Compare commits

..

86 Commits

Author SHA1 Message Date
ed7deee8f1 Merge branch 'main' into feat/batch-graphs 2023-09-06 11:03:54 -04:00
d22c4734ee feat(api): move batches to own router 2023-09-06 16:34:49 +10:00
3e7dadd7b3 fix(nodes): add version to iterate and collect 2023-09-05 23:46:20 +10:00
b777dba430 feat: batch events
When a batch creates a session, we need to alert the client of this. Because the sessions are created by the batch manager (not directly in response to a client action), we need to emit an event with the session id.

To accomodate this, a secondary set of sio sub/unsub/event handlers are created. These are specifically for batch events. The room is the `batch_id`.

When creating a batch, the client subscribes to this batch room.

When the batch manager creates a batch session, a `batch_session_created` event is emitted in the appropriate room.  It includes the session id. The client then may subscribe to the session room, and all socket stuff proceeds as it did before.
2023-09-05 21:17:33 +10:00
531c3bb1e2 fix(tests): fix batch tests [WIP] 2023-09-05 18:07:47 +10:00
331743ca0c Merge branch 'main' into feat/batch-graphs 2023-09-05 17:32:42 +10:00
13429e66b3 chore(ui): typegen 2023-09-05 17:32:05 +10:00
2185c85287 feat(tests): add test for batch with subgraph [WIP]
The tests still don't work due to the test events service not emitting events the batch mgr can listen for.
2023-09-05 17:31:55 +10:00
e8a4a654ac feat(batch): use node_path instead of node_id to create batched sessions 2023-09-05 17:30:27 +10:00
26f9ac9f21 Revert "Revert "feat(batches): defer ges *and* batch session creation until execution time""
This reverts commit be971617e3.
2023-09-05 16:34:40 +10:00
8d78af5db7 fix(tests): fix name of test 2023-09-05 16:14:52 +10:00
babd26feab feat(batch): extract repeated logic to function 2023-09-05 16:14:18 +10:00
e9b26e5e7d fix(api): fix duplicate operation id 2023-09-05 16:06:35 +10:00
6b946f53c4 Merge branch 'main' into feat/batch-graphs 2023-09-05 16:02:56 +10:00
70479b9827 Merge branch 'main' into feat/batch-graphs 2023-08-29 10:39:45 -04:00
35099dcdd8 Fix operation id on an endpoint 2023-08-29 10:32:22 -04:00
670600a863 Merge branch 'main' into feat/batch-graphs 2023-08-29 10:22:14 -04:00
6d5403e19d Merge branch 'main' into feat/batch-graphs 2023-08-29 09:07:18 -04:00
0f7695a081 Merge branch 'main' into feat/batch-graphs 2023-08-27 11:41:45 -04:00
d567d9f804 Merge branch 'main' into feat/batch-graphs 2023-08-22 10:12:30 -04:00
68f6140685 fix(tests): fix batches test 2023-08-22 01:48:53 +10:00
be971617e3 Revert "feat(batches): defer ges *and* batch session creation until execution time"
This reverts commit 1652143671.
2023-08-22 01:23:39 +10:00
1652143671 feat(batches): defer ges *and* batch session creation until execution time 2023-08-22 00:54:17 +10:00
88ae19a768 feat(batches): defer ges creation until execution
This improves the overall responsiveness of the system substantially, but does make each iteration *slightly* slower, distributing the up-front cost across the batch.

Two main changes:

1. Create BatchSessions immediately, but do not create a whole graph execution state until the batch is executed.
BatchSessions are created with a `session_id` that does not exist in sessions database.
The default state is changed to `"uninitialized"` to better represent this.

Results: Time to create 5000 batches reduced from over 30s to 2.5s

2. Use `executemany()` to retrieve lists of created sessions.
Results: time to create 5000 batches reduced from 2.5s to under 0.5s

Other changes:

- set BatchSession state to `"in_progress"` just before `invoke()` is called
- rename a few methods to accomodate the new behaviour
- remove unused `BatchProcessStorage.get_created_sessions()` method
2023-08-21 22:22:19 +10:00
50816432dc Merge branch 'main' into feat/batch-graphs 2023-08-21 19:51:41 +10:00
b98c9b516a feat: add batch docstrings 2023-08-21 19:51:16 +10:00
a15a5bc3b8 fix(api): correct get_batch response model 2023-08-21 19:51:02 +10:00
018ff56314 Merge branch 'main' into feat/batch-graphs 2023-08-18 23:32:08 -04:00
137fbacb92 Fix flake8 2023-08-18 15:47:27 -04:00
4b6d9a73ed Merge branch 'main' into feat/batch-graphs 2023-08-18 15:40:34 -04:00
3e26214b83 Add a few more endpoints for managing batches 2023-08-18 15:38:16 -04:00
0282f46c71 Add runs field for running the same batch multiple times 2023-08-18 13:41:07 -04:00
99e03fe92e Run unmodified graph if no batch data is provided 2023-08-18 13:33:09 -04:00
cb65526880 More session not found handling 2023-08-17 14:23:12 -04:00
59bc9ed399 fix(backend): handle BatchSessionNotFoundException in BatchManager._process()
The internal `BatchProcessStorage.get_session()` method throws when it finds nothing, but we were not catching any exceptions.

This caused a exception when the batch manager handles a `graph_execution_state_complete` event that did not originate from a batch.

Fixed by handling the exception.
2023-08-17 13:58:11 +10:00
e62d5478fd fix(backend): fix sqlite cannot commit - no transaction is active
The `commit()` was called even if we hadn't executed anything
2023-08-17 13:55:38 +10:00
2cf0d61b3e Merge branch 'main' into feat/batch-graphs 2023-08-17 13:33:17 +10:00
cc3c2756bd feat(backend): rename batch changes variable
`updateSession` -> `changes`
2023-08-17 13:32:32 +10:00
67cf594bb3 feat(backend): add missing types to batch_manager_storage.py 2023-08-17 13:29:19 +10:00
c5b963f1a6 fix(backend): typo
`relavent` -> `relevant`
2023-08-17 12:47:58 +10:00
4d2dd6bb10 feat(backend): rename BatchManager.process to _process
Just to make it clear that this is not a method on the ABC.
2023-08-17 12:47:05 +10:00
7e4beab4ff feat(backend): surface BatchSessionNodeFoundException
Catch this exception in the router and return an appropriate `HTTPException`.
2023-08-17 12:45:32 +10:00
e16b5f7cdc feat(backend): deserialize batch session directly
If the values from the `session_dict` are invalid, the model instantiation will fail, or if we end up with an invalid `batch_id`, the app will not run. So I think just parsing the dict directly is equivalent.

Also the LSP analyser is pleased now - no red squigglies.
2023-08-17 12:37:03 +10:00
1f355d5810 feat(backend): update batch_manager_storage.py docstrings 2023-08-17 12:31:51 +10:00
df7370f9d9 chore(backend): remove unused code 2023-08-17 12:16:34 +10:00
5bec64d65b fix(backend): fix typings in batch_manager.py
- `batch_indicies` is `tuple[int]` not `list[int]`
- explicit `None` return values
2023-08-17 12:07:20 +10:00
8cf9bd47b2 chore(backend): remove unnecessary batch validation function
The `Batch` model is fully validated by pydantic on instantiation; we do not need any validation logic for it.
2023-08-17 11:59:47 +10:00
c91621b46c fix(backend): BatchProcess.batch_id is required
Providing a `default_factory` is enough for pydantic to know to create the attribute on instantiation if it's not already provided. We can then make make the typing just `str`.
2023-08-17 11:58:29 +10:00
f246b236dd fix(api): fix start_batch route responses 2023-08-17 11:51:14 +10:00
f7277a8b21 Run python black 2023-08-16 15:44:52 -04:00
796ee1246b Add a batch validation test 2023-08-16 15:42:45 -04:00
29fceb960d Fix batch_manager test 2023-08-16 15:33:15 -04:00
796ff34c8a Testing out Spencer's batch data structure 2023-08-16 15:21:11 -04:00
d6a5c2dbe3 Fix tests 2023-08-16 14:35:49 -04:00
ef8dc2e8c5 Merge branch 'main' into feat/batch-graphs 2023-08-16 14:03:34 -04:00
314891a125 Merge branch 'main' into feat/batch-graphs 2023-08-15 22:42:49 -04:00
2d3094f988 Run python black 2023-08-15 21:51:45 -04:00
abf09fc8fa Switch sqlite clients to only use one connection 2023-08-15 21:46:24 -04:00
15e7ca1baa Break apart create/start logic 2023-08-15 16:28:47 -04:00
6cb90e01de Graph is required in batch create 2023-08-15 16:13:51 -04:00
faa4574970 Turn off WAL mode 2023-08-15 15:59:42 -04:00
cc5755d5b1 Update invokeai/app/services/batch_manager_storage.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-08-15 15:54:57 -04:00
85105fc070 Update invokeai/app/services/batch_manager_storage.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-08-15 15:54:17 -04:00
ed40aee4c5 Merge branch 'main' into feat/batch-graphs 2023-08-15 15:48:40 -04:00
f8d8b16267 Run python black 2023-08-14 11:01:31 -04:00
846e52f2ea Add test for batch manager 2023-08-14 10:57:18 -04:00
69f541075c Merge branch 'main' into feat/batch-graphs 2023-08-14 10:32:35 -04:00
1debc31e3d Allow cancel of running batch 2023-08-11 15:52:49 -04:00
1d798d4119 Return session id's on batch creation 2023-08-11 11:45:27 -04:00
c1dde83abb Clean up erroniously added lines 2023-08-10 14:28:50 -04:00
280ac15da2 Go back to 1 lock per table 2023-08-10 14:26:22 -04:00
e751f7d815 More testing 2023-08-10 14:09:00 -04:00
e26e4740b3 Testing sqlite issues with batch_manager 2023-08-10 11:38:28 -04:00
835d76af45 Merge branch 'main' into feat/batch-graphs 2023-08-01 16:44:30 -04:00
a3e099bbc0 Instantiate batch managers 2023-08-01 16:44:17 -04:00
a61685696f Run black formatting 2023-08-01 16:41:40 -04:00
02aa93c67c Cancel batch endpoint 2023-07-31 16:05:27 -04:00
55b921818d Create batch manager 2023-07-31 15:45:35 -04:00
bb681a8a11 Merge branch 'main' into feat/batch-graphs 2023-07-31 13:22:11 -04:00
74e0fbce42 Merge branch 'main' into feat/batch-graphs 2023-07-25 22:25:55 -04:00
f080c56771 Testing out generating a new session for each batch_index 2023-07-25 16:50:07 -04:00
d2f968b902 Trying different places of applying batches 2023-07-25 10:23:17 -04:00
e81601acf3 add todo 2023-07-24 18:12:05 -04:00
7073dc0d5d Fix next call in graphexecutionstate.next 2023-07-24 17:45:05 -04:00
d090be60e8 Make batch_indices in graph class more clear 2023-07-24 17:43:49 -04:00
4bad96d9d6 WIP running graphs as batches 2023-07-24 17:41:54 -04:00
1910 changed files with 299295 additions and 160263 deletions

1
.gitattributes vendored
View File

@ -2,4 +2,3 @@
# Only affects text files and ignores other file types.
# For more info see: https://www.aleksandrhovhannisyan.com/blog/crlf-vs-lf-normalizing-line-endings-in-git/
* text=auto
docker/** text eol=lf

8
.github/CODEOWNERS vendored
View File

@ -1,5 +1,5 @@
# continuous integration
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr
/.github/workflows/ @lstein @blessedcoolant @hipsterusername
# documentation
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
@ -10,7 +10,7 @@
# installation and configuration
/pyproject.toml @lstein @blessedcoolant @hipsterusername
/docker/ @lstein @blessedcoolant @hipsterusername @ebr
/docker/ @lstein @blessedcoolant @hipsterusername
/scripts/ @ebr @lstein @hipsterusername
/installer/ @lstein @ebr @hipsterusername
/invokeai/assets @lstein @ebr @hipsterusername
@ -26,7 +26,9 @@
# front ends
/invokeai/frontend/CLI @lstein @hipsterusername
/invokeai/frontend/install @lstein @ebr @hipsterusername
/invokeai/frontend/install @lstein @ebr @hipsterusername
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername

View File

@ -6,6 +6,10 @@ title: '[bug]: '
labels: ['bug']
# assignees:
# - moderator_bot
# - lstein
body:
- type: markdown
attributes:
@ -14,9 +18,10 @@ body:
- type: checkboxes
attributes:
label: Is there an existing issue for this problem?
label: Is there an existing issue for this?
description: |
Please [search](https://github.com/invoke-ai/InvokeAI/issues) first to see if an issue already exists for the problem.
Please use the [search function](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
irst to see if an issue already exists for the bug you encountered.
options:
- label: I have searched the existing issues
required: true
@ -28,119 +33,80 @@ body:
- type: dropdown
id: os_dropdown
attributes:
label: Operating system
description: Your computer's operating system.
label: OS
description: Which operating System did you use when the bug occured
multiple: false
options:
- 'Linux'
- 'Windows'
- 'macOS'
- 'other'
validations:
required: true
- type: dropdown
id: gpu_dropdown
attributes:
label: GPU vendor
description: Your GPU's vendor.
label: GPU
description: Which kind of Graphic-Adapter is your System using
multiple: false
options:
- 'Nvidia (CUDA)'
- 'AMD (ROCm)'
- 'Apple Silicon (MPS)'
- 'None (CPU)'
- 'cuda'
- 'amd'
- 'mps'
- 'cpu'
validations:
required: true
- type: input
id: gpu_model
attributes:
label: GPU model
description: Your GPU's model. If on Apple Silicon, this is your Mac's chip. Leave blank if on CPU.
placeholder: ex. RTX 2080 Ti, Mac M1 Pro
validations:
required: false
- type: input
id: vram
attributes:
label: GPU VRAM
description: Your GPU's VRAM. If on Apple Silicon, this is your Mac's unified memory. Leave blank if on CPU.
label: VRAM
description: Size of the VRAM if known
placeholder: 8GB
validations:
required: false
- type: input
id: version-number
attributes:
label: Version number
label: What version did you experience this issue on?
description: |
The version of Invoke you have installed. If it is not the latest version, please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. 3.6.1
Please share the version of Invoke AI that you experienced the issue on. If this is not the latest version, please update first to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: X.X.X
validations:
required: true
- type: input
id: browser-version
attributes:
label: Browser
description: Your web browser and version.
placeholder: ex. Firefox 123.0b3
validations:
required: true
- type: textarea
id: python-deps
attributes:
label: Python dependencies
description: |
If the problem occurred during image generation, click the gear icon at the bottom left corner, click "About", click the copy button and then paste here.
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened
label: What happened?
description: |
Describe what happened. Include any relevant error messages, stack traces and screenshots here.
placeholder: I clicked button X and then Y happened.
Briefly describe what happened, what you expected to happen and how to reproduce this bug.
placeholder: When using the webinterface and right-clicking on button X instead of the popup-menu there error Y appears
validations:
required: true
- type: textarea
id: what-you-expected
attributes:
label: What you expected to happen
description: Describe what you expected to happen.
placeholder: I expected Z to happen.
validations:
required: true
- type: textarea
id: how-to-repro
attributes:
label: How to reproduce the problem
description: List steps to reproduce the problem.
placeholder: Start the app, generate an image with these settings, then click button X.
label: Screenshots
description: If applicable, add screenshots to help explain your problem
placeholder: this is what the result looked like <screenshot>
validations:
required: false
- type: textarea
id: additional-context
attributes:
label: Additional context
description: Any other context that might help us to understand the problem.
description: Add any other context about the problem here
placeholder: Only happens when there is full moon and Friday the 13th on Christmas Eve 🎅🏻
validations:
required: false
- type: input
id: discord-username
id: contact
attributes:
label: Discord username
description: If you are on the Invoke discord and would prefer to be contacted there, please provide your username.
placeholder: supercoolusername123
label: Contact Details
description: __OPTIONAL__ How can we get in touch with you if we need more info (besides this issue)?
placeholder: ex. email@example.com, discordname, twitter, ...
validations:
required: false

View File

@ -1,5 +1,5 @@
name: Feature Request
description: Contribute a idea or request a new feature
description: Commit a idea or Request a new feature
title: '[enhancement]: '
labels: ['enhancement']
# assignees:
@ -9,14 +9,14 @@ body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this feature request!
Thanks for taking the time to fill out this Feature request!
- type: checkboxes
attributes:
label: Is there an existing issue for this?
description: |
Please make use of the [search function](https://github.com/invoke-ai/InvokeAI/labels/enhancement)
to see if a similar issue already exists for the feature you want to request
to see if a simmilar issue already exists for the feature you want to request
options:
- label: I have searched the existing issues
required: true
@ -34,9 +34,12 @@ body:
id: whatisexpected
attributes:
label: What should this feature add?
description: Explain the functionality this feature should add. Feature requests should be for single features. Please create multiple requests if you want to request multiple features.
description: Please try to explain the functionality this feature should add
placeholder: |
I'd like a button that creates an image of banana sushi every time I press it. Each image should be different. There should be a toggle next to the button that enables strawberry mode, in which the images are of strawberry sushi instead.
Instead of one huge textfield, it would be nice to have forms for bug-reports, feature-requests, ...
Great benefits with automatic labeling, assigning and other functionalitys not available in that form
via old-fashioned markdown-templates. I would also love to see the use of a moderator bot 🤖 like
https://github.com/marketplace/actions/issue-moderator-with-commands to auto close old issues and other things
validations:
required: true
@ -48,6 +51,6 @@ body:
- type: textarea
attributes:
label: Additional Content
label: Aditional Content
description: Add any other context or screenshots about the feature request here.
placeholder: This is a mockup of the design how I imagine it <screenshot>
placeholder: This is a Mockup of the design how I imagine it <screenshot>

View File

@ -1,33 +0,0 @@
name: install frontend dependencies
description: Installs frontend dependencies with pnpm, with caching
runs:
using: 'composite'
steps:
- name: setup node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: setup pnpm
uses: pnpm/action-setup@v2
with:
version: 8
run_install: false
- name: get pnpm store directory
shell: bash
run: |
echo "STORE_PATH=$(pnpm store path --silent)" >> $GITHUB_ENV
- name: setup cache
uses: actions/cache@v4
with:
path: ${{ env.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
shell: bash
working-directory: invokeai/frontend/web

59
.github/pr_labels.yml vendored
View File

@ -1,59 +0,0 @@
root:
- changed-files:
- any-glob-to-any-file: '*'
python-deps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
python-tests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
ci-cd:
- changed-files:
- any-glob-to-any-file: .github/**
docker:
- changed-files:
- any-glob-to-any-file: docker/**
installer:
- changed-files:
- any-glob-to-any-file: installer/**
docs:
- changed-files:
- any-glob-to-any-file: docs/**
invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
frontend-deps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

View File

@ -42,21 +42,6 @@ Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Merge Plan
<!--
A merge plan describes how this PR should be handled after it is approved.
Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is merged"
A merge plan is particularly important for large PRs or PRs that touch the
database in any way.
-->
## Added/updated tests?
- [ ] Yes

View File

@ -11,7 +11,7 @@ on:
- 'docker/docker-entrypoint.sh'
- 'workflows/build-container.yml'
tags:
- 'v*.*.*'
- 'v*'
workflow_dispatch:
permissions:
@ -40,14 +40,10 @@ jobs:
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
run: |
echo "----- Free space before cleanup"
df -h
sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
echo "----- Free space after cleanup"
df -h
- name: Checkout
uses: actions/checkout@v3
@ -95,7 +91,6 @@ jobs:
# password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build container
timeout-minutes: 40
id: docker_build
uses: docker/build-push-action@v4
with:

View File

@ -1,45 +0,0 @@
# Builds and uploads the installer and python build artifacts.
name: build installer
on:
workflow_dispatch:
workflow_call:
jobs:
build-installer:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <2 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install pypa/build
run: pip install --upgrade build
- name: setup frontend
uses: ./.github/actions/install-frontend-deps
- name: create installer
id: create_installer
run: ./create_installer.sh
working-directory: installer
- name: upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.create_installer.outputs.DIST_PATH }}
- name: upload installer artifact
uses: actions/upload-artifact@v4
with:
name: ${{ steps.create_installer.outputs.INSTALLER_FILENAME }}
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}

View File

@ -1,80 +0,0 @@
# Runs frontend code quality checks.
#
# Checks for changes to frontend files before running the checks.
# If always_run is true, always runs the checks.
name: 'frontend checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-checks:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: tsc
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:tsc'
shell: bash
- name: dpdm
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:dpdm'
shell: bash
- name: eslint
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:eslint'
shell: bash
- name: prettier
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:prettier'
shell: bash
- name: knip
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:knip'
shell: bash

View File

@ -1,60 +0,0 @@
# Runs frontend tests.
#
# Checks for changes to frontend files before running the tests.
# If always_run is true, always runs the tests.
name: 'frontend tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-tests:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: vitest
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm test:no-watch'
shell: bash

View File

@ -1,18 +0,0 @@
name: 'label PRs'
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- name: label PRs
uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml

33
.github/workflows/lint-frontend.yml vendored Normal file
View File

@ -0,0 +1,33 @@
name: Lint frontend
on:
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
push:
branches:
- 'main'
merge_group:
workflow_dispatch:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
lint-frontend:
if: github.event.pull_request.draft == false
runs-on: ubuntu-22.04
steps:
- name: Setup Node 18
uses: actions/setup-node@v3
with:
node-version: '18'
- uses: actions/checkout@v3
- run: 'yarn install --frozen-lockfile'
- run: 'yarn run lint:tsc'
- run: 'yarn run lint:madge'
- run: 'yarn run lint:eslint'
- run: 'yarn run lint:prettier'

View File

@ -1,49 +1,51 @@
# This is a mostly a copy-paste from https://github.com/squidfunk/mkdocs-material/blob/master/docs/publishing-your-site.md
name: mkdocs
name: mkdocs-material
on:
push:
branches:
- main
workflow_dispatch:
- 'refs/heads/main'
permissions:
contents: write
contents: write
jobs:
deploy:
mkdocs-material:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout
uses: actions/checkout@v4
- name: checkout sources
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: setup python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: set cache id
run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install ".[docs]"
- name: use cache
uses: actions/cache@v4
with:
key: mkdocs-material-${{ env.cache_id }}
path: .cache
restore-keys: |
mkdocs-material-
- name: confirm buildability
run: |
python -m \
mkdocs build \
--clean \
--verbose
- name: install dependencies
run: python -m pip install ".[docs]"
- name: build & deploy
run: mkdocs gh-deploy --force
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
run: |
python -m \
mkdocs gh-deploy \
--clean \
--force

20
.github/workflows/pyflakes.yml vendored Normal file
View File

@ -0,0 +1,20 @@
on:
pull_request:
push:
branches:
- main
- development
- 'release-candidate-*'
jobs:
pyflakes:
name: runner / pyflakes
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: pyflakes
uses: reviewdog/action-pyflakes@v1
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
reporter: github-pr-review

41
.github/workflows/pypi-release.yml vendored Normal file
View File

@ -0,0 +1,41 @@
name: PyPI Release
on:
push:
paths:
- 'invokeai/version/invokeai_version.py'
workflow_dispatch:
jobs:
release:
if: github.repository == 'invoke-ai/InvokeAI'
runs-on: ubuntu-22.04
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
TWINE_NON_INTERACTIVE: 1
steps:
- name: checkout sources
uses: actions/checkout@v3
- name: install deps
run: pip install --upgrade build twine
- name: build package
run: python3 -m build
- name: check distribution
run: twine check dist/*
- name: check PyPI versions
if: github.ref == 'refs/heads/main' || github.ref == 'refs/heads/v2.3'
run: |
pip install --upgrade requests
python -c "\
import scripts.pypi_helper; \
EXISTS=scripts.pypi_helper.local_on_pypi(); \
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
- name: upload package
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != ''
run: twine upload dist/*

View File

@ -1,76 +0,0 @@
# Runs python code quality checks.
#
# Checks for changes to python files before running the checks.
# If always_run is true, always runs the checks.
#
# TODO: Add mypy or pyright to the checks.
name: 'python checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
python-checks:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff
shell: bash
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: ruff check --output-format=github .
shell: bash
- name: ruff format
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: ruff format --check .
shell: bash

View File

@ -1,106 +0,0 @@
# Runs python tests on a matrix of python versions and platforms.
#
# Checks for changes to python files before running the tests.
# If always_run is true, always runs the tests.
name: 'python tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
strategy:
matrix:
python-version:
- '3.10'
- '3.11'
platform:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- platform: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- platform: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- platform: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: 'py${{ matrix.python-version }}: ${{ matrix.platform }}'
runs-on: ${{ matrix.os }}
timeout-minutes: 15 # expected run time: 2-6 min, depending on platform
env:
PIP_USE_PEP517: '1'
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install dependencies
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install --editable=".[test]"
- name: run pytest
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pytest

View File

@ -1,108 +0,0 @@
# Main release workflow. Triggered on tag push or manual trigger.
#
# - Runs all code checks and tests
# - Verifies the app version matches the tag version.
# - Builds the installer and build, uploading them as artifacts.
# - Publishes to TestPyPI and PyPI. Both are conditional on the previous steps passing and require a manual approval.
#
# See docs/RELEASE.md for more information on the release process.
name: release
on:
push:
tags:
- 'v*'
workflow_dispatch:
jobs:
check-version:
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- name: check python version
uses: samuelcolvin/check-python-version@v4
id: check-python-version
with:
version_file_path: invokeai/version/invokeai_version.py
frontend-checks:
uses: ./.github/workflows/frontend-checks.yml
with:
always_run: true
frontend-tests:
uses: ./.github/workflows/frontend-tests.yml
with:
always_run: true
python-checks:
uses: ./.github/workflows/python-checks.yml
with:
always_run: true
python-tests:
uses: ./.github/workflows/python-tests.yml
with:
always_run: true
build:
uses: ./.github/workflows/build-installer.yml
publish-testpypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: testpypi
url: https://test.pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
publish-pypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: pypi
url: https://pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1

27
.github/workflows/style-checks.yml vendored Normal file
View File

@ -0,0 +1,27 @@
name: style checks
# just formatting and flake8 for now
# TODO: add isort later
on:
pull_request:
push:
branches: main
jobs:
black:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies with pip
run: |
pip install black flake8 Flake8-pyproject
# - run: isort --check-only .
- run: black --check .
- run: flake8

129
.github/workflows/test-invoke-pip.yml vendored Normal file
View File

@ -0,0 +1,129 @@
name: Test invoke.py pip
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
if: github.event.pull_request.draft == false
strategy:
matrix:
python-version:
# - '3.9'
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
env:
PIP_USE_PEP517: '1'
steps:
- name: Checkout sources
id: checkout-sources
uses: actions/checkout@v3
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v37
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: set test prompt to main branch validation
if: steps.changed-files.outputs.python_any_changed == 'true'
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
if: steps.changed-files.outputs.python_any_changed == 'true'
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install invokeai
if: steps.changed-files.outputs.python_any_changed == 'true'
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install
--editable=".[test]"
- name: run pytest
if: steps.changed-files.outputs.python_any_changed == 'true'
id: run-pytest
run: pytest
# - name: run invokeai-configure
# env:
# HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
# run: >
# invokeai-configure
# --yes
# --default_only
# --full-precision
# # can't use fp16 weights without a GPU
# - name: run invokeai
# id: run-invokeai
# env:
# # Set offline mode to make sure configure preloaded successfully.
# HF_HUB_OFFLINE: 1
# HF_DATASETS_OFFLINE: 1
# TRANSFORMERS_OFFLINE: 1
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# run: >
# invokeai
# --no-patchmatch
# --no-nsfw_checker
# --precision=float32
# --always_use_cpu
# --use_memory_db
# --outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
# --from_file ${{ env.TEST_PROMPTS }}
# - name: Archive results
# env:
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# uses: actions/upload-artifact@v3
# with:
# name: results
# path: ${{ env.INVOKEAI_OUTDIR }}

15
.gitignore vendored
View File

@ -1,5 +1,8 @@
.idea/
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@ -16,7 +19,7 @@ __pycache__/
.Python
build/
develop-eggs/
dist/
# dist/
downloads/
eggs/
.eggs/
@ -133,10 +136,12 @@ celerybeat.pid
# Environments
.env
.venv*
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
@ -181,10 +186,14 @@ cython_debug/
.scratch/
.vscode/
# ignore environment.yml and requirements.txt
# these are links to the real files in environments-and-requirements
environment.yml
requirements.txt
# source installer files
installer/*zip
installer/install.bat
installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/

View File

@ -15,10 +15,3 @@ repos:
language: system
entry: flake8
types: [python]
- id: isort
name: isort
stages: [commit]
language: system
entry: isort
types: [python]

View File

@ -7,7 +7,7 @@ embeddedLanguageFormatting: auto
overrides:
- files: '*.md'
options:
proseWrap: preserve
proseWrap: always
printWidth: 80
parser: markdown
cursorOffset: -1

View File

@ -1,72 +0,0 @@
# simple Makefile with scripts that are otherwise hard to remember
# to use, run from the repo root `make <command>`
default: help
help:
@echo Developer commands:
@echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "test Run the unit tests."
@echo "update-config-docstring Update the app's config docstring so mkdocs can autogenerate it correctly."
@echo "frontend-install Install the pnpm modules needed for the front end"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
ruff check . --fix
ruff format .
# Runs ruff, fixing all errors it can fix and formatting
ruff-unsafe:
ruff check . --fix --unsafe-fixes
ruff format .
# Runs mypy, using the config in pyproject.toml
mypy:
mypy scripts/invokeai-web.py
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
# (many files are ignored by the config, so this is useful for checking all files)
mypy-all:
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
# Run the unit tests
test:
pytest ./tests
# Update config docstring
update-config-docstring:
python scripts/update_config_docstring.py
# Install the pnpm modules needed for the front end
frontend-install:
rm -rf invokeai/frontend/web/node_modules
cd invokeai/frontend/web && pnpm install
# Build the frontend
frontend-build:
cd invokeai/frontend/web && pnpm build
# Run the frontend in dev mode
frontend-dev:
cd invokeai/frontend/web && pnpm dev
frontend-typegen:
cd invokeai/frontend/web && python ../../../scripts/generate_openapi_schema.py | pnpm typegen
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh
# Tag the release
tag-release:
cd installer && ./tag_release.sh

View File

@ -1,10 +1,10 @@
<div align="center">
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
# Invoke - Professional Creative AI Tools for Visual Media
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
# Invoke AI - Generative AI for Professional Creatives
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
[![discord badge]][discord link]
@ -46,19 +46,17 @@ the foundation for multiple commercial products.
Install](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>]
[<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
Tutorials</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/">Code and
Downloads</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
[<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
Ideas & Q&A</a>]
[<a
href="https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/">Contributing</a>]
Ideas & Q&A</a>]
<div align="center">
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
![canvas preview](https://github.com/invoke-ai/InvokeAI/raw/main/docs/assets/canvas_preview.png)
</div>
@ -125,10 +123,10 @@ and go to http://localhost:9090.
### Command-Line Installation (for developers and users familiar with Terminals)
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
You must have Python 3.9 through 3.11 installed on your machine. Earlier or
later versions are not supported.
Node.js also needs to be installed along with `pnpm` (can be installed with
the command `npm install -g pnpm` if needed)
Node.js also needs to be installed along with yarn (can be installed with
the command `npm install -g yarn` if needed)
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
@ -163,13 +161,13 @@ the command `npm install -g pnpm` if needed)
_For Windows/Linux with an NVIDIA GPU:_
```terminal
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
```
_For Linux with an AMD GPU:_
```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For non-GPU systems:_
@ -177,7 +175,7 @@ the command `npm install -g pnpm` if needed)
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2/M3:_
_For Macintoshes, either Intel or M1/M2:_
```sh
pip install InvokeAI --use-pep517
@ -272,7 +270,7 @@ upgrade script.** See the next section for a Windows recipe.
3. Select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [6] "Re-run the configure script to fix a broken
menu. Select option [7] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and
@ -370,9 +368,9 @@ InvokeAI offers a locally hosted Web Server & React Frontend, with an industry l
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### *Workflows & Nodes*
### *Node Architecture & Editor (Beta)*
InvokeAI offers a fully featured workflow management solution, enabling users to combine the power of nodes based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
Invoke AI's backend is built on a graph-based execution architecture. This allows for customizable generation pipelines to be developed by professional users looking to create specific workflows to support their production use-cases, and will be extended in the future with additional capabilities.
### *Board & Gallery Management*
@ -385,9 +383,8 @@ Invoke AI provides an organized gallery system for easily storing, accessing, an
- *Upscaling Tools*
- *Embedding Manager & Support*
- *Model Manager & Support*
- *Workflow creation & management*
- *Node-Based Architecture*
- *Node-Based Plug-&-Play UI (Beta)*
### Latest Changes
@ -397,19 +394,21 @@ Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
### Troubleshooting
Please check out our **[Troubleshooting Guide](https://invoke-ai.github.io/InvokeAI/installation/010_INSTALL_AUTOMATED/#troubleshooting)** to get solutions for common installation
problems and other issues. For more help, please join our [Discord][discord link]
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
problems and other issues.
## Contributing
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
cleanup, testing, or code reviews, is very much encouraged to do so.
Get started with contributing by reading our [Contribution documentation](https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/), joining the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) or the GitHub discussion board.
To join, just raise your hand on the InvokeAI Discord server (#dev-chat) or the GitHub discussion board.
If you'd like to help with translation, please see our [translation guide](docs/other/TRANSLATION.md).
If you are unfamiliar with how
to contribute to GitHub projects, we have a new contributor checklist you can follow to get started contributing:
[New Contributor Checklist](https://invoke-ai.github.io/InvokeAI/contributing/contribution_guides/newContributorChecklist/).
to contribute to GitHub projects, here is a
[Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github). A full set of contribution guidelines, along with templates, are in progress. You can **make your pull request against the "main" branch**.
We hope you enjoy using our software as much as we enjoy creating it,
and we hope that some of those of you who are reading this will elect
@ -425,7 +424,7 @@ their time, hard work and effort.
### Support
For support, please use this repository's GitHub Issues tracking service, or join the [Discord][discord link].
For support, please use this repository's GitHub Issues tracking service, or join the Discord.
Original portions of the software are Copyright (c) 2023 by respective contributors.

View File

@ -1,18 +1,13 @@
## Make a copy of this file named `.env` and fill in the values below.
## Any environment variables supported by InvokeAI can be specified here,
## in addition to the examples below.
## Any environment variables supported by InvokeAI can be specified here.
# HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where InvokeAI will store data.
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
# Outputs will also be stored here by default.
# If relative, it will be relative to the docker directory in which the docker-compose.yml file is located
#HOST_INVOKEAI_ROOT=../../invokeai-data
# This **must** be an absolute path.
INVOKEAI_ROOT=
# INVOKEAI_ROOT is the path to the root of the InvokeAI repository within the container.
# INVOKEAI_ROOT=~/invokeai
HUGGINGFACE_TOKEN=
# Get this value from your HuggingFace account settings page.
# HUGGING_FACE_HUB_TOKEN=
## optional variables specific to the docker setup.
# GPU_DRIVER=nvidia #| rocm
# CONTAINER_UID=1000
## optional variables specific to the docker setup
# GPU_DRIVER=cuda
# CONTAINER_UID=1000

View File

@ -2,7 +2,7 @@
## Builder stage
FROM library/ubuntu:23.04 AS builder
FROM library/ubuntu:22.04 AS builder
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
@ -10,7 +10,7 @@ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt-get install -y \
git \
python3-venv \
python3.10-venv \
python3-pip \
build-essential
@ -18,8 +18,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG TORCH_VERSION=2.1.2
ARG TORCHVISION_VERSION=0.16.2
ARG TORCH_VERSION=2.0.1
ARG TORCHVISION_VERSION=0.15.2
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
@ -35,9 +35,9 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.6"; \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu118"; \
fi &&\
pip install $extra_index_url_arg \
torch==$TORCH_VERSION \
@ -54,25 +54,23 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
pip install -e ".[xformers]"; \
else \
pip install $extra_index_url_arg -e "."; \
pip install -e "."; \
fi
# #### Build the Web UI ------------------------------------
FROM node:20-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack enable
FROM node:18 AS web-builder
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
RUN --mount=type=cache,target=/usr/lib/node_modules \
npm install --include dev
RUN --mount=type=cache,target=/usr/lib/node_modules \
yarn vite build
#### Runtime stage ---------------------------------------
FROM library/ubuntu:23.04 AS runtime
FROM library/ubuntu:22.04 AS runtime
ARG DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
@ -87,7 +85,6 @@ RUN apt update && apt install -y --no-install-recommends \
iotop \
bzip2 \
gosu \
magic-wormhole \
libglib2.0-0 \
libgl1-mesa-glx \
python3-venv \
@ -97,13 +94,15 @@ RUN apt update && apt install -y --no-install-recommends \
libstdc++-10-dev &&\
apt-get clean && apt-get autoclean
# globally add magic-wormhole
# for ease of transferring data to and from the container
# when running in sandboxed cloud environments; e.g. Runpod etc.
RUN pip install magic-wormhole
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
@ -121,7 +120,9 @@ WORKDIR ${INVOKEAI_SRC}
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python3 -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
# Create unprivileged user and make the local dir
RUN useradd --create-home --shell /bin/bash -u 1000 --comment "container local user" invoke
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R invoke:invoke ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]

View File

@ -1,19 +1,11 @@
# InvokeAI Containerized
All commands should be run within the `docker` directory: `cd docker`
## Quickstart :rocket:
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
## Detailed setup
All commands are to be run from the `docker` directory: `cd docker`
#### Linux
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-22-04).
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
3. Ensure docker daemon is able to access the GPU.
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
@ -26,12 +18,13 @@ For more configuration options (using an AMD GPU, custom root directory location
This is done via Docker Desktop preferences
### Configure Invoke environment
## Quickstart
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. Execute `run.sh`
1. `docker compose up`
The image will be built automatically if needed.
@ -45,28 +38,24 @@ The runtime directory (holding models and outputs) will be created in the locati
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
## Customize
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `run.sh`, your custom values will be used.
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
You can also set these values in `docker compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The default is `~/invokeai`. Example:
Example (most values are optional):
```bash
```
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000
GPU_DRIVER=nvidia
GPU_DRIVER=cuda
```
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
## Even Moar Customizing!
See the `docker-compose.yml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
See the `docker compose.yaml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
### Reconfigure the runtime directory
@ -74,7 +63,7 @@ Can be used to download additional models from the supported model list
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
```yaml
```
command:
- invokeai-configure
- --yes
@ -82,7 +71,7 @@ command:
Or install models:
```yaml
```
command:
- invokeai-model-install
```
```

11
docker/build.sh Executable file
View File

@ -0,0 +1,11 @@
#!/usr/bin/env bash
set -e
build_args=""
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
echo "docker-compose build args:"
echo $build_args
docker-compose build $build_args

View File

@ -2,8 +2,19 @@
version: '3.8'
x-invokeai: &invokeai
services:
invokeai:
image: "local/invokeai:latest"
# edit below to run on a container runtime other than nvidia-container-runtime.
# not yet tested with rocm/AMD GPUs
# Comment out the "deploy" section to run on CPU only
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
build:
context: ..
dockerfile: docker/Dockerfile
@ -21,9 +32,7 @@ x-invokeai: &invokeai
ports:
- "${INVOKEAI_PORT:-9090}:9090"
volumes:
- type: bind
source: ${HOST_INVOKEAI_ROOT:-${INVOKEAI_ROOT:-~/invokeai}}
target: ${INVOKEAI_ROOT:-/invokeai}
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
@ -37,27 +46,3 @@ x-invokeai: &invokeai
# - |
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
# invokeai-nodes-web --host 0.0.0.0
services:
invokeai-nvidia:
<<: *invokeai
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
invokeai-cpu:
<<: *invokeai
profiles:
- cpu
invokeai-rocm:
<<: *invokeai
devices:
- /dev/kfd:/dev/kfd
- /dev/dri:/dev/dri
profiles:
- rocm

View File

@ -19,7 +19,7 @@ set -e -o pipefail
# Default UID: 1000 chosen due to popularity on Linux systems. Possibly 501 on MacOS.
USER_ID=${CONTAINER_UID:-1000}
USER=ubuntu
USER=invoke
usermod -u ${USER_ID} ${USER} 1>/dev/null
configure() {

View File

@ -1,32 +1,8 @@
#!/usr/bin/env bash
set -e -o pipefail
set -e
run() {
local scriptdir=$(dirname "${BASH_SOURCE[0]}")
cd "$scriptdir" || exit 1
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1
local build_args=""
local profile=""
touch .env
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
[[ -z "$profile" ]] && profile="nvidia"
local service_name="invokeai-$profile"
if [[ ! -z "$build_args" ]]; then
printf "%s\n" "docker compose build args:"
printf "%s\n" "$build_args"
fi
docker compose build $build_args $service_name
unset build_args
printf "%s\n" "starting service $service_name"
docker compose --profile "$profile" up -d "$service_name"
docker compose logs -f
}
run
docker-compose up --build -d
docker-compose logs -f

View File

@ -488,7 +488,7 @@ sections describe what's new for InvokeAI.
- A choice of installer scripts that automate installation and configuration.
See
[Installation](installation/INSTALLATION.md).
[Installation](installation/index.md).
- A streamlined manual installation process that works for both Conda and
PIP-only installs. See
[Manual Installation](installation/020_INSTALL_MANUAL.md).
@ -657,7 +657,7 @@ sections describe what's new for InvokeAI.
## v1.13 <small>(3 September 2022)</small>
- Support image variations (see [VARIATIONS](deprecated/VARIATIONS.md)
- Support image variations (see [VARIATIONS](features/VARIATIONS.md)
([Kevin Gibbons](https://github.com/bakkot) and many contributors and
reviewers)
- Supports a Google Colab notebook for a standalone server running on Google

View File

@ -1,142 +0,0 @@
# Release Process
The app is published in twice, in different build formats.
- A [PyPI] distribution. This includes both a source distribution and built distribution (a wheel). Users install with `pip install invokeai`. The updater uses this build.
- An installer on the [InvokeAI Releases Page]. This is a zip file with install scripts and a wheel. This is only used for new installs.
## General Prep
Make a developer call-out for PRs to merge. Merge and test things out.
While the release workflow does not include end-to-end tests, it does pause before publishing so you can download and test the final build.
## Release Workflow
The `release.yml` workflow runs a number of jobs to handle code checks, tests, build and publish on PyPI.
It is triggered on **tag push**, when the tag matches `v*`. It doesn't matter if you've prepped a release branch like `release/v3.5.0` or are releasing from `main` - it works the same.
> Because commits are reference-counted, it is safe to create a release branch, tag it, let the workflow run, then delete the branch. So long as the tag exists, that commit will exist.
### Triggering the Workflow
Run `make tag-release` to tag the current commit and kick off the workflow.
The release may also be dispatched [manually].
### Workflow Jobs and Process
The workflow consists of a number of concurrently-run jobs, and two final publish jobs.
The publish jobs require manual approval and are only run if the other jobs succeed.
#### `check-version` Job
This job checks that the git ref matches the app version. It matches the ref against the `__version__` variable in `invokeai/version/invokeai_version.py`.
When the workflow is triggered by tag push, the ref is the tag. If the workflow is run manually, the ref is the target selected from the **Use workflow from** dropdown.
This job uses [samuelcolvin/check-python-version].
> Any valid [version specifier] works, so long as the tag matches the version. The release workflow works exactly the same for `RC`, `post`, `dev`, etc.
#### Check and Test Jobs
- **`python-tests`**: runs `pytest` on matrix of platforms
- **`python-checks`**: runs `ruff` (format and lint)
- **`frontend-tests`**: runs `vitest`
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
> **TODO** We should add `mypy` or `pyright` to the **`check-python`** job.
> **TODO** We should add an end-to-end test job that generates an image.
#### `build-installer` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `installer/create_installer.sh` and uploads two artifacts:
- **`dist`**: the python distribution, to be published on PyPI
- **`InvokeAI-installer-${VERSION}.zip`**: the installer to be included in the GitHub release
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval.
A maintainer should go to the **Summary** tab of the workflow, download the installer and test it. Ensure the app loads and generates.
> The same wheel file is bundled in the installer and in the `dist` artifact, which is uploaded to PyPI. You should end up with the exactly the same installation of the `invokeai` package from any of these methods.
#### PyPI Publish Jobs
The publish jobs will run if any of the previous jobs fail.
They use [GitHub environments], which are configured as [trusted publishers] on PyPI.
Both jobs require a maintainer to approve them from the workflow's **Summary** tab.
- Click the **Review deployments** button
- Select the environment (either `testpypi` or `pypi`)
- Click **Approve and deploy**
> **If the version already exists on PyPI, the publish jobs will fail.** PyPI only allows a given version to be published once - you cannot change it. If version published on PyPI has a problem, you'll need to "fail forward" by bumping the app version and publishing a followup release.
#### `publish-testpypi` Job
Publishes the distribution on the [Test PyPI] index, using the `testpypi` GitHub environment.
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release.
If approved and successful, you could try out the test release like this:
```sh
# Create a new virtual environment
python -m venv ~/.test-invokeai-dist --prompt test-invokeai-dist
# Install the distribution from Test PyPI
pip install --index-url https://test.pypi.org/simple/ invokeai
# Run and test the app
invokeai-web
# Cleanup
deactivate
rm -rf ~/.test-invokeai-dist
```
#### `publish-pypi` Job
Publishes the distribution on the production PyPI index, using the `pypi` GitHub environment.
## Publish the GitHub Release with installer
Once the release is published to PyPI, it's time to publish the GitHub release.
1. [Draft a new release] on GitHub, choosing the tag that triggered the release.
2. Write the release notes, describing important changes. The **Generate release notes** button automatically inserts the changelog and new contributors, and you can copy/paste the intro from previous releases.
3. Upload the zip file created in **`build`** job into the Assets section of the release notes. You can also upload the zip into the body of the release notes, since it can be hard for users to find the Assets section.
4. Check the **Set as a pre-release** and **Create a discussion for this release** checkboxes at the bottom of the release page.
5. Publish the pre-release.
6. Announce the pre-release in Discord.
> **TODO** Workflows can create a GitHub release from a template and upload release assets. One popular action to handle this is [ncipollo/release-action]. A future enhancement to the release process could set this up.
## Manual Build
The `build installer` workflow can be dispatched manually. This is useful to test the installer for a given branch or tag.
No checks are run, it just builds.
## Manual Release
The `release` workflow can be dispatched manually. You must dispatch the workflow from the right tag, else it will fail the version check.
This functionality is available as a fallback in case something goes wonky. Typically, releases should be triggered via tag push as described above.
[InvokeAI Releases Page]: https://github.com/invoke-ai/InvokeAI/releases
[PyPI]: https://pypi.org/
[Draft a new release]: https://github.com/invoke-ai/InvokeAI/releases/new
[Test PyPI]: https://test.pypi.org/
[version specifier]: https://packaging.python.org/en/latest/specifications/version-specifiers/
[ncipollo/release-action]: https://github.com/ncipollo/release-action
[GitHub environments]: https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version
[manually]: #manual-release

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 297 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 228 KiB

After

Width:  |  Height:  |  Size: 490 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 131 KiB

After

Width:  |  Height:  |  Size: 319 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 95 KiB

After

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

After

Width:  |  Height:  |  Size: 948 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

After

Width:  |  Height:  |  Size: 292 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

After

Width:  |  Height:  |  Size: 420 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

After

Width:  |  Height:  |  Size: 197 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 216 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 129 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

View File

@ -1,41 +1,39 @@
# Contributing
# How to Contribute
## Welcome to Invoke AI
Invoke AI originated as a project built by the community, and that vision carries forward today as we aim to build the best pro-grade tools available. We work together to incorporate the latest in AI/ML research, making these tools available in over 20 languages to artists and creatives around the world as part of our fully permissive OSS project designed for individual users to self-host and use.
# Methods of Contributing to Invoke AI
## Contributing to Invoke AI
Anyone who wishes to contribute to InvokeAI, whether features, bug fixes, code cleanup, testing, code reviews, documentation or translation is very much encouraged to do so.
## Development
If youd like to help with development, please see our [development guide](contribution_guides/development.md).
To join, just raise your hand on the InvokeAI Discord server (#dev-chat) or the GitHub discussion board.
**New Contributors:** If youre unfamiliar with contributing to open source projects, take a look at our [new contributor guide](contribution_guides/newContributorChecklist.md).
### Areas of contribution:
## Nodes
If youd like to add a Node, please see our [nodes contribution guide](../nodes/contributingNodes.md).
#### Development
If youd like to help with development, please see our [development guide](contribution_guides/development.md). If youre unfamiliar with contributing to open source projects, there is a tutorial contained within the development guide.
## Support and Triaging
Helping support other users in [Discord](https://discord.gg/ZmtBAhwWhy) and on Github are valuable forms of contribution that we greatly appreciate.
#### Nodes
If youd like to help with development, please see our [nodes contribution guide](/nodes/contributingNodes). If youre unfamiliar with contributing to open source projects, there is a tutorial contained within the development guide.
We receive many issues and requests for help from users. We're limited in bandwidth relative to our the user base, so providing answers to questions or helping identify causes of issues is very helpful. By doing this, you enable us to spend time on the highest priority work.
## Documentation
#### Documentation
If youd like to help with documentation, please see our [documentation guide](contribution_guides/documentation.md).
## Translation
#### Translation
If you'd like to help with translation, please see our [translation guide](contribution_guides/translation.md).
## Tutorials
#### Tutorials
Please reach out to @imic or @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy) to help create tutorials for InvokeAI.
We hope you enjoy using our software as much as we enjoy creating it, and we hope that some of those of you who are reading this will elect to become part of our contributor community.
# Contributors
### Contributors
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for their time, hard work and effort.
# Code of Conduct
### Code of Conduct
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
@ -49,7 +47,8 @@ By making a contribution to this project, you certify that:
This disclaimer is not a license and does not grant any rights or permissions. You must obtain necessary permissions and licenses, including from third parties, before contributing to this project.
This disclaimer is provided "as is" without warranty of any kind, whether expressed or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose, or non-infringement. In no event shall the authors or copyright holders be liable for any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the contribution or the use or other dealings in the contribution.
# Support
### Support
For support, please use this repository's [GitHub Issues](https://github.com/invoke-ai/InvokeAI/issues), or join the [Discord](https://discord.gg/ZmtBAhwWhy).

View File

@ -1,277 +0,0 @@
# The InvokeAI Download Queue
The DownloadQueueService provides a multithreaded parallel download
queue for arbitrary URLs, with queue prioritization, event handling,
and restart capabilities.
## Simple Example
```
from invokeai.app.services.download import DownloadQueueService, TqdmProgress
download_queue = DownloadQueueService()
for url in ['https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png',
'https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor',
]:
# urls start downloading as soon as download() is called
download_queue.download(source=url,
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
download_queue.join() # wait for all downloads to finish
for job in download_queue.list_jobs():
print(job.model_dump_json(exclude_none=True, indent=4),"\n")
```
Output:
```
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true",
"dest": "/tmp/downloads",
"id": 0,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/a-painting-of-a-fire.png",
"job_started": "2023-12-04T05:34:41.742174",
"job_ended": "2023-12-04T05:34:42.592035",
"bytes": 666734,
"total_bytes": 666734
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true",
"dest": "/tmp/downloads",
"id": 1,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/birdhouse.png",
"job_started": "2023-12-04T05:34:41.741975",
"job_ended": "2023-12-04T05:34:42.652841",
"bytes": 774949,
"total_bytes": 774949
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png",
"dest": "/tmp/downloads",
"id": 2,
"priority": 10,
"status": "error",
"job_started": "2023-12-04T05:34:41.742079",
"job_ended": "2023-12-04T05:34:42.147625",
"bytes": 0,
"total_bytes": 0,
"error_type": "HTTPError(Not Found)",
"error": "Traceback (most recent call last):\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 182, in _download_next_item\n self._do_download(job)\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 206, in _do_download\n raise HTTPError(resp.reason)\nrequests.exceptions.HTTPError: Not Found\n"
}
{
"source": "https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor",
"dest": "/tmp/downloads",
"id": 3,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/xl_more_art-full_v1.safetensors",
"job_started": "2023-12-04T05:34:42.147645",
"job_ended": "2023-12-04T05:34:43.735990",
"bytes": 719020768,
"total_bytes": 719020768
}
```
## The API
The default download queue is `DownloadQueueService`, an
implementation of ABC `DownloadQueueServiceBase`. It juggles multiple
background download requests and provides facilities for interrogating
and cancelling the requests. Access to a current or past download task
is mediated via `DownloadJob` objects which report the current status
of a job request
### The Queue Object
A default download queue is located in
`ApiDependencies.invoker.services.download_queue`. However, you can
create additional instances if you need to isolate your queue from the
main one.
```
queue = DownloadQueueService(event_bus=events)
```
`DownloadQueueService()` takes three optional arguments:
| **Argument** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| `max_parallel_dl` | int | 5 | Maximum number of simultaneous downloads allowed |
| `event_bus` | EventServiceBase | None | System-wide FastAPI event bus for reporting download events |
| `requests_session` | requests.sessions.Session | None | An alternative requests Session object to use for the download |
`max_parallel_dl` specifies how many download jobs are allowed to run
simultaneously. Each will run in a different thread of execution.
`event_bus` is an EventServiceBase, typically the one created at
InvokeAI startup. If present, download events are periodically emitted
on this bus to allow clients to follow download progress.
`requests_session` is a url library requests Session object. It is
used for testing.
### The Job object
The queue operates on a series of download job objects. These objects
specify the source and destination of the download, and keep track of
the progress of the download.
The only job type currently implemented is `DownloadJob`, a pydantic object with the
following fields:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `source` | AnyHttpUrl | | Where to download from |
| `dest` | Path | | Where to download to |
| `access_token` | str | | [optional] string containing authentication token for access |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| `priority` | int | 10 | Job priority. Lower priorities run before higher priorities |
| |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the location of the downloaded file |
| `job_started` | float | | Timestamp for when the job started running |
| `job_ended` | float | | Timestamp for when the job completed or errored out |
| `job_sequence` | int | | A counter that is incremented each time a model is dequeued |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
When you create a job, you can assign it a `priority`. If multiple
jobs are queued, the job with the lowest priority runs first.
Every job has a `source` and a `dest`. `source` is a pydantic.networks AnyHttpUrl object.
The `dest` is a path on the local filesystem that specifies the
destination for the downloaded object. Its semantics are
described below.
When the job is submitted, it is assigned a numeric `id`. The id can
then be used to fetch the job object from the queue.
The `status` field is updated by the queue to indicate where the job
is in its lifecycle. Values are defined in the string enum
`DownloadJobStatus`, a symbol available from
`invokeai.app.services.download_manager`. Possible values are:
| **Value** | **String Value** | ** Description ** |
|--------------|---------------------|-------------------|
| `WAITING` | waiting | Job is on the queue but not yet running|
| `RUNNING` | running | The download is started |
| `COMPLETED` | completed | Job has finished its work without an error |
| `ERROR` | error | Job encountered an error and will not run again|
`job_started` and `job_ended` indicate when the job
was started (using a python timestamp) and when it completed.
In case of an error, the job's status will be set to `DownloadJobStatus.ERROR`, the text of the
Exception that caused the error will be placed in the `error_type`
field and the traceback that led to the error will be in `error`.
A cancelled job will have status `DownloadJobStatus.ERROR` and an
`error_type` field of "DownloadJobCancelledException". In addition,
the job's `cancelled` property will be set to True.
### Callbacks
Download jobs can be associated with a series of callbacks, each with
the signature `Callable[["DownloadJob"], None]`. The callbacks are assigned
using optional arguments `on_start`, `on_progress`, `on_complete` and
`on_error`. When the corresponding event occurs, the callback wil be
invoked and passed the job. The callback will be run in a `try:`
context in the same thread as the download job. Any exceptions that
occur during execution of the callback will be caught and converted
into a log error message, thereby allowing the download to continue.
#### `TqdmProgress`
The `invokeai.app.services.download.download_default` module defines a
class named `TqdmProgress` which can be used as an `on_progress`
handler to display a completion bar in the console. Use as follows:
```
from invokeai.app.services.download import TqdmProgress
download_queue.download(source='http://some.server.somewhere/some_file',
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
```
### Events
If the queue was initialized with the InvokeAI event bus (the case
when using `ApiDependencies.invoker.services.download_queue`), then
download events will also be issued on the bus. The events are:
* `download_started` -- This is issued when a job is taken off the
queue and a request is made to the remote server for the URL headers, but before any data
has been downloaded. The event payload will contain the keys `source`
and `download_path`. The latter contains the path that the URL will be
downloaded to.
* `download_progress -- This is issued periodically as the download
runs. The payload contains the keys `source`, `download_path`,
`current_bytes` and `total_bytes`. The latter two fields can be
used to display the percent complete.
* `download_complete` -- This is issued when the download completes
successfully. The payload contains the keys `source`, `download_path`
and `total_bytes`.
* `download_error` -- This is issued when the download stops because
of an error condition. The payload contains the fields `error_type`
and `error`. The former is the text representation of the exception,
and the latter is a traceback showing where the error occurred.
### Job control
To create a job call the queue's `download()` method. You can list all
jobs using `list_jobs()`, fetch a single job by its with
`id_to_job()`, cancel a running job with `cancel_job()`, cancel all
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
with `join()`.
#### job = queue.download(source, dest, priority, access_token)
Create a new download job and put it on the queue, returning the
DownloadJob object.
#### jobs = queue.list_jobs()
Return a list of all active and inactive `DownloadJob`s.
#### job = queue.id_to_job(id)
Return the job corresponding to given ID.
Return a list of all active and inactive `DownloadJob`s.
#### queue.prune_jobs()
Remove inactive (complete or errored) jobs from the listing returned
by `list_jobs()`.
#### queue.join()
Block until all pending jobs have run to completion or errored out.

View File

@ -1,6 +1,6 @@
# Nodes
# Invocations
Features in InvokeAI are added in the form of modular nodes systems called
Features in InvokeAI are added in the form of modular node-like systems called
**Invocations**.
An Invocation is simply a single operation that takes in some inputs and gives
@ -9,38 +9,13 @@ complex functionality.
## Invocations Directory
InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These
can be used as examples to create your own nodes.
InvokeAI Invocations can be found in the `invokeai/app/invocations` directory.
New nodes should be added to a subfolder in `nodes` direction found at the root
level of the InvokeAI installation location. Nodes added to this folder will be
able to be used upon application startup.
You can add your new functionality to one of the existing Invocations in this
directory or create a new file in this directory as per your needs.
Example `nodes` subfolder structure:
```py
├── __init__.py # Invoke-managed custom node loader
├── cool_node
├── __init__.py # see example below
└── cool_node.py
└── my_node_pack
├── __init__.py # see example below
├── tasty_node.py
├── bodacious_node.py
├── utils.py
└── extra_nodes
└── fancy_node.py
```
Each node folder must have an `__init__.py` file that imports its nodes. Only
nodes imported in the `__init__.py` file are loaded. See the README in the nodes
folder for more examples:
```py
from .cool_node import CoolInvocation
```
**Note:** _All Invocations must be inside this directory for InvokeAI to
recognize them as valid Invocations._
## Creating A New Invocation
@ -69,7 +44,7 @@ The first set of things we need to do when creating a new Invocation are -
So let us do that.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from .baseinvocation import BaseInvocation, invocation
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@ -103,8 +78,8 @@ create your own custom field types later in this guide. For now, let's go ahead
and use it.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
from invokeai.app.invocations.primitives import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@ -128,13 +103,14 @@ image: ImageField = InputField(description="The input image")
Great. Now let us create our other inputs for `width` and `height`
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
from invokeai.app.invocations.primitives import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -163,13 +139,14 @@ that are provided by it by InvokeAI.
Let us create this function first.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -191,14 +168,15 @@ all the necessary info related to image outputs. So let us use that.
We will cover how to create your own output types later in this guide.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.image import ImageOutput
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
from .image import ImageOutput
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -217,9 +195,9 @@ Perfect. Now that we have our Invocation setup, let us do what we want to do.
So let's do that.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.image import ImageOutput, ResourceOrigin, ImageCategory
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
from .image import ImageOutput
@invocation("resize")
class ResizeInvocation(BaseInvocation):
@ -230,17 +208,30 @@ class ResizeInvocation(BaseInvocation):
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the input image as a PIL image
image = context.images.get_pil(self.image.image_name)
# Load the image using InvokeAI's predefined Image Service. Returns the PIL image.
image = context.services.images.get_pil_image(self.image.image_name)
# Resize the image
# Resizing the image
resized_image = image.resize((self.width, self.height))
# Save the image
image_dto = context.images.save(image=resized_image)
# Save the image using InvokeAI's predefined Image Service. Returns the prepared PIL image.
output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
# Return an ImageOutput
return ImageOutput.build(image_dto)
# Returning the Image
return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
),
width=output_image.width,
height=output_image.height,
)
```
**Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a
@ -331,25 +322,27 @@ class ImageColorStringOutput(BaseInvocationOutput):
That's all there is to it.
<!-- TODO: DANGER - we probably do not want people to create their own field types, because this requires a lot of work on the frontend to accomodate.
### Custom Input Fields
Now that you know how to create your own Invocations, let us dive into slightly
more advanced topics.
While creating your own Invocations, you might run into a scenario where the
existing fields in InvokeAI do not meet your requirements. In such cases, you
can create your own fields.
existing input types in InvokeAI do not meet your requirements. In such cases,
you can create your own input types.
Let us create one as an example. Let us say we want to create a color input
field that represents a color code. But before we start on that here are some
general good practices to keep in mind.
### Best Practices
**Good Practices**
- There is no naming convention for input fields but we highly recommend that
you name it something appropriate like `ColorField`.
- It is not mandatory but it is heavily recommended to add a relevant
`docstring` to describe your field.
`docstring` to describe your input field.
- Keep your field in the same file as the Invocation that it is made for or in
another file where it is relevant.
@ -364,13 +357,10 @@ class ColorField(BaseModel):
pass
```
Perfect. Now let us create the properties for our field. This is similar to how
you created input fields for your Invocation. All the same rules apply. Let us
create four fields representing the _red(r)_, _blue(b)_, _green(g)_ and
_alpha(a)_ channel of the color.
> Technically, the properties are _also_ called fields - but in this case, it
> refers to a `pydantic` field.
Perfect. Now let us create our custom inputs for our field. This is exactly
similar how you created input fields for your Invocation. All the same rules
apply. Let us create four fields representing the _red(r)_, _blue(b)_,
_green(g)_ and _alpha(a)_ channel of the color.
```python
class ColorField(BaseModel):
@ -385,11 +375,25 @@ That's it. We now have a new input field type that we can use in our Invocations
like this.
```python
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
```
### Using the custom field
### Custom Components For Frontend
When you start the UI, your custom field will be automatically recognized.
Every backend input type should have a corresponding frontend component so the
UI knows what to render when you use a particular field type.
Custom fields only support connection inputs in the Workflow Editor.
If you are using existing field types, we already have components for those. So
you don't have to worry about creating anything new. But this might not always
be the case. Sometimes you might want to create new field types and have the
frontend UI deal with it in a different way.
This is where we venture into the world of React and Javascript and create our
own new components for our Invocations. Do not fear the world of JS. It's
actually pretty straightforward.
Let us create a new component for our custom color field we created above. When
we use a color field, let us say we want the UI to display a color picker for
the user to pick from rather than entering values. That is what we will build
now.
-->

View File

@ -47,9 +47,34 @@ pip install ".[dev,test]"
These are optional groups of packages which are defined within the `pyproject.toml`
and will be required for testing the changes you make to the code.
### Tests
### Running Tests
We use [pytest](https://docs.pytest.org/en/7.2.x/) for our test suite. Tests can
be found under the `./tests` folder and can be run with a single `pytest`
command. Optionally, to review test coverage you can append `--cov`.
```zsh
pytest --cov
```
Test outcomes and coverage will be reported in the terminal. In addition a more
detailed report is created in both XML and HTML format in the `./coverage`
folder. The HTML one in particular can help identify missing statements
requiring tests to ensure coverage. This can be run by opening
`./coverage/html/index.html`.
For example.
```zsh
pytest --cov; open ./coverage/html/index.html
```
??? info "HTML coverage report output"
![html-overview](../assets/contributing/html-overview.png)
![html-detail](../assets/contributing/html-detail.png)
See the [tests documentation](./TESTS.md) for information about running and writing tests.
### Reloading Changes
Experimenting with changes to the Python source code is a drag if you have to re-start the server —
@ -142,23 +167,6 @@ and so you'll have access to the same python environment as the InvokeAI app.
This is _super_ handy.
#### Enabling Type-Checking with Pylance
We use python's typing system in InvokeAI. PR reviews will include checking that types are present and correct. We don't enforce types with `mypy` at this time, but that is on the horizon.
Using a code analysis tool to automatically type check your code (and types) is very important when writing with types. These tools provide immediate feedback in your editor when types are incorrect, and following their suggestions lead to fewer runtime bugs.
Pylance, installed at the beginning of this guide, is the de-facto python LSP (language server protocol). It provides type checking in the editor (among many other features). Once installed, you do need to enable type checking manually:
- Open a python file
- Look along the status bar in VSCode for `{ } Python`
- Click the `{ }`
- Turn type checking on - basic is fine
You'll now see red squiggly lines where type issues are detected. Hover your cursor over the indicated symbols to see what's wrong.
In 99% of cases when the type checker says there is a problem, there really is a problem, and you should take some time to understand and resolve what it is pointing out.
#### Debugging configs with `launch.json`
Debugging configs are managed in a `launch.json` file. Like most VSCode configs,

File diff suppressed because it is too large Load Diff

View File

@ -1,89 +0,0 @@
# InvokeAI Backend Tests
We use `pytest` to run the backend python tests. (See [pyproject.toml](/pyproject.toml) for the default `pytest` options.)
## Fast vs. Slow
All tests are categorized as either 'fast' (no test annotation) or 'slow' (annotated with the `@pytest.mark.slow` decorator).
'Fast' tests are run to validate every PR, and are fast enough that they can be run routinely during development.
'Slow' tests are currently only run manually on an ad-hoc basis. In the future, they may be automated to run nightly. Most developers are only expected to run the 'slow' tests that directly relate to the feature(s) that they are working on.
As a rule of thumb, tests should be marked as 'slow' if there is a chance that they take >1s (e.g. on a CPU-only machine with slow internet connection). Common examples of slow tests are tests that depend on downloading a model, or running model inference.
## Running Tests
Below are some common test commands:
```bash
# Run the fast tests. (This implicitly uses the configured default option: `-m "not slow"`.)
pytest tests/
# Equivalent command to run the fast tests.
pytest tests/ -m "not slow"
# Run the slow tests.
pytest tests/ -m "slow"
# Run the slow tests from a specific file.
pytest tests/path/to/slow_test.py -m "slow"
# Run all tests (fast and slow).
pytest tests -m ""
```
## Test Organization
All backend tests are in the [`tests/`](/tests/) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
TODO: The above statement is aspirational. A re-organization of legacy tests is required to make it true.
## Tests that depend on models
There are a few things to keep in mind when adding tests that depend on models.
1. If a required model is not already present, it should automatically be downloaded as part of the test setup.
2. If a model is already downloaded, it should not be re-downloaded unnecessarily.
3. Take reasonable care to keep the total number of models required for the tests low. Whenever possible, re-use models that are already required for other tests. If you are adding a new model, consider including a comment to explain why it is required/unique.
There are several utilities to help with model setup for tests. Here is a sample test that depends on a model:
```python
import pytest
import torch
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
from invokeai.backend.util.test_utils import install_and_load_model
@pytest.mark.slow
def test_model(model_installer, torch_device):
model_info = install_and_load_model(
model_installer=model_installer,
model_path_id_or_url="HF/dummy_model_id",
model_name="dummy_model",
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.Dummy,
)
dummy_input = build_dummy_input(torch_device)
with torch.no_grad(), model_info as model:
model.to(torch_device, dtype=torch.float32)
output = model(dummy_input)
# Validate output...
```
## Test Coverage
To review test coverage, append `--cov` to your pytest command:
```bash
pytest tests/ --cov
```
Test outcomes and coverage will be reported in the terminal. In addition, a more detailed report is created in both XML and HTML format in the `./coverage` folder. The HTML output is particularly helpful in identifying untested statements where coverage should be improved. The HTML report can be viewed by opening `./coverage/html/index.html`.
??? info "HTML coverage report output"
![html-overview](../assets/contributing/html-overview.png)
![html-detail](../assets/contributing/html-detail.png)

View File

@ -4,21 +4,14 @@
If you are looking to help to with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
## **Get Started**
To get started, take a look at our [new contributors checklist](newContributorChecklist.md)
Once you're setup, for more information, you can review the documentation specific to your area of interest:
For more information, please review our area specific documentation:
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web)
* #### [Frontend Documentation](development_guides/contributingToFrontend.md)
* #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
If you don't feel ready to make a code contribution yet, no problem! You can also help out in other ways, such as [documentation](documentation.md), [translation](translation.md) or helping support other users and triage issues as they're reported in GitHub.
If you don't feel ready to make a code contribution yet, no problem! You can also help out in other ways, such as [documentation](documentation.md) or [translation](translation.md).
There are two paths to making a development contribution:
@ -30,20 +23,69 @@ There are two paths to making a development contribution:
## Best Practices:
* Keep your pull requests small. Smaller pull requests are more likely to be accepted and merged
* Comments! Commenting your code helps reviewers easily understand your contribution
* Comments! Commenting your code helps reviwers easily understand your contribution
* Use Python and Typescripts typing systems, and consider using an editor with [LSP](https://microsoft.github.io/language-server-protocol/) support to streamline development
* Make all communications public. This ensure knowledge is shared with the whole community
## **How do I make a contribution?**
Never made an open source contribution before? Wondering how contributions work in our project? Here's a quick rundown!
Before starting these steps, ensure you have your local environment [configured for development](../LOCAL_DEVELOPMENT.md).
1. Find a [good first issue](https://github.com/invoke-ai/InvokeAI/contribute) that you are interested in addressing or a feature that you would like to add. Then, reach out to our team in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord to ensure you are setup for success.
2. Fork the [InvokeAI](https://github.com/invoke-ai/InvokeAI) repository to your GitHub profile. This means that you will have a copy of the repository under **your-GitHub-username/InvokeAI**.
3. Clone the repository to your local machine using:
```bash
git clone https://github.com/your-GitHub-username/InvokeAI.git
```
If you're unfamiliar with using Git through the commandline, [GitHub Desktop](https://desktop.github.com) is a easy-to-use alternative with a UI. You can do all the same steps listed here, but through the interface.
4. Create a new branch for your fix using:
```bash
git checkout -b branch-name-here
```
5. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
6. Add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index:
```bash
git add insert-paths-of-changed-files-here
```
7. Store the contents of the index with a descriptive message.
```bash
git commit -m "Insert a short message of the changes made here"
```
8. Push the changes to the remote repository using
```markdown
git push origin branch-name-here
```
9. Submit a pull request to the **main** branch of the InvokeAI repository.
10. Title the pull request with a short description of the changes made and the issue or bug number associated with your change. For example, you can title an issue like so "Added more log outputting to resolve #1234".
11. In the description of the pull request, explain the changes that you made, any issues you think exist with the pull request you made, and any questions you have for the maintainer. It's OK if your pull request is not perfect (no pull request is), the reviewer will be able to help you fix any problems and improve it!
12. Wait for the pull request to be reviewed by other collaborators.
13. Make changes to the pull request if the reviewer(s) recommend them.
14. Celebrate your success after your pull request is merged!
If youd like to learn more about contributing to Open Source projects, here is a [Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github).
## **Where can I go for help?**
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
For frontend related work, **@psychedelicious** is the best person to reach out to.
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@psychedelicious**.
For frontend related work, **@pyschedelicious** is the best person to reach out to.
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@pyschedelicious**.
## **What does the Code of Conduct mean for me?**
Our [Code of Conduct](../../CODE_OF_CONDUCT.md) means that you are responsible for treating everyone on the project with respect and courtesy regardless of their identity. If you are the victim of any inappropriate behavior or comments as described in our Code of Conduct, we are here for you and will do the best to ensure that the abuser is reprimanded appropriately, per our code.
Our [Code of Conduct](CODE_OF_CONDUCT.md) means that you are responsible for treating everyone on the project with respect and courtesy regardless of their identity. If you are the victim of any inappropriate behavior or comments as described in our Code of Conduct, we are here for you and will do the best to ensure that the abuser is reprimanded appropriately, per our code.

View File

@ -0,0 +1,75 @@
# Contributing to the Frontend
# InvokeAI Web UI
- [InvokeAI Web UI](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#invokeai-web-ui)
- [Stack](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#stack)
- [Contributing](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#contributing)
- [Dev Environment](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#dev-environment)
- [Production builds](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#production-builds)
The UI is a fairly straightforward Typescript React app, with the Unified Canvas being more complex.
Code is located in `invokeai/frontend/web/` for review.
## Stack
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). We lean heavily on RTK:
- `createAsyncThunk` for HTTP requests
- `createEntityAdapter` for fetching images and models
- `createListenerMiddleware` for workflows
The API client and associated types are generated from the OpenAPI schema. See API_CLIENT.md.
Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a simple socket.io redux middleware to help).
[Chakra-UI](https://github.com/chakra-ui/chakra-ui) & [Mantine](https://github.com/mantinedev/mantine) for components and styling.
[Konva](https://github.com/konvajs/react-konva) for the canvas, but we are pushing the limits of what is feasible with it (and HTML canvas in general). We plan to rebuild it with [PixiJS](https://github.com/pixijs/pixijs) to take advantage of WebGL's improved raster handling.
[Vite](https://vitejs.dev/) for bundling.
Localisation is via [i18next](https://github.com/i18next/react-i18next), but translation happens on our [Weblate](https://hosted.weblate.org/engage/invokeai/) project. Only the English source strings should be changed on this repo.
## Contributing
Thanks for your interest in contributing to the InvokeAI Web UI!
We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](https://discord.gg/ZmtBAhwWhy) if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
### Dev Environment
**Setup**
1. Install [node](https://nodejs.org/en/download/). You can confirm node is installed with:
```bash
node --version
```
2. Install [yarn classic](https://classic.yarnpkg.com/lang/en/) and confirm it is installed by running this:
```bash
npm install --global yarn
yarn --version
```
From `invokeai/frontend/web/` run `yarn install` to get everything set up.
Start everything in dev mode:
1. Ensure your virtual environment is running
2. Start the dev server: `yarn dev`
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
### VSCode Remote Dev
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out. Suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
`ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host`
### Production builds
For a number of technical and logistical reasons, we need to commit UI build artefacts to the repo.
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
To build for production, run `yarn build`.

View File

@ -10,4 +10,4 @@ When updating or creating documentation, please keep in mind InvokeAI is a tool
## Help & Questions
Please ping @imic or @hipsterusername in the [Discord](https://discord.com/channels/1020123559063990373/1049495067846524939) if you have any questions.
Please ping @imic1 or @hipsterusername in the [Discord](https://discord.com/channels/1020123559063990373/1049495067846524939) if you have any questions.

View File

@ -1,68 +0,0 @@
# New Contributor Guide
If you're a new contributor to InvokeAI or Open Source Projects, this is the guide for you.
## New Contributor Checklist
- [x] Set up your local development environment & fork of InvokAI by following [the steps outlined here](../../installation/020_INSTALL_MANUAL.md#developer-install)
- [x] Set up your local tooling with [this guide](InvokeAI/contributing/LOCAL_DEVELOPMENT/#developing-invokeai-in-vscode). Feel free to skip this step if you already have tooling you're comfortable with.
- [x] Familiarize yourself with [Git](https://www.atlassian.com/git) & our project structure by reading through the [development documentation](development.md)
- [x] Join the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord
- [x] Choose an issue to work on! This can be achieved by asking in the #dev-chat channel, tackling a [good first issue](https://github.com/invoke-ai/InvokeAI/contribute) or finding an item on the [roadmap](https://github.com/orgs/invoke-ai/projects/7). If nothing in any of those places catches your eye, feel free to work on something of interest to you!
- [x] Make your first Pull Request with the guide below
- [x] Happy development! Don't be afraid to ask for help - we're happy to help you contribute!
## How do I make a contribution?
Never made an open source contribution before? Wondering how contributions work in our project? Here's a quick rundown!
Before starting these steps, ensure you have your local environment [configured for development](../LOCAL_DEVELOPMENT.md).
1. Find a [good first issue](https://github.com/invoke-ai/InvokeAI/contribute) that you are interested in addressing or a feature that you would like to add. Then, reach out to our team in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord to ensure you are setup for success.
2. Fork the [InvokeAI](https://github.com/invoke-ai/InvokeAI) repository to your GitHub profile. This means that you will have a copy of the repository under **your-GitHub-username/InvokeAI**.
3. Clone the repository to your local machine using:
```bash
git clone https://github.com/your-GitHub-username/InvokeAI.git
```
If you're unfamiliar with using Git through the commandline, [GitHub Desktop](https://desktop.github.com) is a easy-to-use alternative with a UI. You can do all the same steps listed here, but through the interface.
4. Create a new branch for your fix using:
```bash
git checkout -b branch-name-here
```
5. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
6. Add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index:
```bash
git add -A
```
7. Store the contents of the index with a descriptive message.
```bash
git commit -m "Insert a short message of the changes made here"
```
8. Push the changes to the remote repository using
```bash
git push origin branch-name-here
```
9. Submit a pull request to the **main** branch of the InvokeAI repository. If you're not sure how to, [follow this guide](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request)
10. Title the pull request with a short description of the changes made and the issue or bug number associated with your change. For example, you can title an issue like so "Added more log outputting to resolve #1234".
11. In the description of the pull request, explain the changes that you made, any issues you think exist with the pull request you made, and any questions you have for the maintainer. It's OK if your pull request is not perfect (no pull request is), the reviewer will be able to help you fix any problems and improve it!
12. Wait for the pull request to be reviewed by other collaborators.
13. Make changes to the pull request if the reviewer(s) recommend them.
14. Celebrate your success after your pull request is merged!
If youd like to learn more about contributing to Open Source projects, here is a [Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github).
## Best Practices:
* Keep your pull requests small. Smaller pull requests are more likely to be accepted and merged
* Comments! Commenting your code helps reviewers easily understand your contribution
* Use Python and Typescripts typing systems, and consider using an editor with [LSP](https://microsoft.github.io/language-server-protocol/) support to streamline development
* Make all communications public. This ensure knowledge is shared with the whole community
## **Where can I go for help?**
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
For frontend related work, **@pyschedelicious** is the best person to reach out to.
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@pyschedelicious**.

View File

@ -1,133 +0,0 @@
# Invoke UI
Invoke's UI is made possible by many contributors and open-source libraries. Thank you!
## Dev environment
### Setup
1. Install [node] and [pnpm].
1. Run `pnpm i` to install all packages.
#### Run in dev mode
1. From `invokeai/frontend/web/`, run `pnpm dev`.
1. From repo root, run `python scripts/invokeai-web.py`.
1. Point your browser to the dev server address, e.g. <http://localhost:5173/>
### Package scripts
- `dev`: run the frontend in dev mode, enabling hot reloading
- `build`: run all checks (madge, eslint, prettier, tsc) and then build the frontend
- `typegen`: generate types from the OpenAPI schema (see [Type generation])
- `lint:dpdm`: check circular dependencies
- `lint:eslint`: check code quality
- `lint:prettier`: check code formatting
- `lint:tsc`: check type issues
- `lint:knip`: check for unused exports or objects (failures here are just suggestions, not hard fails)
- `lint`: run all checks concurrently
- `fix`: run `eslint` and `prettier`, fixing fixable issues
### Type generation
We use [openapi-typescript] to generate types from the app's OpenAPI schema.
The generated types are committed to the repo in [schema.ts].
```sh
# from the repo root, start the server
python scripts/invokeai-web.py
# from invokeai/frontend/web/, run the script
pnpm typegen
```
### Localization
We use [i18next] for localization, but translation to languages other than English happens on our [Weblate] project.
Only the English source strings should be changed on this repo.
### VSCode
#### Example debugger config
```jsonc
{
"version": "0.2.0",
"configurations": [
{
"type": "chrome",
"request": "launch",
"name": "Invoke UI",
"url": "http://localhost:5173",
"webRoot": "${workspaceFolder}/invokeai/frontend/web"
}
]
}
```
#### Remote dev
We've noticed an intermittent timeout issue with the VSCode remote dev port forwarding.
We suggest disabling the editor's port forwarding feature and doing it manually via SSH:
```sh
ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host
```
## Contributing Guidelines
Thanks for your interest in contributing to the Invoke Web UI!
Please follow these guidelines when contributing.
### Check in before investing your time
Please check in before you invest your time on anything besides a trivial fix, in case it conflicts with ongoing work or isn't aligned with the vision for the app.
If a feature request or issue doesn't already exist for the thing you want to work on, please create one.
Ping `@psychedelicious` on [discord] in the `#frontend-dev` channel or in the feature request / issue you want to work on - we're happy to chat.
### Code conventions
- This is a fairly complex app with a deep component tree. Please use memoization (`useCallback`, `useMemo`, `memo`) with enthusiasm.
- If you need to add some global, ephemeral state, please use [nanostores] if possible.
- Be careful with your redux selectors. If they need to be parameterized, consider creating them inside a `useMemo`.
- Feel free to use `lodash` (via `lodash-es`) to make the intent of your code clear.
- Please add comments describing the "why", not the "how" (unless it is really arcane).
### Commit format
Please use the [conventional commits] spec for the web UI, with a scope of "ui":
- `chore(ui): bump deps`
- `chore(ui): lint`
- `feat(ui): add some cool new feature`
- `fix(ui): fix some bug`
### Submitting a PR
- Ensure your branch is tidy. Use an interactive rebase to clean up the commit history and reword the commit messages if they are not descriptive.
- Run `pnpm lint`. Some issues are auto-fixable with `pnpm fix`.
- Fill out the PR form when creating the PR.
- It doesn't need to be super detailed, but a screenshot or video is nice if you changed something visually.
- If a section isn't relevant, delete it. There are no UI tests at this time.
## Other docs
- [Workflows - Design and Implementation]
- [State Management]
[node]: https://nodejs.org/en/download/
[pnpm]: https://github.com/pnpm/pnpm
[discord]: https://discord.gg/ZmtBAhwWhy
[i18next]: https://github.com/i18next/react-i18next
[Weblate]: https://hosted.weblate.org/engage/invokeai/
[openapi-typescript]: https://github.com/drwpow/openapi-typescript
[Type generation]: #type-generation
[schema.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/services/api/schema.ts
[conventional commits]: https://www.conventionalcommits.org/en/v1.0.0/
[Workflows - Design and Implementation]: ./WORKFLOWS.md
[State Management]: ./STATE_MGMT.md

View File

@ -1,38 +0,0 @@
# State Management
The app makes heavy use of Redux Toolkit, its Query library, and `nanostores`.
## Redux
TODO
## `nanostores`
[nanostores] is a tiny state management library. It provides both imperative and declarative APIs.
### Example
```ts
export const $myStringOption = atom<string | null>(null);
// Outside a component, or within a callback for performance-critical logic
$myStringOption.get();
$myStringOption.set('new value');
// Inside a component
const myStringOption = useStore($myStringOption);
```
### Where to put nanostores
- For global application state, export your stores from `invokeai/frontend/web/src/app/store/nanostores/`.
- For feature state, create a file for the stores next to the redux slice definition (e.g. `invokeai/frontend/web/src/features/myFeature/myFeatureNanostores.ts`).
- For hooks with global state, export the store from the same file the hook is in, or put it next to the hook.
### When to use nanostores
- For non-serializable data that needs to be available throughout the app, use `nanostores` instead of a global.
- For ephemeral global state (i.e. state that does not need to be persisted), use `nanostores` instead of redux.
- For performance-critical code and in callbacks, redux selectors can be problematic due to the declarative reactivity system. Consider refactoring to use `nanostores` if there's a **measurable** performance issue.
[nanostores]: https://github.com/nanostores/nanostores/

View File

@ -1,315 +0,0 @@
# Workflows - Design and Implementation
> This document describes, at a high level, the design and implementation of workflows in the InvokeAI frontend. There are a substantial number of implementation details not included, but which are hopefully clear from the code.
InvokeAI's backend uses graphs, composed of **nodes** and **edges**, to process data and generate images.
Nodes have any number of **input fields** and **output fields**. Edges connect nodes together via their inputs and outputs. Fields have data types which dictate how they may be connected.
During execution, a nodes' outputs may be passed along to any number of other nodes' inputs.
Workflows are an enriched abstraction over a graph.
## Design
InvokeAI provide two ways to build graphs in the frontend: the [Linear UI](#linear-ui) and [Workflow Editor](#workflow-editor).
To better understand the use case and challenges related to workflows, we will review both of these modes.
### Linear UI
This includes the **Text to Image**, **Image to Image** and **Unified Canvas** tabs.
The user-managed parameters on these tabs are stored as simple objects in the application state. When the user invokes, adding a generation to the queue, we internally build a graph from these parameters.
This logic can be fairly complex due to the range of features available and their interactions. Depending on the parameters selected, the graph may be very different. Building graphs in code can be challenging - you are trying to construct a non-linear structure in a linear context.
The simplest graph building logic is for **Text to Image** with a SD1.5 model: [buildLinearTextToImageGraph.ts]
There are many other graph builders in the same directory for different tabs or base models (e.g. SDXL). Some are pretty hairy.
In the Linear UI, we go straight from **simple application state** to **graph** via these builders.
### Workflow Editor
The Workflow Editor is a visual graph editor, allowing users to draw edges from node to node to construct a graph. This _far_ more approachable way to create complex graphs.
InvokeAI uses the [reactflow] library to power the Workflow Editor. It provides both a graph editor UI and manages its own internal graph state.
#### Workflows
A workflow is a representation of a graph plus additional metadata:
- Name
- Description
- Version
- Notes
- [Exposed fields](#workflow-linear-view)
- Author, tags, category, etc.
Workflows should have other qualities:
- Portable: you should be able to load a workflow created by another person.
- Resilient: you should be able to "upgrade" a workflow as the application changes.
- Abstract: as much as is possible, workflows should not be married to the specific implementation details of the application.
To support these qualities, workflows are serializable, have a versioned schemas, and represent graphs as minimally as possible. Fortunately, the reactflow state for nodes and edges works perfectly for this.
##### Workflow -> reactflow state -> InvokeAI graph
Given a workflow, we need to be able to derive reactflow state and/or an InvokeAI graph from it.
The first step - workflow to reactflow state - is very simple. The logic is in [nodesSlice.ts], in the `workflowLoaded` reducer.
The reactflow state is, however, structurally incompatible with our backend's graph structure. When a user invokes on a Workflow, we need to convert the reactflow state into an InvokeAI graph. This is far simpler than the graph building logic from the Linear UI:
[buildNodesGraph.ts]
##### Nodes vs Invocations
We often use the terms "node" and "invocation" interchangeably, but they may refer to different things in the frontend.
reactflow [has its own definitions][reactflow-concepts] of "node", "edge" and "handle" which are closely related to InvokeAI graph concepts.
- A reactflow node is related to an InvokeAI invocation. It has a "data" property, which holds the InvokeAI-specific invocation data.
- A reactflow edge is roughly equivalent to an InvokeAI edge.
- A reactflow handle is roughly equivalent to an InvokeAI input or output field.
##### Workflow Linear View
Graphs are very capable data structures, but not everyone wants to work with them all the time.
To allow less technical users - or anyone who wants a less visually noisy workspace - to benefit from the power of nodes, InvokeAI has a workflow feature called the Linear View.
A workflow input field can be added to this Linear View, and its input component can be presented similarly to the Linear UI tabs. Internally, we add the field to the workflow's list of exposed fields.
#### OpenAPI Schema
OpenAPI is a schema specification that can represent complex data structures and relationships. The backend is capable of generating an OpenAPI schema for all invocations.
When the UI connects, it requests this schema and parses each invocation into an **invocation template**. Invocation templates have a number of properties, like title, description and type, but the most important ones are their input and output **field templates**.
Invocation and field templates are the "source of truth" for graphs, because they indicate what the backend is able to process.
When a user adds a new node to their workflow, these templates are used to instantiate a node with fields instantiated from the input and output field templates.
##### Field Instances and Templates
Field templates consist of:
- Name: the identifier of the field, its variable name in python
- Type: derived from the field's type annotation in python (e.g. IntegerField, ImageField, MainModelField)
- Constraints: derived from the field's creation args in python (e.g. minimum value for an integer)
- Default value: optionally provided in the field's creation args (e.g. 42 for an integer)
Field instances are created from the templates and have name, type and optionally a value.
The type of the field determines the UI components that are rendered for it.
A field instance's name associates it with its template.
##### Stateful vs Stateless Fields
**Stateful** fields store their value in the frontend graph. Think primitives, model identifiers, images, etc. Fields are only stateful if the frontend allows the user to directly input a value for them.
Many field types, however, are **stateless**. An example is a `UNetField`, which contains some data describing a UNet. Users cannot directly provide this data - it is created and consumed in the backend.
Stateless fields do not store their value in the node, so their field instances do not have values.
"Custom" fields will always be treated as stateless fields.
##### Collection and Scalar Fields
Field types have a name and two flags which may identify it as a **collection** or **collection or scalar** field.
If a field is annotated in python as a list, its field type is parsed and flagged as a **collection** type (e.g. `list[int]`).
If it is annotated as a union of a type and list, the type will be flagged as a **collection or scalar** type (e.g. `Union[int, list[int]]`). Fields may not be unions of different types (e.g. `Union[int, list[str]]` and `Union[int, str]` are not allowed).
## Implementation
The majority of data structures in the backend are [pydantic] models. Pydantic provides OpenAPI schemas for all models and we then generate TypeScript types from those.
The OpenAPI schema is parsed at runtime into our invocation templates.
Workflows and all related data are modeled in the frontend using [zod]. Related types are inferred from the zod schemas.
> In python, invocations are pydantic models with fields. These fields become node inputs. The invocation's `invoke()` function returns a pydantic model - its output. Like the invocation itself, the output model has any number of fields, which become node outputs.
### zod Schemas and Types
The zod schemas, inferred types, and type guards are in [types/].
Roughly order from lowest-level to highest:
- `common.ts`: stateful field data, and couple other misc types
- `field.ts`: fields - types, values, instances, templates
- `invocation.ts`: invocations and other node types
- `workflow.ts`: workflows and constituents
We customize the OpenAPI schema to include additional properties on invocation and field schemas. To facilitate parsing this schema into templates, we modify/wrap the types from [openapi-types] in `openapi.ts`.
### OpenAPI Schema Parsing
The entrypoint for OpenAPI schema parsing is [parseSchema.ts].
General logic flow:
- Iterate over all invocation schema objects
- Extract relevant invocation-level attributes (e.g. title, type, version, etc)
- Iterate over the invocation's input fields
- [Parse each field's type](#parsing-field-types)
- [Build a field input template](#building-field-input-templates) from the type - either a stateful template or "generic" stateless template
- Iterate over the invocation's output fields
- Parse the field's type (same as inputs)
- [Build a field output template](#building-field-output-templates)
- Assemble the attributes and fields into an invocation template
Most of these involve very straightforward `reduce`s, but the less intuitive steps are detailed below.
#### Parsing Field Types
Field types are represented as structured objects:
```ts
type FieldType = {
name: string;
isCollection: boolean;
isCollectionOrScalar: boolean;
};
```
The parsing logic is in `parseFieldType.ts`.
There are 4 general cases for field type parsing.
##### Primitive Types
When a field is annotated as a primitive values (e.g. `int`, `str`, `float`), the field type parsing is fairly straightforward. The field is represented by a simple OpenAPI **schema object**, which has a `type` property.
We create a field type name from this `type` string (e.g. `string` -> `StringField`).
##### Complex Types
When a field is annotated as a pydantic model (e.g. `ImageField`, `MainModelField`, `ControlField`), it is represented as a **reference object**. Reference objects are pointers to another schema or reference object within the schema.
We need to **dereference** the schema to pull these out. Dereferencing may require recursion. We use the reference object's name directly for the field type name.
> Unfortunately, at this time, we've had limited success using external libraries to deference at runtime, so we do this ourselves.
##### Collection Types
When a field is annotated as a list of a single type, the schema object has an `items` property. They may be a schema object or reference object and must be parsed to determine the item type.
We use the item type for field type name, adding `isCollection: true` to the field type.
##### Collection or Scalar Types
When a field is annotated as a union of a type and list of that type, the schema object has an `anyOf` property, which holds a list of valid types for the union.
After verifying that the union has two members (a type and list of the same type), we use the type for field type name, adding `isCollectionOrScalar: true` to the field type.
##### Optional Fields
In OpenAPI v3.1, when an object is optional, it is put into an `anyOf` along with a primitive schema object with `type: 'null'`.
Handling this adds a fair bit of complexity, as we now must filter out the `'null'` types and work with the remaining types as described above.
If there is a single remaining schema object, we must recursively call to `parseFieldType()` to get parse it.
#### Building Field Input Templates
Now that we have a field type, we can build an input template for the field.
Stateful fields all get a function to build their template, while stateless fields are constructed directly. This is possible because stateless fields have no default value or constraints.
See [buildFieldInputTemplate.ts].
#### Building Field Output Templates
Field outputs are similar to stateless fields - they do not have any value in the frontend. When building their templates, we don't need a special function for each field type.
See [buildFieldOutputTemplate.ts].
### Managing reactflow State
As described above, the workflow editor state is the essentially the reactflow state, plus some extra metadata.
We provide reactflow with an array of nodes and edges via redux, and a number of [event handlers][reactflow-events]. These handlers dispatch redux actions, managing nodes and edges.
The pieces of redux state relevant to workflows are:
- `state.nodes.nodes`: the reactflow nodes state
- `state.nodes.edges`: the reactflow edges state
- `state.nodes.workflow`: the workflow metadata
#### Building Nodes and Edges
A reactflow node has a few important top-level properties:
- `id`: unique identifier
- `type`: a string that maps to a react component to render the node
- `position`: XY coordinates
- `data`: arbitrary data
When the user adds a node, we build **invocation node data**, storing it in `data`. Invocation properties (e.g. type, version, label, etc.) are copied from the invocation template. Inputs and outputs are built from the invocation template's field templates.
See [buildInvocationNode.ts].
Edges are managed by reactflow, but briefly, they consist of:
- `source`: id of the source node
- `sourceHandle`: id of the source node handle (output field)
- `target`: id of the target node
- `targetHandle`: id of the target node handle (input field)
> Edge creation is gated behind validation logic. This validation compares the input and output field types and overall graph state.
#### Building a Workflow
Building a workflow entity is as simple as dropping the nodes, edges and metadata into an object.
Each node and edge is parsed with a zod schema, which serves to strip out any unneeded data.
See [buildWorkflow.ts].
#### Loading a Workflow
Workflows may be loaded from external sources or the user's local instance. In all cases, the workflow needs to be handled with care, as an untrusted object.
Loading has a few stages which may throw or warn if there are problems:
- Parsing the workflow data structure itself, [migrating](#workflow-migrations) it if necessary (throws)
- Check for a template for each node (warns)
- Check each node's version against its template (warns)
- Validate the source and target of each edge (warns)
This validation occurs in [validateWorkflow.ts].
If there are no fatal errors, the workflow is then stored in redux state.
### Workflow Migrations
When the workflow schema changes, we may need to perform some data migrations. This occurs as workflows are loaded. zod schemas for each workflow schema version is retained to facilitate migrations.
Previous schemas are in folders in `invokeai/frontend/web/src/features/nodes/types/`, eg `v1/`.
Migration logic is in [migrations.ts].
<!-- links -->
[pydantic]: https://github.com/pydantic/pydantic 'pydantic'
[zod]: https://github.com/colinhacks/zod 'zod'
[openapi-types]: https://github.com/kogosoftwarellc/open-api/tree/main/packages/openapi-types 'openapi-types'
[reactflow]: https://github.com/xyflow/xyflow 'reactflow'
[reactflow-concepts]: https://reactflow.dev/learn/concepts/terms-and-definitions
[reactflow-events]: https://reactflow.dev/api-reference/react-flow#event-handlers
[buildWorkflow.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/workflow/buildWorkflow.ts
[nodesSlice.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/store/nodesSlice.ts
[buildLinearTextToImageGraph.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/graph/buildLinearTextToImageGraph.ts
[buildNodesGraph.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/graph/buildNodesGraph.ts
[buildInvocationNode.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/node/buildInvocationNode.ts
[validateWorkflow.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/workflow/validateWorkflow.ts
[migrations.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/workflow/migrations.ts
[parseSchema.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/schema/parseSchema.ts
[buildFieldInputTemplate.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/schema/buildFieldInputTemplate.ts
[buildFieldOutputTemplate.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/schema/buildFieldOutputTemplate.ts

View File

@ -1,53 +0,0 @@
## :octicons-log-16: Important Changes Since Version 2.3
### Nodes
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
### Command-Line Interface Retired
All "invokeai" command-line interfaces have been retired as of version
3.4.
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
### ControlNet
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
### New Schedulers
The list of schedulers has been completely revamped and brought up to date:
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
| **lcm** | LCMScheduler | |
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.

View File

@ -211,8 +211,8 @@ Here are the invoke> command that apply to txt2img:
| `--facetool <name>` | `-ft <name>` | `-ft gfpgan` | Select face restoration algorithm to use: gfpgan, codeformer |
| `--codeformer_fidelity` | `-cf <float>` | `0.75` | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
| `--save_original` | `-save_orig` | `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](VARIATIONS.md) for now to use this. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](../features/VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](../features/VARIATIONS.md) for now to use this. |
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
| `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
| `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |

View File

@ -1,131 +0,0 @@
---
title: Variations
---
# :material-tune-variant: Variations
## Intro
InvokeAI's support for variations enables you to do the following:
1. Generate a series of systematic variations of an image, given a prompt. The
amount of variation from one image to the next can be controlled.
2. Given two or more variations that you like, you can combine them in a
weighted fashion.
!!! Information ""
This cheat sheet provides a quick guide for how this works in practice, using
variations to create the desired image of Xena, Warrior Princess.
## Step 1 -- Find a base image that you like
The prompt we will use throughout is:
`#!bash "lucy lawless as xena, warrior princess, character portrait, high resolution."`
This will be indicated as `#!bash "prompt"` in the examples below.
First we let SD create a series of images in the usual way, in this case
requesting six iterations.
<figure markdown>
![var1](../assets/variation_walkthru/000001.3357757885.png)
<figcaption> Seed 3357757885 looks nice </figcaption>
</figure>
---
## Step 2 - Generating Variations
Let's try to generate some variations on this image. We select the "*"
symbol in the line of icons above the image in order to fix the prompt
and seed. Then we open up the "Variations" section of the generation
panel and use the slider to set the variation amount to 0.2. The
higher this value, the more each generated image will differ from the
previous one.
Now we run the prompt a second time, requesting six iterations. You
will see six images that are thematically related to each other. Try
increasing and decreasing the variation amount and see what happens.
### **Variation Sub Seeding**
Note that the output for each image has a `-V` option giving the "variant
subseed" for that image, consisting of a seed followed by the variation amount
used to generate it.
This gives us a series of closely-related variations, including the two shown
here.
<figure markdown>
![var2](../assets/variation_walkthru/000002.3647897225.png)
<figcaption>subseed 3647897225</figcaption>
</figure>
<figure markdown>
![var3](../assets/variation_walkthru/000002.1614299449.png)
<figcaption>subseed 1614299449</figcaption>
</figure>
I like the expression on Xena's face in the first one (subseed 3647897225), and
the armor on her shoulder in the second one (subseed 1614299449). Can we combine
them to get the best of both worlds?
We combine the two variations using `-V` (`--with_variations`). Again, we must
provide the seed for the originally-chosen image in order for this to work.
```bash
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1
Outputs:
./outputs/Xena/000003.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1 -S3357757885
```
Here we are providing equal weights (0.1 and 0.1) for both the subseeds. The
resulting image is close, but not exactly what I wanted:
<figure markdown>
![var4](../assets/variation_walkthru/000003.1614299449.png)
<figcaption> subseed 1614299449 </figcaption>
</figure>
We could either try combining the images with different weights, or we can
generate more variations around the almost-but-not-quite image. We do the
latter, using both the `-V` (combining) and `-v` (variation strength) options.
Note that we use `-n6` to generate 6 variations:
```bash
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1 -v0.05 -n6
Outputs:
./outputs/Xena/000004.3279757577.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3279757577:0.05 -S3357757885
./outputs/Xena/000004.2853129515.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2853129515:0.05 -S3357757885
./outputs/Xena/000004.3747154981.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3747154981:0.05 -S3357757885
./outputs/Xena/000004.2664260391.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2664260391:0.05 -S3357757885
./outputs/Xena/000004.1642517170.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,1642517170:0.05 -S3357757885
./outputs/Xena/000004.2183375608.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2183375608:0.05 -S3357757885
```
This produces six images, all slight variations on the combination of the chosen
two images. Here's the one I like best:
<figure markdown>
![var5](../assets/variation_walkthru/000004.3747154981.png)
<figcaption> subseed 3747154981 </figcaption>
</figure>
As you can see, this is a very powerful tool, which when combined with subprompt
weighting, gives you great control over the content and quality of your
generated images.
## Variations and Samplers
The sampler you choose has a strong effect on variation strength. Some
samplers, such as `k_euler_a` are very "creative" and produce significant
amounts of image-to-image variation even when the seed is fixed and the
`-v` argument is very low. Others are more deterministic. Feel free to
experiment until you find the combination that you like.
Also be aware of the [Perlin Noise](../features/OTHER.md#thresholding-and-perlin-noise-initialization-options)
feature, which provides another way of introducing variability into your
image generation requests.

88
docs/features/CONCEPTS.md Normal file
View File

@ -0,0 +1,88 @@
---
title: Textual Inversion Embeddings and LoRAs
---
# :material-library-shelves: Textual Inversions and LoRAs
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
## Using Textual Inversion Files
Textual inversion (TI) files are small models that customize the output of
Stable Diffusion image generation. They can augment SD with specialized subjects
and artistic styles. They are also known as "embeds" in the machine learning
world.
Each TI file introduces one or more vocabulary terms to the SD model. These are
known in InvokeAI as "triggers." Triggers are denoted using angle brackets
as in "&lt;trigger-phrase&gt;". The two most common type of
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
different TI training packages. InvokeAI supports both formats, but its
[built-in TI training system](TRAINING.md) produces `.pt`.
The [Hugging Face company](https://huggingface.co/sd-concepts-library) has
amassed a large ligrary of &gt;800 community-contributed TI files covering a
broad range of subjects and styles. You can also install your own or others' TI files
by placing them in the designated directory for the compatible model type
### An Example
Here are a few examples to illustrate how it works. All these images were
generated using the command-line client and the Stable Diffusion 1.5 model:
| Japanese gardener | Japanese gardener &lt;ghibli-face&gt; | Japanese gardener &lt;hoi4-leaders&gt; | Japanese gardener &lt;cartoona-animals&gt; |
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |
| ![](../assets/concepts/image1.png) | ![](../assets/concepts/image2.png) | ![](../assets/concepts/image3.png) | ![](../assets/concepts/image4.png) |
You can also combine styles and concepts:
<figure markdown>
| A portrait of &lt;alf&gt; in &lt;cartoona-animal&gt; style |
| :--------------------------------------------------------: |
| ![](../assets/concepts/image5.png) |
</figure>
## Installing your Own TI Files
You may install any number of `.pt` and `.bin` files simply by copying them into
the `embedding` directory of the corresponding InvokeAI models directory (usually `invokeai`
in your home directory). For example, you can simply move a Stable Diffusion 1.5 embedding file to
the `sd-1/embedding` folder. Be careful not to overwrite one file with another.
For example, TI files generated by the Hugging Face toolkit share the named
`learned_embedding.bin`. You can rename these, or use subdirectories to keep them distinct.
At startup time, InvokeAI will scan the various `embedding` directories and load any TI
files it finds there for compatible models. At startup you will see a message similar to this one:
```bash
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
```
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.
## Using LoRAs
LoRA files are models that customize the output of Stable Diffusion
image generation. Larger than embeddings, but much smaller than full
models, they augment SD with improved understanding of subjects and
artistic styles.
Unlike TI files, LoRAs do not introduce novel vocabulary into the
model's known tokens. Instead, LoRAs augment the model's weights that
are applied to generate imagery. LoRAs may be supplied with a
"trigger" word that they have been explicitly trained on, or may
simply apply their effect without being triggered.
LoRAs are typically stored in .safetensors files, which are the most
secure way to store and transmit these types of weights. You may
install any number of `.safetensors` LoRA files simply by copying them
into the `autoimport/lora` directory of the corresponding InvokeAI models
directory (usually `invokeai` in your home directory).
To use these when generating, open the LoRA menu item in the options
panel, select the LoRAs you want to apply and ensure that they have
the appropriate weight recommended by the model provider. Typically,
most LoRAs perform best at a weight of .75-1.

View File

@ -31,18 +31,18 @@ be referred to as ROOT.
To find its root directory, InvokeAI uses the following recipe:
1. It first looks for the argument `--root <path>` on the command line
it was launched from, and uses the indicated path if present.
it was launched from, and uses the indicated path if present.
2. Next it looks for the environment variable INVOKEAI_ROOT, and uses
the directory path found there if present.
the directory path found there if present.
3. If neither of these are present, then InvokeAI looks for the
folder containing the `.venv` Python virtual environment directory for
the currently active environment. This directory is checked for files
expected inside the InvokeAI root before it is used.
folder containing the `.venv` Python virtual environment directory for
the currently active environment. This directory is checked for files
expected inside the InvokeAI root before it is used.
4. Finally, InvokeAI looks for a directory in the current user's home
directory named `invokeai`.
directory named `invokeai`.
#### Reading the InvokeAI Configuration File
@ -82,7 +82,7 @@ format of YAML files can be found
[here](https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/).
You can fix a broken `invokeai.yaml` by deleting it and running the
configuration script again -- option [6] in the launcher, "Re-run the
configuration script again -- option [7] in the launcher, "Re-run the
configure script".
#### Reading Environment Variables
@ -149,75 +149,102 @@ usage: InvokeAI [-h] [--host HOST] [--port PORT] [--allow_origins [ALLOW_ORIGINS
## The Configuration Settings
The config is managed by the `InvokeAIAppConfig` class, which is a pydantic model. The below docs are autogenerated from the class.
The configuration settings are divided into several distinct
groups in `invokeia.yaml`:
When editing your `invokeai.yaml` file, you'll need to put settings under their appropriate group. The group for each setting is denoted in the table below.
### Web Server
Following the table are additional explanations for certain settings.
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
<!-- prettier-ignore-start -->
::: invokeai.app.services.config.config_default.InvokeAIAppConfig
options:
heading_level: 3
members: false
<!-- prettier-ignore-end -->
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].
### Model Marketplace API Keys
### Features
Some model marketplaces require an API key to download models. You can provide a URL pattern and appropriate token in your `invokeai.yaml` file to provide that API key.
These configuration settings allow you to enable and disable various InvokeAI features:
The pattern can be any valid regex (you may need to surround the pattern with quotes):
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `esrgan` | `true` | Activate the ESRGAN upscaling options|
| `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet |
| `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected |
| `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting |
```yaml
InvokeAI:
Model Install:
remote_api_tokens:
# Any URL containing `models.com` will automatically use `your_models_com_token`
- url_regex: models.com
token: your_models_com_token
# Any URL matching this contrived regex will use `some_other_token`
- url_regex: '^[a-z]{3}whatever.*\.com$'
token: some_other_token
```
### Generation
The provided token will be added as a `Bearer` token to the network requests to download the model files. As far as we know, this works for all model marketplaces that require authorization.
These options tune InvokeAI's memory and performance characteristics.
### Model Hashing
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `sequential_guidance` | `false` | Calculate guidance in serial rather than in parallel, lowering memory requirements at the cost of some performance loss |
| `attention_type` | `auto` | Select the type of attention to use. One of `auto`,`normal`,`xformers`,`sliced`, or `torch-sdp` |
| `attention_slice_size` | `auto` | When "sliced" attention is selected, set the slice size. One of `auto`, `balanced`, `max` or the integers 1-8|
| `force_tiled_decode` | `false` | Force the VAE step to decode in tiles, reducing memory consumption at the cost of performance |
Models are hashed during installation, providing a stable identifier for models across all platforms. The default algorithm is `blake3`, with a multi-threaded implementation.
### Device
If your models are stored on a spinning hard drive, we suggest using `blake3_single`, the single-threaded implementation. The hashes are the same, but it's much faster on spinning disks.
These options configure the generation execution device.
```yaml
InvokeAI:
Model Install:
hashing_algorithm: blake3_single
```
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `device` | `auto` | Preferred execution device. One of `auto`, `cpu`, `cuda`, `cuda:1`, `mps`. `auto` will choose the device depending on the hardware platform and the installed torch capabilities. |
| `precision` | `auto` | Floating point precision. One of `auto`, `float16` or `float32`. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system |
Model hashing is a one-time operation, but it may take a couple minutes to hash a large model collection. You may opt out of model hashing entirely by setting the algorithm to `random`.
```yaml
InvokeAI:
Model Install:
hashing_algorithm: random
```
Most common algorithms are supported, like `md5`, `sha256`, and `sha512`. These are typically much, much slower than `blake3`.
### Paths
These options set the paths of various directories and files used by
InvokeAI. Relative paths are interpreted relative to the root directory, so
if root is `/home/fred/invokeai` and the path is
InvokeAI. Relative paths are interpreted relative to INVOKEAI_ROOT, so
if INVOKEAI_ROOT is `/home/fred/invokeai` and the path is
`autoimport/main`, then the corresponding directory will be located at
`/home/fred/invokeai/autoimport/main`.
Note that the autoimport directory will be searched recursively,
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `autoimport_dir` | `autoimport/main` | At startup time, read and import any main model files found in this directory |
| `lora_dir` | `autoimport/lora` | At startup time, read and import any LoRA/LyCORIS models found in this directory |
| `embedding_dir` | `autoimport/embedding` | At startup time, read and import any textual inversion (embedding) models found in this directory |
| `controlnet_dir` | `autoimport/controlnet` | At startup time, read and import any ControlNet models found in this directory |
| `conf_path` | `configs/models.yaml` | Location of the `models.yaml` model configuration file |
| `models_dir` | `models` | Location of the directory containing models installed by InvokeAI's model manager |
| `legacy_conf_dir` | `configs/stable-diffusion` | Location of the directory containing the .yaml configuration files for legacy checkpoint models |
| `db_dir` | `databases` | Location of the directory containing InvokeAI's image, schema and session database |
| `outdir` | `outputs` | Location of the directory in which the gallery of generated and uploaded images will be stored |
| `use_memory_db` | `false` | Keep database information in memory rather than on disk; this will not preserve image gallery information across restarts |
Note that the autoimport directories will be searched recursively,
allowing you to organize the models into folders and subfolders in any
way you wish.
way you wish. In addition, while we have split up autoimport
directories by the type of model they contain, this isn't
necessary. You can combine different model types in the same folder
and InvokeAI will figure out what they are. So you can easily use just
one autoimport directory by commenting out the unneeded paths:
```
Paths:
autoimport_dir: autoimport
# lora_dir: null
# embedding_dir: null
# controlnet_dir: null
```
### Logging
These settings control the information, warning, and debugging
messages printed to the console log while InvokeAI is running:
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `log_handlers` | `console` | This controls where log messages are sent, and can be a list of one or more destinations. Values include `console`, `file`, `syslog` and `http`. These are described in more detail below |
| `log_format` | `color` | This controls the formatting of the log messages. Values are `plain`, `color`, `legacy` and `syslog` |
| `log_level` | `debug` | This filters messages according to the level of severity and can be one of `debug`, `info`, `warning`, `error` and `critical`. For example, setting to `warning` will display all messages at the warning level or higher, but won't display "debug" or "info" messages |
Several different log handler destinations are available, and multiple destinations are supported by providing a list:
```
@ -227,9 +254,9 @@ Several different log handler destinations are available, and multiple destinati
- file=/var/log/invokeai.log
```
- `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
* `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
- `syslog` is only available on Linux and Macintosh systems. It uses
* `syslog` is only available on Linux and Macintosh systems. It uses
the operating system's "syslog" facility to write log file entries
locally or to a remote logging machine. `syslog` offers a variety
of configuration options:
@ -242,7 +269,7 @@ Several different log handler destinations are available, and multiple destinati
- Log to LAN-connected server "fredserver" using the facility LOG_USER and datagram packets.
```
- `http` can be used to log to a remote web server. The server must be
* `http` can be used to log to a remote web server. The server must be
properly configured to receive and act on log messages. The option
accepts the URL to the web server, and a `method` argument
indicating whether the message should be submitted using the GET or
@ -254,7 +281,7 @@ Several different log handler destinations are available, and multiple destinati
The `log_format` option provides several alternative formats:
- `color` - default format providing time, date and a message, using text colors to distinguish different log severities
- `plain` - same as above, but monochrome text only
- `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
- `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.
* `color` - default format providing time, date and a message, using text colors to distinguish different log severities
* `plain` - same as above, but monochrome text only
* `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
* `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.

View File

@ -1,11 +1,13 @@
---
title: Control Adapters
title: ControlNet
---
# :material-loupe: Control Adapters
# :material-loupe: ControlNet
## ControlNet
ControlNet
ControlNet is a powerful set of features developed by the open-source
community (notably, Stanford researcher
[**@ilyasviel**](https://github.com/lllyasviel)) that allows you to
@ -17,6 +19,9 @@ image generation, providing you with a way to direct the network
towards generating images that better fit your desired style or
outcome.
### How it works
ControlNet works by analyzing an input image, pre-processing that
image to identify relevant information that can be interpreted by each
specific ControlNet model, and then inserting that control information
@ -24,21 +29,35 @@ into the generation process. This can be used to adjust the style,
composition, or other aspects of the image to better achieve a
specific result.
#### Installation
### Models
InvokeAI provides access to a series of ControlNet models that provide
different effects or styles in your generated images.
different effects or styles in your generated images. Currently
InvokeAI only supports "diffuser" style ControlNet models. These are
folders that contain the files `config.json` and/or
`diffusion_pytorch_model.safetensors` and
`diffusion_pytorch_model.fp16.safetensors`. The name of the folder is
the name of the model.
To install ControlNet Models:
***InvokeAI does not currently support checkpoint-format
ControlNets. These come in the form of a single file with the
extension `.safetensors`.***
1. The easiest way to install them is
Diffuser-style ControlNet models are available at HuggingFace
(http://huggingface.co) and accessed via their repo IDs (identifiers
in the format "author/modelname"). The easiest way to install them is
to use the InvokeAI model installer application. Use the
`invoke.sh`/`invoke.bat` launcher to select item [4] and then navigate
`invoke.sh`/`invoke.bat` launcher to select item [5] and then navigate
to the CONTROLNETS section. Select the models you wish to install and
press "APPLY CHANGES". You may also enter additional HuggingFace
repo_ids in the "Additional models" textbox.
2. Using the "Add Model" function of the model manager, enter the HuggingFace Repo ID of the ControlNet. The ID is in the format "author/repoName"
repo_ids in the "Additional models" textbox:
![Model Installer -
Controlnetl](../assets/installing-models/model-installer-controlnet.png){:width="640px"}
Command-line users can launch the model installer using the command
`invokeai-model-install`.
_Be aware that some ControlNet models require additional code
functionality in order to work properly, so just installing a
@ -46,17 +65,6 @@ third-party ControlNet model may not have the desired effect._ Please
read and follow the documentation for installing a third party model
not currently included among InvokeAI's default list.
Currently InvokeAI **only** supports 🤗 Diffusers-format ControlNet models. These are
folders that contain the files `config.json` and/or
`diffusion_pytorch_model.safetensors` and
`diffusion_pytorch_model.fp16.safetensors`. The name of the folder is
the name of the model.
🤗 Diffusers-format ControlNet models are available at HuggingFace
(http://huggingface.co) and accessed via their repo IDs (identifiers
in the format "author/modelname").
#### ControlNet Models
The models currently supported include:
**Canny**:
@ -88,19 +96,15 @@ A model that generates normal maps from input images, allowing for more realisti
**Image Segmentation**:
A model that divides input images into segments or regions, each of which corresponds to a different object or part of the image. (More details coming soon)
**QR Code Monster**:
A model that helps generate creative QR codes that still scan. Can also be used to create images with text, logos or shapes within them.
**Openpose**:
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
*Note:* The DWPose Processor has replaced the OpenPose processor in Invoke. Workflows and generations that relied on the OpenPose Processor will need to be updated to use the DWPose Processor instead.
**Mediapipe Face**:
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.
**Tile**:
**Tile (experimental)**:
The Tile model fills out details in the image to match the image, rather than the prompt. The Tile Model is a versatile tool that offers a range of functionalities. Its primary capabilities can be boiled down to two main behaviors:
@ -113,10 +117,12 @@ The Tile Model can be a powerful tool in your arsenal for enhancing image qualit
With Pix2Pix, you can input an image into the controlnet, and then "instruct" the model to change it using your prompt. For example, you can say "Make it winter" to add more wintry elements to a scene.
**Inpaint**: Coming Soon - Currently this model is available but not functional on the Canvas. An upcoming release will provide additional capabilities for using this model when inpainting.
Each of these models can be adjusted and combined with other ControlNet models to achieve different results, giving you even more control over your image generation process.
### Using ControlNet
## Using ControlNet
To use ControlNet, you can simply select the desired model and adjust both the ControlNet and Pre-processor settings to achieve the desired result. You can also use multiple ControlNet models at the same time, allowing you to achieve even more complex effects or styles in your generated images.
@ -128,54 +134,3 @@ Weight - Strength of the Controlnet model applied to the generation for the sect
Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the ControlNet applied.
Additionally, each ControlNet section can be expanded in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in when you Invoke.
## T2I-Adapter
[T2I-Adapter](https://github.com/TencentARC/T2I-Adapter) is a tool similar to ControlNet that allows for control over the generation process by providing control information during the generation process. T2I-Adapter models tend to be smaller and more efficient than ControlNets.
##### Installation
To install T2I-Adapter Models:
1. The easiest way to install models is
to use the InvokeAI model installer application. Use the
`invoke.sh`/`invoke.bat` launcher to select item [5] and then navigate
to the T2I-Adapters section. Select the models you wish to install and
press "APPLY CHANGES". You may also enter additional HuggingFace
repo_ids in the "Additional models" textbox.
2. Using the "Add Model" function of the model manager, enter the HuggingFace Repo ID of the T2I-Adapter. The ID is in the format "author/repoName"
#### Usage
Each T2I Adapter has two settings that are applied.
Weight - Strength of the model applied to the generation for the section, defined by start/end.
Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the ControlNet applied.
Additionally, each section can be expanded with the "Show Advanced" button in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in during the generation process.
## IP-Adapter
[IP-Adapter](https://ip-adapter.github.io) is a tooling that allows for image prompt capabilities with text-to-image diffusion models. IP-Adapter works by analyzing the given image prompt to extract features, then passing those features to the UNet along with any other conditioning provided.
![IP-Adapter + T2I](https://github.com/tencent-ailab/IP-Adapter/raw/main/assets/demo/ip_adpter_plus_multi.jpg)
![IP-Adapter + IMG2IMG](https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/demo/image-to-image.jpg)
#### Installation
There are several ways to install IP-Adapter models with an existing InvokeAI installation:
1. Through the command line interface launched from the invoke.sh / invoke.bat scripts, option [4] to download models.
2. Through the Model Manager UI with models from the *Tools* section of [www.models.invoke.ai](https://www.models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
3. **Advanced -- Not recommended ** Manually downloading the IP-Adapter and Image Encoder files - Image Encoder folders shouid be placed in the `models\any\clip_vision` folders. IP Adapter Model folders should be placed in the relevant `ip-adapter` folder of relevant base model folder of Invoke root directory. For example, for the SDXL IP-Adapter, files should be added to the `model/sdxl/ip_adapter/` folder.
#### Using IP-Adapter
IP-Adapter can be used by navigating to the *Control Adapters* options and enabling IP-Adapter.
IP-Adapter requires an image to be used as the Image Prompt. It can also be used in conjunction with text prompts, Image-to-Image, Inpainting, Outpainting, ControlNets and LoRAs.
Each IP-Adapter has two settings that are applied to the IP-Adapter:
* Weight - Strength of the IP-Adapter model applied to the generation for the section, defined by start/end
* Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the IP-Adapter applied.

View File

@ -1,35 +0,0 @@
---
title: Database
---
# Invoke's SQLite Database
Invoke uses a SQLite database to store image, workflow, model, and execution data.
We take great care to ensure your data is safe, by utilizing transactions and a database migration system.
Even so, when testing an prerelease version of the app, we strongly suggest either backing up your database or using an in-memory database. This ensures any prelease hiccups or databases schema changes will not cause problems for your data.
## Database Backup
Backing up your database is very simple. Invoke's data is stored in an `$INVOKEAI_ROOT` directory - where your `invoke.sh`/`invoke.bat` and `invokeai.yaml` files live.
To back up your database, copy the `invokeai.db` file from `$INVOKEAI_ROOT/databases/invokeai.db` to somewhere safe.
If anything comes up during prelease testing, you can simply copy your backup back into `$INVOKEAI_ROOT/databases/`.
## In-Memory Database
SQLite can run on an in-memory database. Your existing database is untouched when this mode is enabled, but your existing data won't be accessible.
This is very useful for testing, as there is no chance of a database change modifying your "physical" database.
To run Invoke with a memory database, edit your `invokeai.yaml` file, and add `use_memory_db: true` to the `Paths:` stanza:
```yaml
InvokeAI:
Development:
use_memory_db: true
```
Delete this line (or set it to `false`) to use your main database.

View File

@ -1,53 +0,0 @@
---
title: LoRAs & LCM-LoRAs
---
# :material-library-shelves: LoRAs & LCM-LoRAs
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
## LoRAs
Low-Rank Adaptation (LoRA) files are models that customize the output of Stable Diffusion
image generation. Larger than embeddings, but much smaller than full
models, they augment SD with improved understanding of subjects and
artistic styles.
Unlike TI files, LoRAs do not introduce novel vocabulary into the
model's known tokens. Instead, LoRAs augment the model's weights that
are applied to generate imagery. LoRAs may be supplied with a
"trigger" word that they have been explicitly trained on, or may
simply apply their effect without being triggered.
LoRAs are typically stored in .safetensors files, which are the most
secure way to store and transmit these types of weights. You may
install any number of `.safetensors` LoRA files simply by copying them
into the `autoimport/lora` directory of the corresponding InvokeAI models
directory (usually `invokeai` in your home directory).
To use these when generating, open the LoRA menu item in the options
panel, select the LoRAs you want to apply and ensure that they have
the appropriate weight recommended by the model provider. Typically,
most LoRAs perform best at a weight of .75-1.
## LCM-LoRAs
Latent Consistency Models (LCMs) allowed a reduced number of steps to be used to generate images with Stable Diffusion. These are created by distilling base models, creating models that only require a small number of steps to generate images. However, LCMs require that any fine-tune of a base model be distilled to be used as an LCM.
LCM-LoRAs are models that provide the benefit of LCMs but are able to be used as LoRAs and applied to any fine tune of a base model. LCM-LoRAs are created by training a small number of adapters, rather than distilling the entire fine-tuned base model. The resulting LoRA can be used the same way as a standard LoRA, but with a greatly reduced step count. This enables SDXL images to be generated up to 10x faster than without the use of LCM-LoRAs.
**Using LCM-LoRAs**
LCM-LoRAs are natively supported in InvokeAI throughout the application. To get started, install any diffusers format LCM-LoRAs using the model manager and select it in the LoRA field.
There are a number parameter differences when using LCM-LoRAs and standard generation:
- When using LCM-LoRAs, the LoRA strength should be lower than if using a standard LoRA, with 0.35 recommended as a starting point.
- The LCM scheduler should be used for generation
- CFG-Scale should be reduced to ~1
- Steps should be reduced in the range of 4-8
Standard LoRAs can also be used alongside LCM-LoRAs, but will also require a lower strength, with 0.45 being recommended as a starting point.
More information can be found here: https://huggingface.co/blog/lcm_lora#fast-inference-with-sdxl-lcm-loras

View File

@ -2,51 +2,17 @@
title: Model Merging
---
InvokeAI provides the ability to merge two or three diffusers-type models into a new merged model. The
resulting model will combine characteristics of the original, and can
be used to teach an old model new tricks.
# :material-image-off: Model Merging
## How to Merge Models
Model Merging can be be done by navigating to the Model Manager and clicking the "Merge Models" tab. From there, you can select the models and settings you want to use to merge th models.
## Settings
* Model Selection: there are three multiple choice fields that
display all the diffusers-style models that InvokeAI knows about.
If you do not see the model you are looking for, then it is probably
a legacy checkpoint model and needs to be converted using the
"Convert" option in the Web-based Model Manager tab.
You must select at least two models to merge. The third can be left
at "None" if you desire.
* Alpha: This is the ratio to use when combining models. It ranges
from 0 to 1. The higher the value, the more weight is given to the
2d and (optionally) 3d models. So if you have two models named "A"
and "B", an alpha value of 0.25 will give you a merged model that is
25% A and 75% B.
* Interpolation Method: This is the method used to combine
weights. The options are "weighted_sum" (the default), "sigmoid",
"inv_sigmoid" and "add_difference". Each produces slightly different
results. When three models are in use, only "add_difference" is
available.
* Save Location: The location you want the merged model to be saved in. Default is in the InvokeAI root folder
* Name for merged model: This is the name for the new model. Please
use InvokeAI conventions - only alphanumeric letters and the
characters ".+-".
* Ignore Mismatches / Force: Not all models are compatible with each other. The merge
script will check for compatibility and refuse to merge ones that
are incompatible. Set this checkbox to try merging anyway.
As of version 2.3, InvokeAI comes with a script that allows you to
merge two or three diffusers-type models into a new merged model. The
resulting model will combine characteristics of the original, and can
be used to teach an old model new tricks.
You may run the merge script by starting the invoke launcher
(`invoke.sh` or `invoke.bat`) and choosing the option (4) for _merge
(`invoke.sh` or `invoke.bat`) and choosing the option for _merge
models_. This will launch a text-based interactive user interface that
prompts you to select the models to merge, how to merge them, and the
merged model name.
@ -74,4 +40,34 @@ this to get back.
If the merge runs successfully, it will create a new diffusers model
under the selected name and register it with InvokeAI.
## The Settings
* Model Selection -- there are three multiple choice fields that
display all the diffusers-style models that InvokeAI knows about.
If you do not see the model you are looking for, then it is probably
a legacy checkpoint model and needs to be converted using the
`invoke` command-line client and its `!optimize` command. You
must select at least two models to merge. The third can be left at
"None" if you desire.
* Alpha -- This is the ratio to use when combining models. It ranges
from 0 to 1. The higher the value, the more weight is given to the
2d and (optionally) 3d models. So if you have two models named "A"
and "B", an alpha value of 0.25 will give you a merged model that is
25% A and 75% B.
* Interpolation Method -- This is the method used to combine
weights. The options are "weighted_sum" (the default), "sigmoid",
"inv_sigmoid" and "add_difference". Each produces slightly different
results. When three models are in use, only "add_difference" is
available. (TODO: cite a reference that describes what these
interpolation methods actually do and how to decide among them).
* Force -- Not all models are compatible with each other. The merge
script will check for compatibility and refuse to merge ones that
are incompatible. Set this checkbox to try merging anyway.
* Name for merged model - This is the name for the new model. Please
use InvokeAI conventions - only alphanumeric letters and the
characters ".+-".

View File

@ -120,7 +120,7 @@ Generate an image with a given prompt, record the seed of the image, and then
use the `prompt2prompt` syntax to substitute words in the original prompt for
words in a new prompt. This works for `img2img` as well.
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because the words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because of the word words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
- `a cat playing with a ball in the forest`
- `a dog playing with a ball in the forest`
@ -142,7 +142,7 @@ Prompt2prompt `.swap()` is not compatible with xformers, which will be temporari
The `prompt2prompt` code is based off
[bloc97's colab](https://github.com/bloc97/CrossAttentionControl).
### Escaping parentheses and speech marks
### Escaping parentheses () and speech marks ""
If the model you are using has parentheses () or speech marks "" as part of its
syntax, you will need to "escape" these using a backslash, so that`(my_keyword)`
@ -246,7 +246,7 @@ To create a Dynamic Prompt, follow these steps:
Within the braces, separate each option using a vertical bar |.
If you want to include multiple options from a single group, prefix with the desired number and $$.
For instance: A {house|apartment|lodge|cottage} in {summer|winter|autumn|spring} designed in {style1|style2|style3}.
For instance: A {house|apartment|lodge|cottage} in {summer|winter|autumn|spring} designed in {2$$style1|style2|style3}.
### How Dynamic Prompts Work
Once a Dynamic Prompt is configured, the system generates an array of combinations using the options provided. Each group of options in curly braces is treated independently, with the system selecting one option from each group. For a prefixed set (e.g., 2$$), the system will select two distinct options.
@ -273,36 +273,3 @@ Below are some useful strategies for creating Dynamic Prompts:
Experiment with different quantities for the prefix. For example, 3$$ will select three distinct options.
Be aware of coherence in your prompts. Although the system can generate all possible combinations, not all may semantically make sense. Therefore, carefully choose the options for each group.
Always review and fine-tune the generated prompts as needed. While Dynamic Prompts can help you generate a multitude of combinations, the final polishing and refining remain in your hands.
## SDXL Prompting
Prompting with SDXL is slightly different than prompting with SD1.5 or SD2.1 models - SDXL expects a prompt _and_ a style.
### Prompting
<figure markdown>
![SDXL prompt boxes in InvokeAI](../assets/prompt_syntax/sdxl-prompt.png)
</figure>
In the prompt box, enter a positive or negative prompt as you normally would.
For the style box you can enter a style that you want the image to be generated in. You can use styles from this example list, or any other style you wish: anime, photographic, digital art, comic book, fantasy art, analog film, neon punk, isometric, low poly, origami, line art, cinematic, 3d model, pixel art, etc.
### Concatenated Prompts
InvokeAI also has the option to concatenate the prompt and style inputs, by pressing the "link" button in the Positive Prompt box.
This concatenates the prompt & style inputs, and passes the joined prompt and style to the SDXL model.
![SDXL concatenated prompt boxes in InvokeAI](../assets/prompt_syntax/sdxl-prompt-concatenated.png)

View File

@ -1,55 +0,0 @@
## Using Textual Inversion Files
Textual inversion (TI) files are small models that customize the output of
Stable Diffusion image generation. They can augment SD with specialized subjects
and artistic styles. They are also known as "embeds" in the machine learning
world.
Each TI file introduces one or more vocabulary terms to the SD model. These are
known in InvokeAI as "triggers." Triggers are denoted using angle brackets
as in "&lt;trigger-phrase&gt;". The two most common type of
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
different TI training packages. InvokeAI supports both formats, but its
[built-in TI training system](TRAINING.md) produces `.pt`.
[Hugging Face](https://huggingface.co/sd-concepts-library) has
amassed a large library of &gt;800 community-contributed TI files covering a
broad range of subjects and styles. You can also install your own or others' TI files
by placing them in the designated directory for the compatible model type
### An Example
Here are a few examples to illustrate how it works. All these images
were generated using the legacy command-line client and the Stable
Diffusion 1.5 model:
| Japanese gardener | Japanese gardener &lt;ghibli-face&gt; | Japanese gardener &lt;hoi4-leaders&gt; | Japanese gardener &lt;cartoona-animals&gt; |
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |
| ![](../assets/concepts/image1.png) | ![](../assets/concepts/image2.png) | ![](../assets/concepts/image3.png) | ![](../assets/concepts/image4.png) |
You can also combine styles and concepts:
<figure markdown>
| A portrait of &lt;alf&gt; in &lt;cartoona-animal&gt; style |
| :--------------------------------------------------------: |
| ![](../assets/concepts/image5.png) |
</figure>
## Installing your Own TI Files
You may install any number of `.pt` and `.bin` files simply by copying them into
the `embedding` directory of the corresponding InvokeAI models directory (usually `invokeai`
in your home directory). For example, you can simply move a Stable Diffusion 1.5 embedding file to
the `sd-1/embedding` folder. Be careful not to overwrite one file with another.
For example, TI files generated by the Hugging Face toolkit share the named
`learned_embedding.bin`. You can rename these, or use subdirectories to keep them distinct.
At startup time, InvokeAI will scan the various `embedding` directories and load any TI
files it finds there for compatible models. At startup you will see a message similar to this one:
```bash
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
```
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.

View File

@ -43,22 +43,27 @@ into the directory
InvokeAI 2.3 and higher comes with a text console-based training front
end. From within the `invoke.sh`/`invoke.bat` Invoke launcher script,
start training tool selecting choice (3):
start the front end by selecting choice (3):
```sh
1 "Generate images with a browser-based interface"
2 "Explore InvokeAI nodes using a command-line interface"
3 "Textual inversion training"
4 "Merge models (diffusers type only)"
5 "Download and install models"
6 "Change InvokeAI startup options"
7 "Re-run the configure script to fix a broken install or to complete a major upgrade"
8 "Open the developer console"
9 "Update InvokeAI"
Do you want to generate images using the
1: Browser-based UI
2: Command-line interface
3: Run textual inversion training
4: Merge models (diffusers type only)
5: Download and install models
6: Change InvokeAI startup options
7: Re-run the configure script to fix a broken install
8: Open the developer console
9: Update InvokeAI
10: Command-line help
Q: Quit
Please enter 1-10, Q: [1]
```
Alternatively, you can select option (8) or from the command line, with the InvokeAI virtual environment active,
you can then launch the front end with the command `invokeai-ti --gui`.
From the command line, with the InvokeAI virtual environment active,
you can launch the front end with the command `invokeai-ti --gui`.
This will launch a text-based front end that will look like this:

View File

@ -229,28 +229,29 @@ clarity on the intent and common use cases we expect for utilizing them.
currently being rendered by your browser into a merged copy of the image. This
lowers the resource requirements and should improve performance.
### Compositing / Seam Correction
### Seam Correction
When doing Inpainting or Outpainting, Invoke needs to merge the pixels generated
by Stable Diffusion into your existing image. This is achieved through compositing - the area around the the boundary between your image and the new generation is
by Stable Diffusion into your existing image. To do this, the area around the
`seam` at the boundary between your image and the new generation is
automatically blended to produce a seamless output. In a fully automatic
process, a mask is generated to cover the boundary, and then the area of the boundary is
process, a mask is generated to cover the seam, and then the area of the seam is
Inpainted.
Although the default options should work well most of the time, sometimes it can
help to alter the parameters that control the Compositing. A larger blur and
a blur setting have been noted as producing
consistently strong results . Strength of 0.7 is best for reducing hard seams.
- **Mode** - What part of the image will have the the Compositing applied to it.
- **Mask edge** will apply Compositing to the edge of the masked area
- **Mask** will apply Compositing to the entire masked area
- **Unmasked** will apply Compositing to the entire image
- **Steps** - Number of generation steps that will occur during the Coherence Pass, similar to Denoising Steps. Higher step counts will generally have better results.
- **Strength** - How much noise is added for the Coherence Pass, similar to Denoising Strength. A strength of 0 will result in an unchanged image, while a strength of 1 will result in an image with a completely new area as defined by the Mode setting.
- **Blur** - Adjusts the pixel radius of the the mask. A larger blur radius will cause the mask to extend past the visibly masked area, while too small of a blur radius will result in a mask that is smaller than the visibly masked area.
- **Blur Method** - The method of blur applied to the masked area.
help to alter the parameters that control the seam Inpainting. A wider seam and
a blur setting of about 1/3 of the seam have been noted as producing
consistently strong results (e.g. 96 wide and 16 blur - adds up to 32 blur with
both sides). Seam strength of 0.7 is best for reducing hard seams.
- **Seam Size** - The size of the seam masked area. Set higher to make a larger
mask around the seam.
- **Seam Blur** - The size of the blur that is applied on _each_ side of the
masked area.
- **Seam Strength** - The Image To Image Strength parameter used for the
Inpainting generation that is applied to the seam area.
- **Seam Steps** - The number of generation steps that should be used to Inpaint
the seam.
### Infill & Scaling

View File

@ -1,336 +0,0 @@
---
title: Command-line Utilities
---
# :material-file-document: Utilities
# Command-line Utilities
InvokeAI comes with several scripts that are accessible via the
command line. To access these commands, start the "developer's
console" from the launcher (`invoke.bat` menu item [7]). Users who are
familiar with Python can alternatively activate InvokeAI's virtual
environment (typically, but not necessarily `invokeai/.venv`).
In the developer's console, type the script's name to run it. To get a
synopsis of what a utility does and the command-line arguments it
accepts, pass it the `-h` argument, e.g.
```bash
invokeai-merge -h
```
## **invokeai-web**
This script launches the web server and is effectively identical to
selecting option [1] in the launcher. An advantage of launching the
server from the command line is that you can override any setting
configuration option in `invokeai.yaml` using like-named command-line
arguments. For example, to temporarily change the size of the RAM
cache to 7 GB, you can launch as follows:
```bash
invokeai-web --ram 7
```
## **invokeai-merge**
This is the model merge script, the same as launcher option [3]. Call
it with the `--gui` command-line argument to start the interactive
console-based GUI. Alternatively, you can run it non-interactively
using command-line arguments as illustrated in the example below which
merges models named `stable-diffusion-1.5` and `inkdiffusion` into a new model named
`my_new_model`:
```bash
invokeai-merge --force --base-model sd-1 --models stable-diffusion-1.5 inkdiffusion --merged_model_name my_new_model
```
## **invokeai-ti**
This is the textual inversion training script that is run by launcher
option [2]. Call it with `--gui` to run the interactive console-based
front end. It can also be run non-interactively. It has about a
zillion arguments, but a typical training session can be launched
with:
```bash
invokeai-ti --model stable-diffusion-1.5 \
--placeholder_token 'jello' \
--learnable_property object \
--num_train_epochs 50 \
--train_data_dir /path/to/training/images \
--output_dir /path/to/trained/model
```
(Note that \\ is the Linux/Mac long-line continuation character. Use ^
in Windows).
## **invokeai-install**
This is the console-based model install script that is run by launcher
option [4]. If called without arguments, it will launch the
interactive console-based interface. It can also be used
non-interactively to list, add and remove models as shown by these
examples:
* This will download and install three models from CivitAI, HuggingFace,
and local disk:
```bash
invokeai-install --add https://civitai.com/api/download/models/161302 ^
gsdf/Counterfeit-V3.0 ^
D:\Models\merge_model_two.safetensors
```
(Note that ^ is the Windows long-line continuation character. Use \\ on
Linux/Mac).
* This will list installed models of type `main`:
```bash
invokeai-model-install --list-models main
```
* This will delete the models named `voxel-ish` and `realisticVision`:
```bash
invokeai-model-install --delete voxel-ish realisticVision
```
## **invokeai-configure**
This is the console-based configure script that ran when InvokeAI was
first installed. You can run it again at any time to change the
configuration, repair a broken install.
Called without any arguments, `invokeai-configure` enters interactive
mode with two screens. The first screen is a form that provides access
to most of InvokeAI's configuration options. The second screen lets
you download, add, and delete models interactively. When you exit the
second screen, the script will add any missing "support models"
needed for core functionality, and any selected "sd weights" which are
the model checkpoint/diffusers files.
This behavior can be changed via a series of command-line
arguments. Here are some of the useful ones:
* `invokeai-configure --skip-sd-weights --skip-support-models`
This will run just the configuration part of the utility, skipping
downloading of support models and stable diffusion weights.
* `invokeai-configure --yes`
This will run the configure script non-interactively. It will set the
configuration options to their default values, install/repair support
models, and download the "recommended" set of SD models.
* `invokeai-configure --yes --default_only`
This will run the configure script non-interactively. In contrast to
the previous command, it will only download the default SD model,
Stable Diffusion v1.5
* `invokeai-configure --yes --default_only --skip-sd-weights`
This is similar to the previous command, but will not download any
SD models at all. It is usually used to repair a broken install.
By default, `invokeai-configure` runs on the currently active InvokeAI
root folder. To run it against a different root, pass it the `--root
</path/to/root>` argument.
Lastly, you can use `invokeai-configure` to create a working root
directory entirely from scratch. Assuming you wish to make a root directory
named `InvokeAI-New`, run this command:
```bash
invokeai-configure --root InvokeAI-New --yes --default_only
```
This will create a minimally functional root directory. You can now
launch the web server against it with `invokeai-web --root InvokeAI-New`.
## **invokeai-update**
This is the interactive console-based script that is run by launcher
menu item [8] to update to a new version of InvokeAI. It takes no
command-line arguments.
## **invokeai-metadata**
This is a script which takes a list of InvokeAI-generated images and
outputs their metadata in the same JSON format that you get from the
`</>` button in the Web GUI. For example:
```bash
$ invokeai-metadata ffe2a115-b492-493c-afff-7679aa034b50.png
ffe2a115-b492-493c-afff-7679aa034b50.png:
{
"app_version": "3.1.0",
"cfg_scale": 8.0,
"clip_skip": 0,
"controlnets": [],
"generation_mode": "sdxl_txt2img",
"height": 1024,
"loras": [],
"model": {
"base_model": "sdxl",
"model_name": "stable-diffusion-xl-base-1.0",
"model_type": "main"
},
"negative_prompt": "",
"negative_style_prompt": "",
"positive_prompt": "military grade sushi dinner for shock troopers",
"positive_style_prompt": "",
"rand_device": "cpu",
"refiner_cfg_scale": 7.5,
"refiner_model": {
"base_model": "sdxl-refiner",
"model_name": "sd_xl_refiner_1.0",
"model_type": "main"
},
"refiner_negative_aesthetic_score": 2.5,
"refiner_positive_aesthetic_score": 6.0,
"refiner_scheduler": "euler",
"refiner_start": 0.8,
"refiner_steps": 20,
"scheduler": "euler",
"seed": 387129902,
"steps": 25,
"width": 1024
}
```
You may list multiple files on the command line.
## **invokeai-import-images**
InvokeAI uses a database to store information about images it
generated, and just copying the image files from one InvokeAI root
directory to another does not automatically import those images into
the destination's gallery. This script allows you to bulk import
images generated by one instance of InvokeAI into a gallery maintained
by another. It also works on images generated by older versions of
InvokeAI, going way back to version 1.
This script has an interactive mode only. The following example shows
it in action:
```bash
$ invokeai-import-images
===============================================================================
This script will import images generated by earlier versions of
InvokeAI into the currently installed root directory:
/home/XXXX/invokeai-main
If this is not what you want to do, type ctrl-C now to cancel.
===============================================================================
= Configuration & Settings
Found invokeai.yaml file at /home/XXXX/invokeai-main/invokeai.yaml:
Database : /home/XXXX/invokeai-main/databases/invokeai.db
Outputs : /home/XXXX/invokeai-main/outputs/images
Use these paths for import (yes) or choose different ones (no) [Yn]:
Inputs: Specify absolute path containing InvokeAI .png images to import: /home/XXXX/invokeai-2.3/outputs/images/
Include files from subfolders recursively [yN]?
Options for board selection for imported images:
1) Select an existing board name. (found 4)
2) Specify a board name to create/add to.
3) Create/add to board named 'IMPORT'.
4) Create/add to board named 'IMPORT' with the current datetime string appended (.e.g IMPORT_20230919T203519Z).
5) Create/add to board named 'IMPORT' with a the original file app_version appended (.e.g IMPORT_2.2.5).
Specify desired board option: 3
===============================================================================
= Import Settings Confirmation
Database File Path : /home/XXXX/invokeai-main/databases/invokeai.db
Outputs/Images Directory : /home/XXXX/invokeai-main/outputs/images
Import Image Source Directory : /home/XXXX/invokeai-2.3/outputs/images/
Recurse Source SubDirectories : No
Count of .png file(s) found : 5785
Board name option specified : IMPORT
Database backup will be taken at : /home/XXXX/invokeai-main/databases/backup
Notes about the import process:
- Source image files will not be modified, only copied to the outputs directory.
- If the same file name already exists in the destination, the file will be skipped.
- If the same file name already has a record in the database, the file will be skipped.
- Invoke AI metadata tags will be updated/written into the imported copy only.
- On the imported copy, only Invoke AI known tags (latest and legacy) will be retained (dream, sd-metadata, invokeai, invokeai_metadata)
- A property 'imported_app_version' will be added to metadata that can be viewed in the UI's metadata viewer.
- The new 3.x InvokeAI outputs folder structure is flat so recursively found source imges will all be placed into the single outputs/images folder.
Do you wish to continue with the import [Yn] ?
Making DB Backup at /home/lstein/invokeai-main/databases/backup/backup-20230919T203519Z-invokeai.db...Done!
===============================================================================
Importing /home/XXXX/invokeai-2.3/outputs/images/17d09907-297d-4db3-a18a-60b337feac66.png
... (5785 more lines) ...
===============================================================================
= Import Complete - Elpased Time: 0.28 second(s)
Source File(s) : 5785
Total Imported : 5783
Skipped b/c file already exists on disk : 1
Skipped b/c file already exists in db : 0
Errors during import : 1
```
## **invokeai-db-maintenance**
This script helps maintain the integrity of your InvokeAI database by
finding and fixing three problems that can arise over time:
1. An image was manually deleted from the outputs directory, leaving a
dangling image record in the InvokeAI database. This will cause a
black image to appear in the gallery. This is an "orphaned database
image record." The script can fix this by running a "clean"
operation on the database, removing the orphaned entries.
2. An image is present in the outputs directory but there is no
corresponding entry in the database. This can happen when the image
is added manually to the outputs directory, or if a crash occurred
after the image was generated but before the database was
completely updated. The symptom is that the image is present in the
outputs folder but doesn't appear in the InvokeAI gallery. This is
called an "orphaned image file." The script can fix this problem by
running an "archive" operation in which orphaned files are moved
into a directory named `outputs/images-archive`. If you wish, you
can then run `invokeai-image-import` to reimport these images back
into the database.
3. The thumbnail for an image is missing, again causing a black
gallery thumbnail. This is fixed by running the "thumbnaiils"
operation, which simply regenerates and re-registers the missing
thumbnail.
You can find and fix all three of these problems in a single go by
executing this command:
```bash
invokeai-db-maintenance --operation all
```
Or you can run just the clean and thumbnail operations like this:
```bash
invokeai-db-maintenance -operation clean, thumbnail
```
If called without any arguments, the script will ask you which
operations you wish to perform.
## **invokeai-migrate3**
This script will migrate settings and models (but not images!) from an
InvokeAI v2.3 root folder to an InvokeAI 3.X folder. Call it with the
source and destination root folders like this:
```bash
invokeai-migrate3 --from ~/invokeai-2.3 --to invokeai-3.1.1
```
Both directories must previously have been properly created and
initialized by `invokeai-configure`. If you wish to migrate the images
contained in the older root as well, you can use the
`invokeai-image-migrate` script described earlier.
---
Copyright (c) 2023, Lincoln Stein and the InvokeAI Development Team

131
docs/features/VARIATIONS.md Normal file
View File

@ -0,0 +1,131 @@
---
title: Variations
---
# :material-tune-variant: Variations
## Intro
InvokeAI's support for variations enables you to do the following:
1. Generate a series of systematic variations of an image, given a prompt. The
amount of variation from one image to the next can be controlled.
2. Given two or more variations that you like, you can combine them in a
weighted fashion.
!!! Information ""
This cheat sheet provides a quick guide for how this works in practice, using
variations to create the desired image of Xena, Warrior Princess.
## Step 1 -- Find a base image that you like
The prompt we will use throughout is:
`#!bash "lucy lawless as xena, warrior princess, character portrait, high resolution."`
This will be indicated as `#!bash "prompt"` in the examples below.
First we let SD create a series of images in the usual way, in this case
requesting six iterations.
<figure markdown>
![var1](../assets/variation_walkthru/000001.3357757885.png)
<figcaption> Seed 3357757885 looks nice </figcaption>
</figure>
---
## Step 2 - Generating Variations
Let's try to generate some variations on this image. We select the "*"
symbol in the line of icons above the image in order to fix the prompt
and seed. Then we open up the "Variations" section of the generation
panel and use the slider to set the variation amount to 0.2. The
higher this value, the more each generated image will differ from the
previous one.
Now we run the prompt a second time, requesting six iterations. You
will see six images that are thematically related to each other. Try
increasing and decreasing the variation amount and see what happens.
### **Variation Sub Seeding**
Note that the output for each image has a `-V` option giving the "variant
subseed" for that image, consisting of a seed followed by the variation amount
used to generate it.
This gives us a series of closely-related variations, including the two shown
here.
<figure markdown>
![var2](../assets/variation_walkthru/000002.3647897225.png)
<figcaption>subseed 3647897225</figcaption>
</figure>
<figure markdown>
![var3](../assets/variation_walkthru/000002.1614299449.png)
<figcaption>subseed 1614299449</figcaption>
</figure>
I like the expression on Xena's face in the first one (subseed 3647897225), and
the armor on her shoulder in the second one (subseed 1614299449). Can we combine
them to get the best of both worlds?
We combine the two variations using `-V` (`--with_variations`). Again, we must
provide the seed for the originally-chosen image in order for this to work.
```bash
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1
Outputs:
./outputs/Xena/000003.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1 -S3357757885
```
Here we are providing equal weights (0.1 and 0.1) for both the subseeds. The
resulting image is close, but not exactly what I wanted:
<figure markdown>
![var4](../assets/variation_walkthru/000003.1614299449.png)
<figcaption> subseed 1614299449 </figcaption>
</figure>
We could either try combining the images with different weights, or we can
generate more variations around the almost-but-not-quite image. We do the
latter, using both the `-V` (combining) and `-v` (variation strength) options.
Note that we use `-n6` to generate 6 variations:
```bash
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1 -v0.05 -n6
Outputs:
./outputs/Xena/000004.3279757577.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3279757577:0.05 -S3357757885
./outputs/Xena/000004.2853129515.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2853129515:0.05 -S3357757885
./outputs/Xena/000004.3747154981.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3747154981:0.05 -S3357757885
./outputs/Xena/000004.2664260391.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2664260391:0.05 -S3357757885
./outputs/Xena/000004.1642517170.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,1642517170:0.05 -S3357757885
./outputs/Xena/000004.2183375608.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2183375608:0.05 -S3357757885
```
This produces six images, all slight variations on the combination of the chosen
two images. Here's the one I like best:
<figure markdown>
![var5](../assets/variation_walkthru/000004.3747154981.png)
<figcaption> subseed 3747154981 </figcaption>
</figure>
As you can see, this is a very powerful tool, which when combined with subprompt
weighting, gives you great control over the content and quality of your
generated images.
## Variations and Samplers
The sampler you choose has a strong effect on variation strength. Some
samplers, such as `k_euler_a` are very "creative" and produce significant
amounts of image-to-image variation even when the seed is fixed and the
`-v` argument is very low. Others are more deterministic. Feel free to
experiment until you find the combination that you like.
Also be aware of the [Perlin Noise](OTHER.md#thresholding-and-perlin-noise-initialization-options)
feature, which provides another way of introducing variability into your
image generation requests.

View File

@ -20,7 +20,7 @@ a single convenient digital artist-optimized user interface.
### * [Prompt Engineering](PROMPTS.md)
Get the images you want with the InvokeAI prompt engineering language.
### * The [LoRA, LyCORIS, LCM-LoRA Models](CONCEPTS.md)
### * The [LoRA, LyCORIS and Textual Inversion Models](CONCEPTS.md)
Add custom subjects and styles using a variety of fine-tuned models.
### * [ControlNet](CONTROLNET.md)
@ -28,7 +28,7 @@ Learn how to install and use ControlNet models for fine control over
image output.
### * [Image-to-Image Guide](IMG2IMG.md)
Use a seed image to build new creations.
Use a seed image to build new creations in the CLI.
## Model Management
@ -40,7 +40,7 @@ guide also covers optimizing models to load quickly.
Teach an old model new tricks. Merge 2-3 models together to create a
new model that combines characteristics of the originals.
### * [Textual Inversion](TEXTUAL_INVERSIONS.md)
### * [Textual Inversion](TRAINING.md)
Personalize models by adding your own style or subjects.
## Other Features
@ -51,9 +51,6 @@ Prevent InvokeAI from displaying unwanted racy images.
### * [Controlling Logging](LOGGING.md)
Control how InvokeAI logs status messages.
### * [Command-line Utilities](UTILITIES.md)
A list of the command-line utilities available with InvokeAI.
<!-- OUT OF DATE
### * [Miscellaneous](OTHER.md)
Run InvokeAI on Google Colab, generate images with repeating patterns,

View File

@ -1,43 +0,0 @@
# FAQs
**Where do I get started? How can I install Invoke?**
- You can download the latest installers [here](https://github.com/invoke-ai/InvokeAI/releases) - Note that any releases marked as *pre-release* are in a beta state. You may experience some issues, but we appreciate your help testing those! For stable/reliable installations, please install the **[Latest Release](https://github.com/invoke-ai/InvokeAI/releases/latest)**
**How can I download models? Can I use models I already have downloaded?**
- Models can be downloaded through the model manager, or through option [4] in the invoke.bat/invoke.sh launcher script. To download a model through the Model Manager, use the HuggingFace Repo ID by pressing the “Copy” button next to the repository name. Alternatively, to download a model from CivitAi, use the download link in the Model Manager.
- Models that are already downloaded can be used by creating a symlink to the model location in the `autoimport` folder or by using the Model Mangers “Scan for Models” function.
**My images are taking a long time to generate. How can I speed up generation?**
- A common solution is to reduce the size of your RAM & VRAM cache to 0.25. This ensures your system has enough memory to generate images.
- Additionally, check the [hardware requirements](https://invoke-ai.github.io/InvokeAI/#hardware-requirements) to ensure that your system is capable of generating images.
- Lastly, double check your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup.
**Ive installed Python on Windows but the installer says it cant find it?**
- Then ensure that you checked **'Add python.exe to PATH'** when installing Python. This can be found at the bottom of the Python Installer window. If you already have Python installed, this can be done with the modify / repair feature of the installer.
**Ive installed everything successfully but I still get an error about Triton when starting Invoke?**
- This can be safely ignored. InvokeAI doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
**I updated to 3.4.0 and now xFormers cant load C++/CUDA?**
- An issue occurred with your PyTorch update. Follow these steps to fix :
1. Launch your invoke.bat / invoke.sh and select the option to open the developer console
2. Run:`pip install ".[xformers]" --upgrade --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121`
- If you run into an error with `typing_extensions`, re-open the developer console and run: `pip install -U typing-extensions`
**It says my pip is out of date - is that why my install isn't working?**
- An out of date won't cause an installation to fail. The cause of the error can likely be found above the message that says pip is out of date.
- If you saw that warning but the install went well, don't worry about it (but you can update pip afterwards if you'd like).
**How can I generate the exact same that I found on the internet?**
Most example images with prompts that you'll find on the internet have been generated using different software, so you can't expect to get identical results. In order to reproduce an image, you need to replicate the exact settings and processing steps, including (but not limited to) the model, the positive and negative prompts, the seed, the sampler, the exact image size, any upscaling steps, etc.
**Where can I get more help?**
- Create an issue on [GitHub](https://github.com/invoke-ai/InvokeAI/issues) or post in the [#help channel](https://discord.com/channels/1020123559063990373/1149510134058471514) of the InvokeAI Discord

View File

@ -57,9 +57,7 @@ Prompts provide the models directions on what to generate. As a general rule of
Models are the magic that power InvokeAI. These files represent the output of training a machine on understanding massive amounts of images - providing them with the capability to generate new images using just a text description of what youd like to see. (Like Stable Diffusion!)
Invoke offers a simple way to download several different models upon installation, but many more can be discovered online, including at https://models.invoke.ai
Each model can produce a unique style of output, based on the images it was trained on - Try out different models to see which best fits your creative vision!
Invoke offers a simple way to download several different models upon installation, but many more can be discovered online, including at ****. Each model can produce a unique style of output, based on the images it was trained on - Try out different models to see which best fits your creative vision!
- *Models that contain “inpainting” in the name are designed for use with the inpainting feature of the Unified Canvas*

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

View File

@ -15,10 +15,9 @@ title: Home
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@fortawesome/fontawesome-free@6.2.1/css/fontawesome.min.css">
<style>
.button {
width: 100%;
max-width: 100%;
width: 300px;
height: 50px;
background-color: #35A4DB;
background-color: #448AFF;
color: #fff;
font-size: 16px;
border: none;
@ -28,9 +27,8 @@ title: Home
.button-container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
grid-template-columns: repeat(3, 300px);
gap: 20px;
justify-content: center;
}
.button:hover {
@ -43,7 +41,7 @@ title: Home
<div align="center" markdown>
[![project logo](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)](https://github.com/invoke-ai/InvokeAI)
[![project logo](assets/invoke_ai_banner.png)](https://github.com/invoke-ai/InvokeAI)
[![discord badge]][discord link]
@ -101,13 +99,16 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
<div align="center"><img src="assets/invoke-web-server-1.png" width=640></div>
!!! Note
This project is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates as it will help aid response time.
## :octicons-link-24: Quick Links
<div class="button-container">
<a href="installation/INSTALLATION"> <button class="button">Installation</button> </a>
<a href="features/"> <button class="button">Features</button> </a>
<a href="help/gettingStartedWithAI/"> <button class="button">Getting Started</button> </a>
<a href="help/FAQ/"> <button class="button">FAQ</button> </a>
<a href="contributing/CONTRIBUTING/"> <button class="button">Contributing</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/"> <button class="button">Code and Downloads</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/issues"> <button class="button">Bug Reports </button> </a>
@ -117,11 +118,6 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
## :octicons-gift-24: InvokeAI Features
### Installation
- [Automated Installer](installation/010_INSTALL_AUTOMATED.md)
- [Manual Installation](installation/020_INSTALL_MANUAL.md)
- [Docker Installation](installation/040_INSTALL_DOCKER.md)
### The InvokeAI Web Interface
- [WebUI overview](features/WEB.md)
- [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md)
@ -145,10 +141,65 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
<!-- seperator -->
### Prompt Engineering
- [Prompt Syntax](features/PROMPTS.md)
- [Generating Variations](features/VARIATIONS.md)
### InvokeAI Configuration
- [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md)
- [Database Maintenance and other Command Line Utilities](features/UTILITIES.md)
## :octicons-log-16: Important Changes Since Version 2.3
### Nodes
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
### Command-Line Interface Retired
The original "invokeai" command-line interface has been retired. The
`invokeai` command will now launch a new command-line client that can
be used by developers to create and test nodes. It is not intended to
be used for routine image generation or manipulation.
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
### ControlNet
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
### New Schedulers
The list of schedulers has been completely revamped and brought up to date:
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
## :material-target: Troubleshooting

View File

@ -40,7 +40,7 @@ experimental versions later.
this, open up a command-line window ("Terminal" on Linux and
Macintosh, "Command" or "Powershell" on Windows) and type `python
--version`. If Python is installed, it will print out the version
number. If it is version `3.10.*` or `3.11.*` you meet
number. If it is version `3.9.*`, `3.10.*` or `3.11.*` you meet
requirements.
!!! warning "What to do if you have an unsupported version"
@ -48,7 +48,7 @@ experimental versions later.
Go to [Python Downloads](https://www.python.org/downloads/)
and download the appropriate installer package for your
platform. We recommend [Version
3.10.12](https://www.python.org/downloads/release/python-3109/),
3.10.9](https://www.python.org/downloads/release/python-3109/),
which has been extensively tested with InvokeAI.
_Please select your platform in the section below for platform-specific
@ -179,7 +179,7 @@ experimental versions later.
you will have the choice of CUDA (NVidia cards), ROCm (AMD cards),
or CPU (no graphics acceleration). On Windows, you'll have the
choice of CUDA vs CPU, and on Macs you'll be offered CPU only. When
you select CPU on M1/M2/M3 Macintoshes, you will get MPS-based
you select CPU on M1 or M2 Macintoshes, you will get MPS-based
graphics acceleration without installing additional drivers. If you
are unsure what GPU you are using, you can ask the installer to
guess.
@ -471,13 +471,13 @@ Then type the following commands:
=== "NVIDIA System"
```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu118
pip install xformers
```
=== "AMD System"
```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
### Corrupted configuration file

View File

@ -32,7 +32,7 @@ gaming):
* **Python**
version 3.10 through 3.11
version 3.9 through 3.11
* **CUDA Tools**
@ -65,7 +65,7 @@ gaming):
To install InvokeAI with virtual environments and the PIP package
manager, please follow these steps:
1. Please make sure you are using Python 3.10 through 3.11. The rest of the install
1. Please make sure you are using Python 3.9 through 3.11. The rest of the install
procedure depends on this and will not work with other versions:
```bash
@ -148,13 +148,13 @@ manager, please follow these steps:
=== "CUDA (NVidia)"
```bash
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
```
=== "ROCm (AMD)"
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
=== "CPU (Intel Macs & non-GPU systems)"
@ -230,13 +230,13 @@ manager, please follow these steps:
=== "local Webserver"
```bash
invokeai-web
invokeai --web
```
=== "Public Webserver"
```bash
invokeai-web --host 0.0.0.0
invokeai --web --host 0.0.0.0
```
=== "CLI"
@ -256,10 +256,6 @@ manager, please follow these steps:
*highly recommended** if your virtual environment is located outside of
your runtime directory.
!!! tip
On linux, it is recommended to run invokeai with the following env var: `MALLOC_MMAP_THRESHOLD_=1048576`. For example: `MALLOC_MMAP_THRESHOLD_=1048576 invokeai --web`. This helps to prevent memory fragmentation that can lead to memory accumulation over time. This env var is set automatically when running via `invoke.sh`.
10. Render away!
Browse the [features](../features/index.md) section to learn about all the
@ -291,20 +287,7 @@ manager, please follow these steps:
Leave off the `--gui` option to run the script using command-line arguments. Pass the `--help` argument
to get usage instructions.
## Developer Install
!!! warning
InvokeAI uses a SQLite database. By running on `main`, you accept responsibility for your database. This
means making regular backups (especially before pulling) and/or fixing it yourself in the event that a
PR introduces a schema change.
If you don't need persistent backend storage, you can use an ephemeral in-memory database by setting
`use_memory_db: true` under `Path:` in your `invokeai.yaml` file.
If this is untenable, you should run the application via the official installer or a manual install of the
python package from pypi. These releases will not break your database.
### Developer Install
If you have an interest in how InvokeAI works, or you would like to
add features or bugfixes, you are encouraged to install the source
@ -313,39 +296,28 @@ code for InvokeAI. For this to work, you will need to install the
on your system, please see the [Git Installation
Guide](https://github.com/git-guides/install-git)
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md).
If you have a "normal" installation, you should create a totally separate virtual environment for the git-based installation, else the two may interfere.
> **Why do I need the frontend toolchain**?
>
> The InvokeAI project uses trunk-based development. That means our `main` branch is the development branch, and releases are tags on that branch. Because development is very active, we don't keep an updated build of the UI in `main` - we only build it for production releases.
>
> That means that between releases, to have a functioning application when running directly from the repo, you will need to run the UI in dev mode or build it regularly (any time the UI code changes).
1. Create a fork of the InvokeAI repository through the GitHub UI or [this link](https://github.com/invoke-ai/InvokeAI/fork)
2. From the command line, run this command:
1. From the command line, run this command:
```bash
git clone https://github.com/<your_github_username>/InvokeAI.git
git clone https://github.com/invoke-ai/InvokeAI.git
```
This will create a directory named `InvokeAI` and populate it with the
full source code from your fork of the InvokeAI repository.
full source code from the InvokeAI repository.
3. Activate the InvokeAI virtual environment as per step (4) of the manual
2. Activate the InvokeAI virtual environment as per step (4) of the manual
installation protocol (important!)
4. Enter the InvokeAI repository directory and run one of these
3. Enter the InvokeAI repository directory and run one of these
commands, based on your GPU:
=== "CUDA (NVidia)"
```bash
pip install -e .[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
pip install -e .[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
```
=== "ROCm (AMD)"
```bash
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
=== "CPU (Intel Macs & non-GPU systems)"
@ -361,15 +333,11 @@ installation protocol (important!)
Be sure to pass `-e` (for an editable install) and don't forget the
dot ("."). It is part of the command.
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md) and do a production build of the UI as described.
6. You can now run `invokeai` and its related commands. The code will be
You can now run `invokeai` and its related commands. The code will be
read from the repository, so that you can edit the .py source files
and watch the code's behavior change.
When you pull in new changes to the repo, be sure to re-build the UI.
7. If you wish to contribute to the InvokeAI project, you are
4. If you wish to contribute to the InvokeAI project, you are
encouraged to establish a GitHub account and "fork"
https://github.com/invoke-ai/InvokeAI into your own copy of the
repository. You can then use GitHub functions to create and submit
@ -388,7 +356,7 @@ you can do so using this unsupported recipe:
mkdir ~/invokeai
conda create -n invokeai python=3.10
conda activate invokeai
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
invokeai-configure --root ~/invokeai
invokeai --root ~/invokeai --web
```
@ -401,5 +369,3 @@ environment variable INVOKEAI_ROOT to point to the installation directory.
Note that if you run into problems with the Conda installation, the InvokeAI
staff will **not** be able to help you out. Caveat Emptor!
[dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939

View File

@ -57,35 +57,11 @@ familiar with containerization technologies such as Docker.
For downloads and instructions, visit the [NVIDIA CUDA Container
Runtime Site](https://developer.nvidia.com/nvidia-container-runtime)
### cuDNN Installation for 40/30 Series Optimization* (Optional)
1. Find the InvokeAI folder
2. Click on .venv folder - e.g., YourInvokeFolderHere\\.venv
3. Click on Lib folder - e.g., YourInvokeFolderHere\\.venv\Lib
4. Click on site-packages folder - e.g., YourInvokeFolderHere\\.venv\Lib\site-packages
5. Click on Torch directory - e.g., YourInvokeFolderHere\InvokeAI\\.venv\Lib\site-packages\torch
6. Click on the lib folder - e.g., YourInvokeFolderHere\\.venv\Lib\site-packages\torch\lib
7. Copy everything inside the folder and save it elsewhere as a backup.
8. Go to __https://developer.nvidia.com/cudnn__
9. Login or create an Account.
10. Choose the newer version of cuDNN. **Note:**
There are two versions, 11.x or 12.x for the differents architectures(Turing,Maxwell Etc...) of GPUs.
You can find which version you should download from [this link](https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html).
13. Download the latest version and extract it from the download location
14. Find the bin folder E\cudnn-windows-x86_64-__Whatever Version__\bin
15. Copy and paste the .dll files into YourInvokeFolderHere\\.venv\Lib\site-packages\torch\lib **Make sure to copy, and not move the files**
16. If prompted, replace any existing files
**Notes:**
* If no change is seen or any issues are encountered, follow the same steps as above and paste the torch/lib backup folder you made earlier and replace it. If you didn't make a backup, you can also uninstall and reinstall torch through the command line to repair this folder.
* This optimization is intended for the newer version of graphics card (40/30 series) but results have been seen with older graphics card.
### Torch Installation
When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url
https://download.pytorch.org/whl/cu121` as described in the [Manual
https://download.pytorch.org/whl/cu118` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md).
## :simple-amd: ROCm
@ -134,7 +110,7 @@ recipes are available
When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url
https://download.pytorch.org/whl/rocm5.6` as described in the [Manual
https://download.pytorch.org/whl/rocm5.4.2` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md).
This will be done automatically for you if you use the installer

View File

@ -4,49 +4,38 @@ title: Installing with Docker
# :fontawesome-brands-docker: Docker
!!! warning "macOS and AMD GPU Users"
!!! warning "For most users"
We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md),
because Docker containers can not access the GPU on macOS.
We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md)
!!! warning "AMD GPU Users"
!!! tip "For developers"
Container support for AMD GPUs has been reported to work by the community, but has not received
extensive testing. Please make sure to set the `GPU_DRIVER=rocm` environment variable (see below), and
use the `build.sh` script to build the image for this to take effect at build time.
For container-related development tasks or for enabling easy
deployment to other environments (on-premises or cloud), follow these
instructions.
!!! tip "Linux and Windows Users"
For optimal performance, configure your Docker daemon to access your machine's GPU.
Docker Desktop on Windows [includes GPU support](https://www.docker.com/blog/wsl-2-gpu-support-for-docker-desktop-on-nvidia-gpus/).
Linux users should install and configure the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
For general use, install locally to leverage your machine's GPU.
## Why containers?
They provide a flexible, reliable way to build and deploy InvokeAI.
See [Processes](https://12factor.net/processes) under the Twelve-Factor App
methodology for details on why running applications in such a stateless fashion is important.
They provide a flexible, reliable way to build and deploy InvokeAI. You'll also
use a Docker volume to store the largest model files and image outputs as a
first step in decoupling storage and compute. Future enhancements can do this
for other assets. See [Processes](https://12factor.net/processes) under the
Twelve-Factor App methodology for details on why running applications in such a
stateless fashion is important.
The container is configured for CUDA by default, but can be built to support AMD GPUs
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
You can specify the target platform when building the image and running the
container. You'll also need to specify the InvokeAI requirements file that
matches the container's OS and the architecture it will run on.
Developers on Apple silicon (M1/M2/M3): You
Developers on Apple silicon (M1/M2): You
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
and performance is reduced compared with running it directly on macOS but for
development purposes it's fine. Once you're done with development tasks on your
laptop you can build for the target platform and architecture and deploy to
another environment with NVIDIA GPUs on-premises or in the cloud.
## TL;DR
This assumes properly configured Docker on Linux or Windows/WSL2. Read on for detailed customization options.
```bash
# docker compose commands should be run from the `docker` directory
cd docker
docker compose up
```
## Installation in a Linux container (desktop)
### Prerequisites
@ -69,44 +58,222 @@ a token and copy it, since you will need in for the next step.
### Setup
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
Set the fork you want to use and other variables.
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.
!!! tip
At a minimum, you might want to set the `INVOKEAI_ROOT` environment variable
to point to the location where you wish to store your InvokeAI models, configuration, and outputs.
I preffer to save my env vars
in the repository root in a `.env` (or `.envrc`) file to automatically re-apply
them when I come back.
The build- and run- scripts contain default values for almost everything,
besides the [Hugging Face Token](https://huggingface.co/settings/tokens) you
created in the last step.
Some Suggestions of variables you may want to change besides the Token:
<figure markdown>
| Environment-Variable <img width="220" align="right"/> | Default value <img width="360" align="right"/> | Description |
| ----------------------------------------------------- | ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `INVOKEAI_ROOT` | `~/invokeai` | **Required** - the location of your InvokeAI root directory. It will be created if it does not exist.
| `HUGGING_FACE_HUB_TOKEN` | | InvokeAI will work without it, but some of the integrations with HuggingFace (like downloading from models from private repositories) may not work|
| `GPU_DRIVER` | `cuda` | Optionally change this to `rocm` to build the image for AMD GPUs. NOTE: Use the `build.sh` script to build the image for this to take effect.
| `HUGGING_FACE_HUB_TOKEN` | No default, but **required**! | This is the only **required** variable, without it you can't download the huggingface models |
| `REPOSITORY_NAME` | The Basename of the Repo folder | This name will used as the container repository/image name |
| `VOLUMENAME` | `${REPOSITORY_NAME,,}_data` | Name of the Docker Volume where model files will be stored |
| `ARCH` | arch of the build machine | Can be changed if you want to build the image for another arch |
| `CONTAINER_REGISTRY` | ghcr.io | Name of the Container Registry to use for the full tag |
| `CONTAINER_REPOSITORY` | `$(whoami)/${REPOSITORY_NAME}` | Name of the Container Repository |
| `CONTAINER_FLAVOR` | `cuda` | The flavor of the image to built, available options are `cuda`, `rocm` and `cpu`. If you choose `rocm` or `cpu`, the extra-index-url will be selected automatically, unless you set one yourself. |
| `CONTAINER_TAG` | `${INVOKEAI_BRANCH##*/}-${CONTAINER_FLAVOR}` | The Container Repository / Tag which will be used |
| `INVOKE_DOCKERFILE` | `Dockerfile` | The Dockerfile which should be built, handy for development |
| `PIP_EXTRA_INDEX_URL` | | If you want to use a custom pip-extra-index-url |
</figure>
#### Build the Image
Use the standard `docker compose build` command from within the `docker` directory.
I provided a build script, which is located next to the Dockerfile in
`docker/build.sh`. It can be executed from repository root like this:
If using an AMD GPU:
a: set the `GPU_DRIVER=rocm` environment variable in `docker-compose.yml` and continue using `docker compose build` as usual, or
b: set `GPU_DRIVER=rocm` in the `.env` file and use the `build.sh` script, provided for convenience
```bash
./docker/build.sh
```
The build Script not only builds the container, but also creates the docker
volume if not existing yet.
#### Run the Container
Use the standard `docker compose up` command, and generally the `docker compose` [CLI](https://docs.docker.com/compose/reference/) as usual.
After the build process is done, you can run the container via the provided
`docker/run.sh` script
Once the container starts up (and configures the InvokeAI root directory if this is a new installation), you can access InvokeAI at [http://localhost:9090](http://localhost:9090)
```bash
./docker/run.sh
```
## Troubleshooting / FAQ
When used without arguments, the container will start the webserver and provide
you the link to open it. But if you want to use some other parameters you can
also do so.
- Q: I am running on Windows under WSL2, and am seeing a "no such file or directory" error.
- A: Your `docker-entrypoint.sh` file likely has Windows (CRLF) as opposed to Unix (LF) line endings,
and you may have cloned this repository before the issue was fixed. To solve this, please change
the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
(`Ctrl+P` and search for "line endings"), or by using the `dos2unix` utility in WSL.
Finally, you may delete `docker-entrypoint.sh` followed by `git pull; git checkout docker/docker-entrypoint.sh`
to reset the file to its most recent version.
For more information on this issue, please see the [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
!!! example "run script example"
```bash
./docker/run.sh "banana sushi" -Ak_lms -S42 -s10
```
This would generate the legendary "banana sushi" with Seed 42, k_lms Sampler and 10 steps.
Find out more about available CLI-Parameters at [features/CLI.md](../../features/CLI/#arguments)
---
## Running the container on your GPU
If you have an Nvidia GPU, you can enable InvokeAI to run on the GPU by running
the container with an extra environment variable to enable GPU usage and have
the process run much faster:
```bash
GPU_FLAGS=all ./docker/run.sh
```
This passes the `--gpus all` to docker and uses the GPU.
If you don't have a GPU (or your host is not yet setup to use it) you will see a
message like this:
`docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].`
You can use the full set of GPU combinations documented here:
https://docs.docker.com/config/containers/resource_constraints/#gpu
For example, use `GPU_FLAGS=device=GPU-3a23c669-1f69-c64e-cf85-44e9b07e7a2a` to
choose a specific device identified by a UUID.
---
!!! warning "Deprecated"
From here on you will find the the previous Docker-Docs, which will still
provide some usefull informations.
## Usage (time to have fun)
### Startup
If you're on a **Linux container** the `invoke` script is **automatically
started** and the output dir set to the Docker volume you created earlier.
If you're **directly on macOS follow these startup instructions**. With the
Conda environment activated (`conda activate ldm`), run the interactive
interface that combines the functionality of the original scripts `txt2img` and
`img2img`: Use the more accurate but VRAM-intensive full precision math because
half-precision requires autocast and won't work. By default the images are saved
in `outputs/img-samples/`.
```Shell
python3 scripts/invoke.py --full_precision
```
You'll get the script's prompt. You can see available options or quit.
```Shell
invoke> -h
invoke> q
```
### Text to Image
For quick (but bad) image results test with 5 steps (default 50) and 1 sample
image. This will let you know that everything is set up correctly. Then increase
steps to 100 or more for good (but slower) results. The prompt can be in quotes
or not.
```Shell
invoke> The hulk fighting with sheldon cooper -s5 -n1
invoke> "woman closeup highly detailed" -s 150
# Reuse previous seed and apply face restoration
invoke> "woman closeup highly detailed" --steps 150 --seed -1 -G 0.75
```
You'll need to experiment to see if face restoration is making it better or
worse for your specific prompt.
If you're on a container the output is set to the Docker volume. You can copy it
wherever you want. You can download it from the Docker Desktop app, Volumes,
my-vol, data. Or you can copy it from your Mac terminal. Keep in mind
`docker cp` can't expand `*.png` so you'll need to specify the image file name.
On your host Mac (you can use the name of any container that mounted the
volume):
```Shell
docker cp dummy:/data/000001.928403745.png /Users/<your-user>/Pictures
```
### Image to Image
You can also do text-guided image-to-image translation. For example, turning a
sketch into a detailed drawing.
`strength` is a value between 0.0 and 1.0 that controls the amount of noise that
is added to the input image. Values that approach 1.0 allow for lots of
variations but will also produce images that are not semantically consistent
with the input. 0.0 preserves image exactly, 1.0 replaces it completely.
Make sure your input image size dimensions are multiples of 64 e.g. 512x512.
Otherwise you'll get `Error: product of dimension sizes > 2**31'`. If you still
get the error
[try a different size](https://support.apple.com/guide/preview/resize-rotate-or-flip-an-image-prvw2015/mac#:~:text=image's%20file%20size-,In%20the%20Preview%20app%20on%20your%20Mac%2C%20open%20the%20file,is%20shown%20at%20the%20bottom.)
like 512x256.
If you're on a Docker container, copy your input image into the Docker volume
```Shell
docker cp /Users/<your-user>/Pictures/sketch-mountains-input.jpg dummy:/data/
```
Try it out generating an image (or more). The `invoke` script needs absolute
paths to find the image so don't use `~`.
If you're on your Mac
```Shell
invoke> "A fantasy landscape, trending on artstation" -I /Users/<your-user>/Pictures/sketch-mountains-input.jpg --strength 0.75 --steps 100 -n4
```
If you're on a Linux container on your Mac
```Shell
invoke> "A fantasy landscape, trending on artstation" -I /data/sketch-mountains-input.jpg --strength 0.75 --steps 50 -n1
```
### Web Interface
You can use the `invoke` script with a graphical web interface. Start the web
server with:
```Shell
python3 scripts/invoke.py --full_precision --web
```
If it's running on your Mac point your Mac web browser to
<http://127.0.0.1:9090>
Press Control-C at the command line to stop the web server.
### Notes
Some text you can add at the end of the prompt to make it very pretty:
```Shell
cinematic photo, highly detailed, cinematic lighting, ultra-detailed, ultrarealistic, photorealism, Octane Rendering, cyberpunk lights, Hyper Detail, 8K, HD, Unreal Engine, V-Ray, full hd, cyberpunk, abstract, 3d octane render + 4k UHD + immense detail + dramatic lighting + well lit + black, purple, blue, pink, cerulean, teal, metallic colours, + fine details, ultra photoreal, photographic, concept art, cinematic composition, rule of thirds, mysterious, eerie, photorealism, breathtaking detailed, painting art deco pattern, by hsiao, ron cheng, john james audubon, bizarre compositions, exquisite detail, extremely moody lighting, painted by greg rutkowski makoto shinkai takashi takeuchi studio ghibli, akihiko yoshida
```
The original scripts should work as well.
```Shell
python3 scripts/orig_scripts/txt2img.py --help
python3 scripts/orig_scripts/txt2img.py --ddim_steps 100 --n_iter 1 --n_samples 1 --plms --prompt "new born baby kitten. Hyper Detail, Octane Rendering, Unreal Engine, V-Ray"
python3 scripts/orig_scripts/txt2img.py --ddim_steps 5 --n_iter 1 --n_samples 1 --plms --prompt "ocean" # or --klms
```

View File

@ -84,7 +84,7 @@ InvokeAI root directory's `autoimport` folder.
### Installation via `invokeai-model-install`
From the `invoke` launcher, choose option [4] "Download and install
From the `invoke` launcher, choose option [5] "Download and install
models." This will launch the same script that prompted you to select
models at install time. You can use this to add models that you
skipped the first time around. It is all right to specify a model that
@ -171,16 +171,3 @@ subfolders and organize them as you wish.
The location of the autoimport directories are controlled by settings
in `invokeai.yaml`. See [Configuration](../features/CONFIGURATION.md).
### Installing models that live in HuggingFace subfolders
On rare occasions you may need to install a diffusers-style model that
lives in a subfolder of a HuggingFace repo id. In this event, simply
add ":_subfolder-name_" to the end of the repo id. For example, if the
repo id is "monster-labs/control_v1p_sd15_qrcode_monster" and the model
you wish to fetch lives in a subfolder named "v2", then the repo id to
pass to the various model installers should be
```
monster-labs/control_v1p_sd15_qrcode_monster:v2
```

View File

@ -59,7 +59,8 @@ Prior to installing PyPatchMatch, you need to take the following steps:
`from patchmatch import patch_match`: It should look like the following:
```py
Python 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] on linux
Python 3.9.5 (default, Nov 23 2021, 15:27:38)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from patchmatch import patch_match
Compiling and loading c extensions from "/home/lstein/Projects/InvokeAI/.invokeai-env/src/pypatchmatch/patchmatch".

View File

@ -28,7 +28,7 @@ command line, then just be sure to activate it's virtual environment.
Then run the following three commands:
```sh
pip install xformers~=0.0.22
pip install xformers~=0.0.19
pip install triton # WON'T WORK ON WINDOWS
python -m xformers.info output
```
@ -42,7 +42,7 @@ If all goes well, you'll see a report like the
following:
```sh
xFormers 0.0.22
xFormers 0.0.20
memory_efficient_attention.cutlassF: available
memory_efficient_attention.cutlassB: available
memory_efficient_attention.flshattF: available
@ -59,14 +59,14 @@ swiglu.gemm_fused_operand_sum: available
swiglu.fused.p.cpp: available
is_triton_available: True
is_functorch_available: False
pytorch.version: 2.1.0+cu121
pytorch.version: 2.0.1+cu118
pytorch.cuda: available
gpu.compute_capability: 8.9
gpu.name: NVIDIA GeForce RTX 4070
build.info: available
build.cuda_version: 1108
build.python_version: 3.10.11
build.torch_version: 2.1.0+cu121
build.torch_version: 2.0.1+cu118
build.env.TORCH_CUDA_ARCH_LIST: 5.0+PTX 6.0 6.1 7.0 7.5 8.0 8.6
build.env.XFORMERS_BUILD_TYPE: Release
build.env.XFORMERS_ENABLE_DEBUG_ASSERTIONS: None
@ -92,22 +92,33 @@ installed from source. These instructions were written for a system
running Ubuntu 22.04, but other Linux distributions should be able to
adapt this recipe.
#### 1. Install CUDA Toolkit 12.1
#### 1. Install CUDA Toolkit 11.8
You will need the CUDA developer's toolkit in order to compile and
install xFormers. **Do not try to install Ubuntu's nvidia-cuda-toolkit
package.** It is out of date and will cause conflicts among the NVIDIA
driver and binaries. Instead install the CUDA Toolkit package provided
by NVIDIA itself. Go to [CUDA Toolkit 12.1
Downloads](https://developer.nvidia.com/cuda-12-1-0-download-archive)
by NVIDIA itself. Go to [CUDA Toolkit 11.8
Downloads](https://developer.nvidia.com/cuda-11-8-0-download-archive)
and use the target selection wizard to choose your platform and Linux
distribution. Select an installer type of "runfile (local)" at the
last step.
This will provide you with a recipe for downloading and running a
install shell script that will install the toolkit and drivers.
install shell script that will install the toolkit and drivers. For
example, the install script recipe for Ubuntu 22.04 running on a
x86_64 system is:
#### 2. Confirm/Install pyTorch 2.1.0 with CUDA 12.1 support
```
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
```
Rather than cut-and-paste this example, We recommend that you walk
through the toolkit wizard in order to get the most up to date
installer for your system.
#### 2. Confirm/Install pyTorch 2.01 with CUDA 11.8 support
If you are using InvokeAI 3.0.2 or higher, these will already be
installed. If not, you can check whether you have the needed libraries
@ -122,7 +133,7 @@ Then run the command:
python -c 'exec("import torch\nprint(torch.__version__)")'
```
If it prints __2.1.0+cu121__ you're good. If not, you can install the
If it prints __1.13.1+cu118__ you're good. If not, you can install the
most up to date libraries with this command:
```sh

View File

@ -17,37 +17,14 @@ This fork is supported across Linux, Windows and Macintosh. Linux users can use
either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
## **[Automated Installer (Recommended)](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
This is a script that will install all of InvokeAI's essential
third party libraries and InvokeAI itself.
🖥️ **Download the latest installer .zip file here** : https://github.com/invoke-ai/InvokeAI/releases/latest
- *Look for the file labelled "InvokeAI-installer-v3.X.X.zip" at the bottom of the page*
- If you experience issues, read through the full [installation instructions](010_INSTALL_AUTOMATED.md) to make sure you have met all of the installation requirements. If you need more help, join the [Discord](discord.gg/invoke-ai) or create an issue on [Github](https://github.com/invoke-ai/InvokeAI).
## **[Manual Installation](020_INSTALL_MANUAL.md)**
This method is recommended for experienced users and developers.
In this method you will manually run the commands needed to install
InvokeAI and its dependencies. We offer two recipes: one suited to
those who prefer the `conda` tool, and one suited to those who prefer
`pip` and Python virtual environments. In our hands the pip install
is faster and more reliable, but your mileage may vary.
Note that the conda installation method is currently deprecated and
will not be supported at some point in the future.
## **[Docker Installation](040_INSTALL_DOCKER.md)**
This method is recommended for those familiar with running Docker containers.
We offer a method for creating Docker containers containing InvokeAI and its dependencies. This method is recommended for individuals with experience with Docker containers and understand the pluses and minuses of a container-based install.
## Other Installation Guides
### [Installation Getting Started Guide](installation)
#### **[Automated Installer](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
#### [Manual Installation](020_INSTALL_MANUAL.md)
This method is recommended for experienced users and developers
#### [Docker Installation](040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers
### Other Installation Guides
- [PyPatchMatch](060_INSTALL_PATCHMATCH.md)
- [XFormers](070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](030_INSTALL_CUDA_AND_ROCM.md)
@ -86,3 +63,43 @@ images in full-precision mode:
- GTX 1650 series cards
- GTX 1660 series cards
## Installation options
1. [Automated Installer](010_INSTALL_AUTOMATED.md)
This is a script that will install all of InvokeAI's essential
third party libraries and InvokeAI itself. It includes access to a
"developer console" which will help us debug problems with you and
give you to access experimental features.
✅ This is the recommended option for first time users.
2. [Manual Installation](020_INSTALL_MANUAL.md)
In this method you will manually run the commands needed to install
InvokeAI and its dependencies. We offer two recipes: one suited to
those who prefer the `conda` tool, and one suited to those who prefer
`pip` and Python virtual environments. In our hands the pip install
is faster and more reliable, but your mileage may vary.
Note that the conda installation method is currently deprecated and
will not be supported at some point in the future.
This method is recommended for users who have previously used `conda`
or `pip` in the past, developers, and anyone who wishes to remain on
the cutting edge of future InvokeAI development and is willing to put
up with occasional glitches and breakage.
3. [Docker Installation](040_INSTALL_DOCKER.md)
We also offer a method for creating Docker containers containing
InvokeAI and its dependencies. This method is recommended for
individuals with experience with Docker containers and understand
the pluses and minuses of a container-based install.
## Quick Guides
* [Installing CUDA and ROCm Drivers](./030_INSTALL_CUDA_AND_ROCM.md)
* [Installing XFormers](./070_INSTALL_XFORMERS.md)
* [Installing PyPatchMatch](./060_INSTALL_PATCHMATCH.md)
* [Installing New Models](./050_INSTALLING_MODELS.md)

View File

@ -79,7 +79,7 @@ title: Manual Installation, Linux
and obtaining an access token for downloading. It will then download and
install the weights files for you.
Please look [here](../020_INSTALL_MANUAL.md) for a manual process for doing
Please look [here](../INSTALL_MANUAL.md) for a manual process for doing
the same thing.
7. Start generating images!
@ -112,7 +112,7 @@ title: Manual Installation, Linux
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../../deprecated/CLI.md#model-selection-and-importation). The
Client](../../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
8. Subsequently, to relaunch the script, be sure to run "conda activate

View File

@ -150,7 +150,7 @@ will do our best to help.
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../../deprecated/CLI.md#model-selection-and-importation). The
Client](../../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
---

View File

@ -128,7 +128,7 @@ python scripts/invoke.py --web --max_load_models=3 \
```
These options are described in detail in the
[Command-Line Interface](../../deprecated/CLI.md) documentation.
[Command-Line Interface](../../features/CLI.md) documentation.
## Troubleshooting

View File

@ -75,7 +75,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
obtaining an access token for downloading. It will then download and install the
weights files for you.
Please look [here](../020_INSTALL_MANUAL.md) for a manual process for doing the
Please look [here](../INSTALL_MANUAL.md) for a manual process for doing the
same thing.
8. Start generating images!
@ -108,7 +108,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../../deprecated/CLI.md#model-selection-and-importation). The
Client](../../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
9. Subsequently, to relaunch the script, first activate the Anaconda

View File

@ -1,10 +0,0 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "b5973bb1-476b-451e-8cf4-98de86745a10");
script.setAttribute("data-project-name", "Invoke.AI");
script.setAttribute("data-project-color", "#11213C");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/113954515?s=280&v=4");
script.async = true;
document.head.appendChild(script);
});

View File

@ -1,63 +0,0 @@
# Invocation API
Each invocation's `invoke` method is provided a single arg - the Invocation
Context.
This object provides access to various methods, used to interact with the
application. Loading and saving images, logging messages, etc.
!!! warning ""
This API may shift slightly until the release of v4.0.0 as we work through a few final updates to the Model Manager.
```py
class MyInvocation(BaseInvocation):
...
def invoke(self, context: InvocationContext) -> ImageOutput:
image_pil = context.images.get_pil(image_name)
# Do something to the image
image_dto = context.images.save(image_pil)
# Log a message
context.logger.info(f"Did something cool, image saved!")
...
```
The full API is documented below.
## Invocation Mixins
Two important mixins are provided to facilitate working with metadata and gallery boards.
### `WithMetadata`
Inherit from this class (in addition to `BaseInvocation`) to add a `metadata` input to your node. When you do this, you can access the metadata dict from `self.metadata` in the `invoke()` function.
The dict will be populated via the node's input, and you can add any metadata you'd like to it. When you call `context.images.save()`, if the metadata dict has any data, it be automatically embedded in the image.
### `WithBoard`
Inherit from this class (in addition to `BaseInvocation`) to add a `board` input to your node. This renders as a drop-down to select a board. The user's selection will be accessible from `self.board` in the `invoke()` function.
When you call `context.images.save()`, if a board was selected, the image will added to that board as it is saved.
<!-- prettier-ignore-start -->
::: invokeai.app.services.shared.invocation_context.InvocationContext
options:
members: false
::: invokeai.app.services.shared.invocation_context.ImagesInterface
::: invokeai.app.services.shared.invocation_context.TensorsInterface
::: invokeai.app.services.shared.invocation_context.ConditioningInterface
::: invokeai.app.services.shared.invocation_context.ModelsInterface
::: invokeai.app.services.shared.invocation_context.LoggerInterface
::: invokeai.app.services.shared.invocation_context.ConfigInterface
::: invokeai.app.services.shared.invocation_context.UtilInterface
::: invokeai.app.services.shared.invocation_context.BoardsInterface
<!-- prettier-ignore-end -->

View File

@ -1,43 +1,13 @@
# Using the Workflow Editor
# Using the Node Editor
The workflow editor is a blank canvas allowing for the use of individual functions and image transformations to control the image generation workflow. Nodes take in inputs on the left side of the node, and return an output on the right side of the node. A node graph is composed of multiple nodes that are connected together to create a workflow. Nodes' inputs and outputs are connected by dragging connectors from node to node. Inputs and outputs are color coded for ease of use.
The nodes editor is a blank canvas allowing for the use of individual functions and image transformations to control the image generation workflow. Nodes take in inputs on the left side of the node, and return an output on the right side of the node. A node graph is composed of multiple nodes that are connected together to create a workflow. Nodes' inputs and outputs are connected by dragging connectors from node to node. Inputs and outputs are color coded for ease of use.
If you're not familiar with Diffusion, take a look at our [Diffusion Overview.](../help/diffusion.md) Understanding how diffusion works will enable you to more easily use the Workflow Editor and build workflows to suit your needs.
## Features
### Workflow Library
The Workflow Library enables you to save workflows to the Invoke database, allowing you to easily creating, modify and share workflows as needed.
A curated set of workflows are provided by default - these are designed to help explain important nodes' usage in the Workflow Editor.
![workflow_library](../assets/nodes/workflow_library.png)
### Linear View
The Workflow Editor allows you to create a UI for your workflow, to make it easier to iterate on your generations.
To add an input to the Linear UI, right click on the **input label** and select "Add to Linear View".
The Linear UI View will also be part of the saved workflow, allowing you share workflows and enable other to use them, regardless of complexity.
![linearview](../assets/nodes/linearview.png)
### Renaming Fields and Nodes
Any node or input field can be renamed in the workflow editor. If the input field you have renamed has been added to the Linear View, the changed name will be reflected in the Linear View and the node.
### Managing Nodes
* Ctrl+C to copy a node
* Ctrl+V to paste a node
* Backspace/Delete to delete a node
* Shift+Click to drag and select multiple nodes
### Node Caching
Nodes have a "Use Cache" option in their footer. This allows for performance improvements by using the previously cached values during the workflow processing.
To better understand how nodes are used, think of how an electric power bar works. It takes in one input (electricity from a wall outlet) and passes it to multiple devices through multiple outputs. Similarly, a node could have multiple inputs and outputs functioning at the same (or different) time, but all node outputs pass information onward like a power bar passes electricity. Not all outputs are compatible with all inputs, however - Each node has different constraints on how it is expecting to input/output information. In general, node outputs are colour-coded to match compatible inputs of other nodes.
## Important Nodes & Concepts
If you're not familiar with Diffusion, take a look at our [Diffusion Overview.](../help/diffusion.md) Understanding how diffusion works will enable you to more easily use the Nodes Editor and build workflows to suit your needs.
## Important Concepts
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
@ -63,11 +33,11 @@ The ImageToLatents node takes in a pixel image and a VAE and outputs a latents.
It is common to want to use both the same seed (for continuity) and random seeds (for variety). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
![groupsrandseed](../assets/nodes/groupsnoise.png)
![groupsrandseed](../assets/nodes/groupsrandseed.png)
### ControlNet
The ControlNet node outputs a Control, which can be provided as input to a Denoise Latents node. Depending on the type of ControlNet desired, ControlNet nodes usually require an image processor node, such as a Canny Processor or Depth Processor, which prepares an input image for use with ControlNet.
The ControlNet node outputs a Control, which can be provided as input to non-image *ToLatents nodes. Depending on the type of ControlNet desired, ControlNet nodes usually require an image processor node, such as a Canny Processor or Depth Processor, which prepares an input image for use with ControlNet.
![groupscontrol](../assets/nodes/groupscontrol.png)
@ -89,9 +59,10 @@ Iteration is a common concept in any processing, and means to repeat a process w
![groupsiterate](../assets/nodes/groupsiterate.png)
### Batch / Multiple Image Generation + Random Seeds
### Multiple Image Generation + Random Seeds
Batch or multiple image generation in the workflow editor is done using the RandomRange node. In this case, the 'Size' field represents the number of images to generate, meaning this example will generate 4 images. As RandomRange produces a collection of integers, we need to add the Iterate node to iterate through the collection. This noise can then be fed to the Denoise Latents node for it to iterate through the denoising process with the different seeds provided.
Multiple image generation in the node editor is done using the RandomRange node. In this case, the 'Size' field represents the number of images to generate. As RandomRange produces a collection of integers, we need to add the Iterate node to iterate through the collection.
To control seeds across generations takes some care. The first row in the screenshot will generate multiple images with different seeds, but using the same RandomRange parameters across invocations will result in the same group of random seeds being used across the images, producing repeatable results. In the second row, adding the RandomInt node as input to RandomRange's 'Seed' edge point will ensure that seeds are varied across all images across invocations, producing varied results.
![groupsmultigenseeding](../assets/nodes/groupsmultigenseeding.png)

Some files were not shown because too many files have changed in this diff Show More