory`.

The temp dir is created inside of `output_dir`. For example, if `output_dir` is `invokeai/outputs/tensors/`, then the temp dir might be `invokeai/outputs/tensors/tmpvj35ht7b/`.

The temp dir is cleaned up when the service is stopped, or when it is GC'd if not properly stopped.

In the event of a catastrophic crash where the temp files are not cleaned up, the user can delete the tempdir themselves.

This situation may not occur in normal use, but if you kill the process, python cannot clean up the temp dir itself. This includes running the app in a debugger and killing the debugger process - something I do relatively often.

Tests updated.
2024-02-15 17:30:03 +11:00
199ddd6623 tests: test ObjectSerializerDisk class name extraction 2024-02-15 17:30:03 +11:00
a7207ed8cf chore(nodes): update ObjectSerializerForwardCache docstring 2024-02-15 17:30:03 +11:00
6bb2dda3f1 chore(nodes): fix pyright ignore 2024-02-15 17:30:03 +11:00
c1e5cd5893 tidy(nodes): "latents" -> "obj" 2024-02-15 17:30:03 +11:00
ff249a2315 tidy(nodes): do not store unnecessarily store invoker 2024-02-15 17:30:03 +11:00
c58f8c3269 feat(nodes): make delete on startup configurable for obj serializer
- The default is to not delete on startup - feels safer.
- The two services using this class _do_ delete on startup.
- The class has "ephemeral" removed from its name.
- Tests & app updated for this change.
2024-02-15 17:30:03 +11:00
ed772a7107 fix(nodes): use metadata/board_id if provided by user, overriding WithMetadata/WithBoard-provided values 2024-02-15 17:30:03 +11:00
cb0b389b4b tidy(nodes): clarify comment 2024-02-15 17:30:03 +11:00
8892df1d97 Revert "feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders"
This reverts commit ef18fc546560277302f3886e456da9a47e8edce0.
2024-02-15 17:30:03 +11:00
bc5f356390 feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders 2024-02-15 17:30:03 +11:00
bcb85e100d tests: fix broken tests 2024-02-15 17:30:03 +11:00
1f27ddc07d tidy(nodes): minor spelling correction 2024-02-15 17:30:03 +11:00
7a2b606001 tests: add object serializer tests
These test both object serializer and its forward cache implementation.
2024-02-15 17:30:03 +11:00
83ddcc5f3a feat(nodes): allow _delete_all in obj serializer to be called at any time
`_delete_all` logged how many items it deleted, and had to be called _after_ service start bc it needed access to logger.

Move the logger call to the startup method and return the the deleted stats from `_delete_all`. This lets `_delete_all` be called at any time.
2024-02-15 17:30:03 +11:00
55fa785561 tidy(nodes): remove object serializer on_saved
It's unused.
2024-02-15 17:30:03 +11:00
06429028c8 revert(nodes): revert making tensors/conditioning use item storage
Turns out they are just different enough in purpose that the implementations would be rather unintuitive. I've made a separate ObjectSerializer service to handle tensors and conditioning.

Refined the class a bit too.
2024-02-15 17:30:03 +11:00
8b6e322697 feat(nodes): support custom exception in ephemeral disk storage 2024-02-15 17:30:03 +11:00
54a67459bf feat(nodes): support custom save and load functions in ItemStorageEphemeralDisk 2024-02-15 17:30:03 +11:00
7fe5283e74 feat(nodes): create helper function to generate the item ID 2024-02-15 17:30:03 +11:00
fe0391c86b feat(nodes): use ItemStorageABC for tensors and conditioning
Turns out `ItemStorageABC` was almost identical to `PickleStorageBase`. Instead of maintaining separate classes, we can use `ItemStorageABC` for both.

There's only one change needed - the `ItemStorageABC.set` method must return the newly stored item's ID. This allows us to let the service handle the responsibility of naming the item, but still create the requisite output objects during node execution.

The naming implementation is improved here. It extracts the name of the generic and appends a UUID to that string when saving items.
2024-02-15 17:30:03 +11:00
25386a76ef tidy(nodes): do not refer to files as latents in PickleStorageTorch (again) 2024-02-15 17:30:03 +11:00
fd30cb4d90 feat(nodes): ItemStorageABC typevar no longer bound to pydantic.BaseModel
This bound is totally unnecessary. There's no requirement for any implementation of `ItemStorageABC` to work only on pydantic models.
2024-02-15 17:30:03 +11:00
0266946d3d fix(nodes): add super init to PickleStorageTorch 2024-02-15 17:30:03 +11:00
a7f91b3e01 tidy(nodes): do not refer to files as latents in PickleStorageTorch 2024-02-15 17:30:03 +11:00
de0b72528c feat(nodes): replace latents service with tensors and conditioning services
- New generic class `PickleStorageBase`, implements the same API as `LatentsStorageBase`, use for storing non-serializable data via pickling
- Implementation `PickleStorageTorch` uses `torch.save` and `torch.load`, same as `LatentsStorageDisk`
- Add `tensors: PickleStorageBase[torch.Tensor]` to `InvocationServices`
- Add `conditioning: PickleStorageBase[ConditioningFieldData]` to `InvocationServices`
- Remove `latents` service and all `LatentsStorage` classes
- Update `InvocationContext` and all usage of old `latents` service to use the new services/context wrapper methods
2024-02-15 17:30:03 +11:00
2932652787 tidy(nodes): delete onnx.py
It doesn't work and keeping it updated to prevent the app from starting was getting tedious. Deleted.
2024-02-15 17:30:03 +11:00
db6bc7305a fix(nodes): rearrange fields.py to avoid needing forward refs 2024-02-15 17:30:02 +11:00
a5db204629 tidy(nodes): remove unnecessary, shadowing class attr declarations 2024-02-15 17:30:02 +11:00
8e2b61e19f feat(ui): revise graphs to not use LinearUIOutputInvocation
See this comment for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629

- Remove this now-unnecessary node from all graphs
- Update graphs' terminal image-outputting nodes' `is_intermediate` and `board` fields appropriately
- Add util function to prepare the `board` field, tidy the utils
- Update `socketInvocationComplete` listener to work correctly with this change

I've manually tested all graph permutations that were changed (I think this is all...) to ensure images go to the gallery as expected:
- ad-hoc upscaling
- t2i w/ sd1.5
- t2i w/ sd1.5 & hrf
- t2i w/ sdxl
- t2i w/ sdxl + refiner
- i2i w/ sd1.5
- i2i w/ sdxl
- i2i w/ sdxl + refiner
- canvas t2i w/ sd1.5
- canvas t2i w/ sdxl
- canvas t2i w/ sdxl + refiner
- canvas i2i w/ sd1.5
- canvas i2i w/ sdxl
- canvas i2i w/ sdxl + refiner
- canvas inpaint w/ sd1.5
- canvas inpaint w/ sdxl
- canvas inpaint w/ sdxl + refiner
- canvas outpaint w/ sd1.5
- canvas outpaint w/ sdxl
- canvas outpaint w/ sdxl + refiner
2024-02-15 17:30:02 +11:00
a3faa3792a chore(ui): regen types 2024-02-15 17:30:02 +11:00
c16eba78ab feat(nodes): add WithBoard field helper class
This class works the same way as `WithMetadata` - it simply adds a `board` field to the node. The context wrapper function is able to pull the board id from this. This allows image-outputting nodes to get a board field "for free", and have their outputs automatically saved to it.

This is a breaking change for node authors who may have a field called `board`, because it makes `board` a reserved field name. I'll look into how to avoid this - maybe by naming this invoke-managed field `_board` to avoid collisions?

Supporting changes:
- `WithBoard` is added to all image-outputting nodes, giving them the ability to save to board.
- Unused, duplicate `WithMetadata` and `WithWorkflow` classes are deleted from `baseinvocation.py`. The "real" versions are in `fields.py`.
- Remove `LinearUIOutputInvocation`. Now that all nodes that output images also have a `board` field by default, this node is no longer necessary. See comment here for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629
- Without `LinearUIOutputInvocation`, the `ImagesInferface.update` method is no longer needed, and removed.

Note: This commit does not bump all node versions. I will ensure that is done correctly before merging the PR of which this commit is a part.

Note: A followup commit will implement the frontend changes to support this change.
2024-02-15 17:30:02 +11:00
1a191c4655 remove unused configdict import 2024-02-15 17:30:02 +11:00
e36d925bce fix(ui): remove original l2i node in HRF graph 2024-02-15 17:30:02 +11:00
b1ba18b3d1 fix(nodes): do not freeze or cache config in context wrapper
- The config is already cached by the config class's `get_config()` method.
- The config mutates itself in its `root_path` property getter. Freezing the class makes any attempt to grab a path from the config error. Unfortunately this means we cannot easily freeze the class without fiddling with the inner workings of `InvokeAIAppConfig`, which is outside the scope here.
2024-02-15 17:30:02 +11:00
aff46759f9 feat(nodes): context.data -> context._data 2024-02-15 17:30:02 +11:00
d7b7dcc7fe feat(nodes): context.__services -> context._services 2024-02-15 17:30:02 +11:00
889a26c5b6 feat(nodes): cache invocation interface config 2024-02-15 17:30:02 +11:00
b4c774896a feat(nodes): do not hide services in invocation context interfaces 2024-02-15 17:30:02 +11:00
afbe889d35 fix(nodes): restore missing context type annotations 2024-02-15 17:30:02 +11:00
9c1e52b1ef tests(nodes): fix mock InvocationContext 2024-02-15 17:30:02 +11:00
3f5ab02da9 chore(nodes): add comments for ConfigInterface 2024-02-15 17:30:02 +11:00
bf48e8a03a feat(nodes): export more things from `invocation_api" 2024-02-15 17:30:02 +11:00
e52434cb99 feat(nodes): add boards interface to invocation context 2024-02-15 17:30:02 +11:00
483bdbcb9f fix(nodes): restore type annotations for InvocationContext 2024-02-15 17:30:02 +11:00
ae421fb4ab feat(nodes): do not freeze InvocationContextData, prevents it from being subclassesd 2024-02-15 17:30:02 +11:00
cc295a9f0a feat: tweak pyright config 2024-02-15 17:30:02 +11:00
a7e23af9c6 feat(nodes): create invocation_api.py
This is the public API for invocations.

Everything a custom node might need should be re-exported from this file.
2024-02-15 17:30:02 +11:00
3de4390711 feat(nodes): move ConditioningFieldData to conditioning_data.py 2024-02-15 17:30:02 +11:00
3ceee2b2b2 tests: fix missing arg for InvocationContext 2024-02-15 17:30:02 +11:00
5c7ed24aab feat(nodes): restore previous invocation context methods with deprecation warnings 2024-02-15 17:30:02 +11:00
183c9c4799 chore: ruff 2024-02-15 17:30:02 +11:00
8baf3f78a2 feat(nodes): tidy invocation_context.py, improve comments 2024-02-15 17:30:02 +11:00
ac2eb16a65 tests: fix tests for new invocation context 2024-02-15 17:30:02 +11:00
4aa7bee4b9 docs: update INVOCATIONS.md 2024-02-15 17:30:02 +11:00
7e5ba2795e feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.

Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
2024-02-15 17:30:02 +11:00
97a6c6eea7 feat: add pyright config
I was having issues with mypy bother over- and under-reporting certain problems. I've added a pyright config.
2024-02-15 17:30:02 +11:00
f0e60a4ba2 feat(nodes): restricts invocation context power
Creates a low-power `InvocationContext` with simplified methods and data.

See `invocation_context.py` for detailed comments.
2024-02-15 17:30:02 +11:00
aa089e8108 tidy(nodes): move all field things to fields.py
Unfortunately, this is necessary to prevent circular imports at runtime.
2024-02-15 17:30:02 +11:00
371 changed files with 9586 additions and 11244 deletions

View File

@ -1,33 +0,0 @@
name: install frontend dependencies
description: Installs frontend dependencies with pnpm, with caching
runs:
using: 'composite'
steps:
- name: setup node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: setup pnpm
uses: pnpm/action-setup@v2
with:
version: 8
run_install: false
- name: get pnpm store directory
shell: bash
run: |
echo "STORE_PATH=$(pnpm store path --silent)" >> $GITHUB_ENV
- name: setup cache
uses: actions/cache@v4
with:
path: ${{ env.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
shell: bash
working-directory: invokeai/frontend/web

28
.github/pr_labels.yml vendored
View File

@ -1,59 +1,59 @@
root:
Root:
- changed-files:
- any-glob-to-any-file: '*'
python-deps:
PythonDeps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
python:
Python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
python-tests:
PythonTests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
ci-cd:
CICD:
- changed-files:
- any-glob-to-any-file: .github/**
docker:
Docker:
- changed-files:
- any-glob-to-any-file: docker/**
installer:
Installer:
- changed-files:
- any-glob-to-any-file: installer/**
docs:
Documentation:
- changed-files:
- any-glob-to-any-file: docs/**
invocations:
Invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
backend:
Backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
api:
Api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
services:
Services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
frontend-deps:
FrontendDeps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
frontend:
Frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

View File

@ -11,7 +11,7 @@ on:
- 'docker/docker-entrypoint.sh'
- 'workflows/build-container.yml'
tags:
- 'v*.*.*'
- 'v*'
workflow_dispatch:
permissions:

View File

@ -1,45 +0,0 @@
# Builds and uploads the installer and python build artifacts.
name: build installer
on:
workflow_dispatch:
workflow_call:
jobs:
build-installer:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <2 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install pypa/build
run: pip install --upgrade build
- name: setup frontend
uses: ./.github/actions/install-frontend-deps
- name: create installer
id: create_installer
run: ./create_installer.sh
working-directory: installer
- name: upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.create_installer.outputs.DIST_PATH }}
- name: upload installer artifact
uses: actions/upload-artifact@v4
with:
name: ${{ steps.create_installer.outputs.INSTALLER_FILENAME }}
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}

View File

@ -1,80 +0,0 @@
# Runs frontend code quality checks.
#
# Checks for changes to frontend files before running the checks.
# If always_run is true, always runs the checks.
name: 'frontend checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-checks:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: tsc
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:tsc'
shell: bash
- name: dpdm
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:dpdm'
shell: bash
- name: eslint
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:eslint'
shell: bash
- name: prettier
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:prettier'
shell: bash
- name: knip
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:knip'
shell: bash

View File

@ -1,60 +0,0 @@
# Runs frontend tests.
#
# Checks for changes to frontend files before running the tests.
# If always_run is true, always runs the tests.
name: 'frontend tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-tests:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: vitest
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm test:no-watch'
shell: bash

View File

@ -1,6 +1,6 @@
name: 'label PRs'
name: "Pull Request Labeler"
on:
- pull_request_target
- pull_request_target
jobs:
labeler:
@ -9,10 +9,8 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: checkout
- name: Checkout
uses: actions/checkout@v4
- name: label PRs
uses: actions/labeler@v5
- uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml
configuration-path: .github/pr_labels.yml

45
.github/workflows/lint-frontend.yml vendored Normal file
View File

@ -0,0 +1,45 @@
name: Lint frontend
on:
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
push:
branches:
- 'main'
merge_group:
workflow_dispatch:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
lint-frontend:
if: github.event.pull_request.draft == false
runs-on: ubuntu-22.04
steps:
- name: Setup Node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: Checkout
uses: actions/checkout@v4
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install dependencies
run: 'pnpm install --prefer-frozen-lockfile'
- name: Typescript
run: 'pnpm run lint:tsc'
- name: Madge
run: 'pnpm run lint:dpdm'
- name: ESLint
run: 'pnpm run lint:eslint'
- name: Prettier
run: 'pnpm run lint:prettier'
- name: Knip
run: 'pnpm run lint:knip'

View File

@ -1,49 +1,51 @@
# This is a mostly a copy-paste from https://github.com/squidfunk/mkdocs-material/blob/master/docs/publishing-your-site.md
name: mkdocs
name: mkdocs-material
on:
push:
branches:
- main
workflow_dispatch:
- 'refs/heads/main'
permissions:
contents: write
contents: write
jobs:
deploy:
mkdocs-material:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout
uses: actions/checkout@v4
- name: checkout sources
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: setup python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: set cache id
run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install ".[docs]"
- name: use cache
uses: actions/cache@v4
with:
key: mkdocs-material-${{ env.cache_id }}
path: .cache
restore-keys: |
mkdocs-material-
- name: confirm buildability
run: |
python -m \
mkdocs build \
--clean \
--verbose
- name: install dependencies
run: python -m pip install ".[docs]"
- name: build & deploy
run: mkdocs gh-deploy --force
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
run: |
python -m \
mkdocs gh-deploy \
--clean \
--force

67
.github/workflows/pypi-release.yml vendored Normal file
View File

@ -0,0 +1,67 @@
name: PyPI Release
on:
workflow_dispatch:
inputs:
publish_package:
description: 'Publish build on PyPi? [true/false]'
required: true
default: 'false'
jobs:
build-and-release:
if: github.repository == 'invoke-ai/InvokeAI'
runs-on: ubuntu-22.04
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
TWINE_NON_INTERACTIVE: 1
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Setup Node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
working-directory: invokeai/frontend/web
- name: Build frontend
run: pnpm run build
working-directory: invokeai/frontend/web
- name: Install python dependencies
run: pip install --upgrade build twine
- name: Build python package
run: python3 -m build
- name: Upload build as workflow artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: dist
- name: Check distribution
run: twine check dist/*
- name: Check PyPI versions
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
run: |
pip install --upgrade requests
python -c "\
import scripts.pypi_helper; \
EXISTS=scripts.pypi_helper.local_on_pypi(); \
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
- name: Publish build on PyPi
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != '' && github.event.inputs.publish_package == 'true'
run: twine upload dist/*

View File

@ -1,76 +0,0 @@
# Runs python code quality checks.
#
# Checks for changes to python files before running the checks.
# If always_run is true, always runs the checks.
#
# TODO: Add mypy or pyright to the checks.
name: 'python checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
python-checks:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff
shell: bash
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: ruff check --output-format=github .
shell: bash
- name: ruff format
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: ruff format --check .
shell: bash

View File

@ -1,106 +0,0 @@
# Runs python tests on a matrix of python versions and platforms.
#
# Checks for changes to python files before running the tests.
# If always_run is true, always runs the tests.
name: 'python tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
strategy:
matrix:
python-version:
- '3.10'
- '3.11'
platform:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- platform: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- platform: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- platform: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: 'py${{ matrix.python-version }}: ${{ matrix.platform }}'
runs-on: ${{ matrix.os }}
timeout-minutes: 15 # expected run time: 2-6 min, depending on platform
env:
PIP_USE_PEP517: '1'
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install dependencies
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install --editable=".[test]"
- name: run pytest
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pytest

View File

@ -1,108 +0,0 @@
# Main release workflow. Triggered on tag push or manual trigger.
#
# - Runs all code checks and tests
# - Verifies the app version matches the tag version.
# - Builds the installer and build, uploading them as artifacts.
# - Publishes to TestPyPI and PyPI. Both are conditional on the previous steps passing and require a manual approval.
#
# See docs/RELEASE.md for more information on the release process.
name: release
on:
push:
tags:
- 'v*'
workflow_dispatch:
jobs:
check-version:
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- name: check python version
uses: samuelcolvin/check-python-version@v4
id: check-python-version
with:
version_file_path: invokeai/version/invokeai_version.py
frontend-checks:
uses: ./.github/workflows/frontend-checks.yml
with:
always_run: true
frontend-tests:
uses: ./.github/workflows/frontend-tests.yml
with:
always_run: true
python-checks:
uses: ./.github/workflows/python-checks.yml
with:
always_run: true
python-tests:
uses: ./.github/workflows/python-tests.yml
with:
always_run: true
build:
uses: ./.github/workflows/build-installer.yml
publish-testpypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: testpypi
url: https://test.pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
publish-pypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: pypi
url: https://pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1

24
.github/workflows/style-checks.yml vendored Normal file
View File

@ -0,0 +1,24 @@
name: style checks
on:
pull_request:
push:
branches: main
jobs:
ruff:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies with pip
run: |
pip install ruff
- run: ruff check --output-format=github .
- run: ruff format --check .

129
.github/workflows/test-invoke-pip.yml vendored Normal file
View File

@ -0,0 +1,129 @@
name: Test invoke.py pip
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
if: github.event.pull_request.draft == false
strategy:
matrix:
python-version:
# - '3.9'
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
env:
PIP_USE_PEP517: '1'
steps:
- name: Checkout sources
id: checkout-sources
uses: actions/checkout@v3
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v41
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: set test prompt to main branch validation
if: steps.changed-files.outputs.python_any_changed == 'true'
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
if: steps.changed-files.outputs.python_any_changed == 'true'
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install invokeai
if: steps.changed-files.outputs.python_any_changed == 'true'
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install
--editable=".[test]"
- name: run pytest
if: steps.changed-files.outputs.python_any_changed == 'true'
id: run-pytest
run: pytest
# - name: run invokeai-configure
# env:
# HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
# run: >
# invokeai-configure
# --yes
# --default_only
# --full-precision
# # can't use fp16 weights without a GPU
# - name: run invokeai
# id: run-invokeai
# env:
# # Set offline mode to make sure configure preloaded successfully.
# HF_HUB_OFFLINE: 1
# HF_DATASETS_OFFLINE: 1
# TRANSFORMERS_OFFLINE: 1
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# run: >
# invokeai
# --no-patchmatch
# --no-nsfw_checker
# --precision=float32
# --always_use_cpu
# --use_memory_db
# --outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
# --from_file ${{ env.TEST_PROMPTS }}
# - name: Archive results
# env:
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# uses: actions/upload-artifact@v3
# with:
# name: results
# path: ${{ env.INVOKEAI_OUTDIR }}

View File

@ -7,7 +7,7 @@ embeddedLanguageFormatting: auto
overrides:
- files: '*.md'
options:
proseWrap: preserve
proseWrap: always
printWidth: 80
parser: markdown
cursorOffset: -1

View File

@ -6,18 +6,16 @@ default: help
help:
@echo Developer commands:
@echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "test Run the unit tests."
@echo "update-config-docstring Update the app's config docstring so mkdocs can autogenerate it correctly."
@echo "frontend-install Install the pnpm modules needed for the front end"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "test" Run the unit tests.
@echo "frontend-install" Install the pnpm modules needed for the front end
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
@ -42,10 +40,6 @@ mypy-all:
test:
pytest ./tests
# Update config docstring
update-config-docstring:
python scripts/update_config_docstring.py
# Install the pnpm modules needed for the front end
frontend-install:
rm -rf invokeai/frontend/web/node_modules
@ -59,9 +53,6 @@ frontend-build:
frontend-dev:
cd invokeai/frontend/web && pnpm dev
frontend-typegen:
cd invokeai/frontend/web && python ../../../scripts/generate_openapi_schema.py | pnpm typegen
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh

View File

@ -1,142 +0,0 @@
# Release Process
The app is published in twice, in different build formats.
- A [PyPI] distribution. This includes both a source distribution and built distribution (a wheel). Users install with `pip install invokeai`. The updater uses this build.
- An installer on the [InvokeAI Releases Page]. This is a zip file with install scripts and a wheel. This is only used for new installs.
## General Prep
Make a developer call-out for PRs to merge. Merge and test things out.
While the release workflow does not include end-to-end tests, it does pause before publishing so you can download and test the final build.
## Release Workflow
The `release.yml` workflow runs a number of jobs to handle code checks, tests, build and publish on PyPI.
It is triggered on **tag push**, when the tag matches `v*`. It doesn't matter if you've prepped a release branch like `release/v3.5.0` or are releasing from `main` - it works the same.
> Because commits are reference-counted, it is safe to create a release branch, tag it, let the workflow run, then delete the branch. So long as the tag exists, that commit will exist.
### Triggering the Workflow
Run `make tag-release` to tag the current commit and kick off the workflow.
The release may also be dispatched [manually].
### Workflow Jobs and Process
The workflow consists of a number of concurrently-run jobs, and two final publish jobs.
The publish jobs require manual approval and are only run if the other jobs succeed.
#### `check-version` Job
This job checks that the git ref matches the app version. It matches the ref against the `__version__` variable in `invokeai/version/invokeai_version.py`.
When the workflow is triggered by tag push, the ref is the tag. If the workflow is run manually, the ref is the target selected from the **Use workflow from** dropdown.
This job uses [samuelcolvin/check-python-version].
> Any valid [version specifier] works, so long as the tag matches the version. The release workflow works exactly the same for `RC`, `post`, `dev`, etc.
#### Check and Test Jobs
- **`python-tests`**: runs `pytest` on matrix of platforms
- **`python-checks`**: runs `ruff` (format and lint)
- **`frontend-tests`**: runs `vitest`
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
> **TODO** We should add `mypy` or `pyright` to the **`check-python`** job.
> **TODO** We should add an end-to-end test job that generates an image.
#### `build-installer` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `installer/create_installer.sh` and uploads two artifacts:
- **`dist`**: the python distribution, to be published on PyPI
- **`InvokeAI-installer-${VERSION}.zip`**: the installer to be included in the GitHub release
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval.
A maintainer should go to the **Summary** tab of the workflow, download the installer and test it. Ensure the app loads and generates.
> The same wheel file is bundled in the installer and in the `dist` artifact, which is uploaded to PyPI. You should end up with the exactly the same installation of the `invokeai` package from any of these methods.
#### PyPI Publish Jobs
The publish jobs will run if any of the previous jobs fail.
They use [GitHub environments], which are configured as [trusted publishers] on PyPI.
Both jobs require a maintainer to approve them from the workflow's **Summary** tab.
- Click the **Review deployments** button
- Select the environment (either `testpypi` or `pypi`)
- Click **Approve and deploy**
> **If the version already exists on PyPI, the publish jobs will fail.** PyPI only allows a given version to be published once - you cannot change it. If version published on PyPI has a problem, you'll need to "fail forward" by bumping the app version and publishing a followup release.
#### `publish-testpypi` Job
Publishes the distribution on the [Test PyPI] index, using the `testpypi` GitHub environment.
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release.
If approved and successful, you could try out the test release like this:
```sh
# Create a new virtual environment
python -m venv ~/.test-invokeai-dist --prompt test-invokeai-dist
# Install the distribution from Test PyPI
pip install --index-url https://test.pypi.org/simple/ invokeai
# Run and test the app
invokeai-web
# Cleanup
deactivate
rm -rf ~/.test-invokeai-dist
```
#### `publish-pypi` Job
Publishes the distribution on the production PyPI index, using the `pypi` GitHub environment.
## Publish the GitHub Release with installer
Once the release is published to PyPI, it's time to publish the GitHub release.
1. [Draft a new release] on GitHub, choosing the tag that triggered the release.
2. Write the release notes, describing important changes. The **Generate release notes** button automatically inserts the changelog and new contributors, and you can copy/paste the intro from previous releases.
3. Upload the zip file created in **`build`** job into the Assets section of the release notes. You can also upload the zip into the body of the release notes, since it can be hard for users to find the Assets section.
4. Check the **Set as a pre-release** and **Create a discussion for this release** checkboxes at the bottom of the release page.
5. Publish the pre-release.
6. Announce the pre-release in Discord.
> **TODO** Workflows can create a GitHub release from a template and upload release assets. One popular action to handle this is [ncipollo/release-action]. A future enhancement to the release process could set this up.
## Manual Build
The `build installer` workflow can be dispatched manually. This is useful to test the installer for a given branch or tag.
No checks are run, it just builds.
## Manual Release
The `release` workflow can be dispatched manually. You must dispatch the workflow from the right tag, else it will fail the version check.
This functionality is available as a fallback in case something goes wonky. Typically, releases should be triggered via tag push as described above.
[InvokeAI Releases Page]: https://github.com/invoke-ai/InvokeAI/releases
[PyPI]: https://pypi.org/
[Draft a new release]: https://github.com/invoke-ai/InvokeAI/releases/new
[Test PyPI]: https://test.pypi.org/
[version specifier]: https://packaging.python.org/en/latest/specifications/version-specifiers/
[ncipollo/release-action]: https://github.com/ncipollo/release-action
[GitHub environments]: https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version
[manually]: #manual-release

View File

@ -16,6 +16,11 @@ model. These are the:
information. It is also responsible for managing the InvokeAI
`models` directory and its contents.
* _ModelMetadataStore_ and _ModelMetaDataFetch_ Backend modules that
are able to retrieve metadata from online model repositories,
transform them into Pydantic models, and cache them to the InvokeAI
SQL database.
* _DownloadQueueServiceBase_
A multithreaded downloader responsible
for downloading models from a remote source to disk. The download
@ -27,6 +32,7 @@ model. These are the:
Responsible for loading a model from disk
into RAM and VRAM and getting it ready for inference.
## Location of the Code
The four main services can be found in
@ -57,21 +63,23 @@ provides the following fields:
|----------------|-----------------|------------------|
| `key` | str | Unique identifier for the model |
| `name` | str | Name of the model (not unique) |
| `model_type` | ModelType | The type of the model |
| `model_format` | ModelFormat | The format of the model (e.g. "diffusers"); also used as a Union discriminator |
| `base_model` | BaseModelType | The base model that the model is compatible with |
| `model_type` | ModelType | The type of the model |
| `model_format` | ModelFormat | The format of the model (e.g. "diffusers"); also used as a Union discriminator |
| `base_model` | BaseModelType | The base model that the model is compatible with |
| `path` | str | Location of model on disk |
| `hash` | str | Hash of the model |
| `original_hash` | str | Hash of the model when it was first installed |
| `current_hash` | str | Most recent hash of the model's contents |
| `description` | str | Human-readable description of the model (optional) |
| `source` | str | Model's source URL or repo id (optional) |
The `key` is a unique 32-character random ID which was generated at
install time. The `hash` field stores a hash of the model's
install time. The `original_hash` field stores a hash of the model's
contents at install time obtained by sampling several parts of the
model's files using the `imohash` library. Over the course of the
model's lifetime it may be transformed in various ways, such as
changing its precision or converting it from a .safetensors to a
diffusers model.
diffusers model. When this happens, `original_hash` is unchanged, but
`current_hash` is updated to indicate the current contents.
`ModelType`, `ModelFormat` and `BaseModelType` are string enums that
are defined in `invokeai.backend.model_manager.config`. They are also
@ -86,6 +94,7 @@ The `path` field can be absolute or relative. If relative, it is taken
to be relative to the `models_dir` setting in the user's
`invokeai.yaml` file.
### CheckpointConfig
This adds support for checkpoint configurations, and adds the
@ -165,7 +174,7 @@ store = context.services.model_manager.store
or from elsewhere in the code by accessing
`ApiDependencies.invoker.services.model_manager.store`.
### Creating a `ModelRecordService`
### Creating a `ModelRecordService`
To create a new `ModelRecordService` database or open an existing one,
you can directly create either a `ModelRecordServiceSQL` or a
@ -208,27 +217,27 @@ for use in the InvokeAI web server. Its signature is:
```
def open(
cls,
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
lock: Optional[threading.Lock] = None
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
lock: Optional[threading.Lock] = None
) -> Union[ModelRecordServiceSQL, ModelRecordServiceFile]:
```
The way it works is as follows:
1. Retrieve the value of the `model_config_db` option from the user's
`invokeai.yaml` config file.
`invokeai.yaml` config file.
2. If `model_config_db` is `auto` (the default), then:
* Use the values of `conn` and `lock` to return a `ModelRecordServiceSQL` object
opened on the passed connection and lock.
* Open up a new connection to `databases/invokeai.db` if `conn`
- Use the values of `conn` and `lock` to return a `ModelRecordServiceSQL` object
opened on the passed connection and lock.
- Open up a new connection to `databases/invokeai.db` if `conn`
and/or `lock` are missing (see note below).
3. If `model_config_db` is a Path, then use `from_db_file`
to return the appropriate type of ModelRecordService.
4. If `model_config_db` is None, then retrieve the legacy
`conf_path` option from `invokeai.yaml` and use the Path
indicated there. This will default to `configs/models.yaml`.
So a typical startup pattern would be:
```
@ -246,7 +255,7 @@ store = ModelRecordServiceBase.open(config, db_conn, lock)
Configurations can be retrieved in several ways.
#### get_model(key) -> AnyModelConfig
#### get_model(key) -> AnyModelConfig:
The basic functionality is to call the record store object's
`get_model()` method with the desired model's unique key. It returns
@ -263,28 +272,28 @@ print(model_conf.path)
If the key is unrecognized, this call raises an
`UnknownModelException`.
#### exists(key) -> AnyModelConfig
#### exists(key) -> AnyModelConfig:
Returns True if a model with the given key exists in the databsae.
#### search_by_path(path) -> AnyModelConfig
#### search_by_path(path) -> AnyModelConfig:
Returns the configuration of the model whose path is `path`. The path
is matched using a simple string comparison and won't correctly match
models referred to by different paths (e.g. using symbolic links).
#### search_by_name(name, base, type) -> List[AnyModelConfig]
#### search_by_name(name, base, type) -> List[AnyModelConfig]:
This method searches for models that match some combination of `name`,
`BaseType` and `ModelType`. Calling without any arguments will return
all the models in the database.
#### all_models() -> List[AnyModelConfig]
#### all_models() -> List[AnyModelConfig]:
Return all the model configs in the database. Exactly equivalent to
calling `search_by_name()` with no arguments.
#### search_by_tag(tags) -> List[AnyModelConfig]
#### search_by_tag(tags) -> List[AnyModelConfig]:
`tags` is a list of strings. This method returns a list of model
configs that contain all of the given tags. Examples:
@ -303,11 +312,11 @@ commercializable_models = [x for x in store.all_models() \
if x.license.contains('allowCommercialUse=Sell')]
```
#### version() -> str
#### version() -> str:
Returns the version of the database, currently at `3.2`
#### model_info_by_name(name, base_model, model_type) -> ModelConfigBase
#### model_info_by_name(name, base_model, model_type) -> ModelConfigBase:
This method exists to ease the transition from the previous version of
the model manager, in which `get_model()` took the three arguments
@ -328,7 +337,7 @@ model and pass its key to `get_model()`.
Several methods allow you to create and update stored model config
records.
#### add_model(key, config) -> AnyModelConfig
#### add_model(key, config) -> AnyModelConfig:
Given a key and a configuration, this will add the model's
configuration record to the database. `config` can either be a subclass of
@ -343,7 +352,7 @@ model with the same key is already in the database, or an
`InvalidModelConfigException` if a dict was passed and Pydantic
experienced a parse or validation error.
### update_model(key, config) -> AnyModelConfig
### update_model(key, config) -> AnyModelConfig:
Given a key and a configuration, this will update the model
configuration record in the database. `config` can be either a
@ -361,30 +370,33 @@ The `ModelInstallService` class implements the
shop for all your model install needs. It provides the following
functionality:
* Registering a model config record for a model already located on the
- Registering a model config record for a model already located on the
local filesystem, without moving it or changing its path.
* Installing a model alreadiy located on the local filesystem, by
- Installing a model alreadiy located on the local filesystem, by
moving it into the InvokeAI root directory under the
`models` folder (or wherever config parameter `models_dir`
specifies).
* Probing of models to determine their type, base type and other key
- Probing of models to determine their type, base type and other key
information.
* Interface with the InvokeAI event bus to provide status updates on
- Interface with the InvokeAI event bus to provide status updates on
the download, installation and registration process.
* Downloading a model from an arbitrary URL and installing it in
- Downloading a model from an arbitrary URL and installing it in
`models_dir`.
* Special handling for HuggingFace repo_ids to recursively download
- Special handling for Civitai model URLs which allow the user to
paste in a model page's URL or download link
- Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16.
* Saving tags and other metadata about the model into the invokeai database
- Saving tags and other metadata about the model into the invokeai database
when fetching from a repo that provides that type of information,
(currently only HuggingFace).
(currently only Civitai and HuggingFace).
### Initializing the installer
@ -415,8 +427,8 @@ queue.start()
installer = ModelInstallService(app_config=config,
record_store=record_store,
download_queue=queue
)
download_queue=queue
)
installer.start()
```
@ -428,8 +440,10 @@ required parameters:
| `app_config` | InvokeAIAppConfig | InvokeAI app configuration object |
| `record_store` | ModelRecordServiceBase | Config record storage database |
| `download_queue` | DownloadQueueServiceBase | Download queue object |
| `metadata_store` | Optional[ModelMetadataStore] | Metadata storage object |
|`session` | Optional[requests.Session] | Swap in a different Session object (usually for debugging) |
Once initialized, the installer will provide the following methods:
#### install_job = installer.heuristic_import(source, [config], [access_token])
@ -443,15 +457,15 @@ The `source` is a string that can be any of these forms
1. A path on the local filesystem (`C:\\users\\fred\\model.safetensors`)
2. A Url pointing to a single downloadable model file (`https://civitai.com/models/58390/detail-tweaker-lora-lora`)
3. A HuggingFace repo_id with any of the following formats:
* `model/name` -- entire model
* `model/name:fp32` -- entire model, using the fp32 variant
* `model/name:fp16:vae` -- vae submodel, using the fp16 variant
* `model/name::vae` -- vae submodel, using default precision
* `model/name:fp16:path/to/model.safetensors` -- an individual model file, fp16 variant
* `model/name::path/to/model.safetensors` -- an individual model file, default variant
- `model/name` -- entire model
- `model/name:fp32` -- entire model, using the fp32 variant
- `model/name:fp16:vae` -- vae submodel, using the fp16 variant
- `model/name::vae` -- vae submodel, using default precision
- `model/name:fp16:path/to/model.safetensors` -- an individual model file, fp16 variant
- `model/name::path/to/model.safetensors` -- an individual model file, default variant
Note that by specifying a relative path to the top of the HuggingFace
repo, you can download and install arbitrary models files.
repo, you can download and install arbitrary models files.
The variant, if not provided, will be automatically filled in with
`fp32` if the user has requested full precision, and `fp16`
@ -477,9 +491,9 @@ following illustrates basic usage:
```
from invokeai.app.services.model_install import (
LocalModelSource,
HFModelSource,
URLModelSource,
LocalModelSource,
HFModelSource,
URLModelSource,
)
source1 = LocalModelSource(path='/opt/models/sushi.safetensors') # a local safetensors file
@ -499,13 +513,13 @@ for source in [source1, source2, source3, source4, source5, source6, source7]:
source2job = installer.wait_for_installs(timeout=120)
for source in sources:
job = source2job[source]
if job.complete:
model_config = job.config_out
model_key = model_config.key
print(f"{source} installed as {model_key}")
elif job.errored:
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
if job.complete:
model_config = job.config_out
model_key = model_config.key
print(f"{source} installed as {model_key}")
elif job.errored:
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
```
As shown here, the `import_model()` method accepts a variety of
@ -514,7 +528,7 @@ HuggingFace repo_ids with and without a subfolder designation,
Civitai model URLs and arbitrary URLs that point to checkpoint files
(but not to folders).
Each call to `import_model()` return a `ModelInstallJob` job,
Each call to `import_model()` return a `ModelInstallJob` job,
an object which tracks the progress of the install.
If a remote model is requested, the model's files are downloaded in
@ -541,7 +555,7 @@ The full list of arguments to `import_model()` is as follows:
| `config` | Dict[str, Any] | None | Override all or a portion of model's probed attributes |
The next few sections describe the various types of ModelSource that
can be passed to `import_model()`.
can be passed to `import_model()`.
`config` can be used to override all or a portion of the configuration
attributes returned by the model prober. See the section below for
@ -552,6 +566,7 @@ details.
This is used for a model that is located on a locally-accessible Posix
filesystem, such as a local disk or networked fileshare.
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `path` | str | Path | None | Path to the model file or directory |
@ -571,7 +586,33 @@ The `AnyHttpUrl` class can be imported from `pydantic.networks`.
Ordinarily, no metadata is retrieved from these sources. However,
there is special-case code in the installer that looks for HuggingFace
and fetches the corresponding model metadata from the corresponding repo.
and Civitai URLs and fetches the corresponding model metadata from
the corresponding repo.
#### CivitaiModelSource
This is used for a model that is hosted by the Civitai web site.
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `version_id` | int | None | The ID of the particular version of the desired model. |
| `access_token` | str | None | An access token needed to gain access to a subscriber's-only model. |
Civitai has two model IDs, both of which are integers. The `model_id`
corresponds to a collection of model versions that may different in
arbitrary ways, such as derivation from different checkpoint training
steps, SFW vs NSFW generation, pruned vs non-pruned, etc. The
`version_id` points to a specific version. Please use the latter.
Some Civitai models require an access token to download. These can be
generated from the Civitai profile page of a logged-in
account. Somewhat annoyingly, if you fail to provide the access token
when downloading a model that needs it, Civitai generates a redirect
to a login page rather than a 403 Forbidden error. The installer
attempts to catch this event and issue an informative error
message. Otherwise you will get an "unrecognized model suffix" error
when the model prober tries to identify the type of the HTML login
page.
#### HFModelSource
@ -584,6 +625,7 @@ HuggingFace has the most complicated `ModelSource` structure:
| `subfolder` | Path | None | Look for the model in a subfolder of the repo. |
| `access_token` | str | None | An access token needed to gain access to a subscriber's-only model. |
The `repo_id` is the repository ID, such as `stabilityai/sdxl-turbo`.
The `variant` is one of the various diffusers formats that HuggingFace
@ -619,6 +661,7 @@ in. To download these files, you must provide an
`HfFolder.get_token()` will be called to fill it in with the cached
one.
#### Monitoring the install job process
When you create an install job with `import_model()`, it launches the
@ -632,13 +675,14 @@ The `ModelInstallJob` class has the following structure:
| `id` | `int` | Integer ID for this job |
| `status` | `InstallStatus` | An enum of [`waiting`, `downloading`, `running`, `completed`, `error` and `cancelled`]|
| `config_in` | `dict` | Overriding configuration values provided by the caller |
| `config_out` | `AnyModelConfig`| After successful completion, contains the configuration record written to the database |
| `inplace` | `boolean` | True if the caller asked to install the model in place using its local path |
| `source` | `ModelSource` | The local path, remote URL or repo_id of the model to be installed |
| `config_out` | `AnyModelConfig`| After successful completion, contains the configuration record written to the database |
| `inplace` | `boolean` | True if the caller asked to install the model in place using its local path |
| `source` | `ModelSource` | The local path, remote URL or repo_id of the model to be installed |
| `local_path` | `Path` | If a remote model, holds the path of the model after it is downloaded; if a local model, same as `source` |
| `error_type` | `str` | Name of the exception that led to an error status |
| `error` | `str` | Traceback of the error |
If the `event_bus` argument was provided, events will also be
broadcast to the InvokeAI event bus. The events will appear on the bus
as an event of type `EventServiceBase.model_event`, a timestamp and
@ -658,13 +702,14 @@ following keys:
| `total_bytes` | int | Total size of all the files that make up the model |
| `parts` | List[Dict]| Information on the progress of the individual files that make up the model |
The parts is a list of dictionaries that give information on each of
the components pieces of the download. The dictionary's keys are
`source`, `local_path`, `bytes` and `total_bytes`, and correspond to
the like-named keys in the main event.
Note that downloading events will not be issued for local models, and
that downloading events occur _before_ the running event.
that downloading events occur *before* the running event.
##### `model_install_running`
@ -707,13 +752,14 @@ properties: `waiting`, `downloading`, `running`, `complete`, `errored`
and `cancelled`, as well as `in_terminal_state`. The last will return
True if the job is in the complete, errored or cancelled states.
#### Model configuration and probing
The install service uses the `invokeai.backend.model_manager.probe`
module during import to determine the model's type, base type, and
other configuration parameters. Among other things, it assigns a
default name and description for the model based on probed
fields.
fields.
When downloading remote models is implemented, additional
configuration information, such as list of trigger terms, will be
@ -728,11 +774,11 @@ attributes. Here is an example of setting the
```
install_job = installer.import_model(
source=HFModelSource(repo_id='stabilityai/stable-diffusion-2-1',variant='fp32'),
config=dict(
prediction_type=SchedulerPredictionType('v_prediction')
name='stable diffusion 2 base model',
)
)
config=dict(
prediction_type=SchedulerPredictionType('v_prediction')
name='stable diffusion 2 base model',
)
)
```
### Other installer methods
@ -816,6 +862,7 @@ This method is similar to `unregister()`, but also unconditionally
deletes the corresponding model weights file(s), regardless of whether
they are inside or outside the InvokeAI models hierarchy.
#### path = installer.download_and_cache(remote_source, [access_token], [timeout])
This utility routine will download the model file located at source,
@ -906,7 +953,7 @@ following fields:
When you create a job, you can assign it a `priority`. If multiple
jobs are queued, the job with the lowest priority runs first. (Don't
blame me! The Unix developers came up with this convention.)
blame me! The Unix developers came up with this convention.)
Every job has a `source` and a `destination`. `source` is a string in
the base class, but subclassses redefine it more specifically.
@ -927,7 +974,7 @@ is in its lifecycle. Values are defined in the string enum
`DownloadJobStatus`, a symbol available from
`invokeai.app.services.download_manager`. Possible values are:
| **Value** | **String Value** | **Description** |
| **Value** | **String Value** | ** Description ** |
|--------------|---------------------|-------------------|
| `IDLE` | idle | Job created, but not submitted to the queue |
| `ENQUEUED` | enqueued | Job is patiently waiting on the queue |
@ -944,7 +991,7 @@ debugging and performance testing.
In case of an error, the Exception that caused the error will be
placed in the `error` field, and the job's status will be set to
`DownloadJobStatus.ERROR`.
`DownloadJobStatus.ERROR`.
After an error occurs, any partially downloaded files will be deleted
from disk, unless `preserve_partial_downloads` was set to True at job
@ -993,11 +1040,11 @@ While a job is being downloaded, the queue will emit events at
periodic intervals. A typical series of events during a successful
download session will look like this:
* enqueued
* running
* running
* running
* completed
- enqueued
- running
- running
- running
- completed
There will be a single enqueued event, followed by one or more running
events, and finally one `completed`, `error` or `cancelled`
@ -1006,12 +1053,12 @@ events.
It is possible for a caller to pause download temporarily, in which
case the events may look something like this:
* enqueued
* running
* running
* paused
* running
* completed
- enqueued
- running
- running
- paused
- running
- completed
The download queue logs when downloads start and end (unless `quiet`
is set to True at initialization time) but doesn't log any progress
@ -1073,11 +1120,11 @@ A typical initialization sequence will look like:
from invokeai.app.services.download_manager import DownloadQueueService
def log_download_event(job: DownloadJobBase):
logger.info(f'job={job.id}: status={job.status}')
logger.info(f'job={job.id}: status={job.status}')
queue = DownloadQueueService(
event_handlers=[log_download_event]
)
event_handlers=[log_download_event]
)
```
Event handlers can be provided to the queue at initialization time as
@ -1108,9 +1155,9 @@ To use the former method, follow this example:
```
job = DownloadJobRemoteSource(
source='http://www.civitai.com/models/13456',
destination='/tmp/models/',
event_handlers=[my_handler1, my_handler2], # if desired
)
destination='/tmp/models/',
event_handlers=[my_handler1, my_handler2], # if desired
)
queue.submit_download_job(job, start=True)
```
@ -1125,13 +1172,13 @@ To have the queue create the job for you, follow this example instead:
```
job = queue.create_download_job(
source='http://www.civitai.com/models/13456',
destdir='/tmp/models/',
filename='my_model.safetensors',
event_handlers=[my_handler1, my_handler2], # if desired
start=True,
)
destdir='/tmp/models/',
filename='my_model.safetensors',
event_handlers=[my_handler1, my_handler2], # if desired
start=True,
)
```
The `filename` argument forces the downloader to use the specified
name for the file rather than the name provided by the remote source,
and is equivalent to manually specifying a destination of
@ -1140,6 +1187,7 @@ and is equivalent to manually specifying a destination of
Here is the full list of arguments that can be provided to
`create_download_job()`:
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `source` | Union[str, Path, AnyHttpUrl] | | Download remote or local source |
@ -1152,7 +1200,7 @@ Here is the full list of arguments that can be provided to
Internally, `create_download_job()` has a little bit of internal logic
that looks at the type of the source and selects the right subclass of
`DownloadJobBase` to create and enqueue.
`DownloadJobBase` to create and enqueue.
**TODO**: move this logic into its own method for overriding in
subclasses.
@ -1218,30 +1266,51 @@ queue and have not yet reached a terminal state.
The modules found under `invokeai.backend.model_manager.metadata`
provide a straightforward API for fetching model metadatda from online
repositories. Currently only HuggingFace is supported. However, the
modules are easily extended for additional repos, provided that they
have defined APIs for metadata access.
repositories. Currently two repositories are supported: HuggingFace
and Civitai. However, the modules are easily extended for additional
repos, provided that they have defined APIs for metadata access.
Metadata comprises any descriptive information that is not essential
for getting the model to run. For example "author" is metadata, while
"type", "base" and "format" are not. The latter fields are part of the
model's config, as defined in `invokeai.backend.model_manager.config`.
### Example Usage
### Example Usage:
```
from invokeai.backend.model_manager.metadata import (
AnyModelRepoMetadata,
CivitaiMetadataFetch,
CivitaiMetadata
ModelMetadataStore,
)
# to access the initialized sql database
from invokeai.app.api.dependencies import ApiDependencies
hf = HuggingFaceMetadataFetch()
civitai = CivitaiMetadataFetch()
# fetch the metadata
model_metadata = hf.from_id("<repo_id>")
model_metadata = civitai.from_url("https://civitai.com/models/215796")
assert isinstance(model_metadata, HuggingFaceMetadata)
# get some common metadata fields
author = model_metadata.author
tags = model_metadata.tags
# get some Civitai-specific fields
assert isinstance(model_metadata, CivitaiMetadata)
trained_words = model_metadata.trained_words
base_model = model_metadata.base_model_trained_on
thumbnail = model_metadata.thumbnail_url
# cache the metadata to the database using the key corresponding to
# an existing model config record in the `model_config` table
sql_cache = ModelMetadataStore(ApiDependencies.invoker.services.db)
sql_cache.add_metadata('fb237ace520b6716adc98bcb16e8462c', model_metadata)
# now we can search the database by tag, author or model name
# matches will contain a list of model keys that match the search
matches = sql_cache.search_by_tag({"tool", "turbo"})
```
### Structure of the Metadata objects
@ -1259,6 +1328,7 @@ This is the common base class for metadata:
| `author` | str | Model's author |
| `tags` | Set[str] | Model tags |
Note that the model config record also has a `name` field. It is
intended that the config record version be locally customizable, while
the metadata version is read-only. However, enforcing this is expected
@ -1278,14 +1348,53 @@ This descends from `ModelMetadataBase` and adds the following fields:
| `last_modified`| datetime | Date of last commit of this model to the repo |
| `files` | List[Path] | List of the files in the model repo |
#### `CivitaiMetadata`
This descends from `ModelMetadataBase` and adds the following fields:
| **Field Name** | **Type** | **Description** |
|----------------|-----------------|------------------|
| `type` | Literal["civitai"] | Used for the discriminated union of metadata classes|
| `id` | int | Civitai model id |
| `version_name` | str | Name of this version of the model (distinct from model name) |
| `version_id` | int | Civitai model version id (distinct from model id) |
| `created` | datetime | Date this version of the model was created |
| `updated` | datetime | Date this version of the model was last updated |
| `published` | datetime | Date this version of the model was published to Civitai |
| `description` | str | Model description. Quite verbose and contains HTML tags |
| `version_description` | str | Model version description, usually describes changes to the model |
| `nsfw` | bool | Whether the model tends to generate NSFW content |
| `restrictions` | LicenseRestrictions | An object that describes what is and isn't allowed with this model |
| `trained_words`| Set[str] | Trigger words for this model, if any |
| `download_url` | AnyHttpUrl | URL for downloading this version of the model |
| `base_model_trained_on` | str | Name of the model that this version was trained on |
| `thumbnail_url` | AnyHttpUrl | URL to access a representative thumbnail image of the model's output |
| `weight_min` | int | For LoRA sliders, the minimum suggested weight to apply |
| `weight_max` | int | For LoRA sliders, the maximum suggested weight to apply |
Note that `weight_min` and `weight_max` are not currently populated
and take the default values of (-1.0, +2.0). The issue is that these
values aren't part of the structured data but appear in the text
description. Some regular expression or LLM coding may be able to
extract these values.
Also be aware that `base_model_trained_on` is free text and doesn't
correspond to our `ModelType` enum.
`CivitaiMetadata` also defines some convenience properties relating to
licensing restrictions: `credit_required`, `allow_commercial_use`,
`allow_derivatives` and `allow_different_license`.
#### `AnyModelRepoMetadata`
This is a discriminated Union of `HuggingFaceMetadata`.
This is a discriminated Union of `CivitaiMetadata` and
`HuggingFaceMetadata`.
### Fetching Metadata from Online Repos
The `HuggingFaceMetadataFetch` class will
retrieve metadata from its corresponding repository and return
The `HuggingFaceMetadataFetch` and `CivitaiMetadataFetch` classes will
retrieve metadata from their corresponding repositories and return
`AnyModelRepoMetadata` objects. Their base class
`ModelMetadataFetchBase` is an abstract class that defines two
methods: `from_url()` and `from_id()`. The former accepts the type of
@ -1303,17 +1412,98 @@ provide a `requests.Session` argument. This allows you to customize
the low-level HTTP fetch requests and is used, for instance, in the
testing suite to avoid hitting the internet.
The HuggingFace fetcher subclass add additional repo-specific fetching methods:
The HuggingFace and Civitai fetcher subclasses add additional
repo-specific fetching methods:
#### HuggingFaceMetadataFetch
This overrides its base class `from_json()` method to return a
`HuggingFaceMetadata` object directly.
#### CivitaiMetadataFetch
This adds the following methods:
`from_civitai_modelid()` This takes the ID of a model, finds the
default version of the model, and then retrieves the metadata for
that version, returning a `CivitaiMetadata` object directly.
`from_civitai_versionid()` This takes the ID of a model version and
retrieves its metadata. Functionally equivalent to `from_id()`, the
only difference is that it returna a `CivitaiMetadata` object rather
than an `AnyModelRepoMetadata`.
### Metadata Storage
The `ModelConfigBase` stores this response in the `source_api_response` field
as a JSON blob.
The `ModelMetadataStore` provides a simple facility to store model
metadata in the `invokeai.db` database. The data is stored as a JSON
blob, with a few common fields (`name`, `author`, `tags`) broken out
to be searchable.
When a metadata object is saved to the database, it is identified
using the model key, _and this key must correspond to an existing
model key in the model_config table_. There is a foreign key integrity
constraint between the `model_config.id` field and the
`model_metadata.id` field such that if you attempt to save metadata
under an unknown key, the attempt will result in an
`UnknownModelException`. Likewise, when a model is deleted from
`model_config`, the deletion of the corresponding metadata record will
be triggered.
Tags are stored in a normalized fashion in the tables `model_tags` and
`tags`. Triggers keep the tag table in sync with the `model_metadata`
table.
To create the storage object, initialize it with the InvokeAI
`SqliteDatabase` object. This is often done this way:
```
from invokeai.app.api.dependencies import ApiDependencies
metadata_store = ModelMetadataStore(ApiDependencies.invoker.services.db)
```
You can then access the storage with the following methods:
#### `add_metadata(key, metadata)`
Add the metadata using a previously-defined model key.
There is currently no `delete_metadata()` method. The metadata will
persist until the matching config is deleted from the `model_config`
table.
#### `get_metadata(key) -> AnyModelRepoMetadata`
Retrieve the metadata corresponding to the model key.
#### `update_metadata(key, new_metadata)`
Update an existing metadata record with new metadata.
#### `search_by_tag(tags: Set[str]) -> Set[str]`
Given a set of tags, find models that are tagged with them. If
multiple tags are provided then a matching model must be tagged with
*all* the tags in the set. This method returns a set of model keys and
is intended to be used in conjunction with the `ModelRecordService`:
```
model_config_store = ApiDependencies.invoker.services.model_records
matches = metadata_store.search_by_tag({'license:other'})
models = [model_config_store.get(x) for x in matches]
```
#### `search_by_name(name: str) -> Set[str]
Find all model metadata records that have the given name and return a
set of keys to the corresponding model config objects.
#### `search_by_author(author: str) -> Set[str]
Find all model metadata records that have the given author and return
a set of keys to the corresponding model config objects.
***
@ -1345,16 +1535,16 @@ from invokeai.app.services.model_load import ModelLoadService, ModelLoaderRegist
config = InvokeAIAppConfig.get_config()
ram_cache = ModelCache(
max_cache_size=config.ram_cache_size, max_vram_cache_size=config.vram_cache_size, logger=logger
max_cache_size=config.ram_cache_size, max_vram_cache_size=config.vram_cache_size, logger=logger
)
convert_cache = ModelConvertCache(
cache_path=config.models_convert_cache_path, max_size=config.convert_cache_size
cache_path=config.models_convert_cache_path, max_size=config.convert_cache_size
)
loader = ModelLoadService(
app_config=config,
ram_cache=ram_cache,
convert_cache=convert_cache,
registry=ModelLoaderRegistry
app_config=config,
ram_cache=ram_cache,
convert_cache=convert_cache,
registry=ModelLoaderRegistry
)
```
@ -1377,6 +1567,7 @@ The returned `LoadedModel` object contains a copy of the configuration
record returned by the model record `get_model()` method, as well as
the in-memory loaded model:
| **Attribute Name** | **Type** | **Description** |
|----------------|-----------------|------------------|
| `config` | AnyModelConfig | A copy of the model's configuration record for retrieving base type, etc. |
@ -1390,6 +1581,7 @@ return `AnyModel`, a Union `ModelMixin`, `torch.nn.Module`,
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
models. The others are obvious.
`LoadedModel` acts as a context manager. The context loads the model
into the execution device (e.g. VRAM on CUDA systems), locks the model
in the execution device for the duration of the context, and returns
@ -1398,14 +1590,14 @@ the model. Use it like this:
```
model_info = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with model_info as vae:
image = vae.decode(latents)[0]
image = vae.decode(latents)[0]
```
`get_model_by_key()` may raise any of the following exceptions:
* `UnknownModelException` -- key not in database
* `ModelNotFoundException` -- key in database but model not found at path
* `NotImplementedException` -- the loader doesn't know how to load this type of model
- `UnknownModelException` -- key not in database
- `ModelNotFoundException` -- key in database but model not found at path
- `NotImplementedException` -- the loader doesn't know how to load this type of model
### Emitting model loading events
@ -1417,15 +1609,15 @@ following payload:
```
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_key=model_key,
submodel_type=submodel,
hash=model_info.hash,
location=str(model_info.location),
precision=str(model_info.precision),
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_key=model_key,
submodel_type=submodel,
hash=model_info.hash,
location=str(model_info.location),
precision=str(model_info.precision),
)
```
@ -1532,7 +1724,6 @@ object, or in `context.services.model_manager` from within an
invocation.
In the examples below, we have retrieved the manager using:
```
mm = ApiDependencies.invoker.services.model_manager
```

View File

@ -1,133 +0,0 @@
# Invoke UI
Invoke's UI is made possible by many contributors and open-source libraries. Thank you!
## Dev environment
### Setup
1. Install [node] and [pnpm].
1. Run `pnpm i` to install all packages.
#### Run in dev mode
1. From `invokeai/frontend/web/`, run `pnpm dev`.
1. From repo root, run `python scripts/invokeai-web.py`.
1. Point your browser to the dev server address, e.g. <http://localhost:5173/>
### Package scripts
- `dev`: run the frontend in dev mode, enabling hot reloading
- `build`: run all checks (madge, eslint, prettier, tsc) and then build the frontend
- `typegen`: generate types from the OpenAPI schema (see [Type generation])
- `lint:dpdm`: check circular dependencies
- `lint:eslint`: check code quality
- `lint:prettier`: check code formatting
- `lint:tsc`: check type issues
- `lint:knip`: check for unused exports or objects (failures here are just suggestions, not hard fails)
- `lint`: run all checks concurrently
- `fix`: run `eslint` and `prettier`, fixing fixable issues
### Type generation
We use [openapi-typescript] to generate types from the app's OpenAPI schema.
The generated types are committed to the repo in [schema.ts].
```sh
# from the repo root, start the server
python scripts/invokeai-web.py
# from invokeai/frontend/web/, run the script
pnpm typegen
```
### Localization
We use [i18next] for localization, but translation to languages other than English happens on our [Weblate] project.
Only the English source strings should be changed on this repo.
### VSCode
#### Example debugger config
```jsonc
{
"version": "0.2.0",
"configurations": [
{
"type": "chrome",
"request": "launch",
"name": "Invoke UI",
"url": "http://localhost:5173",
"webRoot": "${workspaceFolder}/invokeai/frontend/web"
}
]
}
```
#### Remote dev
We've noticed an intermittent timeout issue with the VSCode remote dev port forwarding.
We suggest disabling the editor's port forwarding feature and doing it manually via SSH:
```sh
ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host
```
## Contributing Guidelines
Thanks for your interest in contributing to the Invoke Web UI!
Please follow these guidelines when contributing.
### Check in before investing your time
Please check in before you invest your time on anything besides a trivial fix, in case it conflicts with ongoing work or isn't aligned with the vision for the app.
If a feature request or issue doesn't already exist for the thing you want to work on, please create one.
Ping `@psychedelicious` on [discord] in the `#frontend-dev` channel or in the feature request / issue you want to work on - we're happy to chat.
### Code conventions
- This is a fairly complex app with a deep component tree. Please use memoization (`useCallback`, `useMemo`, `memo`) with enthusiasm.
- If you need to add some global, ephemeral state, please use [nanostores] if possible.
- Be careful with your redux selectors. If they need to be parameterized, consider creating them inside a `useMemo`.
- Feel free to use `lodash` (via `lodash-es`) to make the intent of your code clear.
- Please add comments describing the "why", not the "how" (unless it is really arcane).
### Commit format
Please use the [conventional commits] spec for the web UI, with a scope of "ui":
- `chore(ui): bump deps`
- `chore(ui): lint`
- `feat(ui): add some cool new feature`
- `fix(ui): fix some bug`
### Submitting a PR
- Ensure your branch is tidy. Use an interactive rebase to clean up the commit history and reword the commit messages if they are not descriptive.
- Run `pnpm lint`. Some issues are auto-fixable with `pnpm fix`.
- Fill out the PR form when creating the PR.
- It doesn't need to be super detailed, but a screenshot or video is nice if you changed something visually.
- If a section isn't relevant, delete it. There are no UI tests at this time.
## Other docs
- [Workflows - Design and Implementation]
- [State Management]
[node]: https://nodejs.org/en/download/
[pnpm]: https://github.com/pnpm/pnpm
[discord]: https://discord.gg/ZmtBAhwWhy
[i18next]: https://github.com/i18next/react-i18next
[Weblate]: https://hosted.weblate.org/engage/invokeai/
[openapi-typescript]: https://github.com/drwpow/openapi-typescript
[Type generation]: #type-generation
[schema.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/services/api/schema.ts
[conventional commits]: https://www.conventionalcommits.org/en/v1.0.0/
[Workflows - Design and Implementation]: ./WORKFLOWS.md
[State Management]: ./STATE_MGMT.md

View File

@ -31,18 +31,18 @@ be referred to as ROOT.
To find its root directory, InvokeAI uses the following recipe:
1. It first looks for the argument `--root <path>` on the command line
it was launched from, and uses the indicated path if present.
it was launched from, and uses the indicated path if present.
2. Next it looks for the environment variable INVOKEAI_ROOT, and uses
the directory path found there if present.
the directory path found there if present.
3. If neither of these are present, then InvokeAI looks for the
folder containing the `.venv` Python virtual environment directory for
the currently active environment. This directory is checked for files
expected inside the InvokeAI root before it is used.
folder containing the `.venv` Python virtual environment directory for
the currently active environment. This directory is checked for files
expected inside the InvokeAI root before it is used.
4. Finally, InvokeAI looks for a directory in the current user's home
directory named `invokeai`.
directory named `invokeai`.
#### Reading the InvokeAI Configuration File
@ -149,75 +149,104 @@ usage: InvokeAI [-h] [--host HOST] [--port PORT] [--allow_origins [ALLOW_ORIGINS
## The Configuration Settings
The config is managed by the `InvokeAIAppConfig` class, which is a pydantic model. The below docs are autogenerated from the class.
The configuration settings are divided into several distinct
groups in `invokeia.yaml`:
When editing your `invokeai.yaml` file, you'll need to put settings under their appropriate group. The group for each setting is denoted in the table below.
### Web Server
Following the table are additional explanations for certain settings.
| Setting | Default Value | Description |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
| `ssl_certfile` | null | Path to an SSL certificate file, used to enable HTTPS. |
| `ssl_keyfile` | null | Path to an SSL keyfile, if the key is not included in the certificate file. |
<!-- prettier-ignore-start -->
::: invokeai.app.services.config.config_default.InvokeAIAppConfig
options:
heading_level: 3
members: false
<!-- prettier-ignore-end -->
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].
### Model Marketplace API Keys
### Features
Some model marketplaces require an API key to download models. You can provide a URL pattern and appropriate token in your `invokeai.yaml` file to provide that API key.
These configuration settings allow you to enable and disable various InvokeAI features:
The pattern can be any valid regex (you may need to surround the pattern with quotes):
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `esrgan` | `true` | Activate the ESRGAN upscaling options|
| `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet |
| `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected |
| `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting |
```yaml
InvokeAI:
Model Install:
remote_api_tokens:
# Any URL containing `models.com` will automatically use `your_models_com_token`
- url_regex: models.com
token: your_models_com_token
# Any URL matching this contrived regex will use `some_other_token`
- url_regex: '^[a-z]{3}whatever.*\.com$'
token: some_other_token
```
### Generation
The provided token will be added as a `Bearer` token to the network requests to download the model files. As far as we know, this works for all model marketplaces that require authorization.
These options tune InvokeAI's memory and performance characteristics.
### Model Hashing
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `sequential_guidance` | `false` | Calculate guidance in serial rather than in parallel, lowering memory requirements at the cost of some performance loss |
| `attention_type` | `auto` | Select the type of attention to use. One of `auto`,`normal`,`xformers`,`sliced`, or `torch-sdp` |
| `attention_slice_size` | `auto` | When "sliced" attention is selected, set the slice size. One of `auto`, `balanced`, `max` or the integers 1-8|
| `force_tiled_decode` | `false` | Force the VAE step to decode in tiles, reducing memory consumption at the cost of performance |
Models are hashed during installation, providing a stable identifier for models across all platforms. The default algorithm is `blake3`, with a multi-threaded implementation.
### Device
If your models are stored on a spinning hard drive, we suggest using `blake3_single`, the single-threaded implementation. The hashes are the same, but it's much faster on spinning disks.
These options configure the generation execution device.
```yaml
InvokeAI:
Model Install:
hashing_algorithm: blake3_single
```
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `device` | `auto` | Preferred execution device. One of `auto`, `cpu`, `cuda`, `cuda:1`, `mps`. `auto` will choose the device depending on the hardware platform and the installed torch capabilities. |
| `precision` | `auto` | Floating point precision. One of `auto`, `float16` or `float32`. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system |
Model hashing is a one-time operation, but it may take a couple minutes to hash a large model collection. You may opt out of model hashing entirely by setting the algorithm to `random`.
```yaml
InvokeAI:
Model Install:
hashing_algorithm: random
```
Most common algorithms are supported, like `md5`, `sha256`, and `sha512`. These are typically much, much slower than `blake3`.
### Paths
These options set the paths of various directories and files used by
InvokeAI. Relative paths are interpreted relative to the root directory, so
if root is `/home/fred/invokeai` and the path is
InvokeAI. Relative paths are interpreted relative to INVOKEAI_ROOT, so
if INVOKEAI_ROOT is `/home/fred/invokeai` and the path is
`autoimport/main`, then the corresponding directory will be located at
`/home/fred/invokeai/autoimport/main`.
Note that the autoimport directory will be searched recursively,
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `autoimport_dir` | `autoimport/main` | At startup time, read and import any main model files found in this directory |
| `lora_dir` | `autoimport/lora` | At startup time, read and import any LoRA/LyCORIS models found in this directory |
| `embedding_dir` | `autoimport/embedding` | At startup time, read and import any textual inversion (embedding) models found in this directory |
| `controlnet_dir` | `autoimport/controlnet` | At startup time, read and import any ControlNet models found in this directory |
| `conf_path` | `configs/models.yaml` | Location of the `models.yaml` model configuration file |
| `models_dir` | `models` | Location of the directory containing models installed by InvokeAI's model manager |
| `legacy_conf_dir` | `configs/stable-diffusion` | Location of the directory containing the .yaml configuration files for legacy checkpoint models |
| `db_dir` | `databases` | Location of the directory containing InvokeAI's image, schema and session database |
| `outdir` | `outputs` | Location of the directory in which the gallery of generated and uploaded images will be stored |
| `use_memory_db` | `false` | Keep database information in memory rather than on disk; this will not preserve image gallery information across restarts |
Note that the autoimport directories will be searched recursively,
allowing you to organize the models into folders and subfolders in any
way you wish.
way you wish. In addition, while we have split up autoimport
directories by the type of model they contain, this isn't
necessary. You can combine different model types in the same folder
and InvokeAI will figure out what they are. So you can easily use just
one autoimport directory by commenting out the unneeded paths:
```
Paths:
autoimport_dir: autoimport
# lora_dir: null
# embedding_dir: null
# controlnet_dir: null
```
### Logging
These settings control the information, warning, and debugging
messages printed to the console log while InvokeAI is running:
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `log_handlers` | `console` | This controls where log messages are sent, and can be a list of one or more destinations. Values include `console`, `file`, `syslog` and `http`. These are described in more detail below |
| `log_format` | `color` | This controls the formatting of the log messages. Values are `plain`, `color`, `legacy` and `syslog` |
| `log_level` | `debug` | This filters messages according to the level of severity and can be one of `debug`, `info`, `warning`, `error` and `critical`. For example, setting to `warning` will display all messages at the warning level or higher, but won't display "debug" or "info" messages |
Several different log handler destinations are available, and multiple destinations are supported by providing a list:
```
@ -227,9 +256,9 @@ Several different log handler destinations are available, and multiple destinati
- file=/var/log/invokeai.log
```
- `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
* `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
- `syslog` is only available on Linux and Macintosh systems. It uses
* `syslog` is only available on Linux and Macintosh systems. It uses
the operating system's "syslog" facility to write log file entries
locally or to a remote logging machine. `syslog` offers a variety
of configuration options:
@ -242,7 +271,7 @@ Several different log handler destinations are available, and multiple destinati
- Log to LAN-connected server "fredserver" using the facility LOG_USER and datagram packets.
```
- `http` can be used to log to a remote web server. The server must be
* `http` can be used to log to a remote web server. The server must be
properly configured to receive and act on log messages. The option
accepts the URL to the web server, and a `method` argument
indicating whether the message should be submitted using the GET or
@ -254,7 +283,7 @@ Several different log handler destinations are available, and multiple destinati
The `log_format` option provides several alternative formats:
- `color` - default format providing time, date and a message, using text colors to distinguish different log severities
- `plain` - same as above, but monochrome text only
- `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
- `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.
* `color` - default format providing time, date and a message, using text colors to distinguish different log severities
* `plain` - same as above, but monochrome text only
* `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
* `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.

View File

@ -1,35 +0,0 @@
---
title: Database
---
# Invoke's SQLite Database
Invoke uses a SQLite database to store image, workflow, model, and execution data.
We take great care to ensure your data is safe, by utilizing transactions and a database migration system.
Even so, when testing an prerelease version of the app, we strongly suggest either backing up your database or using an in-memory database. This ensures any prelease hiccups or databases schema changes will not cause problems for your data.
## Database Backup
Backing up your database is very simple. Invoke's data is stored in an `$INVOKEAI_ROOT` directory - where your `invoke.sh`/`invoke.bat` and `invokeai.yaml` files live.
To back up your database, copy the `invokeai.db` file from `$INVOKEAI_ROOT/databases/invokeai.db` to somewhere safe.
If anything comes up during prelease testing, you can simply copy your backup back into `$INVOKEAI_ROOT/databases/`.
## In-Memory Database
SQLite can run on an in-memory database. Your existing database is untouched when this mode is enabled, but your existing data won't be accessible.
This is very useful for testing, as there is no chance of a database change modifying your "physical" database.
To run Invoke with a memory database, edit your `invokeai.yaml` file, and add `use_memory_db: true` to the `Paths:` stanza:
```yaml
InvokeAI:
Development:
use_memory_db: true
```
Delete this line (or set it to `false`) to use your main database.

View File

@ -22,24 +22,6 @@ class MyInvocation(BaseInvocation):
...
```
The full API is documented below.
## Invocation Mixins
Two important mixins are provided to facilitate working with metadata and gallery boards.
### `WithMetadata`
Inherit from this class (in addition to `BaseInvocation`) to add a `metadata` input to your node. When you do this, you can access the metadata dict from `self.metadata` in the `invoke()` function.
The dict will be populated via the node's input, and you can add any metadata you'd like to it. When you call `context.images.save()`, if the metadata dict has any data, it be automatically embedded in the image.
### `WithBoard`
Inherit from this class (in addition to `BaseInvocation`) to add a `board` input to your node. This renders as a drop-down to select a board. The user's selection will be accessible from `self.board` in the `invoke()` function.
When you call `context.images.save()`, if a board was selected, the image will added to that board as it is saved.
<!-- prettier-ignore-start -->
::: invokeai.app.services.shared.invocation_context.InvocationContext
options:

View File

@ -32,7 +32,6 @@ To use a community workflow, download the the `.json` node graph file and load i
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
+ [Image Picker](#image-picker)
+ [Image Resize Plus](#image-resize-plus)
+ [Latent Upscale](#latent-upscale)
+ [Load Video Frame](#load-video-frame)
+ [Make 3D](#make-3d)
+ [Mask Operations](#mask-operations)
@ -291,13 +290,6 @@ View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-resize-plus-node/master/.readme/node.png" width="500" />
--------------------------------
### Latent Upscale
**Description:** This node uses a small (~2.4mb) model to upscale the latents used in a Stable Diffusion 1.5 or Stable Diffusion XL image generation, rather than the typical interpolation method, avoiding the traditional downsides of the latent upscale technique.
**Node Link:** [https://github.com/gogurtenjoyer/latent-upscale](https://github.com/gogurtenjoyer/latent-upscale)
--------------------------------
### Load Video Frame
@ -354,21 +346,12 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Description:** A set of nodes for Metadata. Collect Metadata from within an `iterate` node & extract metadata from an image.
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node
- `Metadata From Image` - Provides Metadata from an image
- `Metadata To String` - Extracts a String value of a label from metadata
- `Metadata To Integer` - Extracts an Integer value of a label from metadata
- `Metadata To Float` - Extracts a Float value of a label from metadata
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata
- `Metadata To Bool` - Extracts Bool types from metadata
- `Metadata To Model` - Extracts model types from metadata
- `Metadata To SDXL Model` - Extracts SDXL model types from metadata
- `Metadata To LoRAs` - Extracts Loras from metadata.
- `Metadata To SDXL LoRAs` - Extracts SDXL Loras from metadata
- `Metadata To ControlNets` - Extracts ControNets from metadata
- `Metadata To IP-Adapters` - Extracts IP-Adapters from metadata
- `Metadata To T2I-Adapters` - Extracts T2I-Adapters from metadata
- `Denoise Latents + Metadata` - This is an inherited version of the existing `Denoise Latents` node but with a metadata input and output.
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node.
- `Metadata From Image` - Provides Metadata from an image.
- `Metadata To String` - Extracts a String value of a label from metadata.
- `Metadata To Integer` - Extracts an Integer value of a label from metadata.
- `Metadata To Float` - Extracts a Float value of a label from metadata.
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata.
**Node Link:** https://github.com/skunkworxdark/metadata-linked-nodes

View File

@ -19,8 +19,6 @@ their descriptions.
| Conditioning Primitive | A conditioning tensor primitive value |
| Content Shuffle Processor | Applies content shuffle processing to image |
| ControlNet | Collects ControlNet info to pass to other nodes |
| Create Denoise Mask | Converts a greyscale or transparency image into a mask for denoising. |
| Create Gradient Mask | Creates a mask for Gradient ("soft", "differential") inpainting that gradually expands during denoising. Improves edge coherence. |
| Denoise Latents | Denoises noisy latents to decodable images |
| Divide Integers | Divides two numbers |
| Dynamic Prompt | Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator |

View File

@ -2,18 +2,22 @@
set -e
BCYAN="\033[1;36m"
BYELLOW="\033[1;33m"
BGREEN="\033[1;32m"
BRED="\033[1;31m"
RED="\033[31m"
RESET="\033[0m"
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function is_bin_in_path {
builtin type -P "$1" &>/dev/null
}
function git_show {
git show -s --format=oneline --abbrev-commit "$1" | cat
}
if [[ ! -z "${VIRTUAL_ENV}" ]]; then
if [[ -v "VIRTUAL_ENV" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
@ -22,63 +26,31 @@ fi
cd "$(dirname "$0")"
echo
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
echo
# Some machines only have `python3` in PATH, others have `python` - make an alias.
# We can use a function to approximate an alias within a non-interactive shell.
if ! is_bin_in_path python && is_bin_in_path python3; then
function python {
python3 "$@"
}
fi
VERSION=$(
cd ..
python3 -c "from invokeai.version import __version__ as version; print(version)"
python -c "from invokeai.version import __version__ as version; print(version)"
)
VERSION="v${VERSION}"
if [[ ! -z ${CI} ]]; then
echo
echo -e "${BCYAN}CI environment detected${RESET}"
echo
else
echo
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
echo
fi
PATCH=""
VERSION="v${VERSION}${PATCH}"
echo -e "${BGREEN}HEAD${RESET}:"
git_show HEAD
echo
# ---------------------- FRONTEND ----------------------
pushd ../invokeai/frontend/web >/dev/null
echo "Installing frontend dependencies..."
echo
pnpm i --frozen-lockfile
echo
if [[ ! -z ${CI} ]]; then
echo "Building frontend without checks..."
# In CI, we have already done the frontend checks and can just build
pnpm vite build
else
echo "Running checks and building frontend..."
# This runs all the frontend checks and builds
pnpm build
fi
echo
popd
# ---------------------- BACKEND ----------------------
echo
echo "Building wheel..."
echo
# install the 'build' package in the user site packages, if needed
# could be improved by using a temporary venv, but it's tiny and harmless
if [[ $(python3 -c 'from importlib.util import find_spec; print(find_spec("build") is None)') == "True" ]]; then
pip install --user build
fi
rm -rf ../build
python3 -m build --outdir dist/ ../.
# ----------------------
echo
@ -106,28 +78,10 @@ chmod a+x InvokeAI-Installer/install.sh
cp install.bat.in InvokeAI-Installer/install.bat
cp WinLongPathsEnabled.reg InvokeAI-Installer/
FILENAME=InvokeAI-installer-$VERSION.zip
# Zip everything up
zip -r ${FILENAME} InvokeAI-Installer
zip -r InvokeAI-installer-$VERSION.zip InvokeAI-Installer
echo
echo -e "${BGREEN}Built installer: ./${FILENAME}${RESET}"
echo -e "${BGREEN}Built PyPi distribution: ./dist${RESET}"
# clean up, but only if we are not in a github action
if [[ -z ${CI} ]]; then
echo
echo "Cleaning up intermediate build files..."
rm -rf InvokeAI-Installer tmp ../invokeai/frontend/web/dist/
fi
if [[ ! -z ${CI} ]]; then
echo
echo "Setting GitHub action outputs..."
echo "INSTALLER_FILENAME=${FILENAME}" >>$GITHUB_OUTPUT
echo "INSTALLER_PATH=installer/${FILENAME}" >>$GITHUB_OUTPUT
echo "DIST_PATH=installer/dist/" >>$GITHUB_OUTPUT
fi
# clean up
rm -rf InvokeAI-Installer tmp dist ../invokeai/frontend/web/dist/
exit 0

View File

@ -2,12 +2,12 @@
set -e
BCYAN="\033[1;36m"
BYELLOW="\033[1;33m"
BGREEN="\033[1;32m"
BRED="\033[1;31m"
RED="\033[31m"
RESET="\033[0m"
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function does_tag_exist {
git rev-parse --quiet --verify "refs/tags/$1" >/dev/null
@ -23,40 +23,49 @@ function git_show {
VERSION=$(
cd ..
python3 -c "from invokeai.version import __version__ as version; print(version)"
python -c "from invokeai.version import __version__ as version; print(version)"
)
PATCH=""
MAJOR_VERSION=$(echo $VERSION | sed 's/\..*$//')
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v${MAJOR_VERSION}-latest"
if does_tag_exist $VERSION; then
echo -e "${BCYAN}${VERSION}${RESET} already exists:"
git_show_ref tags/$VERSION
echo
fi
if does_tag_exist $LATEST_TAG; then
echo -e "${BCYAN}${LATEST_TAG}${RESET} already exists:"
git_show_ref tags/$LATEST_TAG
echo
fi
echo -e "${BGREEN}HEAD${RESET}:"
git_show
echo
echo -e "${BGREEN}git remote -v${RESET}:"
git remote -v
echo
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on origin remote${RESET}? "
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} and ${BCYAN}${LATEST_TAG}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on remote${RESET}? "
read -e -p 'y/n [n]: ' input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
echo
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on origin remote..."
git push origin :refs/tags/$VERSION
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on remote..."
git push --delete origin $VERSION
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} on locally..."
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} locally..."
if ! git tag -fa $VERSION; then
echo "Existing/invalid tag"
exit -1
fi
echo -e "Pushing updated tags to origin remote..."
echo -e "Deleting ${BCYAN}${LATEST_TAG}${RESET} tag on remote..."
git push --delete origin $LATEST_TAG
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${LATEST_TAG}${RESET} locally..."
git tag -fa $LATEST_TAG
echo -e "Pushing updated tags to remote..."
git push origin --tags
fi
exit 0

View File

@ -25,8 +25,8 @@ from ..services.invocation_cache.invocation_cache_memory import MemoryInvocation
from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker
from ..services.model_images.model_images_default import ModelImageFileStorageDisk
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_metadata import ModelMetadataStoreSQL
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
@ -72,8 +72,6 @@ class ApiDependencies:
image_files = DiskImageFileStorage(f"{output_folder}/images")
model_images_folder = config.models_path
db = init_db(config=config, logger=logger, image_files=image_files)
configuration = config
@ -95,10 +93,10 @@ class ApiDependencies:
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
)
download_queue_service = DownloadQueueService(event_bus=events)
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
model_metadata_service = ModelMetadataStoreSQL(db=db)
model_manager = ModelManagerService.build_model_manager(
app_config=configuration,
model_record_service=ModelRecordServiceSQL(db=db),
model_record_service=ModelRecordServiceSQL(db=db, metadata_store=model_metadata_service),
download_queue=download_queue_service,
events=events,
)
@ -122,7 +120,6 @@ class ApiDependencies:
images=images,
invocation_cache=invocation_cache,
logger=logger,
model_images=model_images_service,
model_manager=model_manager,
download_queue=download_queue_service,
names=names,

View File

@ -1,26 +1,27 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import io
import pathlib
import shutil
import traceback
from typing import Any, Dict, List, Optional
from hashlib import sha1
from random import randbytes
from typing import Any, Dict, List, Optional, Set
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
from pydantic import BaseModel, ConfigDict, Field
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
ModelRecordOrderBy,
ModelSummary,
UnknownModelException,
)
from invokeai.app.services.model_records.model_records_base import DuplicateModelException, ModelRecordChanges
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
@ -29,17 +30,14 @@ from invokeai.backend.model_manager.config import (
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.merge import MergeInterpolationMethod, ModelMerger
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from invokeai.backend.model_manager.search import ModelSearch
from ..dependencies import ApiDependencies
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
# images are immutable; set a high max-age
IMAGE_MAX_AGE = 31536000
class ModelsList(BaseModel):
"""Return list of configs."""
@ -49,6 +47,15 @@ class ModelsList(BaseModel):
model_config = ConfigDict(use_enum_values=True)
class ModelTagSet(BaseModel):
"""Return tags for a set of models."""
key: str
name: str
author: str
tags: Set[str]
##############################################################################
# These are example inputs and outputs that are used in places where Swagger
# is unable to generate a correct example.
@ -59,16 +66,19 @@ example_model_config = {
"base": "sd-1",
"type": "main",
"format": "checkpoint",
"config_path": "string",
"config": "string",
"key": "string",
"hash": "string",
"original_hash": "string",
"current_hash": "string",
"description": "string",
"source": "string",
"converted_at": 0,
"last_modified": 0,
"vae": "string",
"variant": "normal",
"prediction_type": "epsilon",
"repo_variant": "fp16",
"upcast_attention": False,
"ztsnr_training": False,
}
example_model_input = {
@ -77,12 +87,50 @@ example_model_input = {
"base": "sd-1",
"type": "main",
"format": "checkpoint",
"config_path": "configs/stable-diffusion/v1-inference.yaml",
"config": "configs/stable-diffusion/v1-inference.yaml",
"description": "Model description",
"vae": None,
"variant": "normal",
}
example_model_metadata = {
"name": "ip_adapter_sd_image_encoder",
"author": "InvokeAI",
"tags": [
"transformers",
"safetensors",
"clip_vision_model",
"endpoints_compatible",
"region:us",
"has_space",
"license:apache-2.0",
],
"files": [
{
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/README.md",
"path": "ip_adapter_sd_image_encoder/README.md",
"size": 628,
"sha256": None,
},
{
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/config.json",
"path": "ip_adapter_sd_image_encoder/config.json",
"size": 560,
"sha256": None,
},
{
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/model.safetensors",
"path": "ip_adapter_sd_image_encoder/model.safetensors",
"size": 2528373448,
"sha256": "6ca9667da1ca9e0b0f75e46bb030f7e011f44f86cbfb8d5a36590fcd7507b030",
},
],
"type": "huggingface",
"id": "InvokeAI/ip_adapter_sd_image_encoder",
"tag_dict": {"license": "apache-2.0"},
"last_modified": "2023-09-23T17:33:25Z",
}
##############################################################################
# ROUTES
##############################################################################
@ -114,9 +162,6 @@ async def list_model_records(
found_models.extend(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
for model in found_models:
cover_image = ApiDependencies.invoker.services.model_images.get_url(model.key)
model.cover_image = cover_image
return ModelsList(models=found_models)
@ -160,23 +205,53 @@ async def get_model_record(
record_store = ApiDependencies.invoker.services.model_manager.store
try:
config: AnyModelConfig = record_store.get_model(key)
cover_image = ApiDependencies.invoker.services.model_images.get_url(key)
config.cover_image = cover_image
return config
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
# @model_manager_router.get("/summary", operation_id="list_model_summary")
# async def list_model_summary(
# page: int = Query(default=0, description="The page to get"),
# per_page: int = Query(default=10, description="The number of models per page"),
# order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
# ) -> PaginatedResults[ModelSummary]:
# """Gets a page of model summary data."""
# record_store = ApiDependencies.invoker.services.model_manager.store
# results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
# return results
@model_manager_router.get("/summary", operation_id="list_model_summary")
async def list_model_summary(
page: int = Query(default=0, description="The page to get"),
per_page: int = Query(default=10, description="The number of models per page"),
order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
) -> PaginatedResults[ModelSummary]:
"""Gets a page of model summary data."""
record_store = ApiDependencies.invoker.services.model_manager.store
results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
return results
@model_manager_router.get(
"/i/{key}/metadata",
operation_id="get_model_metadata",
responses={
200: {
"description": "The model metadata was retrieved successfully",
"content": {"application/json": {"example": example_model_metadata}},
},
400: {"description": "Bad request"},
},
)
async def get_model_metadata(
key: str = Path(description="Key of the model repo metadata to fetch."),
) -> Optional[AnyModelRepoMetadata]:
"""Get a model metadata object."""
record_store = ApiDependencies.invoker.services.model_manager.store
result: Optional[AnyModelRepoMetadata] = record_store.get_metadata(key)
return result
@model_manager_router.get(
"/tags",
operation_id="list_tags",
)
async def list_tags() -> Set[str]:
"""Get a unique set of all the model tags."""
record_store = ApiDependencies.invoker.services.model_manager.store
result: Set[str] = record_store.list_tags()
return result
class FoundModel(BaseModel):
@ -248,38 +323,17 @@ async def scan_for_models(
return scan_results
class HuggingFaceModels(BaseModel):
urls: List[AnyHttpUrl] | None = Field(description="URLs for all checkpoint format models in the metadata")
is_diffusers: bool = Field(description="Whether the metadata is for a Diffusers format model")
@model_manager_router.get(
"/hugging_face",
operation_id="get_hugging_face_models",
responses={
200: {"description": "Hugging Face repo scanned successfully"},
400: {"description": "Invalid hugging face repo"},
},
status_code=200,
response_model=HuggingFaceModels,
"/tags/search",
operation_id="search_by_metadata_tags",
)
async def get_hugging_face_models(
hugging_face_repo: str = Query(description="Hugging face repo to search for models", default=None),
) -> HuggingFaceModels:
try:
metadata = HuggingFaceMetadataFetch().from_id(hugging_face_repo)
except UnknownMetadataException:
raise HTTPException(
status_code=400,
detail="No HuggingFace repository found",
)
assert isinstance(metadata, ModelMetadataWithFiles)
return HuggingFaceModels(
urls=metadata.ckpt_urls,
is_diffusers=metadata.is_diffusers,
)
async def search_by_metadata_tags(
tags: Set[str] = Query(default=None, description="Tags to search for"),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_manager.store
results = record_store.search_by_metadata_tag(tags)
return ModelsList(models=results)
@model_manager_router.patch(
@ -298,13 +352,15 @@ async def get_hugging_face_models(
)
async def update_model_record(
key: Annotated[str, Path(description="Unique key of model")],
changes: Annotated[ModelRecordChanges, Body(description="Model config", example=example_model_input)],
info: Annotated[
AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
],
) -> AnyModelConfig:
"""Update a model's config."""
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_manager.store
try:
model_response: AnyModelConfig = record_store.update_model(key, changes=changes)
model_response: AnyModelConfig = record_store.update_model(key, config=info)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@ -314,85 +370,16 @@ async def update_model_record(
return model_response
@model_manager_router.get(
"/i/{key}/image",
operation_id="get_model_image",
responses={
200: {
"description": "The model image was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The model image could not be found"},
},
status_code=200,
)
async def get_model_image(
key: str = Path(description="The name of model image file to get"),
) -> FileResponse:
"""Gets an image file that previews the model"""
try:
path = ApiDependencies.invoker.services.model_images.get_path(key)
response = FileResponse(
path,
media_type="image/png",
filename=key + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@model_manager_router.patch(
"/i/{key}/image",
operation_id="update_model_image",
responses={
200: {
"description": "The model image was updated successfully",
},
400: {"description": "Bad request"},
},
status_code=200,
)
async def update_model_image(
key: Annotated[str, Path(description="Unique key of model")],
image: UploadFile,
) -> None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
logger = ApiDependencies.invoker.services.logger
model_images = ApiDependencies.invoker.services.model_images
try:
model_images.save(pil_image, key)
logger.info(f"Updated image for model: {key}")
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return
@model_manager_router.delete(
"/i/{key}",
operation_id="delete_model",
operation_id="del_model_record",
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
)
async def delete_model(
async def del_model_record(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""
@ -413,62 +400,42 @@ async def delete_model(
raise HTTPException(status_code=404, detail=str(e))
@model_manager_router.delete(
"/i/{key}/image",
operation_id="delete_model_image",
@model_manager_router.post(
"/i/",
operation_id="add_model_record",
responses={
204: {"description": "Model image deleted successfully"},
404: {"description": "Model image not found"},
201: {
"description": "The model added successfully",
"content": {"application/json": {"example": example_model_config}},
},
409: {"description": "There is already a model corresponding to this path or repo_id"},
415: {"description": "Unrecognized file/folder format"},
},
status_code=204,
status_code=201,
)
async def delete_model_image(
key: str = Path(description="Unique key of model image to remove from model_images directory."),
) -> None:
async def add_model_record(
config: Annotated[
AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
],
) -> AnyModelConfig:
"""Add a model using the configuration information appropriate for its type."""
logger = ApiDependencies.invoker.services.logger
model_images = ApiDependencies.invoker.services.model_images
record_store = ApiDependencies.invoker.services.model_manager.store
if config.key == "<NOKEY>":
config.key = sha1(randbytes(100)).hexdigest()
logger.info(f"Created model {config.key} for {config.name}")
try:
model_images.delete(key)
logger.info(f"Deleted model image: {key}")
return
except UnknownModelException as e:
record_store.add_model(config.key, config)
except DuplicateModelException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
raise HTTPException(status_code=409, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
# @model_manager_router.post(
# "/i/",
# operation_id="add_model_record",
# responses={
# 201: {
# "description": "The model added successfully",
# "content": {"application/json": {"example": example_model_config}},
# },
# 409: {"description": "There is already a model corresponding to this path or repo_id"},
# 415: {"description": "Unrecognized file/folder format"},
# },
# status_code=201,
# )
# async def add_model_record(
# config: Annotated[
# AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
# ],
# ) -> AnyModelConfig:
# """Add a model using the configuration information appropriate for its type."""
# logger = ApiDependencies.invoker.services.logger
# record_store = ApiDependencies.invoker.services.model_manager.store
# try:
# record_store.add_model(config)
# except DuplicateModelException as e:
# logger.error(str(e))
# raise HTTPException(status_code=409, detail=str(e))
# except InvalidModelException as e:
# logger.error(str(e))
# raise HTTPException(status_code=415)
# # now fetch it out
# result: AnyModelConfig = record_store.get_model(config.key)
# return result
# now fetch it out
result: AnyModelConfig = record_store.get_model(config.key)
return result
@model_manager_router.post(
@ -484,7 +451,6 @@ async def delete_model_image(
)
async def install_model(
source: str = Query(description="Model source to install, can be a local path, repo_id, or remote URL"),
inplace: Optional[bool] = Query(description="Whether or not to install a local model in place", default=False),
# TODO(MM2): Can we type this?
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
@ -527,7 +493,6 @@ async def install_model(
source=source,
config=config,
access_token=access_token,
inplace=bool(inplace),
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:
@ -543,10 +508,10 @@ async def install_model(
@model_manager_router.get(
"/install",
operation_id="list_model_installs",
"/import",
operation_id="list_model_install_jobs",
)
async def list_model_installs() -> List[ModelInstallJob]:
async def list_model_install_jobs() -> List[ModelInstallJob]:
"""Return the list of model install jobs.
Install jobs have a numeric `id`, a `status`, and other fields that provide information on
@ -560,8 +525,9 @@ async def list_model_installs() -> List[ModelInstallJob]:
* "cancelled" -- Job was cancelled before completion.
Once completed, information about the model such as its size, base
model and type can be retrieved from the `config_out` field. For multi-file models such as diffusers,
information on individual files can be retrieved from `download_parts`.
model, type, and metadata can be retrieved from the `config_out`
field. For multi-file models such as diffusers, information on individual files
can be retrieved from `download_parts`.
See the example and schema below for more information.
"""
@ -570,7 +536,7 @@ async def list_model_installs() -> List[ModelInstallJob]:
@model_manager_router.get(
"/install/{id}",
"/import/{id}",
operation_id="get_model_install_job",
responses={
200: {"description": "Success"},
@ -590,7 +556,7 @@ async def get_model_install_job(id: int = Path(description="Model install id"))
@model_manager_router.delete(
"/install/{id}",
"/import/{id}",
operation_id="cancel_model_install_job",
responses={
201: {"description": "The job was cancelled successfully"},
@ -608,8 +574,8 @@ async def cancel_model_install_job(id: int = Path(description="Model install job
installer.cancel_job(job)
@model_manager_router.delete(
"/install",
@model_manager_router.patch(
"/import",
operation_id="prune_model_install_jobs",
responses={
204: {"description": "All completed and errored jobs have been pruned"},
@ -679,7 +645,7 @@ async def convert_model(
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
# loading the model will convert it into a cached diffusers file
model_manager.load.load_model(model_config, submodel_type=SubModelType.Scheduler)
model_manager.load_model_by_config(model_config, submodel_type=SubModelType.Scheduler)
# Get the path of the converted model from the loader
cache_path = loader.convert_cache.cache_path(key)
@ -688,8 +654,7 @@ async def convert_model(
# temporarily rename the original safetensors file so that there is no naming conflict
original_name = model_config.name
model_config.name = f"{original_name}.DELETE"
changes = ModelRecordChanges(name=model_config.name)
store.update_model(key, changes=changes)
store.update_model(key, config=model_config)
# install the diffusers
try:
@ -698,7 +663,7 @@ async def convert_model(
config={
"name": original_name,
"description": model_config.description,
"hash": model_config.hash,
"original_hash": model_config.original_hash,
"source": model_config.source,
},
)
@ -706,6 +671,10 @@ async def convert_model(
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
# get the original metadata
if orig_metadata := store.get_metadata(key):
store.metadata_store.add_metadata(new_key, orig_metadata)
# delete the original safetensors file
installer.delete(key)
@ -717,66 +686,66 @@ async def convert_model(
return new_config
# @model_manager_router.put(
# "/merge",
# operation_id="merge",
# responses={
# 200: {
# "description": "Model converted successfully",
# "content": {"application/json": {"example": example_model_config}},
# },
# 400: {"description": "Bad request"},
# 404: {"description": "Model not found"},
# 409: {"description": "There is already a model registered at this location"},
# },
# )
# async def merge(
# keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
# merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
# alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
# force: bool = Body(
# description="Force merging of models created with different versions of diffusers",
# default=False,
# ),
# interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
# merge_dest_directory: Optional[str] = Body(
# description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
# default=None,
# ),
# ) -> AnyModelConfig:
# """
# Merge diffusers models. The process is controlled by a set parameters provided in the body of the request.
# ```
# Argument Description [default]
# -------- ----------------------
# keys List of 2-3 model keys to merge together. All models must use the same base type.
# merged_model_name Name for the merged model [Concat model names]
# alpha Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
# force If true, force the merge even if the models were generated by different versions of the diffusers library [False]
# interp Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
# merge_dest_directory Specify a directory to store the merged model in [models directory]
# ```
# """
# logger = ApiDependencies.invoker.services.logger
# try:
# logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
# dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
# installer = ApiDependencies.invoker.services.model_manager.install
# merger = ModelMerger(installer)
# model_names = [installer.record_store.get_model(x).name for x in keys]
# response = merger.merge_diffusion_models_and_save(
# model_keys=keys,
# merged_model_name=merged_model_name or "+".join(model_names),
# alpha=alpha,
# interp=interp,
# force=force,
# merge_dest_directory=dest,
# )
# except UnknownModelException:
# raise HTTPException(
# status_code=404,
# detail=f"One or more of the models '{keys}' not found",
# )
# except ValueError as e:
# raise HTTPException(status_code=400, detail=str(e))
# return response
@model_manager_router.put(
"/merge",
operation_id="merge",
responses={
200: {
"description": "Model converted successfully",
"content": {"application/json": {"example": example_model_config}},
},
400: {"description": "Bad request"},
404: {"description": "Model not found"},
409: {"description": "There is already a model registered at this location"},
},
)
async def merge(
keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
force: bool = Body(
description="Force merging of models created with different versions of diffusers",
default=False,
),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> AnyModelConfig:
"""
Merge diffusers models. The process is controlled by a set parameters provided in the body of the request.
```
Argument Description [default]
-------- ----------------------
keys List of 2-3 model keys to merge together. All models must use the same base type.
merged_model_name Name for the merged model [Concat model names]
alpha Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
force If true, force the merge even if the models were generated by different versions of the diffusers library [False]
interp Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
merge_dest_directory Specify a directory to store the merged model in [models directory]
```
"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
installer = ApiDependencies.invoker.services.model_manager.install
merger = ModelMerger(installer)
model_names = [installer.record_store.get_model(x).name for x in keys]
response = merger.merge_diffusion_models_and_save(
model_keys=keys,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory=dest,
)
except UnknownModelException:
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{keys}' not found",
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@ -2,11 +2,12 @@
# which are imported/used before parse_args() is called will get the default config values instead of the
# values from the command line or config file.
import sys
from contextlib import asynccontextmanager
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.version.invokeai_version import __version__
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
from .services.config import InvokeAIAppConfig
app_config = InvokeAIAppConfig.get_config()
@ -19,7 +20,6 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
import asyncio
import mimetypes
import socket
from contextlib import asynccontextmanager
from inspect import signature
from pathlib import Path
from typing import Any
@ -40,7 +40,6 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
import invokeai.frontend.web as web_dir
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies
@ -60,7 +59,6 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
BaseInvocation,
UIConfigBase,
)
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
if is_mps_available():
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
@ -158,19 +156,17 @@ def custom_openapi() -> dict[str, Any]:
openapi_schema["components"]["schemas"][schema_key] = output_schema
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
# Some models don't end up in the schemas as standalone definitions
additional_schemas = models_json_schema(
# Add Node Editor UI helper schemas
ui_config_schemas = models_json_schema(
[
(UIConfigBase, "serialization"),
(InputFieldJSONSchemaExtra, "serialization"),
(OutputFieldJSONSchemaExtra, "serialization"),
(ModelIdentifierField, "serialization"),
(ProgressImage, "serialization"),
],
ref_template="#/components/schemas/{model}",
)
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = schema_json
for schema_key, ui_config_schema in ui_config_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = ui_config_schema
# Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations:

View File

@ -20,7 +20,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
from invokeai.backend.util.devices import torch_dtype
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .model import CLIPField
from .model import ClipField
# unconditioned: Optional[torch.Tensor]
@ -46,7 +46,7 @@ class CompelInvocation(BaseInvocation):
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
clip: CLIPField = InputField(
clip: ClipField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
@ -54,16 +54,16 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.models.load(self.clip.tokenizer)
tokenizer_info = context.models.load(**self.clip.tokenizer.model_dump())
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(self.clip.text_encoder)
text_encoder_info = context.models.load(**self.clip.text_encoder.model_dump())
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, CLIPTextModel)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
lora_info = context.models.load(lora.lora)
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
@ -127,16 +127,16 @@ class SDXLPromptInvocationBase:
def run_clip_compel(
self,
context: InvocationContext,
clip_field: CLIPField,
clip_field: ClipField,
prompt: str,
get_pooled: bool,
lora_prefix: str,
zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
tokenizer_info = context.models.load(clip_field.tokenizer)
tokenizer_info = context.models.load(**clip_field.tokenizer.model_dump())
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(clip_field.text_encoder)
text_encoder_info = context.models.load(**clip_field.text_encoder.model_dump())
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, (CLIPTextModel, CLIPTextModelWithProjection))
@ -163,7 +163,7 @@ class SDXLPromptInvocationBase:
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in clip_field.loras:
lora_info = context.models.load(lora.lora)
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
lora_model = lora_info.model
assert isinstance(lora_model, LoRAModelRaw)
yield (lora_model, lora.weight)
@ -253,8 +253,8 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
crop_left: int = InputField(default=0, description="")
target_width: int = InputField(default=1024, description="")
target_height: int = InputField(default=1024, description="")
clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
@ -340,7 +340,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
crop_top: int = InputField(default=0, description="")
crop_left: int = InputField(default=0, description="")
aesthetic_score: float = InputField(default=6.0, description=FieldDescriptions.sdxl_aesthetic)
clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
@ -370,10 +370,10 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
@invocation_output("clip_skip_output")
class CLIPSkipInvocationOutput(BaseInvocationOutput):
"""CLIP skip node output"""
class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output"""
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation(
@ -383,15 +383,15 @@ class CLIPSkipInvocationOutput(BaseInvocationOutput):
category="conditioning",
version="1.0.0",
)
class CLIPSkipInvocation(BaseInvocation):
class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
skipped_layers: int = InputField(default=0, ge=0, description=FieldDescriptions.skipped_layers)
def invoke(self, context: InvocationContext) -> CLIPSkipInvocationOutput:
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers
return CLIPSkipInvocationOutput(
return ClipSkipInvocationOutput(
clip=self.clip,
)

View File

@ -31,11 +31,9 @@ from invokeai.app.invocations.fields import (
Input,
InputField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
@ -53,9 +51,15 @@ CONTROLNET_RESIZE_VALUES = Literal[
]
class ControlNetModelField(BaseModel):
"""ControlNet model field"""
key: str = Field(description="Model config record key for the ControlNet model")
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ModelIdentifierField = Field(description="The ControlNet model to use")
control_model: ControlNetModelField = Field(description="The ControlNet model to use")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
@ -91,9 +95,7 @@ class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, input=Input.Direct, ui_type=UIType.ControlNetModel
)
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
)

View File

@ -39,15 +39,13 @@ class UIType(str, Enum, metaclass=MetaEnum):
"""
# region Model Field Types
MainModel = "MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VAEModel = "VAEModelField"
VaeModel = "VAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
T2IAdapterModel = "T2IAdapterModelField"
# endregion
# region Misc Field Types
@ -88,6 +86,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
IntegerPolymorphic = "DEPRECATED_IntegerPolymorphic"
LatentsPolymorphic = "DEPRECATED_LatentsPolymorphic"
StringPolymorphic = "DEPRECATED_StringPolymorphic"
MainModel = "DEPRECATED_MainModel"
UNet = "DEPRECATED_UNet"
Vae = "DEPRECATED_Vae"
CLIP = "DEPRECATED_CLIP"
@ -229,7 +228,7 @@ class ConditioningField(BaseModel):
# endregion
class MetadataField(RootModel[dict[str, Any]]):
class MetadataField(RootModel):
"""
Pydantic model for metadata with custom root of type dict[str, Any].
Metadata is stored without a strict schema.

View File

@ -10,18 +10,26 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType, IPAdapterConfig, ModelType
from invokeai.backend.model_manager.config import BaseModelType, ModelType
# LS: Consider moving these two classes into model.py
class IPAdapterModelField(BaseModel):
key: str = Field(description="Key to the IP-Adapter model")
class CLIPVisionModelField(BaseModel):
key: str = Field(description="Key to the CLIP Vision image encoder model")
class IPAdapterField(BaseModel):
image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model to use.")
image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.")
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
@ -54,12 +62,8 @@ class IPAdapterInvocation(BaseInvocation):
# Inputs
image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).")
ip_adapter_model: ModelIdentifierField = InputField(
description="The IP-Adapter model.",
title="IP-Adapter Model",
input=Input.Direct,
ui_order=-1,
ui_type=UIType.IPAdapterModel,
ip_adapter_model: IPAdapterModelField = InputField(
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
)
weight: Union[float, List[float]] = InputField(
@ -86,18 +90,18 @@ class IPAdapterInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key)
assert isinstance(ip_adapter_info, IPAdapterConfig)
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
)
assert len(image_encoder_models) == 1
image_encoder_model = CLIPVisionModelField(key=image_encoder_models[0].key)
return IPAdapterOutput(
ip_adapter=IPAdapterField(
image=self.image,
ip_adapter_model=self.ip_adapter_model,
image_encoder_model=ModelIdentifierField.from_config(image_encoder_models[0]),
image_encoder_model=image_encoder_model,
weight=self.weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,

View File

@ -26,7 +26,6 @@ from diffusers.schedulers import SchedulerMixin as Scheduler
from PIL import Image, ImageFilter
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.fields import (
@ -66,6 +65,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
T2IAdapterData,
image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import (
@ -75,7 +75,7 @@ from .baseinvocation import (
invocation_output,
)
from .controlnet_image_processors import ControlField
from .model import ModelIdentifierField, UNetField, VAEField
from .model import ModelInfo, UNetField, VaeField
if choose_torch_device() == torch.device("mps"):
from torch import mps
@ -118,7 +118,7 @@ class SchedulerInvocation(BaseInvocation):
class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
vae: VaeField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
@ -153,7 +153,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
)
if image_tensor is not None:
vae_info = context.models.load(self.vae.vae)
vae_info = context.models.load(**self.vae.vae.model_dump())
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
@ -173,16 +173,6 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
)
@invocation_output("gradient_mask_output")
class GradientMaskOutput(BaseInvocationOutput):
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
expanded_mask_area: ImageField = OutputField(
description="Image representing the total gradient area of the mask. For paste-back purposes."
)
@invocation(
"create_gradient_mask",
title="Create Gradient Mask",
@ -203,53 +193,49 @@ class CreateGradientMaskInvocation(BaseInvocation):
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
if self.edge_radius > 0:
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
# redistribute blur so that the edges are 0 and blur out to 1
blur_tensor = (blur_tensor - 0.5) * 2
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is less than fully masked, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is masked to any degree, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1), threshold, blur_tensor)
else:
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
# multiply original mask to force actually masked regions to 0
blur_tensor = mask_tensor * blur_tensor
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
# compute a [0, 1] mask from the blur_tensor
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
expanded_image_dto = context.images.save(expanded_mask_image)
return GradientMaskOutput(
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=None, gradient=True),
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=None,
gradient=True,
)
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelIdentifierField,
scheduler_info: ModelInfo,
scheduler_name: str,
seed: int,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(scheduler_info)
orig_scheduler_info = context.models.load(**scheduler_info.model_dump())
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
@ -374,6 +360,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
) -> ConditioningData:
positive_cond_data = context.conditioning.load(self.positive_conditioning.conditioning_name)
c = positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
extra_conditioning_info = c.extra_conditioning
negative_cond_data = context.conditioning.load(self.negative_conditioning.conditioning_name)
uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
@ -383,6 +370,13 @@ class DenoiseLatentsInvocation(BaseInvocation):
text_embeddings=c,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None, # v_symmetry_time_pct,
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable( # FIXME
@ -455,7 +449,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# and if weight is None, populate with default 1.0?
controlnet_data = []
for control_info in control_list:
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
control_model = exit_stack.enter_context(context.models.load(key=control_info.control_model.key))
# control_models.append(control_model)
control_image_field = control_info.image
@ -517,10 +511,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.models.load(single_ip_adapter.ip_adapter_model)
context.models.load(key=single_ip_adapter.ip_adapter_model.key)
)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
image_encoder_model_info = context.models.load(key=single_ip_adapter.image_encoder_model.key)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
@ -531,7 +526,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model
@ -571,8 +565,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
t2i_adapter_model_config = context.models.get_config(key=t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(key=t2i_adapter_field.t2i_adapter_model.key)
image = context.images.get_pil(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
@ -677,7 +671,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
if self.denoise_mask.masked_latents_name is not None:
masked_latents = context.tensors.load(self.denoise_mask.masked_latents_name)
else:
masked_latents = torch.where(mask < 0.5, 0.0, latents)
masked_latents = None
return 1 - mask, masked_latents, self.denoise_mask.gradient
@ -725,13 +719,12 @@ class DenoiseLatentsInvocation(BaseInvocation):
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
yield (lora_info.model, lora.weight)
del lora_info
return
unet_info = context.models.load(self.unet.unet)
unet_info = context.models.load(**self.unet.unet.model_dump())
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
@ -784,7 +777,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end,
)
result_latents = pipeline.latents_from_embeddings(
(
result_latents,
result_attention_map_saver,
) = pipeline.latents_from_embeddings(
latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
@ -825,7 +821,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
vae: VaeField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@ -836,15 +832,15 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny))
vae_info = context.models.load(**self.vae.vae.model_dump())
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, torch.nn.Module)
latents = latents.to(vae.device)
if self.fp32:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
use_torch_2_0_or_xformers = isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
@ -1003,7 +999,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image: ImageField = InputField(
description="The image to encode",
)
vae: VAEField = InputField(
vae: VaeField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@ -1018,7 +1014,7 @@ class ImageToLatentsInvocation(BaseInvocation):
if upcast:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
use_torch_2_0_or_xformers = isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
@ -1059,7 +1055,7 @@ class ImageToLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(self.vae.vae)
vae_info = context.models.load(**self.vae.vae.model_dump())
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:

View File

@ -8,10 +8,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import (
CONTROLNET_MODE_VALUES,
CONTROLNET_RESIZE_VALUES,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@ -20,7 +17,9 @@ from invokeai.app.invocations.fields import (
OutputField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from ...version import __version__
@ -34,7 +33,7 @@ class MetadataItemField(BaseModel):
class LoRAMetadataField(BaseModel):
"""LoRA Metadata Field"""
model: ModelIdentifierField = Field(description=FieldDescriptions.lora_model)
model: LoRAModelField = Field(description=FieldDescriptions.lora_model)
weight: float = Field(description=FieldDescriptions.lora_weight)
@ -42,41 +41,16 @@ class IPAdapterMetadataField(BaseModel):
"""IP Adapter Field, minus the CLIP Vision Encoder model"""
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model.")
weight: Union[float, list[float]] = Field(description="The weight given to the IP-Adapter")
ip_adapter_model: IPAdapterModelField = Field(
description="The IP-Adapter model.",
)
weight: Union[float, list[float]] = Field(
description="The weight given to the IP-Adapter",
)
begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)")
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")
class T2IAdapterMetadataField(BaseModel):
image: ImageField = Field(description="The control image.")
processed_image: Optional[ImageField] = Field(default=None, description="The control image, after processing.")
t2i_adapter_model: ModelIdentifierField = Field(description="The T2I-Adapter model to use.")
weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
)
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
class ControlNetMetadataField(BaseModel):
image: ImageField = Field(description="The control image")
processed_image: Optional[ImageField] = Field(default=None, description="The control image, after processing.")
control_model: ModelIdentifierField = Field(description="The ControlNet model to use")
control_weight: Union[float, list[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@invocation_output("metadata_item_output")
class MetadataItemOutput(BaseInvocationOutput):
"""Metadata Item Output"""
@ -166,14 +140,14 @@ class CoreMetadataInvocation(BaseInvocation):
default=None,
description="The number of skipped CLIP layers",
)
model: Optional[ModelIdentifierField] = InputField(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlNetMetadataField]] = InputField(
model: Optional[MainModelField] = InputField(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlField]] = InputField(
default=None, description="The ControlNets used for inference"
)
ipAdapters: Optional[list[IPAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
t2iAdapters: Optional[list[T2IAdapterMetadataField]] = InputField(
t2iAdapters: Optional[list[T2IAdapterField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
loras: Optional[list[LoRAMetadataField]] = InputField(default=None, description="The LoRAs used for inference")
@ -185,7 +159,7 @@ class CoreMetadataInvocation(BaseInvocation):
default=None,
description="The name of the initial image",
)
vae: Optional[ModelIdentifierField] = InputField(
vae: Optional[VAEModelField] = InputField(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
@ -216,7 +190,7 @@ class CoreMetadataInvocation(BaseInvocation):
)
# SDXL Refiner
refiner_model: Optional[ModelIdentifierField] = InputField(
refiner_model: Optional[MainModelField] = InputField(
default=None,
description="The SDXL Refiner model used",
)
@ -248,9 +222,10 @@ class CoreMetadataInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> MetadataOutput:
"""Collects and outputs a CoreMetadata object"""
as_dict = self.model_dump(exclude_none=True, exclude={"id", "type", "is_intermediate", "use_cache"})
as_dict["app_version"] = __version__
return MetadataOutput(metadata=MetadataField.model_validate(as_dict))
return MetadataOutput(
metadata=MetadataField.model_validate(
self.model_dump(exclude_none=True, exclude={"id", "type", "is_intermediate", "use_cache"})
)
)
model_config = ConfigDict(extra="allow")

View File

@ -3,11 +3,11 @@ from typing import List, Optional
from pydantic import BaseModel, Field
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from ...backend.model_manager import SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@ -16,52 +16,33 @@ from .baseinvocation import (
)
class ModelIdentifierField(BaseModel):
key: str = Field(description="The model's unique key")
hash: str = Field(description="The model's BLAKE3 hash")
name: str = Field(description="The model's name")
base: BaseModelType = Field(description="The model's base model type")
type: ModelType = Field(description="The model's type")
submodel_type: Optional[SubModelType] = Field(
description="The submodel to load, if this is a main model", default=None
)
@classmethod
def from_config(
cls, config: "AnyModelConfig", submodel_type: Optional[SubModelType] = None
) -> "ModelIdentifierField":
return cls(
key=config.key,
hash=config.hash,
name=config.name,
base=config.base,
type=config.type,
submodel_type=submodel_type,
)
class ModelInfo(BaseModel):
key: str = Field(description="Key of model as returned by ModelRecordServiceBase.get_model()")
submodel_type: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
class LoRAField(BaseModel):
lora: ModelIdentifierField = Field(description="Info to load lora model")
weight: float = Field(description="Weight to apply to lora model")
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
class UNetField(BaseModel):
unet: ModelIdentifierField = Field(description="Info to load unet submodel")
scheduler: ModelIdentifierField = Field(description="Info to load scheduler submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
class CLIPField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
class ClipField(BaseModel):
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class VAEField(BaseModel):
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@ -76,14 +57,14 @@ class UNetOutput(BaseInvocationOutput):
class VAEOutput(BaseInvocationOutput):
"""Base class for invocations that output a VAE field"""
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("clip_output")
class CLIPOutput(BaseInvocationOutput):
"""Base class for invocations that output a CLIP field"""
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
@invocation_output("model_loader_output")
@ -93,6 +74,18 @@ class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
pass
class MainModelField(BaseModel):
"""Main model field"""
key: str = Field(description="Model key")
class LoRAModelField(BaseModel):
"""LoRA model field"""
key: str = Field(description="LoRA model key")
@invocation(
"main_model_loader",
title="Main Model",
@ -103,44 +96,62 @@ class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.main_model, input=Input.Direct, ui_type=UIType.MainModel
)
model: MainModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct)
# TODO: precision?
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
# TODO: not found exceptions
if not context.models.exists(self.model.key):
raise Exception(f"Unknown model {self.model.key}")
key = self.model.key
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
# TODO: not found exceptions
if not context.models.exists(key):
raise Exception(f"Unknown model {key}")
return ModelLoaderOutput(
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
unet=UNetField(
unet=ModelInfo(
key=key,
submodel_type=SubModelType.UNet,
),
scheduler=ModelInfo(
key=key,
submodel_type=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
key=key,
submodel_type=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
key=key,
submodel_type=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
key=key,
submodel_type=SubModelType.Vae,
),
),
)
@invocation_output("lora_loader_output")
class LoRALoaderOutput(BaseInvocationOutput):
class LoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.1")
class LoRALoaderInvocation(BaseInvocation):
class LoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel
)
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None,
@ -148,41 +159,46 @@ class LoRALoaderInvocation(BaseInvocation):
input=Input.Connection,
title="UNet",
)
clip: Optional[CLIPField] = InputField(
clip: Optional[ClipField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
def invoke(self, context: InvocationContext) -> LoRALoaderOutput:
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
lora_key = self.lora.key
if not context.models.exists(lora_key):
raise Exception(f"Unkown lora: {lora_key}!")
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
if self.unet is not None and any(lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'Lora "{lora_key}" already applied to unet')
if self.clip is not None and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip')
if self.clip is not None and any(lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'Lora "{lora_key}" already applied to clip')
output = LoRALoaderOutput()
output = LoraLoaderOutput()
if self.unet is not None:
output.unet = self.unet.model_copy(deep=True)
output.unet = copy.deepcopy(self.unet)
output.unet.loras.append(
LoRAField(
lora=self.lora,
LoraInfo(
key=lora_key,
submodel_type=None,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
output.clip = copy.deepcopy(self.clip)
output.clip.loras.append(
LoRAField(
lora=self.lora,
LoraInfo(
key=lora_key,
submodel_type=None,
weight=self.weight,
)
)
@ -191,12 +207,12 @@ class LoRALoaderInvocation(BaseInvocation):
@invocation_output("sdxl_lora_loader_output")
class SDXLLoRALoaderOutput(BaseInvocationOutput):
class SDXLLoraLoaderOutput(BaseInvocationOutput):
"""SDXL LoRA Loader Output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
clip2: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
@invocation(
@ -206,12 +222,10 @@ class SDXLLoRALoaderOutput(BaseInvocationOutput):
category="model",
version="1.0.1",
)
class SDXLLoRALoaderInvocation(BaseInvocation):
class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel
)
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None,
@ -219,59 +233,65 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
input=Input.Connection,
title="UNet",
)
clip: Optional[CLIPField] = InputField(
clip: Optional[ClipField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 1",
)
clip2: Optional[CLIPField] = InputField(
clip2: Optional[ClipField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
)
def invoke(self, context: InvocationContext) -> SDXLLoRALoaderOutput:
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
lora_key = self.lora.key
if not context.models.exists(lora_key):
raise Exception(f"Unknown lora: {lora_key}!")
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
if self.unet is not None and any(lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'Lora "{lora_key}" already applied to unet')
if self.clip is not None and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip')
if self.clip is not None and any(lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'Lora "{lora_key}" already applied to clip')
if self.clip2 is not None and any(lora.lora.key == lora_key for lora in self.clip2.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip2')
if self.clip2 is not None and any(lora.key == lora_key for lora in self.clip2.loras):
raise Exception(f'Lora "{lora_key}" already applied to clip2')
output = SDXLLoRALoaderOutput()
output = SDXLLoraLoaderOutput()
if self.unet is not None:
output.unet = self.unet.model_copy(deep=True)
output.unet = copy.deepcopy(self.unet)
output.unet.loras.append(
LoRAField(
lora=self.lora,
LoraInfo(
key=lora_key,
submodel_type=None,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
output.clip = copy.deepcopy(self.clip)
output.clip.loras.append(
LoRAField(
lora=self.lora,
LoraInfo(
key=lora_key,
submodel_type=None,
weight=self.weight,
)
)
if self.clip2 is not None:
output.clip2 = self.clip2.model_copy(deep=True)
output.clip2 = copy.deepcopy(self.clip2)
output.clip2.loras.append(
LoRAField(
lora=self.lora,
LoraInfo(
key=lora_key,
submodel_type=None,
weight=self.weight,
)
)
@ -279,12 +299,20 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
return output
class VAEModelField(BaseModel):
"""Vae model field"""
key: str = Field(description="Model's key")
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.1")
class VAELoaderInvocation(BaseInvocation):
class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, input=Input.Direct, title="VAE", ui_type=UIType.VAEModel
vae_model: VAEModelField = InputField(
description=FieldDescriptions.vae_model,
input=Input.Direct,
title="VAE",
)
def invoke(self, context: InvocationContext) -> VAEOutput:
@ -293,7 +321,7 @@ class VAELoaderInvocation(BaseInvocation):
if not context.models.exists(key):
raise Exception(f"Unkown vae: {key}!")
return VAEOutput(vae=VAEField(vae=self.vae_model))
return VAEOutput(vae=VaeField(vae=ModelInfo(key=key)))
@invocation_output("seamless_output")
@ -301,7 +329,7 @@ class SeamlessModeOutput(BaseInvocationOutput):
"""Modified Seamless Model output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
vae: Optional[VAEField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
vae: Optional[VaeField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
@invocation(
@ -320,7 +348,7 @@ class SeamlessModeInvocation(BaseInvocation):
input=Input.Connection,
title="UNet",
)
vae: Optional[VAEField] = InputField(
vae: Optional[VaeField] = InputField(
default=None,
description=FieldDescriptions.vae_model,
input=Input.Connection,

View File

@ -8,7 +8,7 @@ from .baseinvocation import (
invocation,
invocation_output,
)
from .model import CLIPField, ModelIdentifierField, UNetField, VAEField
from .model import ClipField, MainModelField, ModelInfo, UNetField, VaeField
@invocation_output("sdxl_model_loader_output")
@ -16,9 +16,9 @@ class SDXLModelLoaderOutput(BaseInvocationOutput):
"""SDXL base model loader output"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
clip2: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("sdxl_refiner_model_loader_output")
@ -26,15 +26,15 @@ class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
"""SDXL refiner model loader output"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip2: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.1")
class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
model: MainModelField = InputField(
description=FieldDescriptions.sdxl_main_model, input=Input.Direct, ui_type=UIType.SDXLMainModel
)
# TODO: precision?
@ -46,19 +46,48 @@ class SDXLModelLoaderInvocation(BaseInvocation):
if not context.models.exists(model_key):
raise Exception(f"Unknown model: {model_key}")
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
text_encoder2 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return SDXLModelLoaderOutput(
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[], skipped_layers=0),
clip2=CLIPField(tokenizer=tokenizer2, text_encoder=text_encoder2, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
unet=UNetField(
unet=ModelInfo(
key=model_key,
submodel_type=SubModelType.UNet,
),
scheduler=ModelInfo(
key=model_key,
submodel_type=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
key=model_key,
submodel_type=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
key=model_key,
submodel_type=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
clip2=ClipField(
tokenizer=ModelInfo(
key=model_key,
submodel_type=SubModelType.Tokenizer2,
),
text_encoder=ModelInfo(
key=model_key,
submodel_type=SubModelType.TextEncoder2,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
key=model_key,
submodel_type=SubModelType.Vae,
),
),
)
@ -72,8 +101,10 @@ class SDXLModelLoaderInvocation(BaseInvocation):
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sdxl_refiner_model, input=Input.Direct, ui_type=UIType.SDXLRefinerModel
model: MainModelField = InputField(
description=FieldDescriptions.sdxl_refiner_model,
input=Input.Direct,
ui_type=UIType.SDXLRefinerModel,
)
# TODO: precision?
@ -84,14 +115,34 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
if not context.models.exists(model_key):
raise Exception(f"Unknown model: {model_key}")
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer2 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
text_encoder2 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return SDXLRefinerModelLoaderOutput(
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip2=CLIPField(tokenizer=tokenizer2, text_encoder=text_encoder2, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
unet=UNetField(
unet=ModelInfo(
key=model_key,
submodel_type=SubModelType.UNet,
),
scheduler=ModelInfo(
key=model_key,
submodel_type=SubModelType.Scheduler,
),
loras=[],
),
clip2=ClipField(
tokenizer=ModelInfo(
key=model_key,
submodel_type=SubModelType.Tokenizer2,
),
text_encoder=ModelInfo(
key=model_key,
submodel_type=SubModelType.TextEncoder2,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
key=model_key,
submodel_type=SubModelType.Vae,
),
),
)

View File

@ -9,15 +9,18 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
class T2IAdapterModelField(BaseModel):
key: str = Field(description="Model record key for the T2I-Adapter model")
class T2IAdapterField(BaseModel):
image: ImageField = Field(description="The T2I-Adapter image prompt.")
t2i_adapter_model: ModelIdentifierField = Field(description="The T2I-Adapter model to use.")
t2i_adapter_model: T2IAdapterModelField = Field(description="The T2I-Adapter model to use.")
weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
@ -52,12 +55,11 @@ class T2IAdapterInvocation(BaseInvocation):
# Inputs
image: ImageField = InputField(description="The IP-Adapter image prompt.")
t2i_adapter_model: ModelIdentifierField = InputField(
t2i_adapter_model: T2IAdapterModelField = InputField(
description="The T2I-Adapter model.",
title="T2I-Adapter Model",
input=Input.Direct,
ui_order=-1,
ui_type=UIType.T2IAdapterModel,
)
weight: Union[float, list[float]] = InputField(
default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight"

View File

@ -17,8 +17,7 @@ from argparse import ArgumentParser
from pathlib import Path
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union, get_args, get_origin, get_type_hints
from omegaconf import DictConfig, DictKeyType, ListConfig, OmegaConf
from pydantic import BaseModel
from omegaconf import DictConfig, ListConfig, OmegaConf
from pydantic_settings import BaseSettings, SettingsConfigDict
from invokeai.app.services.config.config_common import PagingArgumentParser, int_or_float_or_str
@ -63,22 +62,6 @@ class InvokeAISettings(BaseSettings):
assert isinstance(category, str)
if category not in field_dict[type]:
field_dict[type][category] = {}
if isinstance(value, BaseModel):
dump = value.model_dump(exclude_defaults=True, exclude_unset=True, exclude_none=True)
field_dict[type][category][name] = dump
continue
if isinstance(value, list):
if not value or len(value) == 0:
continue
primitive = isinstance(value[0], get_args(DictKeyType))
if not primitive:
val_list: List[Dict[str, Any]] = []
for list_val in value:
if isinstance(list_val, BaseModel):
dump = list_val.model_dump(exclude_defaults=True, exclude_unset=True, exclude_none=True)
val_list.append(dump)
field_dict[type][category][name] = val_list
continue
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict)

View File

@ -166,21 +166,17 @@ two configs are kept in separate sections of the config file:
...
"""
from __future__ import annotations
import os
import re
from pathlib import Path
from typing import Any, ClassVar, Dict, List, Literal, Optional
from omegaconf import DictConfig, OmegaConf
from pydantic import BaseModel, Field, field_validator
from pydantic import Field
from pydantic.config import JsonDict
from pydantic_settings import SettingsConfigDict
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS
from .config_base import InvokeAISettings
INIT_FILE = Path("invokeai.yaml")
@ -199,87 +195,17 @@ class Categories(object):
Paths: JsonDict = {"category": "Paths"}
Logging: JsonDict = {"category": "Logging"}
Development: JsonDict = {"category": "Development"}
CLIArgs: JsonDict = {"category": "CLIArgs"}
ModelInstall: JsonDict = {"category": "Model Install"}
Other: JsonDict = {"category": "Other"}
ModelCache: JsonDict = {"category": "Model Cache"}
Device: JsonDict = {"category": "Device"}
Generation: JsonDict = {"category": "Generation"}
Queue: JsonDict = {"category": "Queue"}
Nodes: JsonDict = {"category": "Nodes"}
MemoryPerformance: JsonDict = {"category": "Memory/Performance"}
Deprecated: JsonDict = {"category": "Deprecated"}
class URLRegexToken(BaseModel):
url_regex: str = Field(description="Regular expression to match against the URL")
token: str = Field(description="Token to use when the URL matches the regex")
@field_validator("url_regex")
@classmethod
def validate_url_regex(cls, v: str) -> str:
"""Validate that the value is a valid regex."""
try:
re.compile(v)
except re.error as e:
raise ValueError(f"Invalid regex: {e}")
return v
class InvokeAIAppConfig(InvokeAISettings):
"""Invoke App Configuration
Attributes:
host: **Web Server**: IP address to bind to. Use `0.0.0.0` to serve to your local network.
port: **Web Server**: Port to bind to.
allow_origins: **Web Server**: Allowed CORS origins.
allow_credentials: **Web Server**: Allow CORS credentials.
allow_methods: **Web Server**: Methods allowed for CORS.
allow_headers: **Web Server**: Headers allowed for CORS.
ssl_certfile: **Web Server**: SSL certificate file for HTTPS.
ssl_keyfile: **Web Server**: SSL key file for HTTPS.
esrgan: **Features**: Enables or disables the upscaling code.
internet_available: **Features**: If true, attempt to download models on the fly; otherwise only use local models.
log_tokenization: **Features**: Enable logging of parsed prompt tokens.
patchmatch: **Features**: Enable patchmatch inpaint code.
ignore_missing_core_models: **Features**: Ignore missing core models on startup. If `True`, the app will attempt to download missing models on startup.
root: **Paths**: The InvokeAI runtime root directory.
autoimport_dir: **Paths**: Path to a directory of models files to be imported on startup.
models_dir: **Paths**: Path to the models directory.
convert_cache_dir: **Paths**: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.
legacy_conf_dir: **Paths**: Path to directory of legacy checkpoint config files.
db_dir: **Paths**: Path to InvokeAI databases directory.
outdir: **Paths**: Path to directory for outputs.
custom_nodes_dir: **Paths**: Path to directory for custom nodes.
from_file: **Paths**: Take command input from the indicated file (command-line client only).
log_handlers: **Logging**: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
log_format: **Logging**: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.
log_level: **Logging**: Emit logging messages at this level or higher.
log_sql: **Logging**: Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose.
use_memory_db: **Development**: Use in-memory database. Useful for development.
dev_reload: **Development**: Automatically reload when Python sources are changed. Does not reload node definitions.
profile_graphs: **Development**: Enable graph profiling using `cProfile`.
profile_prefix: **Development**: An optional prefix for profile output files.
profiles_dir: **Development**: Path to profiles output directory.
version: **CLIArgs**: CLI arg - show InvokeAI version and exit.
hashing_algorithm: **Model Install**: Model hashing algorthim for model installs. 'blake3' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.
remote_api_tokens: **Model Install**: List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.
ram: **Model Cache**: Maximum memory amount used by memory model cache for rapid switching (GB).
vram: **Model Cache**: Amount of VRAM reserved for model storage (GB)
convert_cache: **Model Cache**: Maximum size of on-disk converted models cache (GB)
lazy_offload: **Model Cache**: Keep models in VRAM until their space is needed.
log_memory_usage: **Model Cache**: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device: **Device**: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.
precision: **Device**: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.
sequential_guidance: **Generation**: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
attention_type: **Generation**: Attention type.
attention_slice_size: **Generation**: Slice size, valid when attention_type=="sliced".
force_tiled_decode: **Generation**: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
png_compress_level: **Generation**: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
max_queue_size: **Queue**: Maximum number of items in the session queue.
allow_nodes: **Nodes**: List of nodes to allow. Omit to allow all.
deny_nodes: **Nodes**: List of nodes to deny. Omit to deny none.
node_cache_size: **Nodes**: How many cached nodes to keep in memory.
"""
"""Configuration object for InvokeAI App."""
singleton_config: ClassVar[Optional[InvokeAIAppConfig]] = None
singleton_init: ClassVar[Optional[Dict[str, Any]]] = None
@ -288,98 +214,90 @@ class InvokeAIAppConfig(InvokeAISettings):
type: Literal["InvokeAI"] = "InvokeAI"
# WEB
host : str = Field(default="127.0.0.1", description="IP address to bind to. Use `0.0.0.0` to serve to your local network.", json_schema_extra=Categories.WebServer)
port : int = Field(default=9090, description="Port to bind to.", json_schema_extra=Categories.WebServer)
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins.", json_schema_extra=Categories.WebServer)
allow_credentials : bool = Field(default=True, description="Allow CORS credentials.", json_schema_extra=Categories.WebServer)
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS.", json_schema_extra=Categories.WebServer)
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS.", json_schema_extra=Categories.WebServer)
host : str = Field(default="127.0.0.1", description="IP address to bind to", json_schema_extra=Categories.WebServer)
port : int = Field(default=9090, description="Port to bind to", json_schema_extra=Categories.WebServer)
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", json_schema_extra=Categories.WebServer)
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", json_schema_extra=Categories.WebServer)
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", json_schema_extra=Categories.WebServer)
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", json_schema_extra=Categories.WebServer)
# SSL options correspond to https://www.uvicorn.org/settings/#https
ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file for HTTPS.", json_schema_extra=Categories.WebServer)
ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file for HTTPS.", json_schema_extra=Categories.WebServer)
ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file (for HTTPS)", json_schema_extra=Categories.WebServer)
ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file", json_schema_extra=Categories.WebServer)
# FEATURES
esrgan : bool = Field(default=True, description="Enables or disables the upscaling code.", json_schema_extra=Categories.Features)
# TODO(psyche): This is not used anywhere.
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models.", json_schema_extra=Categories.Features)
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", json_schema_extra=Categories.Features)
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", json_schema_extra=Categories.Features)
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", json_schema_extra=Categories.Features)
patchmatch : bool = Field(default=True, description="Enable patchmatch inpaint code.", json_schema_extra=Categories.Features)
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing core models on startup. If `True`, the app will attempt to download missing models on startup.', json_schema_extra=Categories.Features)
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", json_schema_extra=Categories.Features)
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', json_schema_extra=Categories.Features)
# PATHS
root : Optional[Path] = Field(default=None, description='The InvokeAI runtime root directory.', json_schema_extra=Categories.Paths)
root : Optional[Path] = Field(default=None, description='InvokeAI runtime root directory', json_schema_extra=Categories.Paths)
autoimport_dir : Path = Field(default=Path('autoimport'), description='Path to a directory of models files to be imported on startup.', json_schema_extra=Categories.Paths)
models_dir : Path = Field(default=Path('models'), description='Path to the models directory.', json_schema_extra=Categories.Paths)
convert_cache_dir : Path = Field(default=Path('models/.cache'), description='Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.', json_schema_extra=Categories.Paths)
legacy_conf_dir : Path = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files.', json_schema_extra=Categories.Paths)
db_dir : Path = Field(default=Path('databases'), description='Path to InvokeAI databases directory.', json_schema_extra=Categories.Paths)
outdir : Path = Field(default=Path('outputs'), description='Path to directory for outputs.', json_schema_extra=Categories.Paths)
custom_nodes_dir : Path = Field(default=Path('nodes'), description='Path to directory for custom nodes.', json_schema_extra=Categories.Paths)
# TODO(psyche): This is not used anywhere.
from_file : Optional[Path] = Field(default=None, description='Take command input from the indicated file (command-line client only).', json_schema_extra=Categories.Paths)
models_dir : Path = Field(default=Path('models'), description='Path to the models directory', json_schema_extra=Categories.Paths)
convert_cache_dir : Path = Field(default=Path('models/.cache'), description='Path to the converted models cache directory', json_schema_extra=Categories.Paths)
legacy_conf_dir : Path = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files', json_schema_extra=Categories.Paths)
db_dir : Path = Field(default=Path('databases'), description='Path to InvokeAI databases directory', json_schema_extra=Categories.Paths)
outdir : Path = Field(default=Path('outputs'), description='Default folder for output images', json_schema_extra=Categories.Paths)
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', json_schema_extra=Categories.Paths)
custom_nodes_dir : Path = Field(default=Path('nodes'), description='Path to directory for custom nodes', json_schema_extra=Categories.Paths)
from_file : Optional[Path] = Field(default=None, description='Take command input from the indicated file (command-line client only)', json_schema_extra=Categories.Paths)
# LOGGING
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".', json_schema_extra=Categories.Logging)
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', json_schema_extra=Categories.Logging)
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.', json_schema_extra=Categories.Logging)
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher.", json_schema_extra=Categories.Logging)
log_sql : bool = Field(default=False, description="Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose.", json_schema_extra=Categories.Logging)
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', json_schema_extra=Categories.Logging)
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", json_schema_extra=Categories.Logging)
log_sql : bool = Field(default=False, description="Log SQL queries", json_schema_extra=Categories.Logging)
# Development
use_memory_db : bool = Field(default=False, description='Use in-memory database. Useful for development.', json_schema_extra=Categories.Development)
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed. Does not reload node definitions.", json_schema_extra=Categories.Development)
profile_graphs : bool = Field(default=False, description="Enable graph profiling using `cProfile`.", json_schema_extra=Categories.Development)
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", json_schema_extra=Categories.Development)
profile_graphs : bool = Field(default=False, description="Enable graph profiling", json_schema_extra=Categories.Development)
profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development)
profiles_dir : Path = Field(default=Path('profiles'), description="Path to profiles output directory.", json_schema_extra=Categories.Development)
profiles_dir : Path = Field(default=Path('profiles'), description="Directory for graph profiles", json_schema_extra=Categories.Development)
version : bool = Field(default=False, description="CLI arg - show InvokeAI version and exit.", json_schema_extra=Categories.CLIArgs)
version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other)
# CACHE
ram : float = Field(default=DEFAULT_RAM_CACHE, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).", json_schema_extra=Categories.ModelCache, )
vram : float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB)", json_schema_extra=Categories.ModelCache, )
ram : float = Field(default=DEFAULT_RAM_CACHE, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
vram : float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
convert_cache : float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB)", json_schema_extra=Categories.ModelCache)
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed.", json_schema_extra=Categories.ModelCache, )
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", json_schema_extra=Categories.ModelCache, )
log_memory_usage : bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.", json_schema_extra=Categories.ModelCache)
# DEVICE
device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.", json_schema_extra=Categories.Device)
precision : Literal["auto", "float16", "bfloat16", "float32", "autocast"] = Field(default="auto", description="Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.", json_schema_extra=Categories.Device)
device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", json_schema_extra=Categories.Device)
precision : Literal["auto", "float16", "bfloat16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", json_schema_extra=Categories.Device)
# GENERATION
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.", json_schema_extra=Categories.Generation)
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type.", json_schema_extra=Categories.Generation)
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced".', json_schema_extra=Categories.Generation)
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.", json_schema_extra=Categories.Generation)
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", json_schema_extra=Categories.Generation)
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", json_schema_extra=Categories.Generation)
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', json_schema_extra=Categories.Generation)
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
# QUEUE
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.", json_schema_extra=Categories.Queue)
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", json_schema_extra=Categories.Queue)
# NODES
allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", json_schema_extra=Categories.Nodes)
deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes)
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory.", json_schema_extra=Categories.Nodes)
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes)
# MODEL INSTALL
hashing_algorithm : HASHING_ALGORITHMS = Field(default="blake3", description="Model hashing algorthim for model installs. 'blake3' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.", json_schema_extra=Categories.ModelInstall)
remote_api_tokens : Optional[list[URLRegexToken]] = Field(
default=None,
description="List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.",
json_schema_extra=Categories.ModelInstall
)
# MODEL IMPORT
civitai_api_key : Optional[str] = Field(default=os.environ.get("CIVITAI_API_KEY"), description="API key for CivitAI", json_schema_extra=Categories.Other)
# TODO(psyche): Can we just remove these then?
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.Deprecated)
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.Deprecated)
max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", json_schema_extra=Categories.Deprecated)
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", json_schema_extra=Categories.Deprecated)
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Deprecated)
lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Deprecated)
embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Deprecated)
controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Deprecated)
conf_path : Path = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Deprecated)
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance)
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.MemoryPerformance)
max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", json_schema_extra=Categories.MemoryPerformance)
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", json_schema_extra=Categories.MemoryPerformance)
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.MemoryPerformance)
lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths)
embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
conf_path : Path = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Paths)
# this is not referred to in the source code and can be removed entirely
#free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance)
@ -557,53 +475,6 @@ class InvokeAIAppConfig(InvokeAISettings):
"""Choose the runtime root directory when not specified on command line or init file."""
return _find_root()
@staticmethod
def generate_docstrings() -> str:
"""Helper function for mkdocs. Generates a docstring for the InvokeAIAppConfig class.
You shouldn't run this manually. Instead, run `scripts/update-config-docstring.py` to update the docstring.
A makefile target is also available: `make update-config-docstring`.
See that script for more information about why this is necessary.
"""
docstring = ' """Invoke App Configuration\n\n'
docstring += " Attributes:"
field_descriptions: dict[str, list[str]] = {}
for k, v in InvokeAIAppConfig.model_fields.items():
if not isinstance(v.json_schema_extra, dict):
# Should never happen
continue
category = v.json_schema_extra.get("category", None)
if not isinstance(category, str) or category == "Deprecated":
continue
if not field_descriptions.get(category):
field_descriptions[category] = []
field_descriptions[category].append(f" {k}: **{category}**: {v.description}")
for c in [
"Web Server",
"Features",
"Paths",
"Logging",
"Development",
"CLIArgs",
"Model Install",
"Model Cache",
"Device",
"Generation",
"Queue",
"Nodes",
]:
docstring += "\n"
docstring += "\n".join(field_descriptions[c])
docstring += '\n """'
return docstring
def get_invokeai_config(**kwargs: Any) -> InvokeAIAppConfig:
"""Legacy function which returns InvokeAIAppConfig.get_config()."""

View File

@ -1,5 +1,4 @@
"""Init file for download queue."""
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
from .download_default import DownloadQueueService, TqdmProgress

View File

@ -224,6 +224,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
job.job_started = get_iso_timestamp()
self._do_download(job)
self._signal_job_complete(job)
except (OSError, HTTPError) as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()

View File

@ -12,7 +12,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
)
from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_manager import AnyModelConfig
from invokeai.backend.model_manager.config import SubModelType
class EventServiceBase:
@ -81,7 +80,7 @@ class EventServiceBase:
"graph_execution_state_id": graph_execution_state_id,
"node_id": node_id,
"source_node_id": source_node_id,
"progress_image": progress_image.model_dump(mode="json") if progress_image is not None else None,
"progress_image": progress_image.model_dump() if progress_image is not None else None,
"step": step,
"order": order,
"total_steps": total_steps,
@ -181,7 +180,6 @@ class EventServiceBase:
queue_batch_id: str,
graph_execution_state_id: str,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Emitted when a model is requested"""
self.__emit_queue_event(
@ -191,8 +189,7 @@ class EventServiceBase:
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"model_config": model_config.model_dump(mode="json"),
"submodel_type": submodel_type,
"model_config": model_config.model_dump(),
},
)
@ -203,7 +200,6 @@ class EventServiceBase:
queue_batch_id: str,
graph_execution_state_id: str,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Emitted when a model is correctly loaded (returns model info)"""
self.__emit_queue_event(
@ -213,8 +209,7 @@ class EventServiceBase:
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"model_config": model_config.model_dump(mode="json"),
"submodel_type": submodel_type,
"model_config": model_config.model_dump(),
},
)
@ -259,8 +254,8 @@ class EventServiceBase:
"started_at": str(session_queue_item.started_at) if session_queue_item.started_at else None,
"completed_at": str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
},
"batch_status": batch_status.model_dump(mode="json"),
"queue_status": queue_status.model_dump(mode="json"),
"batch_status": batch_status.model_dump(),
"queue_status": queue_status.model_dump(),
},
)
@ -410,7 +405,7 @@ class EventServiceBase:
payload={"source": source, "total_bytes": total_bytes, "key": key, "id": id},
)
def emit_model_install_cancelled(self, source: str, id: int) -> None:
def emit_model_install_cancelled(self, source: str) -> None:
"""
Emit when an install job is cancelled.
@ -418,7 +413,7 @@ class EventServiceBase:
"""
self.__emit_model_event(
event_name="model_install_cancelled",
payload={"source": source, "id": id},
payload={"source": source},
)
def emit_model_install_error(self, source: str, error_type: str, error: str, id: int) -> None:

View File

@ -41,9 +41,8 @@ class InvocationCacheBase(ABC):
"""Clears the cache"""
pass
@staticmethod
@abstractmethod
def create_key(invocation: BaseInvocation) -> int:
def create_key(self, invocation: BaseInvocation) -> int:
"""Gets the key for the invocation's cache item"""
pass

View File

@ -61,7 +61,9 @@ class MemoryInvocationCache(InvocationCacheBase):
self._delete_oldest_access(number_to_delete)
self._cache[key] = CachedItem(
invocation_output,
invocation_output.model_dump_json(warnings=False, exclude_defaults=True, exclude_unset=True),
invocation_output.model_dump_json(
warnings=False, exclude_defaults=True, exclude_unset=True, include={"type"}
),
)
def _delete_oldest_access(self, number_to_delete: int) -> None:
@ -79,7 +81,7 @@ class MemoryInvocationCache(InvocationCacheBase):
with self._lock:
return self._delete(key)
def clear(self) -> None:
def clear(self, *args, **kwargs) -> None:
with self._lock:
if self._max_cache_size == 0:
return

View File

@ -25,7 +25,6 @@ if TYPE_CHECKING:
from .images.images_base import ImageServiceABC
from .invocation_cache.invocation_cache_base import InvocationCacheBase
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from .model_images.model_images_base import ModelImageFileStorageBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .names.names_base import NameServiceBase
from .session_processor.session_processor_base import SessionProcessorBase
@ -50,7 +49,6 @@ class InvocationServices:
image_files: "ImageFileStorageBase",
image_records: "ImageRecordStorageBase",
logger: "Logger",
model_images: "ModelImageFileStorageBase",
model_manager: "ModelManagerServiceBase",
download_queue: "DownloadQueueServiceBase",
performance_statistics: "InvocationStatsServiceBase",
@ -74,7 +72,6 @@ class InvocationServices:
self.image_files = image_files
self.image_records = image_records
self.logger = logger
self.model_images = model_images
self.model_manager = model_manager
self.download_queue = download_queue
self.performance_statistics = performance_statistics

View File

@ -1,33 +0,0 @@
from abc import ABC, abstractmethod
from pathlib import Path
from PIL.Image import Image as PILImageType
class ModelImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, model_key: str) -> PILImageType:
"""Retrieves a model image as PIL Image."""
pass
@abstractmethod
def get_path(self, model_key: str) -> Path:
"""Gets the internal path to a model image."""
pass
@abstractmethod
def get_url(self, model_key: str) -> str | None:
"""Gets the URL to fetch a model image."""
pass
@abstractmethod
def save(self, image: PILImageType, model_key: str) -> None:
"""Saves a model image."""
pass
@abstractmethod
def delete(self, model_key: str) -> None:
"""Deletes a model image."""
pass

View File

@ -1,20 +0,0 @@
# TODO: Should these excpetions subclass existing python exceptions?
class ModelImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message="Model image file not found"):
super().__init__(message)
class ModelImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message="Model image file not saved"):
super().__init__(message)
class ModelImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message="Model image file not deleted"):
super().__init__(message)

View File

@ -1,85 +0,0 @@
from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
from .model_images_base import ModelImageFileStorageBase
from .model_images_common import (
ModelImageFileDeleteException,
ModelImageFileNotFoundException,
ModelImageFileSaveException,
)
class ModelImageFileStorageDisk(ModelImageFileStorageBase):
"""Stores images on disk"""
def __init__(self, model_images_folder: Path):
self._model_images_folder = model_images_folder
self._validate_storage_folders()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def get(self, model_key: str) -> PILImageType:
try:
path = self.get_path(model_key)
if not self._validate_path(path):
raise ModelImageFileNotFoundException
return Image.open(path)
except FileNotFoundError as e:
raise ModelImageFileNotFoundException from e
def save(self, image: PILImageType, model_key: str) -> None:
try:
self._validate_storage_folders()
image_path = self._model_images_folder / (model_key + ".webp")
thumbnail = make_thumbnail(image, 256)
thumbnail.save(image_path, format="webp")
except Exception as e:
raise ModelImageFileSaveException from e
def get_path(self, model_key: str) -> Path:
path = self._model_images_folder / (model_key + ".webp")
return path
def get_url(self, model_key: str) -> str | None:
path = self.get_path(model_key)
if not self._validate_path(path):
return
url = self._invoker.services.urls.get_model_image_url(model_key)
# The image URL never changes, so we must add random query string to it to prevent caching
url += f"?{uuid_string()}"
return url
def delete(self, model_key: str) -> None:
try:
path = self.get_path(model_key)
if not self._validate_path(path):
raise ModelImageFileNotFoundException
send2trash(path)
except Exception as e:
raise ModelImageFileDeleteException from e
def _validate_path(self, path: Path) -> bool:
"""Validates the path given for an image."""
return path.exists()
def _validate_storage_folders(self) -> None:
"""Checks if the required folders exist and create them if they don't"""
self._model_images_folder.mkdir(parents=True, exist_ok=True)

View File

@ -1,6 +1,7 @@
"""Initialization file for model install service package."""
from .model_install_base import (
CivitaiModelSource,
HFModelSource,
InstallStatus,
LocalModelSource,
@ -22,4 +23,5 @@ __all__ = [
"LocalModelSource",
"HFModelSource",
"URLModelSource",
"CivitaiModelSource",
]

View File

@ -18,16 +18,16 @@ from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from ..model_metadata import ModelMetadataStoreBase
class InstallStatus(str, Enum):
"""State of an install job running in the background."""
WAITING = "waiting" # waiting to be dequeued
DOWNLOADING = "downloading" # downloading of model files in process
DOWNLOADS_DONE = "downloads_done" # downloading done, waiting to run
RUNNING = "running" # being processed
COMPLETED = "completed" # finished running
ERROR = "error" # terminated with an error message
@ -91,6 +91,21 @@ class LocalModelSource(StringLikeSource):
return Path(self.path).as_posix()
class CivitaiModelSource(StringLikeSource):
"""A Civitai version id, with optional variant and access token."""
version_id: int
variant: Optional[ModelRepoVariant] = None
access_token: Optional[str] = None
type: Literal["civitai"] = "civitai"
def __str__(self) -> str:
"""Return string version of repoid when string rep needed."""
base: str = str(self.version_id)
base += f" ({self.variant})" if self.variant else ""
return base
class HFModelSource(StringLikeSource):
"""
A HuggingFace repo_id with optional variant, sub-folder and access token.
@ -131,13 +146,9 @@ class URLModelSource(StringLikeSource):
return str(self.url)
ModelSource = Annotated[Union[LocalModelSource, HFModelSource, URLModelSource], Field(discriminator="type")]
MODEL_SOURCE_TO_TYPE_MAP = {
URLModelSource: ModelSourceType.Url,
HFModelSource: ModelSourceType.HFRepoID,
LocalModelSource: ModelSourceType.Path,
}
ModelSource = Annotated[
Union[LocalModelSource, HFModelSource, CivitaiModelSource, URLModelSource], Field(discriminator="type")
]
class ModelInstallJob(BaseModel):
@ -218,11 +229,6 @@ class ModelInstallJob(BaseModel):
"""Return true if job is downloading."""
return self.status == InstallStatus.DOWNLOADING
@property
def downloads_done(self) -> bool:
"""Return true if job's downloads ae done."""
return self.status == InstallStatus.DOWNLOADS_DONE
@property
def running(self) -> bool:
"""Return true if job is running."""
@ -248,6 +254,7 @@ class ModelInstallServiceBase(ABC):
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
download_queue: DownloadQueueServiceBase,
metadata_store: ModelMetadataStoreBase,
event_bus: Optional["EventServiceBase"] = None,
):
"""
@ -334,7 +341,6 @@ class ModelInstallServiceBase(ABC):
source: str,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
r"""Install the indicated model using heuristics to interpret user intentions.
@ -380,7 +386,7 @@ class ModelInstallServiceBase(ABC):
will override corresponding autoassigned probe fields in the
model's config record. Use it to override
`name`, `description`, `base_type`, `model_type`, `format`,
`prediction_type`, and/or `image_size`.
`prediction_type`, `image_size`, and/or `ztsnr_training`.
This will download the model located at `source`,
probe it, and install it into the models directory.

View File

@ -7,12 +7,12 @@ import time
from hashlib import sha256
from pathlib import Path
from queue import Empty, Queue
from random import randbytes
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import Any, Dict, List, Optional, Set, Union
from huggingface_hub import HfFolder
from omegaconf import DictConfig, OmegaConf
from pydantic.networks import AnyHttpUrl
from requests import Session
@ -21,30 +21,28 @@ from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
CheckpointConfigBase,
InvalidModelConfigException,
ModelRepoVariant,
ModelSourceType,
ModelType,
)
from invokeai.backend.model_manager.hash import FastModelHash
from invokeai.backend.model_manager.metadata import (
AnyModelRepoMetadata,
CivitaiMetadataFetch,
HuggingFaceMetadataFetch,
ModelMetadataWithFiles,
RemoteModelFile,
)
from invokeai.backend.model_manager.metadata.metadata_base import HuggingFaceMetadata
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import Chdir, InvokeAILogger
from invokeai.backend.util.devices import choose_precision, choose_torch_device
from .model_install_base import (
MODEL_SOURCE_TO_TYPE_MAP,
CivitaiModelSource,
HFModelSource,
InstallStatus,
LocalModelSource,
@ -93,6 +91,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._running = False
self._session = session
self._next_job_id = 0
self._metadata_store = record_store.metadata_store # for convenience
@property
def app_config(self) -> InvokeAIAppConfig: # noqa D102
@ -115,7 +114,6 @@ class ModelInstallService(ModelInstallServiceBase):
raise Exception("Attempt to start the installer service twice")
self._start_installer_thread()
self._remove_dangling_install_dirs()
self._migrate_yaml()
self.sync_to_config()
def stop(self, invoker: Optional[Invoker] = None) -> None:
@ -142,7 +140,6 @@ class ModelInstallService(ModelInstallServiceBase):
config = config or {}
if not config.get("source"):
config["source"] = model_path.resolve().as_posix()
config["source_type"] = ModelSourceType.Path
return self._register(model_path, config)
def install_path(
@ -152,8 +149,11 @@ class ModelInstallService(ModelInstallServiceBase):
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if not config.get("source"):
config["source"] = model_path.resolve().as_posix()
info: AnyModelConfig = ModelProbe.probe(Path(model_path), config, hash_algo=self._app_config.hashing_algorithm)
info: AnyModelConfig = self._probe_model(Path(model_path), config)
old_hash = info.current_hash
if preferred_name := config.get("name"):
preferred_name = Path(preferred_name).with_suffix(model_path.suffix)
@ -167,6 +167,8 @@ class ModelInstallService(ModelInstallServiceBase):
raise DuplicateModelException(
f"A model named {model_path.name} is already installed at {dest_path.as_posix()}"
) from excp
new_hash = FastModelHash.hash(new_path)
assert new_hash == old_hash, f"{model_path}: Model hash changed during installation, possibly corrupted."
return self._register(
new_path,
@ -179,14 +181,13 @@ class ModelInstallService(ModelInstallServiceBase):
source: str,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source), inplace=inplace)
source_obj = LocalModelSource(path=Path(source))
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),
@ -195,16 +196,9 @@ class ModelInstallService(ModelInstallServiceBase):
access_token=access_token,
)
elif re.match(r"^https?://[^/]+", source):
# Pull the token from config if it exists and matches the URL
_token = access_token
if _token is None:
for pair in self.app_config.remote_api_tokens or []:
if re.search(pair.url_regex, source):
_token = pair.token
break
source_obj = URLModelSource(
url=AnyHttpUrl(source),
access_token=_token,
access_token=access_token,
)
else:
raise ValueError(f"Unsupported model source: '{source}'")
@ -219,6 +213,8 @@ class ModelInstallService(ModelInstallServiceBase):
if isinstance(source, LocalModelSource):
install_job = self._import_local_model(source, config)
self._install_queue.put(install_job) # synchronously install
elif isinstance(source, CivitaiModelSource):
install_job = self._import_from_civitai(source, config)
elif isinstance(source, HFModelSource):
install_job = self._import_from_hf(source, config)
elif isinstance(source, URLModelSource):
@ -285,50 +281,8 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"{len(installed)} new models registered")
self._logger.info("Model installer (re)initialized")
def _migrate_yaml(self) -> None:
db_models = self.record_store.all_models()
try:
yaml = self._get_yaml()
except OSError:
return
yaml_metadata = yaml.pop("__metadata__")
yaml_version = yaml_metadata.get("version")
if yaml_version != "3.0.0":
raise ValueError(
f"Attempted migration of unsupported `models.yaml` v{yaml_version}. Only v3.0.0 is supported. Exiting."
)
self._logger.info(
f"Starting one-time migration of {len(yaml.items())} models from `models.yaml` to database. This may take a few minutes."
)
if len(db_models) == 0 and len(yaml.items()) != 0:
for model_key, stanza in yaml.items():
_, _, model_name = str(model_key).split("/")
model_path = Path(stanza["path"])
if not model_path.is_absolute():
model_path = self._app_config.models_path / model_path
model_path = model_path.resolve()
config: dict[str, Any] = {}
config["name"] = model_name
config["description"] = stanza.get("description")
config["config_path"] = stanza.get("config")
try:
id = self.register_path(model_path=model_path, config=config)
self._logger.info(f"Migrated {model_name} with id {id}")
except Exception as e:
self._logger.warning(f"Model at {model_path} could not be migrated: {e}")
# Rename `models.yaml` to `models.yaml.bak` to prevent re-migration
yaml_path = self._app_config.model_conf_path
yaml_path.rename(yaml_path.with_suffix(".yaml.bak"))
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
self._cached_model_paths = {Path(x.path).absolute() for x in self.record_store.all_models()}
self._cached_model_paths = {Path(x.path) for x in self.record_store.all_models()}
callback = self._scan_install if install else self._scan_register
search = ModelSearch(on_model_found=callback)
self._models_installed.clear()
@ -342,7 +296,7 @@ class ModelInstallService(ModelInstallServiceBase):
"""Unregister the model. Delete its files only if they are within our models directory."""
model = self.record_store.get_model(key)
models_dir = self.app_config.models_path
model_path = Path(model.path)
model_path = models_dir / model.path
if model_path.is_relative_to(models_dir):
self.unconditionally_delete(key)
else:
@ -350,11 +304,11 @@ class ModelInstallService(ModelInstallServiceBase):
def unconditionally_delete(self, key: str) -> None: # noqa D102
model = self.record_store.get_model(key)
model_path = Path(model.path)
if model_path.is_dir():
rmtree(model_path)
path = self.app_config.models_path / model.path
if path.is_dir():
rmtree(path)
else:
model_path.unlink()
path.unlink()
self.unregister(key)
def download_and_cache(
@ -416,22 +370,21 @@ class ModelInstallService(ModelInstallServiceBase):
self._signal_job_errored(job)
elif (
job.waiting or job.downloads_done
job.waiting or job.downloading
): # local jobs will be in waiting state, remote jobs will be downloading state
job.total_bytes = self._stat_size(job.local_path)
job.bytes = job.total_bytes
self._signal_job_running(job)
job.config_in["source"] = str(job.source)
job.config_in["source_type"] = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
# enter the metadata, if there is any
if isinstance(job.source_metadata, (HuggingFaceMetadata)):
job.config_in["source_api_response"] = job.source_metadata.api_response
if job.inplace:
key = self.register_path(job.local_path, job.config_in)
else:
key = self.install_path(job.local_path, job.config_in)
job.config_out = self.record_store.get_model(key)
# enter the metadata, if there is any
if job.source_metadata:
self._metadata_store.add_metadata(key, job.source_metadata)
self._signal_job_completed(job)
except InvalidModelConfigException as excp:
@ -491,11 +444,11 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"Scanning {self._app_config.models_path} for new and orphaned models")
for cur_base_model in BaseModelType:
for cur_model_type in ModelType:
models_dir = self._app_config.models_path / Path(cur_base_model.value, cur_model_type.value)
models_dir = Path(cur_base_model.value, cur_model_type.value)
installed.update(self.scan_directory(models_dir))
self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered")
def _sync_model_path(self, key: str) -> AnyModelConfig:
def _sync_model_path(self, key: str, ignore_hash_change: bool = False) -> AnyModelConfig:
"""
Move model into the location indicated by its basetype, type and name.
@ -510,21 +463,21 @@ class ModelInstallService(ModelInstallServiceBase):
old_path = Path(model.path)
models_dir = self.app_config.models_path
try:
old_path.relative_to(models_dir)
return model
except ValueError:
pass
new_path = models_dir / model.base.value / model.type.value / old_path.name
if old_path == new_path:
if not old_path.is_relative_to(models_dir):
return model
new_path = models_dir / model.base.value / model.type.value / model.name
self._logger.info(f"Moving {model.name} to {new_path}.")
new_path = self._move_model(old_path, new_path)
model.path = new_path.as_posix()
self.record_store.update_model(key, ModelRecordChanges(path=model.path))
new_hash = FastModelHash.hash(new_path)
model.path = new_path.relative_to(models_dir).as_posix()
if model.current_hash != new_hash:
assert (
ignore_hash_change
), f"{model.name}: Model hash changed during installation, model is possibly corrupted"
model.current_hash = new_hash
self._logger.info(f"Model has new hash {model.current_hash}, but will continue to be identified by {key}")
self.record_store.update_model(key, model)
return model
def _scan_register(self, model: Path) -> bool:
@ -576,22 +529,36 @@ class ModelInstallService(ModelInstallServiceBase):
move(old_path, new_path)
return new_path
def _probe_model(self, model_path: Path, config: Optional[Dict[str, Any]] = None) -> AnyModelConfig:
info: AnyModelConfig = ModelProbe.probe(Path(model_path))
if config: # used to override probe fields
for key, value in config.items():
setattr(info, key, value)
return info
def _create_key(self) -> str:
return sha256(randbytes(100)).hexdigest()[0:32]
def _register(
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
) -> str:
config = config or {}
key = self._create_key()
if config and not config.get("key", None):
config["key"] = key
info = info or ModelProbe.probe(model_path, config)
info = info or ModelProbe.probe(model_path, config, hash_algo=self._app_config.hashing_algorithm)
model_path = model_path.resolve()
model_path = model_path.absolute()
if model_path.is_relative_to(self.app_config.models_path):
model_path = model_path.relative_to(self.app_config.models_path)
info.path = model_path.as_posix()
# add 'main' specific fields
if isinstance(info, CheckpointConfigBase):
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config_path).resolve()
info.config_path = legacy_conf.as_posix()
self.record_store.add_model(info)
if hasattr(info, "config"):
# make config relative to our root
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config).resolve()
info.config = legacy_conf.relative_to(self.app_config.root_dir).as_posix()
self.record_store.add_model(info.key, info)
return info.key
def _next_id(self) -> int:
@ -600,16 +567,6 @@ class ModelInstallService(ModelInstallServiceBase):
self._next_job_id += 1
return id
# --------------------------------------------------------------------------------------------
# Internal functions that manage the old yaml config
# --------------------------------------------------------------------------------------------
def _get_yaml(self) -> DictConfig:
"""Fetch the models.yaml DictConfig for this installation."""
yaml_path = self._app_config.model_conf_path
omegaconf = OmegaConf.load(yaml_path)
assert isinstance(omegaconf, DictConfig)
return omegaconf
@staticmethod
def _guess_variant() -> Optional[ModelRepoVariant]:
"""Guess the best HuggingFace variant type to download."""
@ -622,9 +579,17 @@ class ModelInstallService(ModelInstallServiceBase):
source=source,
config_in=config or {},
local_path=Path(source.path),
inplace=source.inplace or False,
inplace=source.inplace,
)
def _import_from_civitai(self, source: CivitaiModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
if not source.access_token:
self._logger.info("No Civitai access token provided; some models may not be downloadable.")
metadata = CivitaiMetadataFetch(self._session).from_id(str(source.version_id))
assert isinstance(metadata, ModelMetadataWithFiles)
remote_files = metadata.download_urls(session=self._session)
return self._import_remote_model(source=source, config=config, metadata=metadata, remote_files=remote_files)
def _import_from_hf(self, source: HFModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# Add user's cached access token to HuggingFace requests
source.access_token = source.access_token or HfFolder.get_token()
@ -647,16 +612,16 @@ class ModelInstallService(ModelInstallServiceBase):
)
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# URLs from HuggingFace will be handled specially
# URLs from Civitai or HuggingFace will be handled specially
url_patterns = {
r"^https?://civitai.com/": CivitaiMetadataFetch,
r"^https?://huggingface.co/[^/]+/[^/]+$": HuggingFaceMetadataFetch,
}
metadata = None
fetcher = None
try:
fetcher = self.get_fetcher_from_url(str(source.url))
except ValueError:
pass
kwargs: dict[str, Any] = {"session": self._session}
if fetcher is not None:
metadata = fetcher(**kwargs).from_url(source.url)
for pattern, fetcher in url_patterns.items():
if re.match(pattern, str(source.url), re.IGNORECASE):
metadata = fetcher(self._session).from_url(source.url)
break
self._logger.debug(f"metadata={metadata}")
if metadata and isinstance(metadata, ModelMetadataWithFiles):
remote_files = metadata.download_urls(session=self._session)
@ -671,7 +636,7 @@ class ModelInstallService(ModelInstallServiceBase):
def _import_remote_model(
self,
source: HFModelSource | URLModelSource,
source: ModelSource,
remote_files: List[RemoteModelFile],
metadata: Optional[AnyModelRepoMetadata],
config: Optional[Dict[str, Any]],
@ -699,7 +664,7 @@ class ModelInstallService(ModelInstallServiceBase):
# In the event that there is a subfolder specified in the source,
# we need to remove it from the destination path in order to avoid
# creating unwanted subfolders
if isinstance(source, HFModelSource) and source.subfolder:
if hasattr(source, "subfolder") and source.subfolder:
root = Path(remote_files[0].path.parts[0])
subfolder = root / source.subfolder
else:
@ -784,8 +749,8 @@ class ModelInstallService(ModelInstallServiceBase):
self._download_cache.pop(download_job.source, None)
# are there any more active jobs left in this task?
if install_job.downloading and all(x.complete for x in install_job.download_parts):
install_job.status = InstallStatus.DOWNLOADS_DONE
if all(x.complete for x in install_job.download_parts):
# now enqueue job for actual installation into the models directory
self._install_queue.put(install_job)
# Let other threads know that the number of downloads has changed
@ -885,10 +850,4 @@ class ModelInstallService(ModelInstallServiceBase):
def _signal_job_cancelled(self, job: ModelInstallJob) -> None:
self._logger.info(f"{job.source}: model installation was cancelled")
if self._event_bus:
self._event_bus.emit_model_install_cancelled(str(job.source), id=job.id)
@staticmethod
def get_fetcher_from_url(url: str):
if re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
return HuggingFaceMetadataFetch
raise ValueError(f"Unsupported model source: '{url}'")
self._event_bus.emit_model_install_cancelled(str(job.source))

View File

@ -68,7 +68,6 @@ class ModelLoadService(ModelLoadServiceBase):
self._emit_load_event(
context_data=context_data,
model_config=model_config,
submodel_type=submodel_type,
)
implementation, model_config, submodel_type = self._registry.get_implementation(model_config, submodel_type) # type: ignore
@ -83,7 +82,6 @@ class ModelLoadService(ModelLoadServiceBase):
self._emit_load_event(
context_data=context_data,
model_config=model_config,
submodel_type=submodel_type,
loaded=True,
)
return loaded_model
@ -93,7 +91,6 @@ class ModelLoadService(ModelLoadServiceBase):
context_data: InvocationContextData,
model_config: AnyModelConfig,
loaded: Optional[bool] = False,
submodel_type: Optional[SubModelType] = None,
) -> None:
if not self._invoker:
return
@ -105,7 +102,6 @@ class ModelLoadService(ModelLoadServiceBase):
queue_batch_id=context_data.queue_item.batch_id,
graph_execution_state_id=context_data.queue_item.session_id,
model_config=model_config,
submodel_type=submodel_type,
)
else:
self._invoker.services.events.emit_model_load_completed(
@ -114,5 +110,4 @@ class ModelLoadService(ModelLoadServiceBase):
queue_batch_id=context_data.queue_item.batch_id,
graph_execution_state_id=context_data.queue_item.session_id,
model_config=model_config,
submodel_type=submodel_type,
)

View File

@ -1,11 +1,15 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
from abc import ABC, abstractmethod
from typing import Optional
import torch
from typing_extensions import Self
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.invocation_context import InvocationContextData
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from ..config import InvokeAIAppConfig
from ..download import DownloadQueueServiceBase
@ -66,3 +70,32 @@ class ModelManagerServiceBase(ABC):
@abstractmethod
def stop(self, invoker: Invoker) -> None:
pass
@abstractmethod
def load_model_by_config(
self,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
pass
@abstractmethod
def load_model_by_key(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
pass
@abstractmethod
def load_model_by_attr(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
pass

View File

@ -1,10 +1,14 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
"""Implementation of ModelManagerServiceBase."""
from typing import Optional
import torch
from typing_extensions import Self
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.invocation_context import InvocationContextData
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, LoadedModel, ModelType, SubModelType
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.logging import InvokeAILogger
@ -14,7 +18,7 @@ from ..download import DownloadQueueServiceBase
from ..events.events_base import EventServiceBase
from ..model_install import ModelInstallService, ModelInstallServiceBase
from ..model_load import ModelLoadService, ModelLoadServiceBase
from ..model_records import ModelRecordServiceBase
from ..model_records import ModelRecordServiceBase, UnknownModelException
from .model_manager_base import ModelManagerServiceBase
@ -60,6 +64,56 @@ class ModelManagerService(ModelManagerServiceBase):
if hasattr(service, "stop"):
service.stop(invoker)
def load_model_by_config(
self,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
return self.load.load_model(model_config, submodel_type, context_data)
def load_model_by_key(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
config = self.store.get_model(key)
return self.load.load_model(config, submodel_type, context_data)
def load_model_by_attr(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
"""
Given a model's attributes, search the database for it, and if found, load and return the LoadedModel object.
This is provided for API compatability with the get_model() method
in the original model manager. However, note that LoadedModel is
not the same as the original ModelInfo that ws returned.
:param model_name: Name of to be fetched.
:param base_model: Base model
:param model_type: Type of the model
:param submodel: For main (pipeline models), the submodel to fetch
:param context: The invocation context.
Exceptions: UnknownModelException -- model with this key not known
NotImplementedException -- a model loader was not provided at initialization time
ValueError -- more than one model matches this combination
"""
configs = self.store.search_by_attr(model_name, base_model, model_type)
if len(configs) == 0:
raise UnknownModelException(f"{base_model}/{model_type}/{model_name}: Unknown model")
elif len(configs) > 1:
raise ValueError(f"{base_model}/{model_type}/{model_name}: More than one model matches.")
else:
return self.load.load_model(configs[0], submodel, context_data)
@classmethod
def build_model_manager(
cls,

View File

@ -0,0 +1,9 @@
"""Init file for ModelMetadataStoreService module."""
from .metadata_store_base import ModelMetadataStoreBase
from .metadata_store_sql import ModelMetadataStoreSQL
__all__ = [
"ModelMetadataStoreBase",
"ModelMetadataStoreSQL",
]

View File

@ -0,0 +1,65 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Storage for Model Metadata
"""
from abc import ABC, abstractmethod
from typing import List, Set, Tuple
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
class ModelMetadataStoreBase(ABC):
"""Store, search and fetch model metadata retrieved from remote repositories."""
@abstractmethod
def add_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> None:
"""
Add a block of repo metadata to a model record.
The model record config must already exist in the database with the
same key. Otherwise a FOREIGN KEY constraint exception will be raised.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to store
"""
@abstractmethod
def get_metadata(self, model_key: str) -> AnyModelRepoMetadata:
"""Retrieve the ModelRepoMetadata corresponding to model key."""
@abstractmethod
def list_all_metadata(self) -> List[Tuple[str, AnyModelRepoMetadata]]: # key, metadata
"""Dump out all the metadata."""
@abstractmethod
def update_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> AnyModelRepoMetadata:
"""
Update metadata corresponding to the model with the indicated key.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to update
"""
@abstractmethod
def list_tags(self) -> Set[str]:
"""Return all tags in the tags table."""
@abstractmethod
def search_by_tag(self, tags: Set[str]) -> Set[str]:
"""Return the keys of models containing all of the listed tags."""
@abstractmethod
def search_by_author(self, author: str) -> Set[str]:
"""Return the keys of models authored by the indicated author."""
@abstractmethod
def search_by_name(self, name: str) -> Set[str]:
"""
Return the keys of models with the indicated name.
Note that this is the name of the model given to it by
the remote source. The user may have changed the local
name. The local name will be located in the model config
record object.
"""

View File

@ -0,0 +1,222 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
SQL Storage for Model Metadata
"""
import sqlite3
from typing import List, Optional, Set, Tuple
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata, UnknownMetadataException
from invokeai.backend.model_manager.metadata.fetch import ModelMetadataFetchBase
from .metadata_store_base import ModelMetadataStoreBase
class ModelMetadataStoreSQL(ModelMetadataStoreBase):
"""Store, search and fetch model metadata retrieved from remote repositories."""
def __init__(self, db: SqliteDatabase):
"""
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
:param conn: sqlite3 connection object
:param lock: threading Lock object
"""
super().__init__()
self._db = db
self._cursor = self._db.conn.cursor()
def add_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> None:
"""
Add a block of repo metadata to a model record.
The model record config must already exist in the database with the
same key. Otherwise a FOREIGN KEY constraint exception will be raised.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to store
"""
json_serialized = metadata.model_dump_json()
with self._db.lock:
try:
self._cursor.execute(
"""--sql
INSERT INTO model_metadata(
id,
metadata
)
VALUES (?,?);
""",
(
model_key,
json_serialized,
),
)
self._update_tags(model_key, metadata.tags)
self._db.conn.commit()
except sqlite3.IntegrityError as excp: # FOREIGN KEY error: the key was not in model_config table
self._db.conn.rollback()
raise UnknownMetadataException from excp
except sqlite3.Error as excp:
self._db.conn.rollback()
raise excp
def get_metadata(self, model_key: str) -> AnyModelRepoMetadata:
"""Retrieve the ModelRepoMetadata corresponding to model key."""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT metadata FROM model_metadata
WHERE id=?;
""",
(model_key,),
)
rows = self._cursor.fetchone()
if not rows:
raise UnknownMetadataException("model metadata not found")
return ModelMetadataFetchBase.from_json(rows[0])
def list_all_metadata(self) -> List[Tuple[str, AnyModelRepoMetadata]]: # key, metadata
"""Dump out all the metadata."""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT id,metadata FROM model_metadata;
""",
(),
)
rows = self._cursor.fetchall()
return [(x[0], ModelMetadataFetchBase.from_json(x[1])) for x in rows]
def update_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> AnyModelRepoMetadata:
"""
Update metadata corresponding to the model with the indicated key.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to update
"""
json_serialized = metadata.model_dump_json() # turn it into a json string.
with self._db.lock:
try:
self._cursor.execute(
"""--sql
UPDATE model_metadata
SET
metadata=?
WHERE id=?;
""",
(json_serialized, model_key),
)
if self._cursor.rowcount == 0:
raise UnknownMetadataException("model metadata not found")
self._update_tags(model_key, metadata.tags)
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
return self.get_metadata(model_key)
def list_tags(self) -> Set[str]:
"""Return all tags in the tags table."""
self._cursor.execute(
"""--sql
select tag_text from tags;
"""
)
return {x[0] for x in self._cursor.fetchall()}
def search_by_tag(self, tags: Set[str]) -> Set[str]:
"""Return the keys of models containing all of the listed tags."""
with self._db.lock:
try:
matches: Optional[Set[str]] = None
for tag in tags:
self._cursor.execute(
"""--sql
SELECT a.model_id FROM model_tags AS a,
tags AS b
WHERE a.tag_id=b.tag_id
AND b.tag_text=?;
""",
(tag,),
)
model_keys = {x[0] for x in self._cursor.fetchall()}
if matches is None:
matches = model_keys
matches = matches.intersection(model_keys)
except sqlite3.Error as e:
raise e
return matches if matches else set()
def search_by_author(self, author: str) -> Set[str]:
"""Return the keys of models authored by the indicated author."""
self._cursor.execute(
"""--sql
SELECT id FROM model_metadata
WHERE author=?;
""",
(author,),
)
return {x[0] for x in self._cursor.fetchall()}
def search_by_name(self, name: str) -> Set[str]:
"""
Return the keys of models with the indicated name.
Note that this is the name of the model given to it by
the remote source. The user may have changed the local
name. The local name will be located in the model config
record object.
"""
self._cursor.execute(
"""--sql
SELECT id FROM model_metadata
WHERE name=?;
""",
(name,),
)
return {x[0] for x in self._cursor.fetchall()}
def _update_tags(self, model_key: str, tags: Set[str]) -> None:
"""Update tags for the model referenced by model_key."""
# remove previous tags from this model
self._cursor.execute(
"""--sql
DELETE FROM model_tags
WHERE model_id=?;
""",
(model_key,),
)
for tag in tags:
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO tags (
tag_text
)
VALUES (?);
""",
(tag,),
)
self._cursor.execute(
"""--sql
SELECT tag_id
FROM tags
WHERE tag_text = ?
LIMIT 1;
""",
(tag,),
)
tag_id = self._cursor.fetchone()[0]
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO model_tags (
model_id,
tag_id
)
VALUES (?,?);
""",
(model_key, tag_id),
)

View File

@ -1,5 +1,4 @@
"""Init file for model record services."""
from .model_records_base import ( # noqa F401
DuplicateModelException,
InvalidModelException,

View File

@ -6,24 +6,20 @@ Abstract base class for storing and retrieving model configuration records.
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from typing import List, Optional, Set, Union
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from pydantic import BaseModel, Field
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import (
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelVariantType,
SchedulerPredictionType,
)
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from ..model_metadata import ModelMetadataStoreBase
class DuplicateModelException(Exception):
@ -64,34 +60,11 @@ class ModelSummary(BaseModel):
tags: Set[str] = Field(description="tags associated with model")
class ModelRecordChanges(BaseModelExcludeNull):
"""A set of changes to apply to a model."""
# Changes applicable to all models
name: Optional[str] = Field(description="Name of the model.", default=None)
path: Optional[str] = Field(description="Path to the model.", default=None)
description: Optional[str] = Field(description="Model description", default=None)
base: Optional[BaseModelType] = Field(description="The base model.", default=None)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings | ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
)
# Checkpoint-specific changes
# TODO(MM2): Should we expose these? Feels footgun-y...
variant: Optional[ModelVariantType] = Field(description="The variant of the model.", default=None)
prediction_type: Optional[SchedulerPredictionType] = Field(
description="The prediction type of the model.", default=None
)
upcast_attention: Optional[bool] = Field(description="Whether to upcast attention.", default=None)
config_path: Optional[str] = Field(description="Path to config file for model", default=None)
class ModelRecordServiceBase(ABC):
"""Abstract base class for storage and retrieval of model configs."""
@abstractmethod
def add_model(self, config: AnyModelConfig) -> AnyModelConfig:
def add_model(self, key: str, config: Union[Dict[str, Any], AnyModelConfig]) -> AnyModelConfig:
"""
Add a model to the database.
@ -115,12 +88,13 @@ class ModelRecordServiceBase(ABC):
pass
@abstractmethod
def update_model(self, key: str, changes: ModelRecordChanges) -> AnyModelConfig:
def update_model(self, key: str, config: Union[Dict[str, Any], AnyModelConfig]) -> AnyModelConfig:
"""
Update the model, returning the updated version.
:param key: Unique key for the model to be updated.
:param changes: A set of changes to apply to this model. Changes are validated before being written.
:param key: Unique key for the model to be updated
:param config: Model configuration record. Either a dict with the
required fields, or a ModelConfigBase instance.
"""
pass
@ -135,15 +109,38 @@ class ModelRecordServiceBase(ABC):
"""
pass
@property
@abstractmethod
def get_model_by_hash(self, hash: str) -> AnyModelConfig:
"""
Retrieve the configuration for the indicated model.
def metadata_store(self) -> ModelMetadataStoreBase:
"""Return a ModelMetadataStore initialized on the same database."""
pass
:param hash: Hash of model config to be fetched.
Exceptions: UnknownModelException
@abstractmethod
def get_metadata(self, key: str) -> Optional[AnyModelRepoMetadata]:
"""
Retrieve metadata (if any) from when model was downloaded from a repo.
:param key: Model key
"""
pass
@abstractmethod
def list_all_metadata(self) -> List[Tuple[str, AnyModelRepoMetadata]]:
"""List metadata for all models that have it."""
pass
@abstractmethod
def search_by_metadata_tag(self, tags: Set[str]) -> List[AnyModelConfig]:
"""
Search model metadata for ones with all listed tags and return their corresponding configs.
:param tags: Set of tags to search for. All tags must be present.
"""
pass
@abstractmethod
def list_tags(self) -> Set[str]:
"""Return a unique set of all the model tags in the metadata database."""
pass
@abstractmethod
@ -220,3 +217,21 @@ class ModelRecordServiceBase(ABC):
f"More than one model matched the search criteria: base_model='{base_model}', model_type='{model_type}', model_name='{model_name}'."
)
return model_configs[0]
def rename_model(
self,
key: str,
new_name: str,
) -> AnyModelConfig:
"""
Rename the indicated model. Just a special case of update_model().
In some implementations, renaming the model may involve changing where
it is stored on the filesystem. So this is broken out.
:param key: Model key
:param new_name: New name for model
"""
config = self.get_model(key)
config.name = new_name
return self.update_model(key, config)

View File

@ -39,11 +39,12 @@ Typical usage:
configs = store.search_by_attr(base_model='sd-2', model_type='main')
"""
import json
import sqlite3
from math import ceil
from pathlib import Path
from typing import List, Optional, Union
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.backend.model_manager.config import (
@ -53,11 +54,12 @@ from invokeai.backend.model_manager.config import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata, UnknownMetadataException
from ..model_metadata import ModelMetadataStoreBase, ModelMetadataStoreSQL
from ..shared.sqlite.sqlite_database import SqliteDatabase
from .model_records_base import (
DuplicateModelException,
ModelRecordChanges,
ModelRecordOrderBy,
ModelRecordServiceBase,
ModelSummary,
@ -68,7 +70,7 @@ from .model_records_base import (
class ModelRecordServiceSQL(ModelRecordServiceBase):
"""Implementation of the ModelConfigStore ABC using a SQL database."""
def __init__(self, db: SqliteDatabase):
def __init__(self, db: SqliteDatabase, metadata_store: ModelMetadataStoreBase):
"""
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
@ -77,13 +79,14 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
super().__init__()
self._db = db
self._cursor = db.conn.cursor()
self._metadata_store = metadata_store
@property
def db(self) -> SqliteDatabase:
"""Return the underlying database."""
return self._db
def add_model(self, config: AnyModelConfig) -> AnyModelConfig:
def add_model(self, key: str, config: Union[Dict[str, Any], AnyModelConfig]) -> AnyModelConfig:
"""
Add a model to the database.
@ -93,19 +96,23 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
Can raise DuplicateModelException and InvalidModelConfigException exceptions.
"""
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect.
json_serialized = record.model_dump_json() # and turn it into a json string.
with self._db.lock:
try:
self._cursor.execute(
"""--sql
INSERT INTO models (
INSERT INTO model_config (
id,
original_hash,
config
)
VALUES (?,?);
VALUES (?,?,?);
""",
(
config.key,
config.model_dump_json(),
key,
record.original_hash,
json_serialized,
),
)
self._db.conn.commit()
@ -113,12 +120,12 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
except sqlite3.IntegrityError as e:
self._db.conn.rollback()
if "UNIQUE constraint failed" in str(e):
if "models.path" in str(e):
msg = f"A model with path '{config.path}' is already installed"
elif "models.name" in str(e):
msg = f"A model with name='{config.name}', type='{config.type}', base='{config.base}' is already installed"
if "model_config.path" in str(e):
msg = f"A model with path '{record.path}' is already installed"
elif "model_config.name" in str(e):
msg = f"A model with name='{record.name}', type='{record.type}', base='{record.base}' is already installed"
else:
msg = f"A model with key '{config.key}' is already installed"
msg = f"A model with key '{key}' is already installed"
raise DuplicateModelException(msg) from e
else:
raise e
@ -126,7 +133,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._db.conn.rollback()
raise e
return self.get_model(config.key)
return self.get_model(key)
def del_model(self, key: str) -> None:
"""
@ -140,7 +147,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
try:
self._cursor.execute(
"""--sql
DELETE FROM models
DELETE FROM model_config
WHERE id=?;
""",
(key,),
@ -152,20 +159,21 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._db.conn.rollback()
raise e
def update_model(self, key: str, changes: ModelRecordChanges) -> AnyModelConfig:
record = self.get_model(key)
# Model configs use pydantic's `validate_assignment`, so each change is validated by pydantic.
for field_name in changes.model_fields_set:
setattr(record, field_name, getattr(changes, field_name))
json_serialized = record.model_dump_json()
def update_model(self, key: str, config: Union[Dict[str, Any], AnyModelConfig]) -> AnyModelConfig:
"""
Update the model, returning the updated version.
:param key: Unique key for the model to be updated
:param config: Model configuration record. Either a dict with the
required fields, or a ModelConfigBase instance.
"""
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect
json_serialized = record.model_dump_json() # and turn it into a json string.
with self._db.lock:
try:
self._cursor.execute(
"""--sql
UPDATE models
UPDATE model_config
SET
config=?
WHERE id=?;
@ -192,7 +200,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
SELECT config, strftime('%s',updated_at) FROM model_config
WHERE id=?;
""",
(key,),
@ -203,21 +211,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
return model
def get_model_by_hash(self, hash: str) -> AnyModelConfig:
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
rows = self._cursor.fetchone()
if not rows:
raise UnknownModelException("model not found")
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
return model
def exists(self, key: str) -> bool:
"""
Return True if a model with the indicated key exists in the databse.
@ -228,7 +221,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
with self._db.lock:
self._cursor.execute(
"""--sql
select count(*) FROM models
select count(*) FROM model_config
WHERE id=?;
""",
(key,),
@ -242,7 +235,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None,
model_format: Optional[ModelFormat] = None,
order_by: ModelRecordOrderBy = ModelRecordOrderBy.Default,
) -> List[AnyModelConfig]:
"""
Return models matching name, base and/or type.
@ -251,23 +243,13 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
:param base_model: Filter by base model (optional)
:param model_type: Filter by type of model (optional)
:param model_format: Filter by model format (e.g. "diffusers") (optional)
:param order_by: Result order
If none of the optional filters are passed, will return all
models in the database.
"""
assert isinstance(order_by, ModelRecordOrderBy)
ordering = {
ModelRecordOrderBy.Default: "type, base, name, format",
ModelRecordOrderBy.Type: "type",
ModelRecordOrderBy.Base: "base",
ModelRecordOrderBy.Name: "name",
ModelRecordOrderBy.Format: "format",
}
where_clause: list[str] = []
bindings: list[str] = []
results = []
where_clause = []
bindings = []
if model_name:
where_clause.append("name=?")
bindings.append(model_name)
@ -284,15 +266,14 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
with self._db.lock:
self._cursor.execute(
f"""--sql
SELECT config, strftime('%s',updated_at)
FROM models
{where}
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason;
select config, strftime('%s',updated_at) FROM model_config
{where};
""",
tuple(bindings),
)
result = self._cursor.fetchall()
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in result]
results = [
ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in self._cursor.fetchall()
]
return results
def search_by_path(self, path: Union[str, Path]) -> List[AnyModelConfig]:
@ -301,7 +282,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
SELECT config, strftime('%s',updated_at) FROM model_config
WHERE path=?;
""",
(str(path),),
@ -312,13 +293,13 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
return results
def search_by_hash(self, hash: str) -> List[AnyModelConfig]:
"""Return models with the indicated hash."""
"""Return models with the indicated original_hash."""
results = []
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
SELECT config, strftime('%s',updated_at) FROM model_config
WHERE original_hash=?;
""",
(hash,),
)
@ -327,35 +308,83 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
]
return results
@property
def metadata_store(self) -> ModelMetadataStoreBase:
"""Return a ModelMetadataStore initialized on the same database."""
return self._metadata_store
def get_metadata(self, key: str) -> Optional[AnyModelRepoMetadata]:
"""
Retrieve metadata (if any) from when model was downloaded from a repo.
:param key: Model key
"""
store = self.metadata_store
try:
metadata = store.get_metadata(key)
return metadata
except UnknownMetadataException:
return None
def search_by_metadata_tag(self, tags: Set[str]) -> List[AnyModelConfig]:
"""
Search model metadata for ones with all listed tags and return their corresponding configs.
:param tags: Set of tags to search for. All tags must be present.
"""
store = ModelMetadataStoreSQL(self._db)
keys = store.search_by_tag(tags)
return [self.get_model(x) for x in keys]
def list_tags(self) -> Set[str]:
"""Return a unique set of all the model tags in the metadata database."""
store = ModelMetadataStoreSQL(self._db)
return store.list_tags()
def list_all_metadata(self) -> List[Tuple[str, AnyModelRepoMetadata]]:
"""List metadata for all models that have it."""
store = ModelMetadataStoreSQL(self._db)
return store.list_all_metadata()
def list_models(
self, page: int = 0, per_page: int = 10, order_by: ModelRecordOrderBy = ModelRecordOrderBy.Default
) -> PaginatedResults[ModelSummary]:
"""Return a paginated summary listing of each model in the database."""
assert isinstance(order_by, ModelRecordOrderBy)
ordering = {
ModelRecordOrderBy.Default: "type, base, name, format",
ModelRecordOrderBy.Type: "type",
ModelRecordOrderBy.Base: "base",
ModelRecordOrderBy.Name: "name",
ModelRecordOrderBy.Format: "format",
ModelRecordOrderBy.Default: "a.type, a.base, a.format, a.name",
ModelRecordOrderBy.Type: "a.type",
ModelRecordOrderBy.Base: "a.base",
ModelRecordOrderBy.Name: "a.name",
ModelRecordOrderBy.Format: "a.format",
}
def _fixup(summary: Dict[str, str]) -> Dict[str, Union[str, int, Set[str]]]:
"""Fix up results so that there are no null values."""
result: Dict[str, Union[str, int, Set[str]]] = {}
for key, item in summary.items():
result[key] = item or ""
result["tags"] = set(json.loads(summary["tags"] or "[]"))
return result
# Lock so that the database isn't updated while we're doing the two queries.
with self._db.lock:
# query1: get the total number of model configs
self._cursor.execute(
"""--sql
select count(*) from models;
select count(*) from model_config;
""",
(),
)
total = int(self._cursor.fetchone()[0])
# query2: fetch key fields
# query2: fetch key fields from the join of model_config and model_metadata
self._cursor.execute(
f"""--sql
SELECT config
FROM models
SELECT a.id as key, a.type, a.base, a.format, a.name,
json_extract(a.config, '$.description') as description,
json_extract(b.metadata, '$.tags') as tags
FROM model_config AS a
LEFT JOIN model_metadata AS b on a.id=b.id
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason
LIMIT ?
OFFSET ?;
@ -366,7 +395,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
),
)
rows = self._cursor.fetchall()
items = [ModelSummary.model_validate(dict(x)) for x in rows]
items = [ModelSummary.model_validate(_fixup(dict(x))) for x in rows]
return PaginatedResults(
page=page, pages=ceil(total / per_page), per_page=per_page, total=total, items=items
)

View File

@ -200,7 +200,6 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._invoker.services.logger.error(
f"Error while invoking session {self._queue_item.session_id}, invocation {self._invocation.id} ({self._invocation.get_type()}):\n{e}"
)
self._invoker.services.logger.error(error)
# Send error event
self._invoker.services.events.emit_invocation_error(

View File

@ -1,7 +1,7 @@
import threading
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Optional, Union
from typing import TYPE_CHECKING, Optional
from PIL.Image import Image
from torch import Tensor
@ -13,16 +13,15 @@ from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.model_records.model_records_base import UnknownModelException
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.model_manager.metadata.metadata_base import AnyModelRepoMetadata
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
"""
@ -300,27 +299,22 @@ class ConditioningInterface(InvocationContextInterface):
class ModelsInterface(InvocationContextInterface):
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
def exists(self, key: str) -> bool:
"""Checks if a model exists.
Args:
identifier: The key or ModelField representing the model.
key: The key of the model.
Returns:
True if the model exists, False if not.
"""
if isinstance(identifier, str):
return self._services.model_manager.store.exists(identifier)
return self._services.model_manager.store.exists(key)
return self._services.model_manager.store.exists(identifier.key)
def load(
self, identifier: Union[str, "ModelIdentifierField"], submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
def load(self, key: str, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
"""Loads a model.
Args:
identifier: The key or ModelField representing the model.
key: The key of the model.
submodel_type: The submodel of the model to get.
Returns:
@ -330,13 +324,9 @@ class ModelsInterface(InvocationContextInterface):
# The model manager emits events as it loads the model. It needs the context data to build
# the event payloads.
if isinstance(identifier, str):
model = self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.load.load_model(model, submodel_type, self._data)
else:
_submodel_type = submodel_type or identifier.submodel_type
model = self._services.model_manager.store.get_model(identifier.key)
return self._services.model_manager.load.load_model(model, _submodel_type, self._data)
return self._services.model_manager.load_model_by_key(
key=key, submodel_type=submodel_type, context_data=self._data
)
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
@ -353,29 +343,35 @@ class ModelsInterface(InvocationContextInterface):
Returns:
An object representing the loaded model.
"""
return self._services.model_manager.load_model_by_attr(
model_name=name,
base_model=base,
model_type=type,
submodel=submodel_type,
context_data=self._data,
)
configs = self._services.model_manager.store.search_by_attr(model_name=name, base_model=base, model_type=type)
if len(configs) == 0:
raise UnknownModelException(f"No model found with name {name}, base {base}, and type {type}")
if len(configs) > 1:
raise ValueError(f"More than one model found with name {name}, base {base}, and type {type}")
return self._services.model_manager.load.load_model(configs[0], submodel_type, self._data)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
def get_config(self, key: str) -> AnyModelConfig:
"""Gets a model's config.
Args:
identifier: The key or ModelField representing the model.
key: The key of the model.
Returns:
The model's config.
"""
if isinstance(identifier, str):
return self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.store.get_model(key=key)
return self._services.model_manager.store.get_model(identifier.key)
def get_metadata(self, key: str) -> Optional[AnyModelRepoMetadata]:
"""Gets a model's metadata, if it has any.
Args:
key: The key of the model.
Returns:
The model's metadata, if it has any.
"""
return self._services.model_manager.store.get_metadata(key=key)
def search_by_path(self, path: Path) -> list[AnyModelConfig]:
"""Searches for models by path.

View File

@ -9,7 +9,6 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_3 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_4 import build_migration_4
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_5 import build_migration_5
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_6 import build_migration_6
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import build_migration_7
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@ -36,7 +35,6 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_4())
migrator.register_migration(build_migration_5())
migrator.register_migration(build_migration_6())
migrator.register_migration(build_migration_7())
migrator.run_migrations()
return db

View File

@ -4,6 +4,8 @@ from logging import Logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
from .util.migrate_yaml_config_1 import MigrateModelYamlToDb1
class Migration3Callback:
def __init__(self, app_config: InvokeAIAppConfig, logger: Logger) -> None:
@ -13,6 +15,7 @@ class Migration3Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._drop_model_manager_metadata(cursor)
self._recreate_model_config(cursor)
self._migrate_model_config_records(cursor)
def _drop_model_manager_metadata(self, cursor: sqlite3.Cursor) -> None:
"""Drops the `model_manager_metadata` table."""
@ -52,6 +55,12 @@ class Migration3Callback:
"""
)
def _migrate_model_config_records(self, cursor: sqlite3.Cursor) -> None:
"""After updating the model config table, we repopulate it."""
self._logger.info("Migrating model config records from models.yaml to database")
model_record_migrator = MigrateModelYamlToDb1(self._app_config, self._logger, cursor)
model_record_migrator.migrate()
def build_migration_3(app_config: InvokeAIAppConfig, logger: Logger) -> Migration:
"""

View File

@ -1,88 +0,0 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration7Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._create_models_table(cursor)
self._drop_old_models_tables(cursor)
def _drop_old_models_tables(self, cursor: sqlite3.Cursor) -> None:
"""Drops the old model_records, model_metadata, model_tags and tags tables."""
tables = ["model_records", "model_metadata", "model_tags", "tags"]
for table in tables:
cursor.execute(f"DROP TABLE IF EXISTS {table};")
def _create_models_table(self, cursor: sqlite3.Cursor) -> None:
"""Creates the v4.0.0 models table."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS models (
id TEXT NOT NULL PRIMARY KEY,
hash TEXT GENERATED ALWAYS as (json_extract(config, '$.hash')) VIRTUAL NOT NULL,
base TEXT GENERATED ALWAYS as (json_extract(config, '$.base')) VIRTUAL NOT NULL,
type TEXT GENERATED ALWAYS as (json_extract(config, '$.type')) VIRTUAL NOT NULL,
path TEXT GENERATED ALWAYS as (json_extract(config, '$.path')) VIRTUAL NOT NULL,
format TEXT GENERATED ALWAYS as (json_extract(config, '$.format')) VIRTUAL NOT NULL,
name TEXT GENERATED ALWAYS as (json_extract(config, '$.name')) VIRTUAL NOT NULL,
description TEXT GENERATED ALWAYS as (json_extract(config, '$.description')) VIRTUAL,
source TEXT GENERATED ALWAYS as (json_extract(config, '$.source')) VIRTUAL NOT NULL,
source_type TEXT GENERATED ALWAYS as (json_extract(config, '$.source_type')) VIRTUAL NOT NULL,
source_api_response TEXT GENERATED ALWAYS as (json_extract(config, '$.source_api_response')) VIRTUAL,
trigger_phrases TEXT GENERATED ALWAYS as (json_extract(config, '$.trigger_phrases')) VIRTUAL,
-- Serialized JSON representation of the whole config object, which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
"""
]
# Add trigger for `updated_at`.
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS models_updated_at
AFTER UPDATE
ON models FOR EACH ROW
BEGIN
UPDATE models SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
]
# Add indexes for searchable fields
indices = [
"CREATE INDEX IF NOT EXISTS base_index ON models(base);",
"CREATE INDEX IF NOT EXISTS type_index ON models(type);",
"CREATE INDEX IF NOT EXISTS name_index ON models(name);",
"CREATE UNIQUE INDEX IF NOT EXISTS path_index ON models(path);",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def build_migration_7() -> Migration:
"""
Build the migration from database version 6 to 7.
This migration does the following:
- Adds the new models table
- Drops the old model_records, model_metadata, model_tags and tags tables.
- TODO(MM2): Migrates model names and descriptions from `models.yaml` to the new table (?).
"""
migration_7 = Migration(
from_version=6,
to_version=7,
callback=Migration7Callback(),
)
return migration_7

View File

@ -0,0 +1,151 @@
# Copyright (c) 2023 Lincoln D. Stein
"""Migrate from the InvokeAI v2 models.yaml format to the v3 sqlite format."""
import json
import sqlite3
from hashlib import sha1
from logging import Logger
from pathlib import Path
from typing import Optional
from omegaconf import DictConfig, OmegaConf
from pydantic import TypeAdapter
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.model_records import (
DuplicateModelException,
UnknownModelException,
)
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelConfigFactory,
ModelType,
)
from invokeai.backend.model_manager.hash import FastModelHash
ModelsValidator = TypeAdapter(AnyModelConfig)
class MigrateModelYamlToDb1:
"""
Migrate the InvokeAI models.yaml format (VERSION 3.0.0) to SQL3 database format (VERSION 3.5.0).
The class has one externally useful method, migrate(), which scans the
currently models.yaml file and imports all its entries into invokeai.db.
Use this way:
from invokeai.backend.model_manager/migrate_to_db import MigrateModelYamlToDb
MigrateModelYamlToDb().migrate()
"""
config: InvokeAIAppConfig
logger: Logger
cursor: sqlite3.Cursor
def __init__(self, config: InvokeAIAppConfig, logger: Logger, cursor: sqlite3.Cursor = None) -> None:
self.config = config
self.logger = logger
self.cursor = cursor
def get_yaml(self) -> DictConfig:
"""Fetch the models.yaml DictConfig for this installation."""
yaml_path = self.config.model_conf_path
omegaconf = OmegaConf.load(yaml_path)
assert isinstance(omegaconf, DictConfig)
return omegaconf
def migrate(self) -> None:
"""Do the migration from models.yaml to invokeai.db."""
try:
yaml = self.get_yaml()
except OSError:
return
for model_key, stanza in yaml.items():
if model_key == "__metadata__":
assert (
stanza["version"] == "3.0.0"
), f"This script works on version 3.0.0 yaml files, but your configuration points to a {stanza['version']} version"
continue
base_type, model_type, model_name = str(model_key).split("/")
try:
hash = FastModelHash.hash(self.config.models_path / stanza.path)
except OSError:
self.logger.warning(f"The model at {stanza.path} is not a valid file or directory. Skipping migration.")
continue
assert isinstance(model_key, str)
new_key = sha1(model_key.encode("utf-8")).hexdigest()
stanza["base"] = BaseModelType(base_type)
stanza["type"] = ModelType(model_type)
stanza["name"] = model_name
stanza["original_hash"] = hash
stanza["current_hash"] = hash
new_config: AnyModelConfig = ModelsValidator.validate_python(stanza) # type: ignore # see https://github.com/pydantic/pydantic/discussions/7094
try:
if original_record := self._search_by_path(stanza.path):
key = original_record.key
self.logger.info(f"Updating model {model_name} with information from models.yaml using key {key}")
self._update_model(key, new_config)
else:
self.logger.info(f"Adding model {model_name} with key {model_key}")
self._add_model(new_key, new_config)
except DuplicateModelException:
self.logger.warning(f"Model {model_name} is already in the database")
except UnknownModelException:
self.logger.warning(f"Model at {stanza.path} could not be found in database")
def _search_by_path(self, path: Path) -> Optional[AnyModelConfig]:
self.cursor.execute(
"""--sql
SELECT config FROM model_config
WHERE path=?;
""",
(str(path),),
)
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self.cursor.fetchall()]
return results[0] if results else None
def _update_model(self, key: str, config: AnyModelConfig) -> None:
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect
json_serialized = record.model_dump_json() # and turn it into a json string.
self.cursor.execute(
"""--sql
UPDATE model_config
SET
config=?
WHERE id=?;
""",
(json_serialized, key),
)
if self.cursor.rowcount == 0:
raise UnknownModelException("model not found")
def _add_model(self, key: str, config: AnyModelConfig) -> None:
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect.
json_serialized = record.model_dump_json() # and turn it into a json string.
try:
self.cursor.execute(
"""--sql
INSERT INTO model_config (
id,
original_hash,
config
)
VALUES (?,?,?);
""",
(
key,
record.original_hash,
json_serialized,
),
)
except sqlite3.IntegrityError as exc:
raise DuplicateModelException(f"{record.name}: model is already in database") from exc

View File

@ -17,7 +17,8 @@ class MigrateCallback(Protocol):
See :class:`Migration` for an example.
"""
def __call__(self, cursor: sqlite3.Cursor) -> None: ...
def __call__(self, cursor: sqlite3.Cursor) -> None:
...
class MigrationError(RuntimeError):

View File

@ -8,8 +8,3 @@ class UrlServiceBase(ABC):
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the URL for an image or thumbnail."""
pass
@abstractmethod
def get_model_image_url(self, model_key: str) -> str:
"""Gets the URL for a model image"""
pass

View File

@ -4,9 +4,8 @@ from .urls_base import UrlServiceBase
class LocalUrlService(UrlServiceBase):
def __init__(self, base_url: str = "api/v1", base_url_v2: str = "api/v2"):
def __init__(self, base_url: str = "api/v1"):
self._base_url = base_url
self._base_url_v2 = base_url_v2
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
image_basename = os.path.basename(image_name)
@ -16,6 +15,3 @@ class LocalUrlService(UrlServiceBase):
return f"{self._base_url}/images/i/{image_basename}/thumbnail"
return f"{self._base_url}/images/i/{image_basename}/full"
def get_model_image_url(self, model_key: str) -> str:
return f"{self._base_url_v2}/models/i/{model_key}/image"

View File

@ -0,0 +1,55 @@
import json
from typing import Optional
from pydantic import ValidationError
from invokeai.app.services.shared.graph import Edge
def get_metadata_graph_from_raw_session(session_raw: str) -> Optional[dict]:
"""
Parses raw session string, returning a dict of the graph.
Only the general graph shape is validated; none of the fields are validated.
Any `metadata_accumulator` nodes and edges are removed.
Any validation failure will return None.
"""
graph = json.loads(session_raw).get("graph", None)
# sanity check make sure the graph is at least reasonably shaped
if (
not isinstance(graph, dict)
or "nodes" not in graph
or not isinstance(graph["nodes"], dict)
or "edges" not in graph
or not isinstance(graph["edges"], list)
):
# something has gone terribly awry, return an empty dict
return None
try:
# delete the `metadata_accumulator` node
del graph["nodes"]["metadata_accumulator"]
except KeyError:
# no accumulator node, all good
pass
# delete any edges to or from it
for i, edge in enumerate(graph["edges"]):
try:
# try to parse the edge
Edge(**edge)
except ValidationError:
# something has gone terribly awry, return an empty dict
return None
if (
edge["source"]["node_id"] == "metadata_accumulator"
or edge["destination"]["node_id"] == "metadata_accumulator"
):
del graph["edges"][i]
return graph

View File

@ -22,7 +22,7 @@ def generate_ti_list(
for trigger in extract_ti_triggers_from_prompt(prompt):
name_or_key = trigger[1:-1]
try:
loaded_model = context.models.load(name_or_key)
loaded_model = context.models.load(key=name_or_key)
model = loaded_model.model
assert isinstance(model, TextualInversionModelRaw)
assert loaded_model.config.base == base

View File

@ -1,7 +1,6 @@
"""
Initialization file for invokeai.backend.image_util methods.
"""
from .patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .seamless import configure_model_padding # noqa: F401

View File

@ -13,11 +13,11 @@ from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.util.util import download_with_progress_bar
config = InvokeAIAppConfig.get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
DEPTH_ANYTHING_MODELS = {
"large": {
@ -55,10 +55,9 @@ transform = Compose(
class DepthAnythingDetector:
def __init__(self) -> None:
self.model = None
self.model_size: Union[Literal["large", "base", "small"], None] = None
self.device = choose_torch_device()
self.model_size: Union[DEPTH_ANYTHING_MODEL_SIZES, None] = None
def load_model(self, model_size: Literal["large", "base", "small"] = "small"):
def load_model(self, model_size: DEPTH_ANYTHING_MODEL_SIZES = "small"):
DEPTH_ANYTHING_MODEL_PATH = pathlib.Path(config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"])
if not DEPTH_ANYTHING_MODEL_PATH.exists():
download_with_progress_bar(DEPTH_ANYTHING_MODELS[model_size]["url"], DEPTH_ANYTHING_MODEL_PATH)
@ -74,6 +73,8 @@ class DepthAnythingDetector:
self.model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
self.model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
case _:
raise TypeError("Not a supported model")
self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu"))
self.model.eval()
@ -81,16 +82,19 @@ class DepthAnythingDetector:
self.model.to(choose_torch_device())
return self.model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:
logger.warn("DepthAnything model was not loaded. Returning original image")
return image
def to(self, device):
self.model.to(device)
return self
def __call__(self, image: Image.Image, resolution: int = 512):
if self.model is None:
raise Exception("Depth Anything Model not loaded")
np_image = np.array(image, dtype=np.uint8)
np_image = np_image[:, :, ::-1] / 255.0
image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"]
np_image = transform({"image": image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(choose_torch_device())
with torch.no_grad():

View File

@ -3,7 +3,6 @@ This module defines a singleton object, "invisible_watermark" that
wraps the invisible watermark model. It respects the global "invisible_watermark"
configuration variable, that allows the watermarking to be supressed.
"""
import cv2
import numpy as np
from imwatermark import WatermarkEncoder

View File

@ -4,7 +4,6 @@ wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
"""
import numpy as np
import invokeai.backend.util.logging as logger

View File

@ -6,7 +6,6 @@ PngWriter -- Converts Images generated by T2I into PNGs, finds
Exports function retrieve_metadata(path)
"""
import json
import os
import re

View File

@ -3,7 +3,6 @@ This module defines a singleton object, "safety_checker" that
wraps the safety_checker model. It respects the global "nsfw_checker"
configuration variable, that allows the checker to be supressed.
"""
import numpy as np
from PIL import Image

View File

@ -1,7 +1,6 @@
"""
Check that the invokeai_root is correctly configured and exit if not.
"""
import sys
from invokeai.app.services.config import InvokeAIAppConfig

View File

@ -1,5 +1,4 @@
"""Utility (backend) functions used by model_install.py"""
from logging import Logger
from pathlib import Path
from typing import Any, Dict, List, Optional
@ -19,6 +18,7 @@ from invokeai.app.services.model_install import (
ModelInstallService,
ModelInstallServiceBase,
)
from invokeai.app.services.model_metadata import ModelMetadataStoreSQL
from invokeai.app.services.model_records import ModelRecordServiceBase, ModelRecordServiceSQL
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.model_manager import (
@ -38,7 +38,7 @@ def initialize_record_store(app_config: InvokeAIAppConfig) -> ModelRecordService
logger = InvokeAILogger.get_logger(config=app_config)
image_files = DiskImageFileStorage(f"{app_config.output_path}/images")
db = init_db(config=app_config, logger=logger, image_files=image_files)
obj: ModelRecordServiceBase = ModelRecordServiceSQL(db)
obj: ModelRecordServiceBase = ModelRecordServiceSQL(db, ModelMetadataStoreSQL(db))
return obj

View File

@ -17,7 +17,7 @@ import warnings
from argparse import Namespace
from enum import Enum
from pathlib import Path
from shutil import copy, get_terminal_size, move
from shutil import get_terminal_size
from typing import Any, Optional, Set, Tuple, Type, get_args, get_type_hints
from urllib import request
@ -929,10 +929,6 @@ def main() -> None:
errors = set()
FORCE_FULL_PRECISION = opt.full_precision # FIXME global
new_init_file = config.root_path / "invokeai.yaml"
backup_init_file = new_init_file.with_suffix(".bak")
if new_init_file.exists():
copy(new_init_file, backup_init_file)
try:
# if we do a root migration/upgrade, then we are keeping previous
@ -947,6 +943,7 @@ def main() -> None:
install_helper = InstallHelper(config, logger)
models_to_download = default_user_selections(opt, install_helper)
new_init_file = config.root_path / "invokeai.yaml"
if opt.yes_to_all:
write_default_options(opt, new_init_file)
@ -978,17 +975,8 @@ def main() -> None:
input("Press any key to continue...")
except WindowTooSmallException as e:
logger.error(str(e))
if backup_init_file.exists():
move(backup_init_file, new_init_file)
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")
if backup_init_file.exists():
move(backup_init_file, new_init_file)
except Exception:
print("An error occurred during installation.")
if backup_init_file.exists():
move(backup_init_file, new_init_file)
print(traceback.format_exc(), file=sys.stderr)
# -------------------------------------

View File

@ -1,219 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
import hashlib
import os
from pathlib import Path
from typing import Callable, Literal, Optional, Union
from blake3 import blake3
from invokeai.app.util.misc import uuid_string
HASHING_ALGORITHMS = Literal[
"md5",
"sha1",
"sha224",
"sha256",
"sha384",
"sha512",
"blake2b",
"blake2s",
"sha3_224",
"sha3_256",
"sha3_384",
"sha3_512",
"shake_128",
"shake_256",
"blake3",
"blake3_single",
"random",
]
MODEL_FILE_EXTENSIONS = (".ckpt", ".safetensors", ".bin", ".pt", ".pth")
class ModelHash:
"""
Creates a hash of a model using a specified algorithm. The hash is prefixed by the algorithm used.
Args:
algorithm: Hashing algorithm to use. Defaults to BLAKE3.
file_filter: A function that takes a file name and returns True if the file should be included in the hash.
If the model is a single file, it is hashed directly using the provided algorithm.
If the model is a directory, each model weights file in the directory is hashed using the provided algorithm.
Only files with the following extensions are hashed: .ckpt, .safetensors, .bin, .pt, .pth
The final hash is computed by hashing the hashes of all model files in the directory using BLAKE3, ensuring
that directory hashes are never weaker than the file hashes.
A convenience algorithm choice of "random" is also available, which returns a random string. This is not a hash.
Usage:
```py
# BLAKE3 hash
ModelHash().hash("path/to/some/model.safetensors") # "blake3:ce3f0c5f3c05d119f4a5dcaf209b50d3149046a0d3a9adee9fed4c83cad6b4d0"
# MD5
ModelHash("md5").hash("path/to/model/dir/") # "md5:a0cd925fc063f98dbf029eee315060c3"
```
"""
def __init__(
self, algorithm: HASHING_ALGORITHMS = "blake3", file_filter: Optional[Callable[[str], bool]] = None
) -> None:
self.algorithm: HASHING_ALGORITHMS = algorithm
if algorithm == "blake3":
self._hash_file = self._blake3
elif algorithm == "blake3_single":
self._hash_file = self._blake3_single
elif algorithm in hashlib.algorithms_available:
self._hash_file = self._get_hashlib(algorithm)
elif algorithm == "random":
self._hash_file = self._random
else:
raise ValueError(f"Algorithm {algorithm} not available")
self._file_filter = file_filter or self._default_file_filter
def hash(self, model_path: Union[str, Path]) -> str:
"""
Return hexdigest of hash of model located at model_path using the algorithm provided at class instantiation.
If model_path is a directory, the hash is computed by hashing the hashes of all model files in the
directory. The final composite hash is always computed using BLAKE3.
Args:
model_path: Path to the model
Returns:
str: Hexdigest of the hash of the model
"""
model_path = Path(model_path)
# blake3_single is a single-threaded version of blake3, prefix should still be "blake3:"
prefix = self._get_prefix(self.algorithm)
if model_path.is_file():
return prefix + self._hash_file(model_path)
elif model_path.is_dir():
return prefix + self._hash_dir(model_path)
else:
raise OSError(f"Not a valid file or directory: {model_path}")
def _hash_dir(self, dir: Path) -> str:
"""Compute the hash for all files in a directory and return a hexdigest.
Args:
dir: Path to the directory
Returns:
str: Hexdigest of the hash of the directory
"""
model_component_paths = self._get_file_paths(dir, self._file_filter)
component_hashes: list[str] = []
for component in sorted(model_component_paths):
component_hashes.append(self._hash_file(component))
# BLAKE3 is cryptographically secure. We may as well fall back on a secure algorithm
# for the composite hash
composite_hasher = blake3()
for h in component_hashes:
composite_hasher.update(h.encode("utf-8"))
return composite_hasher.hexdigest()
@staticmethod
def _get_file_paths(model_path: Path, file_filter: Callable[[str], bool]) -> list[Path]:
"""Return a list of all model files in the directory.
Args:
model_path: Path to the model
file_filter: Function that takes a file name and returns True if the file should be included in the list.
Returns:
List of all model files in the directory
"""
files: list[Path] = []
for root, _dirs, _files in os.walk(model_path):
for file in _files:
if file_filter(file):
files.append(Path(root, file))
return files
@staticmethod
def _blake3(file_path: Path) -> str:
"""Hashes a file using BLAKE3, using parallelized and memory-mapped I/O to avoid reading the entire file into memory.
Args:
file_path: Path to the file to hash
Returns:
Hexdigest of the hash of the file
"""
file_hasher = blake3(max_threads=blake3.AUTO)
file_hasher.update_mmap(file_path)
return file_hasher.hexdigest()
@staticmethod
def _blake3_single(file_path: Path) -> str:
"""Hashes a file using BLAKE3, without parallelism. Suitable for spinning hard drives.
Args:
file_path: Path to the file to hash
Returns:
Hexdigest of the hash of the file
"""
file_hasher = blake3()
file_hasher.update_mmap(file_path)
return file_hasher.hexdigest()
@staticmethod
def _get_hashlib(algorithm: HASHING_ALGORITHMS) -> Callable[[Path], str]:
"""Factory function that returns a function to hash a file with the given algorithm.
Args:
algorithm: Hashing algorithm to use
Returns:
A function that hashes a file using the given algorithm
"""
def hashlib_hasher(file_path: Path) -> str:
"""Hashes a file using a hashlib algorithm. Uses `memoryview` to avoid reading the entire file into memory."""
hasher = hashlib.new(algorithm)
buffer = bytearray(128 * 1024)
mv = memoryview(buffer)
with open(file_path, "rb", buffering=0) as f:
while n := f.readinto(mv):
hasher.update(mv[:n])
return hasher.hexdigest()
return hashlib_hasher
@staticmethod
def _random(_file_path: Path) -> str:
"""Returns a random string. This is not a hash.
The string is a UUID, hashed with BLAKE3 to ensure that it is unique."""
return blake3(uuid_string().encode()).hexdigest()
@staticmethod
def _default_file_filter(file_path: str) -> bool:
"""A default file filter that only includes files with the following extensions: .ckpt, .safetensors, .bin, .pt, .pth
Args:
file_path: Path to the file
Returns:
True if the file matches the given extensions, otherwise False
"""
return file_path.endswith(MODEL_FILE_EXTENSIONS)
@staticmethod
def _get_prefix(algorithm: HASHING_ALGORITHMS) -> str:
"""Return the prefix for the given algorithm, e.g. \"blake3:\" or \"md5:\"."""
# blake3_single is a single-threaded version of blake3, prefix should still be "blake3:"
return "blake3:" if algorithm == "blake3_single" else f"{algorithm}:"

View File

@ -1,5 +1,4 @@
"""Re-export frequently-used symbols from the Model Manager backend."""
from .config import (
AnyModel,
AnyModelConfig,

View File

@ -19,19 +19,15 @@ Typical usage:
Validation errors will raise an InvalidModelConfigException error.
"""
import time
from enum import Enum
from typing import Literal, Optional, Type, TypeAlias, Union
from typing import Literal, Optional, Type, Union
import torch
from diffusers.models.modeling_utils import ModelMixin
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
from diffusers import ModelMixin
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
from typing_extensions import Annotated, Any, Dict
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
from invokeai.app.util.misc import uuid_string
from ..raw_model import RawModel
# ModelMixin is the base class for all diffusers and transformers models
@ -59,8 +55,8 @@ class ModelType(str, Enum):
ONNX = "onnx"
Main = "main"
VAE = "vae"
LoRA = "lora"
Vae = "vae"
Lora = "lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
@ -76,9 +72,9 @@ class SubModelType(str, Enum):
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
VAE = "vae"
VAEDecoder = "vae_decoder"
VAEEncoder = "vae_encoder"
Vae = "vae"
VaeDecoder = "vae_decoder"
VaeEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
@ -96,8 +92,8 @@ class ModelFormat(str, Enum):
Diffusers = "diffusers"
Checkpoint = "checkpoint"
LyCORIS = "lycoris"
ONNX = "onnx"
Lycoris = "lycoris"
Onnx = "onnx"
Olive = "olive"
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
@ -115,208 +111,127 @@ class SchedulerPredictionType(str, Enum):
class ModelRepoVariant(str, Enum):
"""Various hugging face variants on the diffusers format."""
Default = "" # model files without "fp16" or other qualifier - empty str
DEFAULT = "" # model files without "fp16" or other qualifier - empty str
FP16 = "fp16"
FP32 = "fp32"
ONNX = "onnx"
OpenVINO = "openvino"
Flax = "flax"
class ModelSourceType(str, Enum):
"""Model source type."""
Path = "path"
Url = "url"
HFRepoID = "hf_repo_id"
DEFAULTS_PRECISION = Literal["fp16", "fp32"]
class MainModelDefaultSettings(BaseModel):
vae: str | None = Field(default=None, description="Default VAE for this model (model key)")
vae_precision: DEFAULTS_PRECISION | None = Field(default=None, description="Default VAE precision for this model")
scheduler: SCHEDULER_NAME_VALUES | None = Field(default=None, description="Default scheduler for this model")
steps: int | None = Field(default=None, gt=0, description="Default number of steps for this model")
cfg_scale: float | None = Field(default=None, ge=1, description="Default CFG Scale for this model")
cfg_rescale_multiplier: float | None = Field(
default=None, ge=0, lt=1, description="Default CFG Rescale Multiplier for this model"
)
width: int | None = Field(default=None, multiple_of=8, ge=64, description="Default width for this model")
height: int | None = Field(default=None, multiple_of=8, ge=64, description="Default height for this model")
class ControlAdapterDefaultSettings(BaseModel):
# This could be narrowed to controlnet processor nodes, but they change. Leaving this a string is safer.
preprocessor: str | None
OPENVINO = "openvino"
FLAX = "flax"
class ModelConfigBase(BaseModel):
"""Base class for model configuration information."""
key: str = Field(description="A unique key for this model.", default_factory=uuid_string)
hash: str = Field(description="The hash of the model file(s).")
path: str = Field(
description="Path to the model on the filesystem. Relative paths are relative to the Invoke root directory."
)
name: str = Field(description="Name of the model.")
base: BaseModelType = Field(description="The base model.")
description: Optional[str] = Field(description="Model description", default=None)
source: str = Field(description="The original source of the model (path, URL or repo_id).")
source_type: ModelSourceType = Field(description="The type of source")
source_api_response: Optional[str] = Field(
description="The original API response from the source, as stringified JSON.", default=None
)
cover_image: Optional[str] = Field(description="Url for image to preview model", default=None)
path: str = Field(description="filesystem path to the model file or directory")
name: str = Field(description="model name")
base: BaseModelType = Field(description="base model")
type: ModelType = Field(description="type of the model")
format: ModelFormat = Field(description="model format")
key: str = Field(description="unique key for model", default="<NOKEY>")
original_hash: Optional[str] = Field(
description="original fasthash of model contents", default=None
) # this is assigned at install time and will not change
current_hash: Optional[str] = Field(
description="current fasthash of model contents", default=None
) # if model is converted or otherwise modified, this will hold updated hash
description: Optional[str] = Field(description="human readable description of the model", default=None)
source: Optional[str] = Field(description="model original source (path, URL or repo_id)", default=None)
last_modified: Optional[float] = Field(description="timestamp for modification time", default_factory=time.time)
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
schema["required"].extend(["key", "type", "format"])
schema["required"].extend(
["key", "base", "type", "format", "original_hash", "current_hash", "source", "last_modified"]
)
model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra)
model_config = ConfigDict(
use_enum_values=False,
validate_assignment=True,
json_schema_extra=json_schema_extra,
)
def update(self, attributes: Dict[str, Any]) -> None:
"""Update the object with fields in dict."""
for key, value in attributes.items():
setattr(self, key, value) # may raise a validation error
class CheckpointConfigBase(ModelConfigBase):
class _CheckpointConfig(ModelConfigBase):
"""Model config for checkpoint-style models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
config_path: str = Field(description="path to the checkpoint model config file")
converted_at: Optional[float] = Field(
description="When this model was last converted to diffusers", default_factory=time.time
)
config: str = Field(description="path to the checkpoint model config file")
class DiffusersConfigBase(ModelConfigBase):
class _DiffusersConfig(ModelConfigBase):
"""Model config for diffusers-style models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.Default
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.DEFAULT
class LoRAConfigBase(ModelConfigBase):
type: Literal[ModelType.LoRA] = ModelType.LoRA
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
class LoRALyCORISConfig(LoRAConfigBase):
class LoRAConfig(ModelConfigBase):
"""Model config for LoRA/Lycoris models."""
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.LyCORIS.value}")
type: Literal[ModelType.Lora] = ModelType.Lora
format: Literal[ModelFormat.Lycoris, ModelFormat.Diffusers]
class LoRADiffusersConfig(LoRAConfigBase):
"""Model config for LoRA/Diffusers models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.Diffusers.value}")
class VAECheckpointConfig(CheckpointConfigBase):
class VaeCheckpointConfig(ModelConfigBase):
"""Model config for standalone VAE models."""
type: Literal[ModelType.VAE] = ModelType.VAE
type: Literal[ModelType.Vae] = ModelType.Vae
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Checkpoint.value}")
class VAEDiffusersConfig(ModelConfigBase):
class VaeDiffusersConfig(ModelConfigBase):
"""Model config for standalone VAE models (diffusers version)."""
type: Literal[ModelType.VAE] = ModelType.VAE
type: Literal[ModelType.Vae] = ModelType.Vae
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Diffusers.value}")
class ControlAdapterConfigBase(BaseModel):
default_settings: Optional[ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
)
class ControlNetDiffusersConfig(DiffusersConfigBase, ControlAdapterConfigBase):
class ControlNetDiffusersConfig(_DiffusersConfig):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Diffusers.value}")
class ControlNetCheckpointConfig(CheckpointConfigBase, ControlAdapterConfigBase):
class ControlNetCheckpointConfig(_CheckpointConfig):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Checkpoint.value}")
class TextualInversionFileConfig(ModelConfigBase):
class TextualInversionConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFile] = ModelFormat.EmbeddingFile
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFile.value}")
format: Literal[ModelFormat.EmbeddingFile, ModelFormat.EmbeddingFolder]
class TextualInversionFolderConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFolder] = ModelFormat.EmbeddingFolder
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFolder.value}")
class MainConfigBase(ModelConfigBase):
type: Literal[ModelType.Main] = ModelType.Main
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
"""Model config for main checkpoint models."""
class _MainConfig(ModelConfigBase):
"""Model config for main models."""
vae: Optional[str] = Field(default=None)
variant: ModelVariantType = ModelVariantType.Normal
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}")
ztsnr_training: bool = False
class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
class MainCheckpointConfig(_CheckpointConfig, _MainConfig):
"""Model config for main checkpoint models."""
type: Literal[ModelType.Main] = ModelType.Main
class MainDiffusersConfig(_DiffusersConfig, _MainConfig):
"""Model config for main diffusers models."""
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
type: Literal[ModelType.Main] = ModelType.Main
class IPAdapterConfig(ModelConfigBase):
@ -326,75 +241,63 @@ class IPAdapterConfig(ModelConfigBase):
image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}")
class CLIPVisionDiffusersConfig(ModelConfigBase):
"""Model config for CLIPVision."""
"""Model config for ClipVision."""
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
format: Literal[ModelFormat.Diffusers]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPVision.value}.{ModelFormat.Diffusers.value}")
class T2IAdapterConfig(ModelConfigBase, ControlAdapterConfigBase):
class T2IConfig(ModelConfigBase):
"""Model config for T2I."""
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
format: Literal[ModelFormat.Diffusers]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T2IAdapter.value}.{ModelFormat.Diffusers.value}")
_ControlNetConfig = Annotated[
Union[ControlNetDiffusersConfig, ControlNetCheckpointConfig],
Field(discriminator="format"),
]
_VaeConfig = Annotated[Union[VaeDiffusersConfig, VaeCheckpointConfig], Field(discriminator="format")]
_MainModelConfig = Annotated[Union[MainDiffusersConfig, MainCheckpointConfig], Field(discriminator="format")]
def get_model_discriminator_value(v: Any) -> str:
"""
Computes the discriminator value for a model config.
https://docs.pydantic.dev/latest/concepts/unions/#discriminated-unions-with-callable-discriminator
"""
format_ = None
type_ = None
if isinstance(v, dict):
format_ = v.get("format")
if isinstance(format_, Enum):
format_ = format_.value
type_ = v.get("type")
if isinstance(type_, Enum):
type_ = type_.value
else:
format_ = v.format.value
type_ = v.type.value
v = f"{type_}.{format_}"
return v
AnyModelConfig = Annotated[
Union[
Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()],
Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()],
Annotated[VAEDiffusersConfig, VAEDiffusersConfig.get_tag()],
Annotated[VAECheckpointConfig, VAECheckpointConfig.get_tag()],
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterConfig, IPAdapterConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
AnyModelConfig = Union[
_MainModelConfig,
_VaeConfig,
_ControlNetConfig,
# ModelConfigBase,
LoRAConfig,
TextualInversionConfig,
IPAdapterConfig,
CLIPVisionDiffusersConfig,
T2IConfig,
]
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
AnyDefaultSettings: TypeAlias = Union[MainModelDefaultSettings, ControlAdapterDefaultSettings]
# IMPLEMENTATION NOTE:
# The preferred alternative to the above is a discriminated Union as shown
# below. However, it breaks FastAPI when used as the input Body parameter in a route.
# This is a known issue. Please see:
# https://github.com/tiangolo/fastapi/discussions/9761 and
# https://github.com/tiangolo/fastapi/discussions/9287
# AnyModelConfig = Annotated[
# Union[
# _MainModelConfig,
# _ONNXConfig,
# _VaeConfig,
# _ControlNetConfig,
# LoRAConfig,
# TextualInversionConfig,
# IPAdapterConfig,
# CLIPVisionDiffusersConfig,
# T2IConfig,
# ],
# Field(discriminator="type"),
# ]
class ModelConfigFactory(object):
@ -428,6 +331,6 @@ class ModelConfigFactory(object):
assert model is not None
if key:
model.key = key
if isinstance(model, CheckpointConfigBase) and timestamp is not None:
model.converted_at = timestamp
if timestamp:
model.last_modified = timestamp
return model # type: ignore

View File

@ -15,7 +15,7 @@
#
# Adapted for use in InvokeAI by Lincoln Stein, July 2023
#
"""Conversion script for the Stable Diffusion checkpoints."""
""" Conversion script for the Stable Diffusion checkpoints."""
import re
from contextlib import nullcontext
@ -76,25 +76,6 @@ logger = InvokeAILogger.get_logger(__name__)
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().models_path / "core/convert"
def install_dependencies():
"""
Check for, and install, missing model dependencies.
"""
conversion_models = [
"clip-vit-large-patch14",
"CLIP-ViT-H-14-laion2B-s32B-b79K",
"stable-diffusion-2-clip",
"stable-diffusion-safety-checker",
"CLIP-ViT-bigG-14-laion2B-39B-b160k",
"bert-base-uncased",
]
if any(not (CONVERT_MODEL_ROOT / x).exists() for x in conversion_models):
logger.warning("Installing missing core safetensor conversion models")
from invokeai.backend.install.invokeai_configure import download_conversion_models # noqa
download_conversion_models()
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
@ -1716,8 +1697,6 @@ def download_controlnet_from_original_ckpt(
def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL:
install_dependencies()
vae_config = create_vae_diffusers_config(vae_config, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
@ -1738,7 +1717,6 @@ def convert_ckpt_to_diffusers(
and in addition a path-like object indicating the location of the desired diffusers
model to be written.
"""
install_dependencies()
pipe = download_from_original_stable_diffusion_ckpt(checkpoint_path, **kwargs)
# TO DO: save correct repo variant
@ -1758,7 +1736,6 @@ def convert_controlnet_to_diffusers(
and in addition a path-like object indicating the location of the desired diffusers
model to be written.
"""
install_dependencies()
pipe = download_controlnet_from_original_ckpt(checkpoint_path, **kwargs)
# TO DO: save correct repo variant

View File

@ -0,0 +1,66 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Fast hashing of diffusers and checkpoint-style models.
Usage:
from invokeai.backend.model_managre.model_hash import FastModelHash
>>> FastModelHash.hash('/home/models/stable-diffusion-v1.5')
'a8e693a126ea5b831c96064dc569956f'
"""
import hashlib
import os
from pathlib import Path
from typing import Dict, Union
from imohash import hashfile
class FastModelHash(object):
"""FastModelHash obect provides one public class method, hash()."""
@classmethod
def hash(cls, model_location: Union[str, Path]) -> str:
"""
Return hexdigest string for model located at model_location.
:param model_location: Path to the model
"""
model_location = Path(model_location)
if model_location.is_file():
return cls._hash_file(model_location)
elif model_location.is_dir():
return cls._hash_dir(model_location)
else:
raise OSError(f"Not a valid file or directory: {model_location}")
@classmethod
def _hash_file(cls, model_location: Union[str, Path]) -> str:
"""
Fasthash a single file and return its hexdigest.
:param model_location: Path to the model file
"""
# we return md5 hash of the filehash to make it shorter
# cryptographic security not needed here
return hashlib.md5(hashfile(model_location)).hexdigest()
@classmethod
def _hash_dir(cls, model_location: Union[str, Path]) -> str:
components: Dict[str, str] = {}
for root, _dirs, files in os.walk(model_location):
for file in files:
# only tally tensor files because diffusers config files change slightly
# depending on how the model was downloaded/converted.
if not file.endswith((".ckpt", ".safetensors", ".bin", ".pt", ".pth")):
continue
path = (Path(root) / file).as_posix()
fast_hash = cls._hash_file(path)
components.update({path: fast_hash})
# hash all the model hashes together, using alphabetic file order
md5 = hashlib.md5()
for _path, fast_hash in sorted(components.items()):
md5.update(fast_hash.encode("utf-8"))
return md5.hexdigest()

View File

@ -2,7 +2,6 @@
"""
Init file for the model loader.
"""
from importlib import import_module
from pathlib import Path

View File

@ -1,7 +1,6 @@
"""
Disk-based converted model cache.
"""
from abc import ABC, abstractmethod
from pathlib import Path

View File

@ -13,7 +13,6 @@ from invokeai.backend.model_manager import (
ModelRepoVariant,
SubModelType,
)
from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
@ -51,7 +50,7 @@ class ModelLoader(ModelLoaderBase):
:param submodel_type: an ModelType enum indicating the portion of
the model to retrieve (e.g. ModelType.Vae)
"""
if model_config.type is ModelType.Main and not submodel_type:
if model_config.type == "main" and not submodel_type:
raise InvalidModelConfigException("submodel_type is required when loading a main model")
model_path, model_config, submodel_type = self._get_model_path(model_config, submodel_type)
@ -81,7 +80,7 @@ class ModelLoader(ModelLoaderBase):
self._convert_cache.make_room(self.get_size_fs(config, model_path, submodel_type))
return self._convert_model(config, model_path, cache_path)
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, cache_path: Path) -> bool:
return False
def _load_if_needed(
@ -120,7 +119,7 @@ class ModelLoader(ModelLoaderBase):
return calc_model_size_by_fs(
model_path=model_path,
subfolder=submodel_type.value if submodel_type else None,
variant=config.repo_variant if isinstance(config, DiffusersConfigBase) else None,
variant=config.repo_variant if hasattr(config, "repo_variant") else None,
)
# This needs to be implemented in subclasses that handle checkpoints

View File

@ -19,6 +19,7 @@ context. Use like this:
"""
import gc
import logging
import math
import sys
import time
@ -91,7 +92,8 @@ class ModelCache(ModelCacheBase[AnyModel]):
self._execution_device: torch.device = execution_device
self._storage_device: torch.device = storage_device
self._logger = logger or InvokeAILogger.get_logger(self.__class__.__name__)
self._log_memory_usage = log_memory_usage
self._log_memory_usage = log_memory_usage or self._logger.level == logging.DEBUG
# used for stats collection
self._stats: Optional[CacheStats] = None
self._cached_models: Dict[str, CacheRecord[AnyModel]] = {}

View File

@ -14,9 +14,10 @@ Use like this:
).load_model(model_config, submodel_type)
"""
import hashlib
from abc import ABC, abstractmethod
from typing import Callable, Dict, Optional, Tuple, Type, TypeVar
from pathlib import Path
from typing import Callable, Dict, Optional, Tuple, Type
from ..config import (
AnyModelConfig,
@ -25,6 +26,8 @@ from ..config import (
ModelFormat,
ModelType,
SubModelType,
VaeCheckpointConfig,
VaeDiffusersConfig,
)
from . import ModelLoaderBase
@ -57,10 +60,7 @@ class ModelLoaderRegistryBase(ABC):
"""
TModelLoader = TypeVar("TModelLoader", bound=ModelLoaderBase)
class ModelLoaderRegistry(ModelLoaderRegistryBase):
class ModelLoaderRegistry:
"""
This class allows model loaders to register their type, base and format.
"""
@ -70,10 +70,10 @@ class ModelLoaderRegistry(ModelLoaderRegistryBase):
@classmethod
def register(
cls, type: ModelType, format: ModelFormat, base: BaseModelType = BaseModelType.Any
) -> Callable[[Type[TModelLoader]], Type[TModelLoader]]:
) -> Callable[[Type[ModelLoaderBase]], Type[ModelLoaderBase]]:
"""Define a decorator which registers the subclass of loader."""
def decorator(subclass: Type[TModelLoader]) -> Type[TModelLoader]:
def decorator(subclass: Type[ModelLoaderBase]) -> Type[ModelLoaderBase]:
key = cls._to_registry_key(base, type, format)
if key in cls._registry:
raise Exception(
@ -89,15 +89,33 @@ class ModelLoaderRegistry(ModelLoaderRegistryBase):
cls, config: AnyModelConfig, submodel_type: Optional[SubModelType]
) -> Tuple[Type[ModelLoaderBase], ModelConfigBase, Optional[SubModelType]]:
"""Get subclass of ModelLoaderBase registered to handle base and type."""
# We have to handle VAE overrides here because this will change the model type and the corresponding implementation returned
conf2, submodel_type = cls._handle_subtype_overrides(config, submodel_type)
key1 = cls._to_registry_key(config.base, config.type, config.format) # for a specific base type
key2 = cls._to_registry_key(BaseModelType.Any, config.type, config.format) # with wildcard Any
key1 = cls._to_registry_key(conf2.base, conf2.type, conf2.format) # for a specific base type
key2 = cls._to_registry_key(BaseModelType.Any, conf2.type, conf2.format) # with wildcard Any
implementation = cls._registry.get(key1) or cls._registry.get(key2)
if not implementation:
raise NotImplementedError(
f"No subclass of LoadedModel is registered for base={config.base}, type={config.type}, format={config.format}"
)
return implementation, config, submodel_type
return implementation, conf2, submodel_type
@classmethod
def _handle_subtype_overrides(
cls, config: AnyModelConfig, submodel_type: Optional[SubModelType]
) -> Tuple[ModelConfigBase, Optional[SubModelType]]:
if submodel_type == SubModelType.Vae and hasattr(config, "vae") and config.vae is not None:
model_path = Path(config.vae)
config_class = (
VaeCheckpointConfig if model_path.suffix in [".pt", ".safetensors", ".ckpt"] else VaeDiffusersConfig
)
hash = hashlib.md5(model_path.as_posix().encode("utf-8")).hexdigest()
new_conf = config_class(path=model_path.as_posix(), name=model_path.stem, base=config.base, key=hash)
submodel_type = None
else:
new_conf = config
return new_conf, submodel_type
@staticmethod
def _to_registry_key(base: BaseModelType, type: ModelType, format: ModelFormat) -> str:

View File

@ -3,8 +3,8 @@
from pathlib import Path
import safetensors
import torch
from safetensors.torch import load_file as safetensors_load_file
from invokeai.backend.model_manager import (
AnyModelConfig,
@ -12,7 +12,6 @@ from invokeai.backend.model_manager import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
from .. import ModelLoaderRegistry
@ -21,15 +20,15 @@ from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ControlNet, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ControlNet, format=ModelFormat.Checkpoint)
class ControlNetLoader(GenericDiffusersLoader):
class ControlnetLoader(GenericDiffusersLoader):
"""Class to load ControlNet models."""
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
if not isinstance(config, CheckpointConfigBase):
if config.format != ModelFormat.Checkpoint:
return False
elif (
dest_path.exists()
and (dest_path / "config.json").stat().st_mtime >= (config.converted_at or 0.0)
and (dest_path / "config.json").stat().st_mtime >= (config.last_modified or 0.0)
and (dest_path / "config.json").stat().st_mtime >= model_path.stat().st_mtime
):
return False
@ -38,13 +37,13 @@ class ControlNetLoader(GenericDiffusersLoader):
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"ControlNet conversion not supported for model type: {config.base}")
raise Exception(f"Vae conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = config.config_path
assert hasattr(config, "config")
config_file = config.config
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")
checkpoint = safetensors.torch.load_file(model_path, device="cpu")
else:
checkpoint = torch.load(model_path, map_location="cpu")

View File

@ -3,10 +3,9 @@
import sys
from pathlib import Path
from typing import Any, Optional
from typing import Any, Dict, Optional
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.modeling_utils import ModelMixin
from diffusers import ConfigMixin, ModelMixin
from invokeai.backend.model_manager import (
AnyModel,
@ -42,7 +41,6 @@ class GenericDiffusersLoader(ModelLoader):
# TO DO: Add exception handling
def get_hf_load_class(self, model_path: Path, submodel_type: Optional[SubModelType] = None) -> ModelMixin:
"""Given the model path and submodel, returns the diffusers ModelMixin subclass needed to load."""
result = None
if submodel_type:
try:
config = self._load_diffusers_config(model_path, config_name="model_index.json")
@ -66,7 +64,6 @@ class GenericDiffusersLoader(ModelLoader):
raise InvalidModelConfigException("Unable to decifer Load Class based on given config.json")
except KeyError as e:
raise InvalidModelConfigException("An expected config.json file is missing from this model.") from e
assert result is not None
return result
# TO DO: Add exception handling
@ -78,7 +75,7 @@ class GenericDiffusersLoader(ModelLoader):
result: ModelMixin = getattr(res_type, class_name)
return result
def _load_diffusers_config(self, model_path: Path, config_name: str = "config.json") -> dict[str, Any]:
def _load_diffusers_config(self, model_path: Path, config_name: str = "config.json") -> Dict[str, Any]:
return ConfigLoader.load_config(model_path, config_name=config_name)
@ -86,8 +83,8 @@ class ConfigLoader(ConfigMixin):
"""Subclass of ConfigMixin for loading diffusers configuration files."""
@classmethod
def load_config(cls, *args: Any, **kwargs: Any) -> dict[str, Any]: # pyright: ignore [reportIncompatibleMethodOverride]
def load_config(cls, *args: Any, **kwargs: Any) -> Dict[str, Any]:
"""Load a diffusrs ConfigMixin configuration."""
cls.config_name = kwargs.pop("config_name")
# TODO(psyche): the types on this diffusers method are not correct
# Diffusers doesn't provide typing info
return super().load_config(*args, **kwargs) # type: ignore

View File

@ -31,7 +31,7 @@ class IPAdapterInvokeAILoader(ModelLoader):
if submodel_type is not None:
raise ValueError("There are no submodels in an IP-Adapter model.")
model = build_ip_adapter(
ip_adapter_ckpt_path=str(model_path / "ip_adapter.bin"),
ip_adapter_ckpt_path=model_path / "ip_adapter.bin",
device=torch.device("cpu"),
dtype=self._torch_dtype,
)

View File

@ -1,6 +1,7 @@
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
"""Class for LoRA model loading in InvokeAI."""
from logging import Logger
from pathlib import Path
from typing import Optional, Tuple
@ -22,9 +23,9 @@ from invokeai.backend.model_manager.load.model_cache.model_cache_base import Mod
from .. import ModelLoader, ModelLoaderRegistry
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.LyCORIS)
class LoRALoader(ModelLoader):
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Lora, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Lora, format=ModelFormat.Lycoris)
class LoraLoader(ModelLoader):
"""Class to load LoRA models."""
# We cheat a little bit to get access to the model base

View File

@ -18,7 +18,7 @@ from .. import ModelLoaderRegistry
from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ONNX, format=ModelFormat.ONNX)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ONNX, format=ModelFormat.Onnx)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ONNX, format=ModelFormat.Olive)
class OnnyxDiffusersModel(GenericDiffusersLoader):
"""Class to load onnx models."""

View File

@ -1,11 +1,11 @@
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
"""Class for StableDiffusion model loading in InvokeAI."""
from pathlib import Path
from typing import Optional
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionPipeline
from invokeai.backend.model_manager import (
AnyModel,
@ -17,7 +17,7 @@ from invokeai.backend.model_manager import (
ModelVariantType,
SubModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase, MainCheckpointConfig
from invokeai.backend.model_manager.config import MainCheckpointConfig
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
from .. import ModelLoaderRegistry
@ -55,11 +55,11 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
return result
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
if not isinstance(config, CheckpointConfigBase):
if config.format != ModelFormat.Checkpoint:
return False
elif (
dest_path.exists()
and (dest_path / "model_index.json").stat().st_mtime >= (config.converted_at or 0.0)
and (dest_path / "model_index.json").stat().st_mtime >= (config.last_modified or 0.0)
and (dest_path / "model_index.json").stat().st_mtime >= model_path.stat().st_mtime
):
return False
@ -74,7 +74,7 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
StableDiffusionInpaintPipeline if variant == ModelVariantType.Inpaint else StableDiffusionPipeline
)
config_file = config.config_path
config_file = config.config
self._logger.info(f"Converting {model_path} to diffusers format")
convert_ckpt_to_diffusers(

View File

@ -1,6 +1,7 @@
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
"""Class for TI model loading in InvokeAI."""
from pathlib import Path
from typing import Optional, Tuple

View File

@ -3,9 +3,9 @@
from pathlib import Path
import safetensors
import torch
from omegaconf import DictConfig, OmegaConf
from safetensors.torch import load_file as safetensors_load_file
from invokeai.backend.model_manager import (
AnyModelConfig,
@ -13,25 +13,24 @@ from invokeai.backend.model_manager import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
from .. import ModelLoaderRegistry
from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.VAE, format=ModelFormat.Checkpoint)
class VAELoader(GenericDiffusersLoader):
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Vae, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.Vae, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.Vae, format=ModelFormat.Checkpoint)
class VaeLoader(GenericDiffusersLoader):
"""Class to load VAE models."""
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
if not isinstance(config, CheckpointConfigBase):
if config.format != ModelFormat.Checkpoint:
return False
elif (
dest_path.exists()
and (dest_path / "config.json").stat().st_mtime >= (config.converted_at or 0.0)
and (dest_path / "config.json").stat().st_mtime >= (config.last_modified or 0.0)
and (dest_path / "config.json").stat().st_mtime >= model_path.stat().st_mtime
):
return False
@ -39,15 +38,16 @@ class VAELoader(GenericDiffusersLoader):
return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
# TODO(MM2): check whether sdxl VAE models convert.
# TO DO: check whether sdxl VAE models convert.
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"VAE conversion not supported for model type: {config.base}")
raise Exception(f"Vae conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = config.config_path
config_file = (
"v1-inference.yaml" if config.base == BaseModelType.StableDiffusion1 else "v2-inference-v.yaml"
)
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")
checkpoint = safetensors.torch.load_file(model_path, device="cpu")
else:
checkpoint = torch.load(model_path, map_location="cpu")
@ -55,7 +55,7 @@ class VAELoader(GenericDiffusersLoader):
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
ckpt_config = OmegaConf.load(self._app_config.root_path / config_file)
ckpt_config = OmegaConf.load(self._app_config.legacy_conf_path / config_file)
assert isinstance(ckpt_config, DictConfig)
vae_model = convert_ldm_vae_to_diffusers(

Some files were not shown because too many files have changed in this diff Show More