Compare commits

...

167 Commits

Author SHA1 Message Date
59327e827b Create new data structures for captioned images, and a list of captioned images. Create auto_caption_image node which can take a single image or list of images to caption 2024-05-17 14:31:33 -04:00
a18d7adad4 fix(ui): allow image dims multiple of 32 with SDXL and T2I adapter
See https://github.com/invoke-ai/InvokeAI/pull/6342#issuecomment-2109912452 for discussion.
2024-05-17 23:38:54 +10:00
32dff2c4e3 feat(ui): copy/paste input edges when copying node
- Copy edges to selected nodes on copy
- If pasted with `ctrl/meta-shift-v`, also paste the input edges
2024-05-17 23:12:29 +10:00
575ecb4028 feat(ui): prevent connections to direct-only inputs 2024-05-17 22:08:40 +10:00
ad8778df6c feat(ui): extract node execution state from nodesSlice
This state is ephemeral and not undoable.
2024-05-17 13:24:23 +10:00
d2f5103f9f fix(ui): ignore actions from other slices in nodesSlice history 2024-05-17 13:24:23 +10:00
dd42a56084 tests(ui): fix parseSchema test fixture
The schema fixture wasn't formatted quite right - doesn't affect the test but still.
2024-05-17 13:24:23 +10:00
23ac340a3f tests(ui): add test for parseSchema 2024-05-17 13:24:23 +10:00
6791b4eaa8 chore(ui): lint 2024-05-17 13:24:23 +10:00
a8b042177d feat(ui): connection validation for collection items types 2024-05-17 13:24:23 +10:00
76825f4261 fix(ui): allow collect node inputs to connect to multiple fields when using lazy connect 2024-05-17 13:24:23 +10:00
78cb4d75ad fix(ui): use elevateEdgesOnSelect so last-selected edge is the interactable one when updating edges 2024-05-17 13:24:23 +10:00
a18bbac262 fix(ui): jank interaction between edge update and autoconnect 2024-05-17 13:24:23 +10:00
9ff5596963 feat(ui): hide values for connected fields 2024-05-17 13:24:23 +10:00
8ea596b1e9 fix(ui): janky editable field title
- Do not allow whitespace-only field titles
- Make only preview text trigger editable
- Tooltip over the preview, not the whole "row"
2024-05-17 13:24:23 +10:00
e3a143eaed fix(ui): fix jank w/ stale connections 2024-05-17 13:24:23 +10:00
c359ab6d9b fix(ui): fix dependency tracking for copy/paste hotkeys 2024-05-17 13:24:23 +10:00
dbfaa07e03 feat(ui): add checks for undo/redo actions 2024-05-17 13:24:23 +10:00
7f78fe7a36 feat(ui): move viewport state to nanostores 2024-05-17 13:24:23 +10:00
6cf5b402c6 feat(ui): remove extraneous selectedEdges and selectedNodes state 2024-05-17 13:24:23 +10:00
b0c7c7cb47 feat(ui): remove remaining extraneous state from nodes slice 2024-05-17 13:24:23 +10:00
4d68cd8dbb feat(ui): recreate edge auto-add-node logic 2024-05-17 13:24:23 +10:00
2c1fa30639 feat(ui): recreate edge autoconnect logic 2024-05-17 13:24:23 +10:00
708c68413d tidy(ui): add type for templates 2024-05-17 13:24:23 +10:00
1d884fb794 feat(ui): move invocation templates out of redux
Templates are stored in nanostores. All hooks, selectors, etc are reworked to reference the nanostore.
2024-05-17 13:24:23 +10:00
f6a44681a8 feat(ui): move invocation templates out of redux (wip) 2024-05-17 13:24:23 +10:00
d4df312300 feat(ui): move nodes copy/paste out of slice 2024-05-17 13:24:23 +10:00
9c0d44b412 feat(ui): split workflow editor settings to separate slice
We need the undoable slice to be only undoable state - settings are not undoable.
2024-05-17 13:24:23 +10:00
27826369f0 feat(ui): make nodesSlice undoable 2024-05-17 13:24:23 +10:00
31d8b50276 [Refactor] Update min and max values for LoRACard weight input 2024-05-17 10:38:26 +10:00
40b4fa7238 feat(ui): SDXL clip skip
Uses the same CLIP Skip value for both CLIP1 and CLIP2.

Adjusted SDXL CLIP Skip min/max/markers to be within the valid range (0 to 11).

Closes #4583
2024-05-16 07:49:30 -04:00
3b1743b7c2 docs: fix install reqs link 2024-05-16 10:37:42 +10:00
f489c818f1 docs(ui): add comments to nsfw & watermarker helpers 2024-05-15 14:09:44 +10:00
af477fa295 tidy(ui): remove unused modelLoader from refiner helper 2024-05-15 14:09:44 +10:00
0ff0290735 tidy(ui): use Invocation<> helper type in canvas graph builders, elsewhere 2024-05-15 14:09:44 +10:00
67dbe6d949 tidy(ui): use Invocation<> helper type in OG control adapters 2024-05-15 14:09:44 +10:00
4c3c2297b9 tidy(ui): organise graph builder files 2024-05-15 14:09:44 +10:00
cadea55521 tidy(ui): organise graph builder files 2024-05-15 14:09:44 +10:00
c8f30b1392 tidy(ui): move testing-only types to test file 2024-05-15 14:09:44 +10:00
3d14a98abf tidy(ui): use Invocation<> type in control layers types 2024-05-15 14:09:44 +10:00
77024bfca7 fix(ui): fix sdxl generation mode metadata 2024-05-15 14:09:44 +10:00
4a1c3786a1 tidy(ui): organise CL graph builder 2024-05-15 14:09:44 +10:00
b239891986 tidy(ui): clean up base model handling in graph builder 2024-05-15 14:09:44 +10:00
9fb03d43ff tests(ui): get coverage to 100% for graph builder 2024-05-15 14:09:44 +10:00
bdc59786bd tidy(ui): clean up graph builder helper functions 2024-05-15 14:09:44 +10:00
fb6e926500 tidy(ui): remove extraneous graph validate calls 2024-05-15 14:09:44 +10:00
48ccd63dba feat(ui): use integrated metadata helper 2024-05-15 14:09:44 +10:00
ee647a05dc feat(ui): move metadata util to graph class
No good reason to have it be separate. A bit cleaner this way.
2024-05-15 14:09:44 +10:00
154b52ca4d docs(ui): update docstrings for Graph builder 2024-05-15 14:09:44 +10:00
5dd460c3ce chore(ui): knip 2024-05-15 14:09:44 +10:00
4897ce2a13 tidy(ui): remove unused files 2024-05-15 14:09:44 +10:00
5425526d50 feat(ui): use graph builder for generation tab sdxl 2024-05-15 14:09:44 +10:00
5a4b050e66 feat(ui): use asserts in graph builder 2024-05-15 14:09:44 +10:00
8d39520232 feat(ui): port NSFW and watermark nodes to graph builder 2024-05-15 14:09:44 +10:00
04d12a1e98 feat(ui): add HRF graph builder helper 2024-05-15 14:09:44 +10:00
39aa70963b docs(ui): update docstrings for addGenerationTabSeamless 2024-05-15 14:09:44 +10:00
5743254a41 fix(ui): use arrays for edge methods 2024-05-15 14:09:44 +10:00
c538ffea26 tidy(ui): remove console.log 2024-05-15 14:09:44 +10:00
e8d3a7c870 feat(ui): support multiple fields for getEdgesTo, getEdgesFrom, deleteEdgesTo, deleteEdgesFrom 2024-05-15 14:09:44 +10:00
2be66b1546 feat(ui): add deleteNode and getEdges to graph util 2024-05-15 14:09:44 +10:00
76e181fd44 build(ui): add eslint no-console rule 2024-05-15 14:09:44 +10:00
b5d42fbc66 tidy(ui): remove unused graph helper 2024-05-15 14:09:44 +10:00
b463cd763e tidy(ui): remove extraneous is_intermediate node fields 2024-05-15 14:09:44 +10:00
eb320df41d feat(ui): use new lora loaders, simplify VAE loader, seamless 2024-05-15 14:09:44 +10:00
de1869773f chore(ui): typegen 2024-05-15 14:09:44 +10:00
ef89c7e537 feat(nodes): add LoRASelectorInvocation, LoRACollectionLoader, SDXLLoRACollectionLoader
These simplify loading multiple LoRAs. Instead of requiring chained lora loader nodes, configure each LoRA (model & weight) with a selector, collect them, then send the collection to the collection loader to apply all of the LoRAs to the UNet/CLIP models.

The collection loaders accept a single lora or collection of loras.
2024-05-15 14:09:44 +10:00
008645d386 fix(ui): work through merge conflicts (wip) 2024-05-15 14:09:44 +10:00
f8042ffb41 WIP, sd1.5 works 2024-05-15 14:09:44 +10:00
dbe22be598 feat(ui): use graph utils in builders (wip) 2024-05-15 14:09:44 +10:00
8f6078d007 feat(ui): refine graph building util
Simpler types and API surface.
2024-05-15 14:09:44 +10:00
4020bf47e2 feat(ui): add MetadataUtil class
Provides methods for manipulating a graph's metadata.
2024-05-15 14:09:44 +10:00
9d685da759 feat(ui): add stateful Graph class
This stateful class provides abstractions for building a graph. It exposes graph methods like adding and removing nodes and edges.

The methods are documented, tested, and strongly typed.
2024-05-15 14:09:44 +10:00
e3289856c0 feat(ui): add and use type helpers for invocations and invocation outputs 2024-05-15 14:09:44 +10:00
47b8153728 build(ui): enable TS strictPropertyInitialization
https://www.typescriptlang.org/tsconfig/#strictPropertyInitialization
2024-05-15 14:09:44 +10:00
7901e4c082 chore(ui): typegen 2024-05-15 14:09:44 +10:00
18b0977a31 feat(api): add InvocationOutputMap to OpenAPI schema
This dynamically generated schema object maps node types to their pydantic schemas. This makes it much simpler to infer node types in the UI.
2024-05-15 14:09:44 +10:00
fc6b214470 tests(ui): set up vitest coverage 2024-05-15 14:09:44 +10:00
e22211dac0 fix: Fix Outpaint not applying the expanded mask correctly
In unscaled situations
2024-05-15 13:59:01 +10:00
e222484663 chore: v4.2.1 (#6362)
## Summary

Bump to v4.2.1

## Related Issues / Discussions

n/a

## QA Instructions

n/a

## Merge Plan

Do the release after merging.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-14 03:17:03 +05:30
2a9cea6689 Update invokeai_version.py
Bump to v4.2.1
2024-05-14 07:37:02 +10:00
93da75209c feat(nodes): use new blur_if_nsfw method 2024-05-14 07:23:38 +10:00
9c819f0fd8 fix(nodes): fix nsfw checker model download 2024-05-14 07:23:38 +10:00
eef6fcf286 translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1210 of 1210 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
e375d9f787 translationBot(ui): update translation (Italian)
Currently translated at 98.5% (1192 of 1210 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1192 of 1210 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1192 of 1210 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1192 of 1210 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
ab18174774 translationBot(ui): update translation (Spanish)
Currently translated at 31.3% (379 of 1208 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
9265841384 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
c5fd08125d translationBot(ui): update translation (Italian)
Currently translated at 98.5% (1192 of 1210 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
11d88dae7f translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1210 of 1210 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
3b495659b0 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
15c9a3a4b6 translationBot(ui): update translation (Italian)
Currently translated at 98.3% (1189 of 1209 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.3% (1189 of 1209 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
60e77e4ed6 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 77.8% (922 of 1185 strings)

Co-authored-by: flower_elf <miaoju2005@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
fa832a8ac6 translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1209 of 1209 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1209 of 1209 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1188 of 1188 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1185 of 1185 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
f7834d7d59 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
63d7461510 translationBot(ui): update translation (German)
Currently translated at 71.9% (839 of 1166 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
1de704160e translationBot(ui): update translation (Russian)
Currently translated at 97.3% (1154 of 1185 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1174 of 1174 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1173 of 1173 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1166 of 1166 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1165 of 1165 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1149 of 1149 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1147 of 1147 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
b118a2565c translationBot(ui): update translation (Italian)
Currently translated at 96.0% (1138 of 1185 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1156 of 1174 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.3% (1155 of 1174 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1129 of 1147 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
eb166baafe fix(ui): invoke button shows loading while queueing
Make the Invoke button show a loading spinner while queueing.

The queue mutations need to be awaited else the `isLoading` state doesn't work as expected. I feel like I should understand why, but I don't...
2024-05-13 11:53:29 +10:00
818d37f304 fix(api): retain cover image when converting model to diffusers
We need to retrieve and re-save the image, because a conversion to diffusers creates a new model record, with a new key.

See: https://old.reddit.com/r/StableDiffusion/comments/1cnx40d/invoke_42_control_layers_regional_guidance_w_text/l3bv152/
2024-05-13 08:46:07 +10:00
9cdb801c1c fix(api): add cover image to update model response
Fixes a bug where the image _appears_ to be reset when editing a model.

See: https://old.reddit.com/r/StableDiffusion/comments/1cnx40d/invoke_42_control_layers_regional_guidance_w_text/l3asdej/
2024-05-13 08:46:07 +10:00
5da8cde4fc fix(ui): disable listening on CA and II layers (#6332)
## Summary

Do not listen for mouse events on CA and II layers (which are not
interact-able).

## Related Issues / Discussions

Closes #6331

## QA Instructions

Move a CA or II layer above a regional guidance layer. The move tool
should now work.

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-13 04:07:27 +05:30
6ec3dc0c0d Merge branch 'main' into psyche/fix/ui/cl-listening-layers 2024-05-13 04:05:35 +05:30
6050dffb25 fix(ui): use translations for canvas layer select (#6357)
## Summary

Use translations instead of plain strings.

## Related Issues / Discussions


https://discord.com/channels/1020123559063990373/1054129386447716433/1239181243078279208

## QA Instructions

The layer select should still work.

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-13 04:04:13 +05:30
93efeafe30 Merge branch 'main' into psyche/fix/ui/canvas-layer-translations 2024-05-13 04:02:23 +05:30
f167e8a8d3 fix(ui): jank in depthanything model size select (#6335)
## Summary

The select had a default search value, which meant it only showed
"small" as an option on first load.

## Related Issues / Discussions

n/a

## QA Instructions

- Add a CA layer
- Expand advanced
- Set processor to depth anything
- Click the model size dropdown, it should show all 3 sizes

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-13 04:01:58 +05:30
124d49f35e fix(ui): use translations for canvas layer select 2024-05-13 08:30:18 +10:00
52d8efa892 Merge branch 'main' into psyche/fix/ui/depth-anything-select 2024-05-13 04:00:07 +05:30
4ea8416c68 fix(ui): use pluralization for invoke button tooltip 2024-05-13 08:29:31 +10:00
8dd0bfb068 feat(ui): use new model type grouping for control adapters in control layers 2024-05-13 08:29:31 +10:00
6ff1c7d541 feat(ui): add group by base & type to useGroupedModelCombobox hook
This allows comboboxes for models to have more granular groupings. For example, Control Adapter models can be grouped by base model & model type.

Before:
- `SD-1`
- `SDXL`

After:
- `SD-1 / ControlNet`
- `SD-1 / T2I Adapter`
- `SDXL / ControlNet`
- `SDXL / T2I Adapter`
2024-05-13 08:29:31 +10:00
19f5a9c3a9 feat(ui): better invoke button checks
- Improved/more thorough checking before invoking for control layers
- Improved styling for the tooltip
2024-05-13 08:29:31 +10:00
d9ce9c62ac feat(ui): disable invoke button when t2i adapter used w/ image dims that are not multiples of 64 2024-05-13 08:29:31 +10:00
cdc468a38c Merge branch 'main' into psyche/fix/ui/depth-anything-select 2024-05-13 03:57:47 +05:30
2656f13a4a fix(ui): CA processor cancellation
When a control adapter processor config is changed, if we were already processing an image, that batch is immediately canceled. This prevents the processed image from getting stuck in a weird state if you change or reset the processor at the right (err, wrong?) moment.

- Update internal state for control adapters to track processor batches, instead of just having a flag indicating if the image is processing. Add a slice migration to not break the user's existing app state.
- Update preprocessor listener with more sophisticated logic to handle canceling the batch and resetting the processed image when the config changes or is reset.
- Fixed error handling that erroneously showed "failed to queue graph" errors when an active listener instance is canceled, need to check the abort signal.
2024-05-13 08:23:02 +10:00
da61396b1c cleanup: seamless unused older code cleanup 2024-05-13 08:11:08 +10:00
6c9fb617dc fix: fix seamless 2024-05-13 08:11:08 +10:00
5dd73fe53e fix(ui): jank in depthanything model size select 2024-05-10 09:52:30 +10:00
e6793be465 fix(ui): disable listening on CA and II layers
Closes #6331
2024-05-10 06:42:53 +10:00
63e62c5720 Update INSTALL_REQUIREMENTS.md - 'linux only' under AMD for SDXL.
Moved 'Linux only.' back from under NVIDIA to under AMD for the SDXL hardware requirements.
2024-05-09 10:56:23 -04:00
0848cb8ebd Update invokeai_version.py 2024-05-09 08:01:40 -04:00
1b777bb972 Revert "feat(ui): negative prompt boxes are italicized"
This reverts commit 49c4704379.
2024-05-09 07:52:52 -04:00
029ee90351 docs(ui): add comment & TODO for konva bug 2024-05-09 07:52:52 -04:00
2f9a064d48 feat(ui): ip adapter layers are selectable
This is largely an internal change, and it should have been this way from the start - less tip-toeing around layer types. The user-facing change is when you click an IP Adapter layer, it is highlighted. That's it.
2024-05-09 07:52:52 -04:00
b180666497 feat(ui): disable spellcheck on prompt boxes
These are almost guaranteed to have non-english words - disable the spellcheck to prevent red squigglies.
2024-05-09 07:52:52 -04:00
4740cd4f64 feat(ui): add "global" to global prompt placeholders 2024-05-09 07:52:52 -04:00
8b51298ba1 feat(ui): negative prompt boxes are italicized 2024-05-09 07:52:52 -04:00
1533429e54 feat(ui): optimized empty mask logic
Turns out, it's more efficient to just use the bbox logic for empty mask calculations. We already track if if the bbox needs updating, so this calculation does minimal work.

The dedicated calculation wasn't able to use the bbox tracking so it ran far more often than the bbox calculation.

Removed the "fast" bbox calculation logic, bc the new logic means we are continually updating the bbox in the background - not only when the user switches to the move tool and/or selects a layer.

The bbox calculation logic is split out from the bbox rendering logic to support this.

Result - better perf overall, with the empty mask handling retained.
2024-05-09 07:52:52 -04:00
fc000214a5 feat(ui): check for transparency and clear masks if no pixel data
Mask vector data includes additive (brush, rect) shapes and subtractive (eraser) shapes. A different composite operation is used to draw a shape, depending on whether it is additive or subtractive.

This means that a mask may have vector objects, but once rendered, is _visually_ empty (fully transparent). The only way determine if a mask is visually empty is to render it and check every pixel.

When we generate and save layer metadata, these fully erased masks are still used. Generating with an empty mask is a no-op in the backend, so we want to avoid this and not pollute graphs/metadata.

Previously, we did that pixel-based when calculating the bbox, which we only did when using the move tool, and only for the selected layer.

This change introduces a simpler function to check if a mask is transparent, and if so, deletes all its objects to reset it. This allows us skip these no-op layers entirely.

This check is debounced to 300 ms, trailing edge only.
2024-05-09 07:52:52 -04:00
f631aea4ee fix(ui): skip RG layers with no mask
These do not need to be added to the graph or metadata, as they are no-ops on the backend.
2024-05-09 07:52:52 -04:00
32f4c1f966 fix(ui): memoize mouse event handlers
This prevents resetting the stage event handlers on every frame. Whoops!
2024-05-09 07:52:52 -04:00
adebe639e3 tidy(ui): remove errant console.logs 2024-05-09 07:52:52 -04:00
44280ed472 fix(ui): layer recall uses fresh ids
When layer metadata is stored, the layer IDs are included. When recalling the metadata, we need to assign fresh IDs, else we can end up with multiple layers with the same ID, which of course causes all sorts of issues.
2024-05-09 07:52:52 -04:00
cec8840038 fix(ui): handle disabled RG layers
Was missing a check for `layer.isEnabled`.
2024-05-09 07:52:52 -04:00
fc7f484935 feat(ui): add data-testids to control layers components:
- Add Layer Menu Button: `control-layers-add-layer-menu-button`
- Delete All Layers Button: `control-layers-delete-all-layers-button`
- CL Layer List: `control-layers-layer-list`
- CL Canvas: `control-layers-canvas`
- Toggle Metadata Button: `toggle-show-metadata-button`
- Toggle Progress Button: `toggle-show-progress-button`
- Toggle Viewer Menu Button: `toggle-viewer-menu-button`
- Settings Tab Button: `generation-tab-settings-tab-button`
- Control Layers Tab Button: `generation-tab-control-layers-tab-button`
2024-05-09 07:03:13 +10:00
1aa7cd57c2 feat(ui): add invert brush scroll checkbox to control layers settings 2024-05-09 07:03:13 +10:00
722a91aedb fix(ui): canvas toolbar centering 2024-05-09 07:03:13 +10:00
03c24ca9cb lint fix 2024-05-08 15:49:37 -04:00
5820579237 switch to generation tab when someone sends to img2img 2024-05-08 15:49:37 -04:00
6c768bfe7e fix(ui): viewer toggle prevents progress toggle interaction 2024-05-08 08:39:18 -04:00
5ca794b94f feat(ui): show progress toggle on control layers toolbar 2024-05-08 08:39:18 -04:00
d20695260d feat(ui): open viewer on enqueue from generation tab 2024-05-08 08:39:18 -04:00
d8557d573b Revert "feat(ui): extend zod with a is typeguard` method"
This reverts commit 0f45933791.
2024-05-08 08:39:18 -04:00
6c1fd584d2 feat(ui): pre-CL control adapter metadata recall 2024-05-08 08:39:18 -04:00
e8e764be20 feat(ui): revise image viewer
- Viewer only exists on Generation tab
- Viewer defaults to open
- When clicking the Control Layers tab on the left panel, close the viewer (i.e. open the CL editor)
- Do not switch to editor when adding layers (this is handled by clicking the Control Layers tab)
- Do not open viewer when single-clicking images in gallery
- _Do_ open viewer when _double_-clicking images in gallery
- Do not change viewer state when switching between app tabs (this no longer makes sense; the viewer only exists on generation tab)
- Change the button to a drop down menu that states what you are currently doing, e.g. Viewing vs Editing
2024-05-08 08:39:18 -04:00
e8023c44b0 chore(ui): lint 2024-05-08 08:39:18 -04:00
a3a6449786 feat(ui): versioned control layers metadata 2024-05-08 08:39:18 -04:00
e9d2ffe3d7 fix(ui): process control image on recall if no processed image 2024-05-08 08:39:18 -04:00
23ad6fb730 feat(ui): handle missing images/models when recalling control layers 2024-05-08 08:39:18 -04:00
00f36cb491 tidy(ui): clean up control layers graph builder 2024-05-08 08:39:18 -04:00
3f489c92c8 feat(ui): handle initial image layers in control layers helper 2024-05-08 08:39:18 -04:00
f147f99bef feat(ui): better metadata labels for layers 2024-05-08 08:39:18 -04:00
6107e3d281 fix(ui): fix zControlAdapterBase schema weight 2024-05-08 08:39:18 -04:00
de33d6e647 fix(ui): metadata "Layers" -> "Layer" 2024-05-08 08:39:18 -04:00
e36e5871a1 chore(ui): lint 2024-05-08 08:39:18 -04:00
8b25c1a62e tidy(ui): remove extraneous metadata handlers 2024-05-08 08:39:18 -04:00
dfbd7eb1cf feat(ui): individual layer recall 2024-05-08 08:39:18 -04:00
b43b2714cc feat(ui): add fracturedjsonjs to pretty-serialize objects
In use on the metadata viewer - makes it sooo much easier on the eyes.
2024-05-08 08:39:18 -04:00
e537de2f6d feat(ui): layers recall
This still needs some finessing - needs logic depending on the tab...
2024-05-08 08:39:18 -04:00
ccd399e277 feat(ui): add getIsVisible to metadata handlers 2024-05-08 08:39:18 -04:00
bfad814862 fix(ui): fix IPAdapterConfigV2 schema weight 2024-05-08 08:39:18 -04:00
6e8b7f9421 feat(ui): write layers to metadata 2024-05-08 08:39:18 -04:00
e47629cbe7 feat(ui): add zod schema for layers array 2024-05-08 08:39:18 -04:00
e840de27ed feat(ui): extend zod with a is typeguard` method
Feels dangerous, but it's very handy.
2024-05-08 08:39:18 -04:00
8342f32f2e refactor(ui): rewrite all types as zod schemas
This change prepares for safe metadata recall.
2024-05-08 08:39:18 -04:00
a7aa529b99 tidy(ui): "imageName" -> "name" 2024-05-08 08:39:18 -04:00
4adc592657 feat(ui): move strength to init image layer
This further splits the control layers state into its own thing.
2024-05-07 11:02:16 +10:00
e8d60e8d83 fix(ui): image metadata viewer stuck when spamming hotkey 2024-05-07 11:02:16 +10:00
886f5c90a3 feat(ui): move img2img strength out of advanced on canvas 2024-05-07 11:02:16 +10:00
221 changed files with 7691 additions and 4935 deletions

View File

@ -98,7 +98,7 @@ Updating is exactly the same as installing - download the latest installer, choo
If you have installation issues, please review the [FAQ]. You can also [create an issue] or ask for help on [discord].
[installation requirements]: INSTALLATION.md#installation-requirements
[installation requirements]: INSTALL_REQUIREMENTS.md
[FAQ]: ../help/FAQ.md
[install some models]: 050_INSTALLING_MODELS.md
[configuration docs]: ../features/CONFIGURATION.md

View File

@ -37,13 +37,13 @@ Invoke runs best with a dedicated GPU, but will fall back to running on CPU, alb
=== "Nvidia"
```
Any GPU with at least 8GB VRAM. Linux only.
Any GPU with at least 8GB VRAM.
```
=== "AMD"
```
Any GPU with at least 16GB VRAM.
Any GPU with at least 16GB VRAM. Linux only.
```
=== "Mac"

View File

@ -13,7 +13,6 @@ from pydantic import BaseModel, Field
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.util.logging import logging
from invokeai.version import __version__
@ -109,9 +108,7 @@ async def get_config() -> AppConfig:
upscaling_models.append(str(Path(model).stem))
upscaler = Upscaler(upscaling_method="esrgan", upscaling_models=upscaling_models)
nsfw_methods = []
if SafetyChecker.safety_checker_available():
nsfw_methods.append("nsfw_checker")
nsfw_methods = ["nsfw_checker"]
watermarking_methods = ["invisible_watermark"]

View File

@ -6,7 +6,7 @@ import pathlib
import shutil
import traceback
from copy import deepcopy
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Type
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse
@ -16,6 +16,7 @@ from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install import ModelInstallJob
from invokeai.app.services.model_records import (
DuplicateModelException,
@ -52,6 +53,13 @@ class ModelsList(BaseModel):
model_config = ConfigDict(use_enum_values=True)
def add_cover_image_to_model_config(config: AnyModelConfig, dependencies: Type[ApiDependencies]) -> AnyModelConfig:
"""Add a cover image URL to a model configuration."""
cover_image = dependencies.invoker.services.model_images.get_url(config.key)
config.cover_image = cover_image
return config
##############################################################################
# These are example inputs and outputs that are used in places where Swagger
# is unable to generate a correct example.
@ -118,8 +126,7 @@ async def list_model_records(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
for model in found_models:
cover_image = ApiDependencies.invoker.services.model_images.get_url(model.key)
model.cover_image = cover_image
model = add_cover_image_to_model_config(model, ApiDependencies)
return ModelsList(models=found_models)
@ -160,12 +167,9 @@ async def get_model_record(
key: str = Path(description="Key of the model record to fetch."),
) -> AnyModelConfig:
"""Get a model record"""
record_store = ApiDependencies.invoker.services.model_manager.store
try:
config: AnyModelConfig = record_store.get_model(key)
cover_image = ApiDependencies.invoker.services.model_images.get_url(key)
config.cover_image = cover_image
return config
config = ApiDependencies.invoker.services.model_manager.store.get_model(key)
return add_cover_image_to_model_config(config, ApiDependencies)
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@ -294,14 +298,15 @@ async def update_model_record(
installer = ApiDependencies.invoker.services.model_manager.install
try:
record_store.update_model(key, changes=changes)
model_response: AnyModelConfig = installer.sync_model_path(key)
config = installer.sync_model_path(key)
config = add_cover_image_to_model_config(config, ApiDependencies)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return model_response
return config
@model_manager_router.get(
@ -648,6 +653,14 @@ async def convert_model(
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
# Update the model image if the model had one
try:
model_image = ApiDependencies.invoker.services.model_images.get(key)
ApiDependencies.invoker.services.model_images.save(model_image, new_key)
ApiDependencies.invoker.services.model_images.delete(key)
except ModelImageFileNotFoundException:
pass
# delete the original safetensors file
installer.delete(key)
@ -655,7 +668,8 @@ async def convert_model(
shutil.rmtree(cache_path)
# return the config record for the new diffusers directory
new_config: AnyModelConfig = store.get_model(new_key)
new_config = store.get_model(new_key)
new_config = add_cover_image_to_model_config(new_config, ApiDependencies)
return new_config

View File

@ -164,6 +164,12 @@ def custom_openapi() -> dict[str, Any]:
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = schema_json
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": {},
"required": [],
}
# Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations:
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
@ -172,6 +178,8 @@ def custom_openapi() -> dict[str, Any]:
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["properties"][invoker.get_type()] = outputs_ref
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["required"].append(invoker.get_type())
invoker_schema["class"] = "invocation"
# This code no longer seems to be necessary?

View File

@ -1,11 +1,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from pathlib import Path
from typing import Literal, Optional
from typing import Literal, Optional, List, Union
import cv2
import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from transformers import AutoModelForCausalLM, AutoTokenizer
from invokeai.app.invocations.constants import IMAGE_MODES
from invokeai.app.invocations.fields import (
@ -16,7 +16,7 @@ from invokeai.app.invocations.fields import (
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.primitives import ImageOutput, CaptionImageOutputs, CaptionImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
@ -67,6 +67,56 @@ class BlankImageInvocation(BaseInvocation, WithMetadata, WithBoard):
return ImageOutput.build(image_dto)
@invocation(
"auto_caption_image",
title="Automatically Caption Image",
tags=["image", "caption"],
category="image",
version="1.2.2",
)
class CaptionImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Adds a caption to an image"""
images: Union[ImageField,List[ImageField]] = InputField(description="The image to caption")
prompt: str = InputField(default="Describe this list of images in 20 words or less", description="Describe how you would like the image to be captioned.")
def invoke(self, context: InvocationContext) -> CaptionImageOutputs:
model_id = "vikhyatk/moondream2"
model_revision = "2024-04-02"
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=model_revision)
moondream_model = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, revision=model_revision
)
output: CaptionImageOutputs = CaptionImageOutputs()
try:
from PIL.Image import Image
images: List[Image] = []
image_fields = self.images if isinstance(self.images, list) else [self.images]
for image in image_fields:
images.append(context.images.get_pil(image.image_name))
answers: List[str] = moondream_model.batch_answer(
images=images,
prompts=[self.prompt] * len(images),
tokenizer=tokenizer,
)
assert isinstance(answers, list)
for i, answer in enumerate(answers):
output.images.append(CaptionImageOutput(
image=image_fields[i],
width=images[i].width,
height=images[i].height,
caption=answer
))
except:
raise
finally:
del moondream_model
del tokenizer
return output
@invocation(
"img_crop",
title="Crop Image",
@ -195,7 +245,7 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata, WithBoard):
class MaskFromAlphaInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Extracts the alpha channel of an image as a mask."""
image: ImageField = InputField(description="The image to create the mask from")
image: List[ImageField] = InputField(description="The image to create the mask from")
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
def invoke(self, context: InvocationContext) -> ImageOutput:
@ -504,7 +554,7 @@ class ImageInverseLerpInvocation(BaseInvocation, WithMetadata, WithBoard):
title="Blur NSFW Image",
tags=["image", "nsfw"],
category="image",
version="1.2.2",
version="1.2.3",
)
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Add blur to NSFW-flagged images"""
@ -516,23 +566,12 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
logger = context.logger
logger.debug("Running NSFW checker")
if SafetyChecker.has_nsfw_concept(image):
logger.info("A potentially NSFW image has been detected. Image will be blurred.")
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = self._get_caution_img()
blurry_image.paste(caution, (0, 0), caution)
image = blurry_image
image = SafetyChecker.blur_if_nsfw(image)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _get_caution_img(self) -> Image.Image:
import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
return caution.resize((caution.width // 2, caution.height // 2))
@invocation(
"img_watermark",

View File

@ -586,13 +586,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
unet: UNet2DConditionModel,
scheduler: Scheduler,
) -> StableDiffusionGeneratorPipeline:
# TODO:
# configure_model_padding(
# unet,
# self.seamless,
# self.seamless_axes,
# )
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:

View File

@ -190,6 +190,75 @@ class LoRALoaderInvocation(BaseInvocation):
return output
@invocation_output("lora_selector_output")
class LoRASelectorOutput(BaseInvocationOutput):
"""Model loader output"""
lora: LoRAField = OutputField(description="LoRA model and weight", title="LoRA")
@invocation("lora_selector", title="LoRA Selector", tags=["model"], category="model", version="1.0.0")
class LoRASelectorInvocation(BaseInvocation):
"""Selects a LoRA model and weight."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
def invoke(self, context: InvocationContext) -> LoRASelectorOutput:
return LoRASelectorOutput(lora=LoRAField(lora=self.lora, weight=self.weight))
@invocation("lora_collection_loader", title="LoRA Collection Loader", tags=["model"], category="model", version="1.0.0")
class LoRACollectionLoader(BaseInvocation):
"""Applies a collection of LoRAs to the provided UNet and CLIP models."""
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
unet: Optional[UNetField] = InputField(
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
def invoke(self, context: InvocationContext) -> LoRALoaderOutput:
output = LoRALoaderOutput()
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
for lora in loras:
if lora.lora.key in added_loras:
continue
if not context.models.exists(lora.lora.key):
raise Exception(f"Unknown lora: {lora.lora.key}!")
assert lora.lora.base in (BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2)
added_loras.append(lora.lora.key)
if self.unet is not None:
if output.unet is None:
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(lora)
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(lora)
return output
@invocation_output("sdxl_lora_loader_output")
class SDXLLoRALoaderOutput(BaseInvocationOutput):
"""SDXL LoRA Loader Output"""
@ -279,6 +348,72 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
return output
@invocation(
"sdxl_lora_collection_loader",
title="SDXL LoRA Collection Loader",
tags=["model"],
category="model",
version="1.0.0",
)
class SDXLLoRACollectionLoader(BaseInvocation):
"""Applies a collection of SDXL LoRAs to the provided UNet and CLIP models."""
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
unet: Optional[UNetField] = InputField(
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
clip2: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
)
def invoke(self, context: InvocationContext) -> SDXLLoRALoaderOutput:
output = SDXLLoRALoaderOutput()
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
for lora in loras:
if lora.lora.key in added_loras:
continue
if not context.models.exists(lora.lora.key):
raise Exception(f"Unknown lora: {lora.lora.key}!")
assert lora.lora.base is BaseModelType.StableDiffusionXL
added_loras.append(lora.lora.key)
if self.unet is not None:
if output.unet is None:
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(lora)
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(lora)
if self.clip2 is not None:
if output.clip2 is None:
output.clip2 = self.clip2.model_copy(deep=True)
output.clip2.loras.append(lora)
return output
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.2")
class VAELoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""

View File

@ -1,6 +1,6 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Optional
from typing import Optional, List
import torch
@ -247,6 +247,17 @@ class ImageOutput(BaseInvocationOutput):
)
@invocation_output("captioned_image_output")
class CaptionImageOutput(ImageOutput):
caption: str = OutputField(description="Caption for given image")
@invocation_output("captioned_image_outputs")
class CaptionImageOutputs(BaseInvocationOutput):
images: List[CaptionImageOutput] = OutputField(description="List of captioned images", default=[])
@invocation_output("image_collection_output")
class ImageCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of images"""

View File

@ -4,5 +4,4 @@ Initialization file for invokeai.backend.image_util methods.
from .infill_methods.patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .seamless import configure_model_padding # noqa: F401
from .util import InitImageResizer, make_grid # noqa: F401

View File

@ -8,7 +8,7 @@ from pathlib import Path
import numpy as np
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from PIL import Image
from PIL import Image, ImageFilter
from transformers import AutoFeatureExtractor
import invokeai.backend.util.logging as logger
@ -16,6 +16,7 @@ from invokeai.app.services.config.config_default import get_config
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.silence_warnings import SilenceWarnings
repo_id = "CompVis/stable-diffusion-safety-checker"
CHECKER_PATH = "core/convert/stable-diffusion-safety-checker"
@ -24,30 +25,30 @@ class SafetyChecker:
Wrapper around SafetyChecker model.
"""
safety_checker = None
feature_extractor = None
tried_load: bool = False
safety_checker = None
@classmethod
def _load_safety_checker(cls):
if cls.tried_load:
if cls.safety_checker is not None and cls.feature_extractor is not None:
return
try:
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(get_config().models_path / CHECKER_PATH)
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(get_config().models_path / CHECKER_PATH)
model_path = get_config().models_path / CHECKER_PATH
if model_path.exists():
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(model_path)
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_path)
else:
model_path.mkdir(parents=True, exist_ok=True)
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
cls.feature_extractor.save_pretrained(model_path, safe_serialization=True)
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(repo_id)
cls.safety_checker.save_pretrained(model_path, safe_serialization=True)
except Exception as e:
logger.warning(f"Could not load NSFW checker: {str(e)}")
cls.tried_load = True
@classmethod
def safety_checker_available(cls) -> bool:
return Path(get_config().models_path, CHECKER_PATH).exists()
@classmethod
def has_nsfw_concept(cls, image: Image.Image) -> bool:
if not cls.safety_checker_available() and cls.tried_load:
return False
cls._load_safety_checker()
if cls.safety_checker is None or cls.feature_extractor is None:
return False
@ -60,3 +61,24 @@ class SafetyChecker:
with SilenceWarnings():
checked_image, has_nsfw_concept = cls.safety_checker(images=x_image, clip_input=features.pixel_values)
return has_nsfw_concept[0]
@classmethod
def blur_if_nsfw(cls, image: Image.Image) -> Image.Image:
if cls.has_nsfw_concept(image):
logger.warning("A potentially NSFW image has been detected. Image will be blurred.")
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = cls._get_caution_img()
# Center the caution image on the blurred image
x = (blurry_image.width - caution.width) // 2
y = (blurry_image.height - caution.height) // 2
blurry_image.paste(caution, (x, y), caution)
image = blurry_image
return image
@classmethod
def _get_caution_img(cls) -> Image.Image:
import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
return caution.resize((caution.width // 2, caution.height // 2))

View File

@ -1,52 +0,0 @@
import torch.nn as nn
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
return nn.functional.conv2d(
working,
weight,
bias,
self.stride,
nn.modules.utils._pair(0),
self.dilation,
self.groups,
)
def configure_model_padding(model, seamless, seamless_axes):
"""
Modifies the 2D convolution layers to use a circular padding mode based on
the `seamless` and `seamless_axes` options.
"""
# TODO: get an explicit interface for this in diffusers: https://github.com/huggingface/diffusers/issues/556
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
if seamless:
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
else:
m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d)
if hasattr(m, "asymmetric_padding_mode"):
del m.asymmetric_padding_mode
if hasattr(m, "asymmetric_padding"):
del m.asymmetric_padding

View File

@ -1,89 +1,51 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import Callable, List, Union
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
return nn.functional.conv2d(
working,
weight,
bias,
self.stride,
nn.modules.utils._pair(0),
self.dilation,
self.groups,
)
@contextmanager
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]):
if not seamless_axes:
yield
return
# Callable: (input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor
to_restore: list[tuple[nn.Conv2d | nn.ConvTranspose2d, Callable]] = []
# override conv_forward
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
def _conv_forward_asymmetric(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
)
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
try:
# Hard coded to skip down block layers, allowing for seamless tiling at the expense of prompt adherence
skipped_layers = 1
for m_name, m in model.named_modules():
if not isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
continue
x_mode = "circular" if "x" in seamless_axes else "constant"
y_mode = "circular" if "y" in seamless_axes else "constant"
if isinstance(model, UNet2DConditionModel) and m_name.startswith("down_blocks.") and ".resnets." in m_name:
# down_blocks.1.resnets.1.conv1
_, block_num, _, resnet_num, submodule_name = m_name.split(".")
block_num = int(block_num)
resnet_num = int(resnet_num)
conv_layers: List[torch.nn.Conv2d] = []
if block_num >= len(model.down_blocks) - skipped_layers:
continue
for module in model.modules():
if isinstance(module, torch.nn.Conv2d):
conv_layers.append(module)
# Skip the second resnet (could be configurable)
if resnet_num > 0:
continue
# Skip Conv2d layers (could be configurable)
if submodule_name == "conv2":
continue
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
to_restore.append((m, m._conv_forward))
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
for layer in conv_layers:
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda *x: 0
original_layers.append((layer, layer._conv_forward))
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
yield
finally:
for module, orig_conv_forward in to_restore:
module._conv_forward = orig_conv_forward
if hasattr(module, "asymmetric_padding_mode"):
del module.asymmetric_padding_mode
if hasattr(module, "asymmetric_padding"):
del module.asymmetric_padding
for layer, orig_conv_forward in original_layers:
layer._conv_forward = orig_conv_forward

View File

@ -10,6 +10,8 @@ module.exports = {
'path/no-relative-imports': ['error', { maxDepth: 0 }],
// https://github.com/edvardchen/eslint-plugin-i18next/blob/HEAD/docs/rules/no-literal-string.md
'i18next/no-literal-string': 'error',
// https://eslint.org/docs/latest/rules/no-console
'no-console': 'error',
},
overrides: [
/**

View File

@ -43,4 +43,5 @@ stats.html
yalc.lock
# vitest
tsconfig.vitest-temp.json
tsconfig.vitest-temp.json
coverage/

View File

@ -35,6 +35,7 @@
"storybook": "storybook dev -p 6006",
"build-storybook": "storybook build",
"test": "vitest",
"test:ui": "vitest --coverage --ui",
"test:no-watch": "vitest --no-watch"
},
"madge": {
@ -65,6 +66,7 @@
"chakra-react-select": "^4.7.6",
"compare-versions": "^6.1.0",
"dateformat": "^5.0.3",
"fracturedjsonjs": "^4.0.1",
"framer-motion": "^11.1.8",
"i18next": "^23.11.3",
"i18next-http-backend": "^2.5.1",
@ -131,6 +133,8 @@
"@types/react-dom": "^18.3.0",
"@types/uuid": "^9.0.8",
"@vitejs/plugin-react-swc": "^3.6.0",
"@vitest/coverage-v8": "^1.5.0",
"@vitest/ui": "^1.5.0",
"concurrently": "^8.2.2",
"dpdm": "^3.14.0",
"eslint": "^8.57.0",

View File

@ -50,6 +50,9 @@ dependencies:
dateformat:
specifier: ^5.0.3
version: 5.0.3
fracturedjsonjs:
specifier: ^4.0.1
version: 4.0.1
framer-motion:
specifier: ^11.1.8
version: 11.1.8(react-dom@18.3.1)(react@18.3.1)
@ -226,6 +229,12 @@ devDependencies:
'@vitejs/plugin-react-swc':
specifier: ^3.6.0
version: 3.6.0(vite@5.2.11)
'@vitest/coverage-v8':
specifier: ^1.5.0
version: 1.6.0(vitest@1.6.0)
'@vitest/ui':
specifier: ^1.5.0
version: 1.6.0(vitest@1.6.0)
concurrently:
specifier: ^8.2.2
version: 8.2.2
@ -285,7 +294,7 @@ devDependencies:
version: 4.3.2(typescript@5.4.5)(vite@5.2.11)
vitest:
specifier: ^1.6.0
version: 1.6.0(@types/node@20.12.10)
version: 1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0)
packages:
@ -1676,6 +1685,10 @@ packages:
resolution: {integrity: sha512-4iri8i1AqYHJE2DstZYkyEprg6Pq6sKx3xn5FpySk9sNhH7qN2LLlHJCfDTZRILNwQNPD7mATWM0TBui7uC1pA==}
dev: true
/@bcoe/v8-coverage@0.2.3:
resolution: {integrity: sha512-0hYQ8SB4Db5zvZB4axdMHGwEaQjkZzFjQiN9LVYvIFB2nSUHW9tYpxWriPrWDASIxiaXax83REcLxuSdnGPZtw==}
dev: true
/@chakra-ui/accordion@2.3.1(@chakra-ui/system@2.6.2)(framer-motion@10.18.0)(react@18.3.1):
resolution: {integrity: sha512-FSXRm8iClFyU+gVaXisOSEw0/4Q+qZbFRiuhIAkVU6Boj0FxAMrlo9a8AV5TuF77rgaHytCdHk0Ng+cyUijrag==}
peerDependencies:
@ -3632,6 +3645,11 @@ packages:
wrap-ansi-cjs: /wrap-ansi@7.0.0
dev: true
/@istanbuljs/schema@0.1.3:
resolution: {integrity: sha512-ZXRY4jNvVgSVQ8DL3LTcakaAtXwTVUxE81hslsyD2AtoXW/wVob10HkOJ1X/pAlcI7D+2YoZKg5do8G/w6RYgA==}
engines: {node: '>=8'}
dev: true
/@jest/schemas@29.6.3:
resolution: {integrity: sha512-mo5j5X+jIZmJQveBKeS/clAueipV7KgiX1vMgCxam1RNYiqE1w62n0/tJJnHtjW8ZHcQco5gY85jA3mi0L+nSA==}
engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0}
@ -3819,6 +3837,10 @@ packages:
dev: true
optional: true
/@polka/url@1.0.0-next.25:
resolution: {integrity: sha512-j7P6Rgr3mmtdkeDGTe0E/aYyWEWVtc5yFXtHCRHs28/jptDEWfaVOc5T7cblqy1XKPPfCxJc/8DwQ5YgLOZOVQ==}
dev: true
/@popperjs/core@2.11.8:
resolution: {integrity: sha512-P1st0aksCrn9sGZhp8GMYwBnQsbvAWsZAX44oXNNvLHGqAOcoVxmjZiohstwQ7SqKnbR47akdNi+uleWD8+g6A==}
dev: false
@ -5143,7 +5165,7 @@ packages:
dom-accessibility-api: 0.6.3
lodash: 4.17.21
redent: 3.0.0
vitest: 1.6.0(@types/node@20.12.10)
vitest: 1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0)
dev: true
/@testing-library/user-event@14.5.2(@testing-library/dom@9.3.4):
@ -5822,6 +5844,29 @@ packages:
- '@swc/helpers'
dev: true
/@vitest/coverage-v8@1.6.0(vitest@1.6.0):
resolution: {integrity: sha512-KvapcbMY/8GYIG0rlwwOKCVNRc0OL20rrhFkg/CHNzncV03TE2XWvO5w9uZYoxNiMEBacAJt3unSOiZ7svePew==}
peerDependencies:
vitest: 1.6.0
dependencies:
'@ampproject/remapping': 2.3.0
'@bcoe/v8-coverage': 0.2.3
debug: 4.3.4
istanbul-lib-coverage: 3.2.2
istanbul-lib-report: 3.0.1
istanbul-lib-source-maps: 5.0.4
istanbul-reports: 3.1.7
magic-string: 0.30.10
magicast: 0.3.4
picocolors: 1.0.0
std-env: 3.7.0
strip-literal: 2.1.0
test-exclude: 6.0.0
vitest: 1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0)
transitivePeerDependencies:
- supports-color
dev: true
/@vitest/expect@1.3.1:
resolution: {integrity: sha512-xofQFwIzfdmLLlHa6ag0dPV8YsnKOCP1KdAeVVh34vSjN2dcUiXYCD9htu/9eM7t8Xln4v03U9HLxLpPlsXdZw==}
dependencies:
@ -5866,6 +5911,21 @@ packages:
tinyspy: 2.2.1
dev: true
/@vitest/ui@1.6.0(vitest@1.6.0):
resolution: {integrity: sha512-k3Lyo+ONLOgylctiGovRKy7V4+dIN2yxstX3eY5cWFXH6WP+ooVX79YSyi0GagdTQzLmT43BF27T0s6dOIPBXA==}
peerDependencies:
vitest: 1.6.0
dependencies:
'@vitest/utils': 1.6.0
fast-glob: 3.3.2
fflate: 0.8.2
flatted: 3.3.1
pathe: 1.1.2
picocolors: 1.0.0
sirv: 2.0.4
vitest: 1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0)
dev: true
/@vitest/utils@1.3.1:
resolution: {integrity: sha512-d3Waie/299qqRyHTm2DjADeTaNdNSVsnwHPWrs20JMpjh6eiVq7ggggweO8rc4arhf6rRkWuHKwvxGvejUXZZQ==}
dependencies:
@ -8518,6 +8578,10 @@ packages:
resolution: {integrity: sha512-3yurQZ2hD9VISAhJJP9bpYFNQrHHBXE2JxxjY5aLEcDi46RmAzJE2OC9FAde0yis5ElW0jTTzs0zfg/Cca4XqQ==}
dev: true
/fflate@0.8.2:
resolution: {integrity: sha512-cPJU47OaAoCbg0pBvzsgpTPhmhqI5eJjh/JIu8tPj5q+T7iLvW/JAYUqmE7KOB4R1ZyEhzBaIQpQpardBF5z8A==}
dev: true
/file-entry-cache@6.0.1:
resolution: {integrity: sha512-7Gps/XWymbLk2QLYK4NzpMOrYjMhdIxXuIvy2QBsLE6ljuodKvdkWs/cpyJJ3CVIVpH0Oi1Hvg1ovbMzLdFBBg==}
engines: {node: ^10.12.0 || >=12.0.0}
@ -8691,6 +8755,10 @@ packages:
engines: {node: '>= 0.6'}
dev: true
/fracturedjsonjs@4.0.1:
resolution: {integrity: sha512-KMhSx7o45aPVj4w27dwdQyKJkNU8oBqw8UiK/s3VzsQB3+pKQ/3AqG/YOEQblV2BDuYE5dKp0OMf8RDsshrjTA==}
dev: false
/framer-motion@10.18.0(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-oGlDh1Q1XqYPksuTD/usb0I70hq95OUzmL9+6Zd+Hs4XV0oaISBa/UUMSjYiq6m8EUF32132mOJ8xVZS+I0S6w==}
peerDependencies:
@ -9077,6 +9145,10 @@ packages:
resolution: {integrity: sha512-mxIDAb9Lsm6DoOJ7xH+5+X4y1LU/4Hi50L9C5sIswK3JzULS4bwk1FvjdBgvYR4bzT4tuUQiC15FE2f5HbLvYw==}
dev: true
/html-escaper@2.0.2:
resolution: {integrity: sha512-H2iMtd0I4Mt5eYiapRdIDjp+XzelXQ0tFE4JS7YFwFevXXMmOp9myNrUvCg0D6ws8iqkRPBfKHgbwig1SmlLfg==}
dev: true
/html-parse-stringify@3.0.1:
resolution: {integrity: sha512-KknJ50kTInJ7qIScF3jeaFRpMpE8/lfiTdzf/twXyPBLAGrLRTmkz3AdTnKeh40X8k9L2fdYwEp/42WGXIRGcg==}
dependencies:
@ -9506,6 +9578,39 @@ packages:
engines: {node: '>=0.10.0'}
dev: true
/istanbul-lib-coverage@3.2.2:
resolution: {integrity: sha512-O8dpsF+r0WV/8MNRKfnmrtCWhuKjxrq2w+jpzBL5UZKTi2LeVWnWOmWRxFlesJONmc+wLAGvKQZEOanko0LFTg==}
engines: {node: '>=8'}
dev: true
/istanbul-lib-report@3.0.1:
resolution: {integrity: sha512-GCfE1mtsHGOELCU8e/Z7YWzpmybrx/+dSTfLrvY8qRmaY6zXTKWn6WQIjaAFw069icm6GVMNkgu0NzI4iPZUNw==}
engines: {node: '>=10'}
dependencies:
istanbul-lib-coverage: 3.2.2
make-dir: 4.0.0
supports-color: 7.2.0
dev: true
/istanbul-lib-source-maps@5.0.4:
resolution: {integrity: sha512-wHOoEsNJTVltaJp8eVkm8w+GVkVNHT2YDYo53YdzQEL2gWm1hBX5cGFR9hQJtuGLebidVX7et3+dmDZrmclduw==}
engines: {node: '>=10'}
dependencies:
'@jridgewell/trace-mapping': 0.3.25
debug: 4.3.4
istanbul-lib-coverage: 3.2.2
transitivePeerDependencies:
- supports-color
dev: true
/istanbul-reports@3.1.7:
resolution: {integrity: sha512-BewmUXImeuRk2YY0PVbxgKAysvhRPUQE0h5QRM++nVWyubKGV0l8qQ5op8+B2DOmwSe63Jivj0BjkPQVf8fP5g==}
engines: {node: '>=8'}
dependencies:
html-escaper: 2.0.2
istanbul-lib-report: 3.0.1
dev: true
/iterable-lookahead@1.0.0:
resolution: {integrity: sha512-hJnEP2Xk4+44DDwJqUQGdXal5VbyeWLaPyDl2AQc242Zr7iqz4DgpQOrEzglWVMGHMDCkguLHEKxd1+rOsmgSQ==}
engines: {node: '>=4'}
@ -9905,6 +10010,14 @@ packages:
'@jridgewell/sourcemap-codec': 1.4.15
dev: true
/magicast@0.3.4:
resolution: {integrity: sha512-TyDF/Pn36bBji9rWKHlZe+PZb6Mx5V8IHCSxk7X4aljM4e/vyDvZZYwHewdVaqiA0nb3ghfHU/6AUpDxWoER2Q==}
dependencies:
'@babel/parser': 7.24.5
'@babel/types': 7.24.5
source-map-js: 1.2.0
dev: true
/make-dir@2.1.0:
resolution: {integrity: sha512-LS9X+dc8KLxXCb8dni79fLIIUA5VyZoyjSMCwTluaXA0o27cCK0bhXkpgw+sTXVpPy/lSO57ilRixqk0vDmtRA==}
engines: {node: '>=6'}
@ -9920,6 +10033,13 @@ packages:
semver: 6.3.1
dev: true
/make-dir@4.0.0:
resolution: {integrity: sha512-hXdUTZYIVOt1Ex//jAQi+wTZZpUpwBj/0QsOzqegb3rGMMeJiSEu5xLHnYfBrRV4RH2+OCSOO95Is/7x1WJ4bw==}
engines: {node: '>=10'}
dependencies:
semver: 7.6.0
dev: true
/map-obj@2.0.0:
resolution: {integrity: sha512-TzQSV2DiMYgoF5RycneKVUzIa9bQsj/B3tTgsE3dOGqlzHnGIDaC7XBE7grnA+8kZPnfqSGFe95VHc2oc0VFUQ==}
engines: {node: '>=4'}
@ -10094,6 +10214,11 @@ packages:
resolution: {integrity: sha512-iSAJLHYKnX41mKcJKjqvnAN9sf0LMDTXDEvFv+ffuRR9a1MIuXLjMNL6EsnDHSkKLTWNqQQ5uo61P4EbU4NU+Q==}
dev: false
/mrmime@2.0.0:
resolution: {integrity: sha512-eu38+hdgojoyq63s+yTpN4XMBdt5l8HhMhc4VKLO9KM5caLIBvUm4thi7fFaxyTmCKeNnXZ5pAlBwCUnhA09uw==}
engines: {node: '>=10'}
dev: true
/ms@2.0.0:
resolution: {integrity: sha512-Tpp60P6IUJDTuOq/5Z8cdskzJujfwqfOTkrwIwj7IRISpnkJnT6SyJ4PCPnGMoFjC9ddhal5KVIYtAt97ix05A==}
dev: true
@ -11759,6 +11884,15 @@ packages:
engines: {node: '>=14'}
dev: true
/sirv@2.0.4:
resolution: {integrity: sha512-94Bdh3cC2PKrbgSOUqTiGPWVZeSiXfKOVZNJniWoqrWrRkB1CJzBU3NEbiTsPcYy1lDsANA/THzS+9WBiy5nfQ==}
engines: {node: '>= 10'}
dependencies:
'@polka/url': 1.0.0-next.25
mrmime: 2.0.0
totalist: 3.0.1
dev: true
/sisteransi@1.0.5:
resolution: {integrity: sha512-bLGGlR1QxBcynn2d5YmDX4MGjlZvy2MRBDRNHLJ8VI6l6+9FUiyTFNJ0IveOSP0bcXgVDPRcfGqA0pjaqUpfVg==}
dev: true
@ -12184,6 +12318,15 @@ packages:
unique-string: 2.0.0
dev: true
/test-exclude@6.0.0:
resolution: {integrity: sha512-cAGWPIyOHU6zlmg88jwm7VRyXnMN7iV68OGAbYDk/Mh/xC/pzVPlQtY6ngoIH/5/tciuhGfvESU8GrHrcxD56w==}
engines: {node: '>=8'}
dependencies:
'@istanbuljs/schema': 0.1.3
glob: 7.2.3
minimatch: 3.1.2
dev: true
/text-table@0.2.0:
resolution: {integrity: sha512-N+8UisAXDGk8PFXP4HAzVR9nbfmVJ3zYLAWiTIoqC5v5isinhr+r5uaO8+7r3BMfuNIufIsA7RdpVgacC2cSpw==}
dev: true
@ -12257,6 +12400,11 @@ packages:
engines: {node: '>=0.6'}
dev: true
/totalist@3.0.1:
resolution: {integrity: sha512-sf4i37nQ2LBx4m3wB74y+ubopq6W/dIzXg0FDGjsYnZHVa1Da8FH853wlL2gtUhg+xJXjfk3kUZS3BRoQeoQBQ==}
engines: {node: '>=6'}
dev: true
/tr46@0.0.3:
resolution: {integrity: sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==}
@ -12830,7 +12978,7 @@ packages:
fsevents: 2.3.3
dev: true
/vitest@1.6.0(@types/node@20.12.10):
/vitest@1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0):
resolution: {integrity: sha512-H5r/dN06swuFnzNFhq/dnz37bPXnq8xB2xB5JOVk8K09rUtoeNN+LHWkoQ0A/i3hvbUKKcCei9KpbxqHMLhLLA==}
engines: {node: ^18.0.0 || >=20.0.0}
hasBin: true
@ -12860,6 +13008,7 @@ packages:
'@vitest/runner': 1.6.0
'@vitest/snapshot': 1.6.0
'@vitest/spy': 1.6.0
'@vitest/ui': 1.6.0(vitest@1.6.0)
'@vitest/utils': 1.6.0
acorn-walk: 8.3.2
chai: 4.4.1

View File

@ -76,7 +76,9 @@
"aboutHeading": "Nutzen Sie Ihre kreative Energie",
"toResolve": "Lösen",
"add": "Hinzufügen",
"loglevel": "Protokoll Stufe"
"loglevel": "Protokoll Stufe",
"selected": "Ausgewählt",
"beta": "Beta"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@ -86,7 +88,7 @@
"noImagesInGallery": "Keine Bilder in der Galerie",
"loading": "Lade",
"deleteImage_one": "Lösche Bild",
"deleteImage_other": "",
"deleteImage_other": "Lösche {{count}} Bilder",
"copy": "Kopieren",
"download": "Runterladen",
"setCurrentImage": "Setze aktuelle Bild",
@ -397,7 +399,14 @@
"cancel": "Stornieren",
"defaultSettingsSaved": "Standardeinstellungen gespeichert",
"addModels": "Model hinzufügen",
"deleteModelImage": "Lösche Model Bild"
"deleteModelImage": "Lösche Model Bild",
"hfTokenInvalidErrorMessage": "Falscher oder fehlender HuggingFace Schlüssel.",
"huggingFaceRepoID": "HuggingFace Repo ID",
"hfToken": "HuggingFace Schlüssel",
"hfTokenInvalid": "Falscher oder fehlender HF Schlüssel",
"huggingFacePlaceholder": "besitzer/model-name",
"hfTokenSaved": "HF Schlüssel gespeichert",
"hfTokenUnableToVerify": "Konnte den HF Schlüssel nicht validieren"
},
"parameters": {
"images": "Bilder",
@ -686,7 +695,11 @@
"hands": "Hände",
"dwOpenpose": "DW Openpose",
"dwOpenposeDescription": "Posenschätzung mit DW Openpose",
"selectCLIPVisionModel": "Wähle ein CLIP Vision Model aus"
"selectCLIPVisionModel": "Wähle ein CLIP Vision Model aus",
"ipAdapterMethod": "Methode",
"composition": "Nur Komposition",
"full": "Voll",
"style": "Nur Style"
},
"queue": {
"status": "Status",
@ -717,7 +730,6 @@
"resume": "Wieder aufnehmen",
"item": "Auftrag",
"notReady": "Warteschlange noch nicht bereit",
"queueCountPrediction": "{{promptsCount}} Prompts × {{iterations}} Iterationen -> {{count}} Generationen",
"clearQueueAlertDialog": "\"Die Warteschlange leeren\" stoppt den aktuellen Prozess und leert die Warteschlange komplett.",
"completedIn": "Fertig in",
"cancelBatchSucceeded": "Stapel abgebrochen",

View File

@ -142,9 +142,11 @@
"blue": "Blue",
"alpha": "Alpha",
"selected": "Selected",
"viewer": "Viewer",
"tab": "Tab",
"close": "Close"
"viewing": "Viewing",
"viewingDesc": "Review images in a large gallery view",
"editing": "Editing",
"editingDesc": "Edit on the Control Layers canvas"
},
"controlnet": {
"controlAdapter_one": "Control Adapter",
@ -259,7 +261,6 @@
"queue": "Queue",
"queueFront": "Add to Front of Queue",
"queueBack": "Add to Queue",
"queueCountPrediction": "{{promptsCount}} prompts \u00d7 {{iterations}} iterations -> {{count}} generations",
"queueEmpty": "Queue Empty",
"enqueueing": "Queueing Batch",
"resume": "Resume",
@ -312,7 +313,13 @@
"batchFailedToQueue": "Failed to Queue Batch",
"graphQueued": "Graph queued",
"graphFailedToQueue": "Failed to queue graph",
"openQueue": "Open Queue"
"openQueue": "Open Queue",
"prompts_one": "Prompt",
"prompts_other": "Prompts",
"iterations_one": "Iteration",
"iterations_other": "Iterations",
"generations_one": "Generation",
"generations_other": "Generations"
},
"invocationCache": {
"invocationCache": "Invocation Cache",
@ -365,10 +372,7 @@
"bulkDownloadRequestFailed": "Problem Preparing Download",
"bulkDownloadFailed": "Download Failed",
"problemDeletingImages": "Problem Deleting Images",
"problemDeletingImagesDesc": "One or more images could not be deleted",
"switchTo": "Switch to {{ tab }} (Z)",
"openFloatingViewer": "Open Floating Viewer",
"closeFloatingViewer": "Close Floating Viewer"
"problemDeletingImagesDesc": "One or more images could not be deleted"
},
"hotkeys": {
"searchHotkeys": "Search Hotkeys",
@ -770,6 +774,7 @@
"cannotConnectOutputToOutput": "Cannot connect output to output",
"cannotConnectToSelf": "Cannot connect to self",
"cannotDuplicateConnection": "Cannot create duplicate connections",
"cannotMixAndMatchCollectionItemTypes": "Cannot mix and match collection item types",
"nodePack": "Node pack",
"collection": "Collection",
"collectionFieldType": "{{name}} Collection",
@ -935,17 +940,30 @@
"noModelSelected": "No model selected",
"noPrompts": "No prompts generated",
"noNodesInGraph": "No nodes in graph",
"systemDisconnected": "System disconnected"
"systemDisconnected": "System disconnected",
"layer": {
"initialImageNoImageSelected": "no initial image selected",
"controlAdapterNoModelSelected": "no Control Adapter model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Adapter base model",
"controlAdapterNoImageSelected": "no Control Adapter image selected",
"controlAdapterImageNotProcessed": "Control Adapter image not processed",
"t2iAdapterIncompatibleDimensions": "T2I Adapter requires image dimension to be multiples of 64",
"ipAdapterNoModelSelected": "no IP adapter selected",
"ipAdapterIncompatibleBaseModel": "incompatible IP Adapter base model",
"ipAdapterNoImageSelected": "no IP Adapter image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or IP Adapters",
"rgNoRegion": "no region selected"
}
},
"maskBlur": "Mask Blur",
"negativePromptPlaceholder": "Negative Prompt",
"globalNegativePromptPlaceholder": "Global Negative Prompt",
"noiseThreshold": "Noise Threshold",
"patchmatchDownScaleSize": "Downscale",
"perlinNoise": "Perlin Noise",
"positivePromptPlaceholder": "Positive Prompt",
"globalPositivePromptPlaceholder": "Global Positive Prompt",
"iterations": "Iterations",
"iterationsWithCount_one": "{{count}} Iteration",
"iterationsWithCount_other": "{{count}} Iterations",
"scale": "Scale",
"scaleBeforeProcessing": "Scale Before Processing",
"scaledHeight": "Scaled H",
@ -1547,8 +1565,6 @@
"addIPAdapter": "Add $t(common.ipAdapter)",
"regionalGuidance": "Regional Guidance",
"regionalGuidanceLayer": "$t(controlLayers.regionalGuidance) $t(unifiedCanvas.layer)",
"controlNetLayer": "$t(common.controlNet) $t(unifiedCanvas.layer)",
"ipAdapterLayer": "$t(common.ipAdapter) $t(unifiedCanvas.layer)",
"opacity": "Opacity",
"globalControlAdapter": "Global $t(controlnet.controlAdapter_one)",
"globalControlAdapterLayer": "Global $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
@ -1559,7 +1575,9 @@
"opacityFilter": "Opacity Filter",
"clearProcessor": "Clear Processor",
"resetProcessor": "Reset Processor to Defaults",
"noLayersAdded": "No Layers Added"
"noLayersAdded": "No Layers Added",
"layers_one": "Layer",
"layers_other": "Layers"
},
"ui": {
"tabs": {

View File

@ -25,7 +25,24 @@
"areYouSure": "¿Estas seguro?",
"batch": "Administrador de lotes",
"modelManager": "Administrador de modelos",
"communityLabel": "Comunidad"
"communityLabel": "Comunidad",
"direction": "Dirección",
"ai": "Ia",
"add": "Añadir",
"auto": "Automático",
"copyError": "Error $t(gallery.copy)",
"details": "Detalles",
"or": "o",
"checkpoint": "Punto de control",
"controlNet": "ControlNet",
"aboutHeading": "Sea dueño de su poder creativo",
"advanced": "Avanzado",
"data": "Fecha",
"delete": "Borrar",
"copy": "Copiar",
"beta": "Beta",
"on": "En",
"aboutDesc": "¿Utilizas Invoke para trabajar? Mira aquí:"
},
"gallery": {
"galleryImageSize": "Tamaño de la imagen",
@ -443,7 +460,13 @@
"previousImage": "Imagen anterior",
"nextImage": "Siguiente imagen",
"showOptionsPanel": "Mostrar el panel lateral",
"menu": "Menú"
"menu": "Menú",
"showGalleryPanel": "Mostrar panel de galería",
"loadMore": "Cargar más",
"about": "Acerca de",
"createIssue": "Crear un problema",
"resetUI": "Interfaz de usuario $t(accessibility.reset)",
"mode": "Modo"
},
"nodes": {
"zoomInNodes": "Acercar",
@ -456,5 +479,68 @@
"reloadNodeTemplates": "Recargar las plantillas de nodos",
"loadWorkflow": "Cargar el flujo de trabajo",
"downloadWorkflow": "Descargar el flujo de trabajo en un archivo JSON"
},
"boards": {
"autoAddBoard": "Agregar panel automáticamente",
"changeBoard": "Cambiar el panel",
"clearSearch": "Borrar la búsqueda",
"deleteBoard": "Borrar el panel",
"selectBoard": "Seleccionar un panel",
"uncategorized": "Sin categoría",
"cancel": "Cancelar",
"addBoard": "Agregar un panel",
"movingImagesToBoard_one": "Moviendo {{count}} imagen al panel:",
"movingImagesToBoard_many": "Moviendo {{count}} imágenes al panel:",
"movingImagesToBoard_other": "Moviendo {{count}} imágenes al panel:",
"bottomMessage": "Al eliminar este panel y las imágenes que contiene, se restablecerán las funciones que los estén utilizando actualmente.",
"deleteBoardAndImages": "Borrar el panel y las imágenes",
"loading": "Cargando...",
"deletedBoardsCannotbeRestored": "Los paneles eliminados no se pueden restaurar",
"move": "Mover",
"menuItemAutoAdd": "Agregar automáticamente a este panel",
"searchBoard": "Buscando paneles…",
"topMessage": "Este panel contiene imágenes utilizadas en las siguientes funciones:",
"downloadBoard": "Descargar panel",
"deleteBoardOnly": "Borrar solo el panel",
"myBoard": "Mi panel",
"noMatching": "No hay paneles que coincidan"
},
"accordions": {
"compositing": {
"title": "Composición",
"infillTab": "Relleno"
},
"generation": {
"title": "Generación"
},
"image": {
"title": "Imagen"
},
"control": {
"title": "Control"
},
"advanced": {
"options": "$t(accordions.advanced.title) opciones",
"title": "Avanzado"
}
},
"ui": {
"tabs": {
"generationTab": "$t(ui.tabs.generation) $t(common.tab)",
"canvas": "Lienzo",
"generation": "Generación",
"queue": "Cola",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
"workflows": "Flujos de trabajo",
"models": "Modelos",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"canvasTab": "$t(ui.tabs.canvas) $t(common.tab)",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)"
}
},
"controlLayers": {
"layers_one": "Capa",
"layers_many": "Capas",
"layers_other": "Capas"
}
}

View File

@ -5,7 +5,7 @@
"reportBugLabel": "Segnala un errore",
"settingsLabel": "Impostazioni",
"img2img": "Immagine a Immagine",
"unifiedCanvas": "Tela unificata",
"unifiedCanvas": "Tela",
"nodes": "Flussi di lavoro",
"upload": "Caricamento",
"load": "Carica",
@ -74,7 +74,18 @@
"file": "File",
"toResolve": "Da risolvere",
"add": "Aggiungi",
"loglevel": "Livello di log"
"loglevel": "Livello di log",
"beta": "Beta",
"positivePrompt": "Prompt positivo",
"negativePrompt": "Prompt negativo",
"selected": "Selezionato",
"goTo": "Vai a",
"editor": "Editor",
"tab": "Scheda",
"viewing": "Visualizza",
"viewingDesc": "Rivedi le immagini in un'ampia vista della galleria",
"editing": "Modifica",
"editingDesc": "Modifica nell'area Livelli di controllo"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@ -180,8 +191,8 @@
"desc": "Mostra le informazioni sui metadati dell'immagine corrente"
},
"sendToImageToImage": {
"title": "Invia a Immagine a Immagine",
"desc": "Invia l'immagine corrente a da Immagine a Immagine"
"title": "Invia a Generazione da immagine",
"desc": "Invia l'immagine corrente a Generazione da immagine"
},
"deleteImage": {
"title": "Elimina immagine",
@ -334,6 +345,10 @@
"remixImage": {
"desc": "Utilizza tutti i parametri tranne il seme dell'immagine corrente",
"title": "Remixa l'immagine"
},
"toggleViewer": {
"title": "Attiva/disattiva il visualizzatore di immagini",
"desc": "Passa dal Visualizzatore immagini all'area di lavoro per la scheda corrente."
}
},
"modelManager": {
@ -471,8 +486,8 @@
"scaledHeight": "Altezza ridimensionata",
"infillMethod": "Metodo di riempimento",
"tileSize": "Dimensione piastrella",
"sendToImg2Img": "Invia a Immagine a Immagine",
"sendToUnifiedCanvas": "Invia a Tela Unificata",
"sendToImg2Img": "Invia a Generazione da immagine",
"sendToUnifiedCanvas": "Invia alla Tela",
"downloadImage": "Scarica l'immagine",
"usePrompt": "Usa Prompt",
"useSeed": "Usa Seme",
@ -508,13 +523,11 @@
"incompatibleBaseModelForControlAdapter": "Il modello dell'adattatore di controllo #{{number}} non è compatibile con il modello principale.",
"missingNodeTemplate": "Modello di nodo mancante",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} ingresso mancante",
"missingFieldTemplate": "Modello di campo mancante"
"missingFieldTemplate": "Modello di campo mancante",
"imageNotProcessedForControlAdapter": "L'immagine dell'adattatore di controllo #{{number}} non è stata elaborata"
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
"iterationsWithCount_one": "{{count}} Iterazione",
"iterationsWithCount_many": "{{count}} Iterazioni",
"iterationsWithCount_other": "{{count}} Iterazioni",
"isAllowedToUpscale": {
"useX2Model": "L'immagine è troppo grande per l'ampliamento con il modello x4, utilizza il modello x2",
"tooLarge": "L'immagine è troppo grande per l'ampliamento, seleziona un'immagine più piccola"
@ -534,7 +547,10 @@
"infillMosaicMinColor": "Colore minimo",
"infillMosaicMaxColor": "Colore massimo",
"infillMosaicTileHeight": "Altezza piastrella",
"infillColorValue": "Colore di riempimento"
"infillColorValue": "Colore di riempimento",
"globalSettings": "Impostazioni globali",
"globalPositivePromptPlaceholder": "Prompt positivo globale",
"globalNegativePromptPlaceholder": "Prompt negativo globale"
},
"settings": {
"models": "Modelli",
@ -559,7 +575,7 @@
"intermediatesCleared_one": "Cancellata {{count}} immagine intermedia",
"intermediatesCleared_many": "Cancellate {{count}} immagini intermedie",
"intermediatesCleared_other": "Cancellate {{count}} immagini intermedie",
"clearIntermediatesDesc1": "La cancellazione delle immagini intermedie ripristinerà lo stato di Tela Unificata e ControlNet.",
"clearIntermediatesDesc1": "La cancellazione delle immagini intermedie ripristinerà lo stato della Tela e degli Adattatori di Controllo.",
"intermediatesClearedFailed": "Problema con la cancellazione delle immagini intermedie",
"clearIntermediatesWithCount_one": "Cancella {{count}} immagine intermedia",
"clearIntermediatesWithCount_many": "Cancella {{count}} immagini intermedie",
@ -575,8 +591,8 @@
"imageCopied": "Immagine copiata",
"imageNotLoadedDesc": "Impossibile trovare l'immagine",
"canvasMerged": "Tela unita",
"sentToImageToImage": "Inviato a Immagine a Immagine",
"sentToUnifiedCanvas": "Inviato a Tela Unificata",
"sentToImageToImage": "Inviato a Generazione da immagine",
"sentToUnifiedCanvas": "Inviato alla Tela",
"parametersNotSet": "Parametri non impostati",
"metadataLoadFailed": "Impossibile caricare i metadati",
"serverError": "Errore del Server",
@ -795,7 +811,7 @@
"float": "In virgola mobile",
"currentImageDescription": "Visualizza l'immagine corrente nell'editor dei nodi",
"fieldTypesMustMatch": "I tipi di campo devono corrispondere",
"edge": "Bordo",
"edge": "Collegamento",
"currentImage": "Immagine corrente",
"integer": "Numero Intero",
"inputMayOnlyHaveOneConnection": "L'ingresso può avere solo una connessione",
@ -845,7 +861,9 @@
"resetToDefaultValue": "Ripristina il valore predefinito",
"noFieldsViewMode": "Questo flusso di lavoro non ha campi selezionati da visualizzare. Visualizza il flusso di lavoro completo per configurare i valori.",
"edit": "Modifica",
"graph": "Grafico"
"graph": "Grafico",
"showEdgeLabelsHelp": "Mostra etichette sui collegamenti, che indicano i nodi collegati",
"showEdgeLabels": "Mostra le etichette del collegamento"
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@ -922,7 +940,7 @@
"colorMapTileSize": "Dimensione piastrella",
"mediapipeFaceDescription": "Rilevamento dei volti tramite Mediapipe",
"hedDescription": "Rilevamento dei bordi nidificati olisticamente",
"setControlImageDimensions": "Imposta le dimensioni dell'immagine di controllo su L/A",
"setControlImageDimensions": "Copia le dimensioni in L/A (ottimizza per il modello)",
"maxFaces": "Numero massimo di volti",
"addT2IAdapter": "Aggiungi $t(common.t2iAdapter)",
"addControlNet": "Aggiungi $t(common.controlNet)",
@ -951,12 +969,17 @@
"mediapipeFace": "Mediapipe Volto",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"selectCLIPVisionModel": "Seleziona un modello CLIP Vision"
"selectCLIPVisionModel": "Seleziona un modello CLIP Vision",
"ipAdapterMethod": "Metodo",
"full": "Completo",
"composition": "Solo la composizione",
"style": "Solo lo stile",
"beginEndStepPercentShort": "Inizio/Fine %",
"setControlImageDimensionsForce": "Copia le dimensioni in L/A (ignora il modello)"
},
"queue": {
"queueFront": "Aggiungi all'inizio della coda",
"queueBack": "Aggiungi alla coda",
"queueCountPrediction": "{{promptsCount}} prompt × {{iterations}} iterazioni -> {{count}} generazioni",
"queue": "Coda",
"status": "Stato",
"pruneSucceeded": "Rimossi {{item_count}} elementi completati dalla coda",
@ -993,7 +1016,7 @@
"cancelBatchSucceeded": "Lotto annullato",
"clearTooltip": "Annulla e cancella tutti gli elementi",
"current": "Attuale",
"pauseTooltip": "Sospende l'elaborazione",
"pauseTooltip": "Sospendi l'elaborazione",
"failed": "Falliti",
"cancelItem": "Annulla l'elemento",
"next": "Prossimo",
@ -1394,6 +1417,12 @@
"paragraphs": [
"La dimensione del bordo del passaggio di coerenza."
]
},
"ipAdapterMethod": {
"heading": "Metodo",
"paragraphs": [
"Metodo con cui applicare l'adattatore IP corrente."
]
}
},
"sdxl": {
@ -1522,5 +1551,56 @@
"compatibleEmbeddings": "Incorporamenti compatibili",
"addPromptTrigger": "Aggiungi Trigger nel prompt",
"noMatchingTriggers": "Nessun Trigger corrispondente"
},
"controlLayers": {
"opacityFilter": "Filtro opacità",
"deleteAll": "Cancella tutto",
"addLayer": "Aggiungi Livello",
"moveToFront": "Sposta in primo piano",
"moveToBack": "Sposta in fondo",
"moveForward": "Sposta avanti",
"moveBackward": "Sposta indietro",
"brushSize": "Dimensioni del pennello",
"globalMaskOpacity": "Opacità globale della maschera",
"autoNegative": "Auto Negativo",
"toggleVisibility": "Attiva/disattiva la visibilità dei livelli",
"deletePrompt": "Cancella il prompt",
"debugLayers": "Debug dei Livelli",
"rectangle": "Rettangolo",
"maskPreviewColor": "Colore anteprima maschera",
"addPositivePrompt": "Aggiungi $t(common.positivePrompt)",
"addNegativePrompt": "Aggiungi $t(common.negativePrompt)",
"addIPAdapter": "Aggiungi $t(common.ipAdapter)",
"regionalGuidance": "Guida regionale",
"regionalGuidanceLayer": "$t(unifiedCanvas.layer) $t(controlLayers.regionalGuidance)",
"opacity": "Opacità",
"globalControlAdapter": "$t(controlnet.controlAdapter_one) Globale",
"globalControlAdapterLayer": "$t(controlnet.controlAdapter_one) - $t(unifiedCanvas.layer) Globale",
"globalIPAdapter": "$t(common.ipAdapter) Globale",
"globalIPAdapterLayer": "$t(common.ipAdapter) - $t(unifiedCanvas.layer) Globale",
"globalInitialImage": "Immagine iniziale",
"globalInitialImageLayer": "$t(controlLayers.globalInitialImage) - $t(unifiedCanvas.layer) Globale",
"clearProcessor": "Cancella processore",
"resetProcessor": "Ripristina il processore alle impostazioni predefinite",
"noLayersAdded": "Nessun livello aggiunto",
"resetRegion": "Reimposta la regione",
"controlLayers": "Livelli di controllo",
"layers_one": "Livello",
"layers_many": "Livelli",
"layers_other": "Livelli"
},
"ui": {
"tabs": {
"generation": "Generazione",
"generationTab": "$t(ui.tabs.generation) $t(common.tab)",
"canvas": "Tela",
"canvasTab": "$t(ui.tabs.canvas) $t(common.tab)",
"workflows": "Flussi di lavoro",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)",
"models": "Modelli",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"queue": "Coda",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)"
}
}
}

View File

@ -570,7 +570,6 @@
"pauseSucceeded": "処理が一時停止されました",
"queueFront": "キューの先頭へ追加",
"queueBack": "キューに追加",
"queueCountPrediction": "{{promptsCount}} プロンプト × {{iterations}} イテレーション -> {{count}} 枚生成",
"pause": "一時停止",
"queue": "キュー",
"pauseTooltip": "処理を一時停止",

View File

@ -505,7 +505,6 @@
"completed": "완성된",
"queueBack": "Queue에 추가",
"cancelFailed": "항목 취소 중 발생한 문제",
"queueCountPrediction": "Queue에 {{predicted}} 추가",
"batchQueued": "Batch Queued",
"pauseFailed": "프로세서 중지 중 발생한 문제",
"clearFailed": "Queue 제거 중 발생한 문제",

View File

@ -383,8 +383,6 @@
"useCpuNoise": "Gebruik CPU-ruis",
"imageActions": "Afbeeldingshandeling",
"iterations": "Iteraties",
"iterationsWithCount_one": "{{count}} iteratie",
"iterationsWithCount_other": "{{count}} iteraties",
"coherenceMode": "Modus"
},
"settings": {
@ -940,7 +938,6 @@
"completed": "Voltooid",
"queueBack": "Voeg toe aan wachtrij",
"cancelFailed": "Fout bij annuleren onderdeel",
"queueCountPrediction": "Voeg {{predicted}} toe aan wachtrij",
"batchQueued": "Reeks in wachtrij geplaatst",
"pauseFailed": "Fout bij onderbreken verwerker",
"clearFailed": "Fout bij wissen van wachtrij",

View File

@ -76,7 +76,18 @@
"localSystem": "Локальная система",
"aboutDesc": "Используя Invoke для работы? Проверьте это:",
"add": "Добавить",
"loglevel": "Уровень логов"
"loglevel": "Уровень логов",
"beta": "Бета",
"selected": "Выбрано",
"positivePrompt": "Позитивный запрос",
"negativePrompt": "Негативный запрос",
"editor": "Редактор",
"goTo": "Перейти к",
"tab": "Вкладка",
"viewing": "Просмотр",
"editing": "Редактирование",
"viewingDesc": "Просмотр изображений в режиме большой галереи",
"editingDesc": "Редактировать на холсте слоёв управления"
},
"gallery": {
"galleryImageSize": "Размер изображений",
@ -87,8 +98,8 @@
"deleteImagePermanent": "Удаленные изображения невозможно восстановить.",
"deleteImageBin": "Удаленные изображения будут отправлены в корзину вашей операционной системы.",
"deleteImage_one": "Удалить изображение",
"deleteImage_few": "",
"deleteImage_many": "",
"deleteImage_few": "Удалить {{count}} изображения",
"deleteImage_many": "Удалить {{count}} изображений",
"assets": "Ресурсы",
"autoAssignBoardOnClick": "Авто-назначение доски по клику",
"deleteSelection": "Удалить выделенное",
@ -336,6 +347,10 @@
"remixImage": {
"desc": "Используйте все параметры, кроме сида из текущего изображения",
"title": "Ремикс изображения"
},
"toggleViewer": {
"title": "Переключить просмотр изображений",
"desc": "Переключение между средством просмотра изображений и рабочей областью для текущей вкладки."
}
},
"modelManager": {
@ -512,7 +527,8 @@
"missingNodeTemplate": "Отсутствует шаблон узла",
"missingFieldTemplate": "Отсутствует шаблон поля",
"addingImagesTo": "Добавление изображений в",
"invoke": "Создать"
"invoke": "Создать",
"imageNotProcessedForControlAdapter": "Изображение адаптера контроля №{{number}} не обрабатывается"
},
"isAllowedToUpscale": {
"useX2Model": "Изображение слишком велико для увеличения с помощью модели x4. Используйте модель x2",
@ -523,9 +539,6 @@
"useCpuNoise": "Использовать шум CPU",
"imageActions": "Действия с изображениями",
"iterations": "Кол-во",
"iterationsWithCount_one": "{{count}} Интеграция",
"iterationsWithCount_few": "{{count}} Итерации",
"iterationsWithCount_many": "{{count}} Итераций",
"useSize": "Использовать размер",
"coherenceMode": "Режим",
"aspect": "Соотношение",
@ -541,7 +554,10 @@
"infillMosaicTileHeight": "Высота плиток",
"infillMosaicMinColor": "Мин цвет",
"infillMosaicMaxColor": "Макс цвет",
"infillColorValue": "Цвет заливки"
"infillColorValue": "Цвет заливки",
"globalSettings": "Глобальные настройки",
"globalNegativePromptPlaceholder": "Глобальный негативный запрос",
"globalPositivePromptPlaceholder": "Глобальный запрос"
},
"settings": {
"models": "Модели",
@ -706,7 +722,9 @@
"coherenceModeBoxBlur": "коробчатое размытие",
"discardCurrent": "Отбросить текущее",
"invertBrushSizeScrollDirection": "Инвертировать прокрутку для размера кисти",
"initialFitImageSize": "Подогнать размер изображения при перебросе"
"initialFitImageSize": "Подогнать размер изображения при перебросе",
"hideBoundingBox": "Скрыть ограничительную рамку",
"showBoundingBox": "Показать ограничительную рамку"
},
"accessibility": {
"uploadImage": "Загрузить изображение",
@ -849,7 +867,10 @@
"editMode": "Открыть в редакторе узлов",
"resetToDefaultValue": "Сбросить к стандартному значкнию",
"edit": "Редактировать",
"noFieldsViewMode": "В этом рабочем процессе нет выбранных полей для отображения. Просмотрите полный рабочий процесс для настройки значений."
"noFieldsViewMode": "В этом рабочем процессе нет выбранных полей для отображения. Просмотрите полный рабочий процесс для настройки значений.",
"graph": "График",
"showEdgeLabels": "Показать метки на ребрах",
"showEdgeLabelsHelp": "Показать метки на ребрах, указывающие на соединенные узлы"
},
"controlnet": {
"amult": "a_mult",
@ -917,8 +938,8 @@
"lineartAnime": "Контурный рисунок в стиле аниме",
"mediapipeFaceDescription": "Обнаружение лиц с помощью Mediapipe",
"hedDescription": "Целостное обнаружение границ",
"setControlImageDimensions": "Установите размеры контрольного изображения на Ш/В",
"scribble": "каракули",
"setControlImageDimensions": "Скопируйте размер в Ш/В (оптимизируйте для модели)",
"scribble": "Штрихи",
"maxFaces": "Макс Лица",
"mlsdDescription": "Минималистичный детектор отрезков линии",
"resizeSimple": "Изменить размер (простой)",
@ -933,7 +954,18 @@
"small": "Маленький",
"body": "Тело",
"hands": "Руки",
"selectCLIPVisionModel": "Выбрать модель CLIP Vision"
"selectCLIPVisionModel": "Выбрать модель CLIP Vision",
"ipAdapterMethod": "Метод",
"full": "Всё",
"mlsd": "M-LSD",
"h": "H",
"style": "Только стиль",
"dwOpenpose": "DW Openpose",
"pidi": "PIDI",
"composition": "Только композиция",
"hed": "HED",
"beginEndStepPercentShort": "Начало/конец %",
"setControlImageDimensionsForce": "Скопируйте размер в Ш/В (игнорируйте модель)"
},
"boards": {
"autoAddBoard": "Авто добавление Доски",
@ -1312,6 +1344,12 @@
"paragraphs": [
"Плавно укладывайте изображение вдоль вертикальной оси."
]
},
"ipAdapterMethod": {
"heading": "Метод",
"paragraphs": [
"Метод, с помощью которого применяется текущий IP-адаптер."
]
}
},
"metadata": {
@ -1359,7 +1397,6 @@
"completed": "Выполнено",
"queueBack": "Добавить в очередь",
"cancelFailed": "Проблема с отменой элемента",
"queueCountPrediction": "{{promptsCount}} запросов × {{iterations}} изображений -> {{count}} генераций",
"batchQueued": "Пакетная очередь",
"pauseFailed": "Проблема с приостановкой рендеринга",
"clearFailed": "Проблема с очисткой очереди",
@ -1475,7 +1512,11 @@
"projectWorkflows": "Рабочие процессы проекта",
"defaultWorkflows": "Стандартные рабочие процессы",
"name": "Имя",
"noRecentWorkflows": "Нет последних рабочих процессов"
"noRecentWorkflows": "Нет последних рабочих процессов",
"loadWorkflow": "Рабочий процесс $t(common.load)",
"convertGraph": "Конвертировать график",
"loadFromGraph": "Загрузка рабочего процесса из графика",
"autoLayout": "Автоматическое расположение"
},
"hrf": {
"enableHrf": "Включить исправление высокого разрешения",
@ -1528,5 +1569,56 @@
"addPromptTrigger": "Добавить триггер запроса",
"compatibleEmbeddings": "Совместимые встраивания",
"noMatchingTriggers": "Нет соответствующих триггеров"
},
"controlLayers": {
"moveToBack": "На задний план",
"moveForward": "Переместить вперёд",
"moveBackward": "Переместить назад",
"brushSize": "Размер кисти",
"controlLayers": "Слои управления",
"globalMaskOpacity": "Глобальная непрозрачность маски",
"autoNegative": "Авто негатив",
"deletePrompt": "Удалить запрос",
"resetRegion": "Сбросить регион",
"debugLayers": "Слои отладки",
"rectangle": "Прямоугольник",
"maskPreviewColor": "Цвет предпросмотра маски",
"addNegativePrompt": "Добавить $t(common.negativePrompt)",
"regionalGuidance": "Региональная точность",
"opacity": "Непрозрачность",
"globalControlAdapter": "Глобальный $t(controlnet.controlAdapter_one)",
"globalControlAdapterLayer": "Глобальный $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
"globalIPAdapter": "Глобальный $t(common.ipAdapter)",
"globalIPAdapterLayer": "Глобальный $t(common.ipAdapter) $t(unifiedCanvas.layer)",
"opacityFilter": "Фильтр непрозрачности",
"deleteAll": "Удалить всё",
"addLayer": "Добавить слой",
"moveToFront": "На передний план",
"toggleVisibility": "Переключить видимость слоя",
"addPositivePrompt": "Добавить $t(common.positivePrompt)",
"addIPAdapter": "Добавить $t(common.ipAdapter)",
"regionalGuidanceLayer": "$t(controlLayers.regionalGuidance) $t(unifiedCanvas.layer)",
"resetProcessor": "Сброс процессора по умолчанию",
"clearProcessor": "Чистый процессор",
"globalInitialImage": "Глобальное исходное изображение",
"globalInitialImageLayer": "$t(controlLayers.globalInitialImage) $t(unifiedCanvas.layer)",
"noLayersAdded": "Без слоев",
"layers_one": "Слой",
"layers_few": "Слоя",
"layers_many": "Слоев"
},
"ui": {
"tabs": {
"generation": "Генерация",
"canvas": "Холст",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)",
"models": "Модели",
"generationTab": "$t(ui.tabs.generation) $t(common.tab)",
"workflows": "Рабочие процессы",
"canvasTab": "$t(ui.tabs.canvas) $t(common.tab)",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"queue": "Очередь"
}
}
}

View File

@ -66,7 +66,7 @@
"saveAs": "保存为",
"ai": "ai",
"or": "或",
"aboutDesc": "使用 Invoke 工作?看:",
"aboutDesc": "使用 Invoke 工作?来看看:",
"add": "添加",
"loglevel": "日志级别",
"copy": "复制",
@ -445,7 +445,6 @@
"useX2Model": "图像太大,无法使用 x4 模型,使用 x2 模型作为替代",
"tooLarge": "图像太大无法进行放大,请选择更小的图像"
},
"iterationsWithCount_other": "{{count}} 次迭代生成",
"cfgRescaleMultiplier": "CFG 重缩放倍数",
"useSize": "使用尺寸",
"setToOptimalSize": "优化模型大小",
@ -853,7 +852,6 @@
"pruneSucceeded": "从队列修剪 {{item_count}} 个已完成的项目",
"notReady": "无法排队",
"batchFailedToQueue": "批次加入队列失败",
"queueCountPrediction": "{{promptsCount}} 提示词 × {{iterations}} 迭代次数 -> {{count}} 次生成",
"batchQueued": "加入队列的批次",
"front": "前",
"pruneTooltip": "修剪 {{item_count}} 个已完成的项目",

View File

@ -1,3 +1,4 @@
/* eslint-disable no-console */
import fs from 'node:fs';
import openapiTS from 'openapi-typescript';

View File

@ -67,6 +67,8 @@ export const useSocketIO = () => {
if ($isDebugging.get() || import.meta.env.MODE === 'development') {
window.$socketOptions = $socketOptions;
// This is only enabled manually for debugging, console is allowed.
/* eslint-disable-next-line no-console */
console.log('Socket initialized', socket);
}
@ -75,6 +77,8 @@ export const useSocketIO = () => {
return () => {
if ($isDebugging.get() || import.meta.env.MODE === 'development') {
window.$socketOptions = undefined;
// This is only enabled manually for debugging, console is allowed.
/* eslint-disable-next-line no-console */
console.log('Socket teardown', socket);
}
socket.disconnect();

View File

@ -1,3 +1,6 @@
/* eslint-disable no-console */
// This is only enabled manually for debugging, console is allowed.
import type { Middleware, MiddlewareAPI } from '@reduxjs/toolkit';
import { diff } from 'jsondiffpatch';

View File

@ -1,7 +1,6 @@
import type { UnknownAction } from '@reduxjs/toolkit';
import { deepClone } from 'common/util/deepClone';
import { isAnyGraphBuilt } from 'features/nodes/store/actions';
import { nodeTemplatesBuilt } from 'features/nodes/store/nodesSlice';
import { appInfoApi } from 'services/api/endpoints/appInfo';
import type { Graph } from 'services/api/types';
import { socketGeneratorProgress } from 'services/events/actions';
@ -25,13 +24,6 @@ export const actionSanitizer = <A extends UnknownAction>(action: A): A => {
};
}
if (nodeTemplatesBuilt.match(action)) {
return {
...action,
payload: '<Node templates omitted>',
};
}
if (socketGeneratorProgress.match(action)) {
const sanitized = deepClone(action);
if (sanitized.payload.data.progress_image) {

View File

@ -21,7 +21,7 @@ export const addDeleteBoardAndImagesFulfilledListener = (startAppListening: AppS
const { canvas, nodes, controlAdapters, controlLayers } = getState();
deleted_images.forEach((image_name) => {
const imageUsage = getImageUsage(canvas, nodes, controlAdapters, controlLayers.present, image_name);
const imageUsage = getImageUsage(canvas, nodes.present, controlAdapters, controlLayers.present, image_name);
if (imageUsage.isCanvasImage && !wasCanvasReset) {
dispatch(resetCanvas());

View File

@ -1,60 +1,54 @@
import { isAnyOf } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { AppDispatch } from 'app/store/store';
import { parseify } from 'common/util/serialize';
import {
caLayerImageChanged,
caLayerIsProcessingImageChanged,
caLayerModelChanged,
caLayerProcessedImageChanged,
caLayerProcessorConfigChanged,
caLayerProcessorPendingBatchIdChanged,
caLayerRecalled,
isControlAdapterLayer,
} from 'features/controlLayers/store/controlLayersSlice';
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
import { isImageOutput } from 'features/nodes/types/common';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
import { isEqual } from 'lodash-es';
import { imagesApi } from 'services/api/endpoints/images';
import { getImageDTO } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig, ImageDTO } from 'services/api/types';
import type { BatchConfig } from 'services/api/types';
import { socketInvocationComplete } from 'services/events/actions';
import { assert } from 'tsafe';
const matcher = isAnyOf(caLayerImageChanged, caLayerProcessorConfigChanged, caLayerModelChanged);
const matcher = isAnyOf(caLayerImageChanged, caLayerProcessorConfigChanged, caLayerModelChanged, caLayerRecalled);
const DEBOUNCE_MS = 300;
const log = logger('session');
/**
* Simple helper to cancel a batch and reset the pending batch ID
*/
const cancelProcessorBatch = async (dispatch: AppDispatch, layerId: string, batchId: string) => {
const req = dispatch(queueApi.endpoints.cancelByBatchIds.initiate({ batch_ids: [batchId] }));
log.trace({ batchId }, 'Cancelling existing preprocessor batch');
try {
await req.unwrap();
} catch {
// no-op
} finally {
req.reset();
// Always reset the pending batch ID - the cancel req could fail if the batch doesn't exist
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: null }));
}
};
export const addControlAdapterPreprocessor = (startAppListening: AppStartListening) => {
startAppListening({
matcher,
effect: async (action, { dispatch, getState, getOriginalState, cancelActiveListeners, delay, take }) => {
const { layerId } = action.payload;
const precheckLayerOriginal = getOriginalState()
.controlLayers.present.layers.filter(isControlAdapterLayer)
.find((l) => l.id === layerId);
const precheckLayer = getState()
.controlLayers.present.layers.filter(isControlAdapterLayer)
.find((l) => l.id === layerId);
// Conditions to bail
const layerDoesNotExist = !precheckLayer;
const layerHasNoImage = !precheckLayer?.controlAdapter.image;
const layerHasNoProcessorConfig = !precheckLayer?.controlAdapter.processorConfig;
const layerIsAlreadyProcessingImage = precheckLayer?.controlAdapter.isProcessingImage;
const areImageAndProcessorUnchanged =
isEqual(precheckLayer?.controlAdapter.image, precheckLayerOriginal?.controlAdapter.image) &&
isEqual(precheckLayer?.controlAdapter.processorConfig, precheckLayerOriginal?.controlAdapter.processorConfig);
if (
layerDoesNotExist ||
layerHasNoImage ||
layerHasNoProcessorConfig ||
areImageAndProcessorUnchanged ||
layerIsAlreadyProcessingImage
) {
return;
}
effect: async (action, { dispatch, getState, cancelActiveListeners, delay, take, signal }) => {
const layerId = caLayerRecalled.match(action) ? action.payload.id : action.payload.layerId;
// Cancel any in-progress instances of this listener
cancelActiveListeners();
@ -62,19 +56,31 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
// Delay before starting actual work
await delay(DEBOUNCE_MS);
dispatch(caLayerIsProcessingImageChanged({ layerId, isProcessingImage: true }));
// Double-check that we are still eligible for processing
const state = getState();
const layer = state.controlLayers.present.layers.filter(isControlAdapterLayer).find((l) => l.id === layerId);
const image = layer?.controlAdapter.image;
const config = layer?.controlAdapter.processorConfig;
// If we have no image or there is no processor config, bail
if (!layer || !image || !config) {
if (!layer) {
return;
}
const image = layer.controlAdapter.image;
const config = layer.controlAdapter.processorConfig;
if (!image || !config) {
// The user has reset the image or config, so we should clear the processed image
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO: null }));
}
// At this point, the user has stopped fiddling with the processor settings and there is a processor selected.
// If there is a pending processor batch, cancel it.
if (layer.controlAdapter.processorPendingBatchId) {
cancelProcessorBatch(dispatch, layerId, layer.controlAdapter.processorPendingBatchId);
}
// @ts-expect-error: TS isn't able to narrow the typing of buildNode and `config` will error...
const processorNode = CA_PROCESSOR_DATA[config.type].buildNode(image, config);
const enqueueBatchArg: BatchConfig = {
@ -82,7 +88,11 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
batch: {
graph: {
nodes: {
[processorNode.id]: { ...processorNode, is_intermediate: true },
[processorNode.id]: {
...processorNode,
// Control images are always intermediate - do not save to gallery
is_intermediate: true,
},
},
edges: [],
},
@ -90,16 +100,21 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
},
};
// Kick off the processor batch
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, {
fixedCacheKey: 'enqueueBatch',
})
);
try {
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, {
fixedCacheKey: 'enqueueBatch',
})
);
const enqueueResult = await req.unwrap();
req.reset();
// TODO(psyche): Update the pydantic models, pretty sure we will _always_ have a batch_id here, but the model says it's optional
assert(enqueueResult.batch.batch_id, 'Batch ID not returned from queue');
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: enqueueResult.batch.batch_id }));
log.debug({ enqueueResult: parseify(enqueueResult) }, t('queue.graphQueued'));
// Wait for the processor node to complete
const [invocationCompleteAction] = await take(
(action): action is ReturnType<typeof socketInvocationComplete> =>
socketInvocationComplete.match(action) &&
@ -108,48 +123,51 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
);
// We still have to check the output type
if (isImageOutput(invocationCompleteAction.payload.data.result)) {
const { image_name } = invocationCompleteAction.payload.data.result.image;
assert(
isImageOutput(invocationCompleteAction.payload.data.result),
`Processor did not return an image output, got: ${invocationCompleteAction.payload.data.result}`
);
const { image_name } = invocationCompleteAction.payload.data.result.image;
// Wait for the ImageDTO to be received
const [{ payload }] = await take(
(action) =>
imagesApi.endpoints.getImageDTO.matchFulfilled(action) && action.payload.image_name === image_name
);
const imageDTO = await getImageDTO(image_name);
assert(imageDTO, "Failed to fetch processor output's image DTO");
const imageDTO = payload as ImageDTO;
log.debug({ layerId, imageDTO }, 'ControlNet image processed');
// Update the processed image in the store
dispatch(
caLayerProcessedImageChanged({
layerId,
imageDTO,
})
);
dispatch(caLayerIsProcessingImageChanged({ layerId, isProcessingImage: false }));
}
// Whew! We made it. Update the layer with the processed image
log.debug({ layerId, imageDTO }, 'ControlNet image processed');
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO }));
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: null }));
} catch (error) {
console.log(error);
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
dispatch(caLayerIsProcessingImageChanged({ layerId, isProcessingImage: false }));
if (signal.aborted) {
// The listener was canceled - we need to cancel the pending processor batch, if there is one (could have changed by now).
const pendingBatchId = getState()
.controlLayers.present.layers.filter(isControlAdapterLayer)
.find((l) => l.id === layerId)?.controlAdapter.processorPendingBatchId;
if (pendingBatchId) {
cancelProcessorBatch(dispatch, layerId, pendingBatchId);
}
log.trace('Control Adapter preprocessor cancelled');
} else {
// Some other error condition...
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
if (error instanceof Object) {
if ('data' in error && 'status' in error) {
if (error.status === 403) {
dispatch(caLayerImageChanged({ layerId, imageDTO: null }));
return;
if (error instanceof Object) {
if ('data' in error && 'status' in error) {
if (error.status === 403) {
dispatch(caLayerImageChanged({ layerId, imageDTO: null }));
return;
}
}
}
}
dispatch(
addToast({
title: t('queue.graphFailedToQueue'),
status: 'error',
})
);
dispatch(
addToast({
title: t('queue.graphFailedToQueue'),
status: 'error',
})
);
}
} finally {
req.reset();
}
},
});

View File

@ -8,8 +8,8 @@ import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
import { getCanvasData } from 'features/canvas/util/getCanvasData';
import { getCanvasGenerationMode } from 'features/canvas/util/getCanvasGenerationMode';
import { canvasGraphBuilt } from 'features/nodes/store/actions';
import { buildCanvasGraph } from 'features/nodes/util/graph/buildCanvasGraph';
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
import { buildCanvasGraph } from 'features/nodes/util/graph/canvas/buildCanvasGraph';
import { imagesApi } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
import type { ImageDTO } from 'services/api/types';

View File

@ -1,8 +1,9 @@
import { enqueueRequested } from 'app/store/actions';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { buildGenerationTabGraph } from 'features/nodes/util/graph/buildGenerationTabGraph';
import { buildGenerationTabSDXLGraph } from 'features/nodes/util/graph/buildGenerationTabSDXLGraph';
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
import { buildGenerationTabGraph } from 'features/nodes/util/graph/generation/buildGenerationTabGraph';
import { buildGenerationTabSDXLGraph } from 'features/nodes/util/graph/generation/buildGenerationTabSDXLGraph';
import { queueApi } from 'services/api/endpoints/queue';
export const addEnqueueRequestedLinear = (startAppListening: AppStartListening) => {
@ -11,12 +12,13 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
enqueueRequested.match(action) && action.payload.tabName === 'generation',
effect: async (action, { getState, dispatch }) => {
const state = getState();
const { shouldShowProgressInViewer } = state.ui;
const model = state.generation.model;
const { prepend } = action.payload;
let graph;
if (model && model.base === 'sdxl') {
if (model?.base === 'sdxl') {
graph = await buildGenerationTabSDXLGraph(state);
} else {
graph = await buildGenerationTabGraph(state);
@ -29,7 +31,14 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
fixedCacheKey: 'enqueueBatch',
})
);
req.reset();
try {
await req.unwrap();
if (shouldShowProgressInViewer) {
dispatch(isImageViewerOpenChanged(true));
}
} finally {
req.reset();
}
},
});
};

View File

@ -11,9 +11,9 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
enqueueRequested.match(action) && action.payload.tabName === 'workflows',
effect: async (action, { getState, dispatch }) => {
const state = getState();
const { nodes, edges } = state.nodes;
const { nodes, edges } = state.nodes.present;
const workflow = state.workflow;
const graph = buildNodesGraph(state.nodes);
const graph = buildNodesGraph(state.nodes.present);
const builtWorkflow = buildWorkflowWithValidation({
nodes,
edges,
@ -39,7 +39,11 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
fixedCacheKey: 'enqueueBatch',
})
);
req.reset();
try {
await req.unwrap();
} finally {
req.reset();
}
},
});
};

View File

@ -1,7 +1,7 @@
import { createAction } from '@reduxjs/toolkit';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { selectListImagesQueryArgs } from 'features/gallery/store/gallerySelectors';
import { isImageViewerOpenChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
import { selectionChanged } from 'features/gallery/store/gallerySlice';
import { imagesApi } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import { imagesSelectors } from 'services/api/util';
@ -62,7 +62,6 @@ export const addGalleryImageClickedListener = (startAppListening: AppStartListen
} else {
dispatch(selectionChanged([imageDTO]));
}
dispatch(isImageViewerOpenChanged(true));
},
});
};

View File

@ -1,7 +1,7 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { parseify } from 'common/util/serialize';
import { nodeTemplatesBuilt } from 'features/nodes/store/nodesSlice';
import { $templates } from 'features/nodes/store/nodesSlice';
import { parseSchema } from 'features/nodes/util/schema/parseSchema';
import { size } from 'lodash-es';
import { appInfoApi } from 'services/api/endpoints/appInfo';
@ -9,7 +9,7 @@ import { appInfoApi } from 'services/api/endpoints/appInfo';
export const addGetOpenAPISchemaListener = (startAppListening: AppStartListening) => {
startAppListening({
matcher: appInfoApi.endpoints.getOpenAPISchema.matchFulfilled,
effect: (action, { dispatch, getState }) => {
effect: (action, { getState }) => {
const log = logger('system');
const schemaJSON = action.payload;
@ -20,7 +20,7 @@ export const addGetOpenAPISchemaListener = (startAppListening: AppStartListening
log.debug({ nodeTemplates: parseify(nodeTemplates) }, `Built ${size(nodeTemplates)} node templates`);
dispatch(nodeTemplatesBuilt(nodeTemplates));
$templates.set(nodeTemplates);
},
});

View File

@ -29,7 +29,7 @@ import type { ImageDTO } from 'services/api/types';
import { imagesSelectors } from 'services/api/util';
const deleteNodesImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
state.nodes.nodes.forEach((node) => {
state.nodes.present.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
return;
}
@ -73,25 +73,25 @@ const deleteControlAdapterImages = (state: RootState, dispatch: AppDispatch, ima
const deleteControlLayerImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
state.controlLayers.present.layers.forEach((l) => {
if (isRegionalGuidanceLayer(l)) {
if (l.ipAdapters.some((ipa) => ipa.image?.imageName === imageDTO.image_name)) {
if (l.ipAdapters.some((ipa) => ipa.image?.name === imageDTO.image_name)) {
dispatch(layerDeleted(l.id));
}
}
if (isControlAdapterLayer(l)) {
if (
l.controlAdapter.image?.imageName === imageDTO.image_name ||
l.controlAdapter.processedImage?.imageName === imageDTO.image_name
l.controlAdapter.image?.name === imageDTO.image_name ||
l.controlAdapter.processedImage?.name === imageDTO.image_name
) {
dispatch(layerDeleted(l.id));
}
}
if (isIPAdapterLayer(l)) {
if (l.ipAdapter.image?.imageName === imageDTO.image_name) {
if (l.ipAdapter.image?.name === imageDTO.image_name) {
dispatch(layerDeleted(l.id));
}
}
if (isInitialImageLayer(l)) {
if (l.image?.imageName === imageDTO.image_name) {
if (l.image?.name === imageDTO.image_name) {
dispatch(layerDeleted(l.id));
}
}

View File

@ -1,5 +1,8 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { $nodeExecutionStates } from 'features/nodes/hooks/useExecutionState';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { socketGeneratorProgress } from 'services/events/actions';
const log = logger('socketio');
@ -9,6 +12,13 @@ export const addGeneratorProgressEventListener = (startAppListening: AppStartLis
actionCreator: socketGeneratorProgress,
effect: (action) => {
log.trace(action.payload, `Generator progress`);
const { source_node_id, step, total_steps, progress_image } = action.payload.data;
const nes = deepClone($nodeExecutionStates.get()[source_node_id]);
if (nes) {
nes.status = zNodeStatus.enum.IN_PROGRESS;
nes.progress = (step + 1) / total_steps;
nes.progressImage = progress_image ?? null;
}
},
});
};

View File

@ -1,5 +1,6 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { parseify } from 'common/util/serialize';
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
import {
@ -9,7 +10,9 @@ import {
isImageViewerOpenChanged,
} from 'features/gallery/store/gallerySlice';
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
import { isImageOutput } from 'features/nodes/types/common';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { CANVAS_OUTPUT } from 'features/nodes/util/graph/constants';
import { boardsApi } from 'services/api/endpoints/boards';
import { imagesApi } from 'services/api/endpoints/images';
@ -28,7 +31,7 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
const { data } = action.payload;
log.debug({ data: parseify(data) }, `Invocation complete (${action.payload.data.node.type})`);
const { result, node, queue_batch_id } = data;
const { result, node, queue_batch_id, source_node_id } = data;
// This complete event has an associated image output
if (isImageOutput(result) && !nodeTypeDenylist.includes(node.type)) {
const { image_name } = result.image;
@ -110,6 +113,16 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
}
}
}
const nes = deepClone($nodeExecutionStates.get()[source_node_id]);
if (nes) {
nes.status = zNodeStatus.enum.COMPLETED;
if (nes.progress !== null) {
nes.progress = 1;
}
nes.outputs.push(result);
upsertExecutionState(nes.nodeId, nes);
}
},
});
};

View File

@ -1,5 +1,8 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { socketInvocationError } from 'services/events/actions';
const log = logger('socketio');
@ -9,6 +12,15 @@ export const addInvocationErrorEventListener = (startAppListening: AppStartListe
actionCreator: socketInvocationError,
effect: (action) => {
log.error(action.payload, `Invocation error (${action.payload.data.node.type})`);
const { source_node_id } = action.payload.data;
const nes = deepClone($nodeExecutionStates.get()[source_node_id]);
if (nes) {
nes.status = zNodeStatus.enum.FAILED;
nes.error = action.payload.data.error;
nes.progress = null;
nes.progressImage = null;
upsertExecutionState(nes.nodeId, nes);
}
},
});
};

View File

@ -1,5 +1,8 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { socketInvocationStarted } from 'services/events/actions';
const log = logger('socketio');
@ -9,6 +12,12 @@ export const addInvocationStartedEventListener = (startAppListening: AppStartLis
actionCreator: socketInvocationStarted,
effect: (action) => {
log.debug(action.payload, `Invocation started (${action.payload.data.node.type})`);
const { source_node_id } = action.payload.data;
const nes = deepClone($nodeExecutionStates.get()[source_node_id]);
if (nes) {
nes.status = zNodeStatus.enum.IN_PROGRESS;
upsertExecutionState(nes.nodeId, nes);
}
},
});
};

View File

@ -1,5 +1,9 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { $nodeExecutionStates } from 'features/nodes/hooks/useExecutionState';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { forEach } from 'lodash-es';
import { queueApi, queueItemsAdapter } from 'services/api/endpoints/queue';
import { socketQueueItemStatusChanged } from 'services/events/actions';
@ -54,6 +58,21 @@ export const addSocketQueueItemStatusChangedEventListener = (startAppListening:
dispatch(
queueApi.util.invalidateTags(['CurrentSessionQueueItem', 'NextSessionQueueItem', 'InvocationCacheStatus'])
);
if (['in_progress'].includes(action.payload.data.queue_item.status)) {
forEach($nodeExecutionStates.get(), (nes) => {
if (!nes) {
return;
}
const clone = deepClone(nes);
clone.status = zNodeStatus.enum.PENDING;
clone.error = null;
clone.progress = null;
clone.progressImage = null;
clone.outputs = [];
$nodeExecutionStates.setKey(clone.nodeId, clone);
});
}
},
});
};

View File

@ -1,7 +1,7 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { updateAllNodesRequested } from 'features/nodes/store/actions';
import { nodeReplaced } from 'features/nodes/store/nodesSlice';
import { $templates, nodeReplaced } from 'features/nodes/store/nodesSlice';
import { NodeUpdateError } from 'features/nodes/types/error';
import { isInvocationNode } from 'features/nodes/types/invocation';
import { getNeedsUpdate, updateNode } from 'features/nodes/util/node/nodeUpdate';
@ -14,7 +14,8 @@ export const addUpdateAllNodesRequestedListener = (startAppListening: AppStartLi
actionCreator: updateAllNodesRequested,
effect: (action, { dispatch, getState }) => {
const log = logger('nodes');
const { nodes, templates } = getState().nodes;
const { nodes } = getState().nodes.present;
const templates = $templates.get();
let unableToUpdateCount = 0;
@ -24,7 +25,7 @@ export const addUpdateAllNodesRequestedListener = (startAppListening: AppStartLi
unableToUpdateCount++;
return;
}
if (!getNeedsUpdate(node, template)) {
if (!getNeedsUpdate(node.data, template)) {
// No need to increment the count here, since we're not actually updating
return;
}

View File

@ -2,6 +2,7 @@ import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { parseify } from 'common/util/serialize';
import { workflowLoaded, workflowLoadRequested } from 'features/nodes/store/actions';
import { $templates } from 'features/nodes/store/nodesSlice';
import { $flow } from 'features/nodes/store/reactFlowInstance';
import { WorkflowMigrationError, WorkflowVersionError } from 'features/nodes/types/error';
import { validateWorkflow } from 'features/nodes/util/workflow/validateWorkflow';
@ -14,10 +15,10 @@ import { fromZodError } from 'zod-validation-error';
export const addWorkflowLoadRequestedListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: workflowLoadRequested,
effect: (action, { dispatch, getState }) => {
effect: (action, { dispatch }) => {
const log = logger('nodes');
const { workflow, asCopy } = action.payload;
const nodeTemplates = getState().nodes.templates;
const nodeTemplates = $templates.get();
try {
const { workflow: validatedWorkflow, warnings } = validateWorkflow(workflow, nodeTemplates);

View File

@ -21,7 +21,8 @@ import { galleryPersistConfig, gallerySlice } from 'features/gallery/store/galle
import { hrfPersistConfig, hrfSlice } from 'features/hrf/store/hrfSlice';
import { loraPersistConfig, loraSlice } from 'features/lora/store/loraSlice';
import { modelManagerV2PersistConfig, modelManagerV2Slice } from 'features/modelManagerV2/store/modelManagerV2Slice';
import { nodesPersistConfig, nodesSlice } from 'features/nodes/store/nodesSlice';
import { nodesPersistConfig, nodesSlice, nodesUndoableConfig } from 'features/nodes/store/nodesSlice';
import { workflowSettingsPersistConfig, workflowSettingsSlice } from 'features/nodes/store/workflowSettingsSlice';
import { workflowPersistConfig, workflowSlice } from 'features/nodes/store/workflowSlice';
import { generationPersistConfig, generationSlice } from 'features/parameters/store/generationSlice';
import { postprocessingPersistConfig, postprocessingSlice } from 'features/parameters/store/postprocessingSlice';
@ -50,7 +51,7 @@ const allReducers = {
[canvasSlice.name]: canvasSlice.reducer,
[gallerySlice.name]: gallerySlice.reducer,
[generationSlice.name]: generationSlice.reducer,
[nodesSlice.name]: nodesSlice.reducer,
[nodesSlice.name]: undoable(nodesSlice.reducer, nodesUndoableConfig),
[postprocessingSlice.name]: postprocessingSlice.reducer,
[systemSlice.name]: systemSlice.reducer,
[configSlice.name]: configSlice.reducer,
@ -66,6 +67,7 @@ const allReducers = {
[workflowSlice.name]: workflowSlice.reducer,
[hrfSlice.name]: hrfSlice.reducer,
[controlLayersSlice.name]: undoable(controlLayersSlice.reducer, controlLayersUndoableConfig),
[workflowSettingsSlice.name]: workflowSettingsSlice.reducer,
[api.reducerPath]: api.reducer,
};
@ -111,6 +113,7 @@ const persistConfigs: { [key in keyof typeof allReducers]?: PersistConfig } = {
[modelManagerV2PersistConfig.name]: modelManagerV2PersistConfig,
[hrfPersistConfig.name]: hrfPersistConfig,
[controlLayersPersistConfig.name]: controlLayersPersistConfig,
[workflowSettingsPersistConfig.name]: workflowSettingsPersistConfig,
};
const unserialize: UnserializeFunction = (data, key) => {

View File

@ -70,6 +70,7 @@ const IAIDndImage = (props: IAIDndImageProps) => {
onMouseOver,
onMouseOut,
dataTestId,
...rest
} = props;
const [isHovered, setIsHovered] = useState(false);
@ -138,6 +139,7 @@ const IAIDndImage = (props: IAIDndImageProps) => {
minH={minSize ? minSize : undefined}
userSelect="none"
cursor={isDragDisabled || !imageDTO ? 'default' : 'pointer'}
{...rest}
>
{imageDTO && (
<Flex

View File

@ -13,6 +13,7 @@ type UseGroupedModelComboboxArg<T extends AnyModelConfig> = {
onChange: (value: T | null) => void;
getIsDisabled?: (model: T) => boolean;
isLoading?: boolean;
groupByType?: boolean;
};
type UseGroupedModelComboboxReturn = {
@ -23,17 +24,21 @@ type UseGroupedModelComboboxReturn = {
noOptionsMessage: () => string;
};
const groupByBaseFunc = <T extends AnyModelConfig>(model: T) => model.base.toUpperCase();
const groupByBaseAndTypeFunc = <T extends AnyModelConfig>(model: T) =>
`${model.base.toUpperCase()} / ${model.type.replaceAll('_', ' ').toUpperCase()}`;
export const useGroupedModelCombobox = <T extends AnyModelConfig>(
arg: UseGroupedModelComboboxArg<T>
): UseGroupedModelComboboxReturn => {
const { t } = useTranslation();
const base_model = useAppSelector((s) => s.generation.model?.base ?? 'sdxl');
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading } = arg;
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading, groupByType = false } = arg;
const options = useMemo<GroupBase<ComboboxOption>[]>(() => {
if (!modelConfigs) {
return [];
}
const groupedModels = groupBy(modelConfigs, 'base');
const groupedModels = groupBy(modelConfigs, groupByType ? groupByBaseAndTypeFunc : groupByBaseFunc);
const _options = reduce(
groupedModels,
(acc, val, label) => {
@ -49,9 +54,9 @@ export const useGroupedModelCombobox = <T extends AnyModelConfig>(
},
[] as GroupBase<ComboboxOption>[]
);
_options.sort((a) => (a.label === base_model ? -1 : 1));
_options.sort((a) => (a.label?.split('/')[0]?.toLowerCase().includes(base_model) ? -1 : 1));
return _options;
}, [getIsDisabled, modelConfigs, base_model]);
}, [modelConfigs, groupByType, getIsDisabled, base_model]);
const value = useMemo(
() =>

View File

@ -1,3 +1,4 @@
import { useStore } from '@nanostores/react';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import {
@ -6,187 +7,230 @@ import {
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
import { selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
import type { Layer } from 'features/controlLayers/store/types';
import { selectDynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { selectNodesSlice } from 'features/nodes/store/nodesSlice';
import { $templates, selectNodesSlice } from 'features/nodes/store/nodesSlice';
import type { Templates } from 'features/nodes/store/types';
import { selectWorkflowSettingsSlice } from 'features/nodes/store/workflowSettingsSlice';
import { isInvocationNode } from 'features/nodes/types/invocation';
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
import { selectSystemSlice } from 'features/system/store/systemSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import i18n from 'i18next';
import { forEach } from 'lodash-es';
import { forEach, upperFirst } from 'lodash-es';
import { useMemo } from 'react';
import { getConnectedEdges } from 'reactflow';
const selector = createMemoizedSelector(
[
selectControlAdaptersSlice,
selectGenerationSlice,
selectSystemSlice,
selectNodesSlice,
selectDynamicPromptsSlice,
selectControlLayersSlice,
activeTabNameSelector,
],
(controlAdapters, generation, system, nodes, dynamicPrompts, controlLayers, activeTabName) => {
const { model } = generation;
const { positivePrompt } = controlLayers.present;
const LAYER_TYPE_TO_TKEY: Record<Layer['type'], string> = {
initial_image_layer: 'controlLayers.globalInitialImage',
control_adapter_layer: 'controlLayers.globalControlAdapter',
ip_adapter_layer: 'controlLayers.globalIPAdapter',
regional_guidance_layer: 'controlLayers.regionalGuidance',
};
const { isConnected } = system;
const createSelector = (templates: Templates) =>
createMemoizedSelector(
[
selectControlAdaptersSlice,
selectGenerationSlice,
selectSystemSlice,
selectNodesSlice,
selectWorkflowSettingsSlice,
selectDynamicPromptsSlice,
selectControlLayersSlice,
activeTabNameSelector,
],
(controlAdapters, generation, system, nodes, workflowSettings, dynamicPrompts, controlLayers, activeTabName) => {
const { model } = generation;
const { size } = controlLayers.present;
const { positivePrompt } = controlLayers.present;
const reasons: string[] = [];
const { isConnected } = system;
// Cannot generate if not connected
if (!isConnected) {
reasons.push(i18n.t('parameters.invoke.systemDisconnected'));
}
const reasons: { prefix?: string; content: string }[] = [];
if (activeTabName === 'workflows') {
if (nodes.shouldValidateGraph) {
if (!nodes.nodes.length) {
reasons.push(i18n.t('parameters.invoke.noNodesInGraph'));
// Cannot generate if not connected
if (!isConnected) {
reasons.push({ content: i18n.t('parameters.invoke.systemDisconnected') });
}
if (activeTabName === 'workflows') {
if (workflowSettings.shouldValidateGraph) {
if (!nodes.nodes.length) {
reasons.push({ content: i18n.t('parameters.invoke.noNodesInGraph') });
}
nodes.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
return;
}
const nodeTemplate = templates[node.data.type];
if (!nodeTemplate) {
// Node type not found
reasons.push({ content: i18n.t('parameters.invoke.missingNodeTemplate') });
return;
}
const connectedEdges = getConnectedEdges([node], nodes.edges);
forEach(node.data.inputs, (field) => {
const fieldTemplate = nodeTemplate.inputs[field.name];
const hasConnection = connectedEdges.some(
(edge) => edge.target === node.id && edge.targetHandle === field.name
);
if (!fieldTemplate) {
reasons.push({ content: i18n.t('parameters.invoke.missingFieldTemplate') });
return;
}
if (fieldTemplate.required && field.value === undefined && !hasConnection) {
reasons.push({
content: i18n.t('parameters.invoke.missingInputForField', {
nodeLabel: node.data.label || nodeTemplate.title,
fieldLabel: field.label || fieldTemplate.title,
}),
});
return;
}
});
});
}
} else {
if (dynamicPrompts.prompts.length === 0 && getShouldProcessPrompt(positivePrompt)) {
reasons.push({ content: i18n.t('parameters.invoke.noPrompts') });
}
nodes.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
return;
}
if (!model) {
reasons.push({ content: i18n.t('parameters.invoke.noModelSelected') });
}
const nodeTemplate = nodes.templates[node.data.type];
if (activeTabName === 'generation') {
// Handling for generation tab
controlLayers.present.layers
.filter((l) => l.isEnabled)
.forEach((l, i) => {
const layerLiteral = i18n.t('controlLayers.layers_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[l.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
if (l.type === 'control_adapter_layer') {
// Must have model
if (!l.controlAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterNoModelSelected'));
}
// Model base must match
if (l.controlAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterIncompatibleBaseModel'));
}
// Must have a control image OR, if it has a processor, it must have a processed image
if (!l.controlAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterNoImageSelected'));
} else if (l.controlAdapter.processorConfig && !l.controlAdapter.processedImage) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterImageNotProcessed'));
}
// T2I Adapters require images have dimensions that are multiples of 64 (SD1.5) or 32 (SDXL)
if (l.controlAdapter.type === 't2i_adapter') {
const multiple = model?.base === 'sdxl' ? 32 : 64;
if (size.width % multiple !== 0 || size.height % multiple !== 0) {
problems.push(i18n.t('parameters.invoke.layer.t2iAdapterIncompatibleDimensions'));
}
}
}
if (!nodeTemplate) {
// Node type not found
reasons.push(i18n.t('parameters.invoke.missingNodeTemplate'));
return;
}
if (l.type === 'ip_adapter_layer') {
// Must have model
if (!l.ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
// Model base must match
if (l.ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
// Must have an image
if (!l.ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
}
const connectedEdges = getConnectedEdges([node], nodes.edges);
if (l.type === 'initial_image_layer') {
// Must have an image
if (!l.image) {
problems.push(i18n.t('parameters.invoke.layer.initialImageNoImageSelected'));
}
}
forEach(node.data.inputs, (field) => {
const fieldTemplate = nodeTemplate.inputs[field.name];
const hasConnection = connectedEdges.some(
(edge) => edge.target === node.id && edge.targetHandle === field.name
);
if (l.type === 'regional_guidance_layer') {
// Must have a region
if (l.maskObjects.length === 0) {
problems.push(i18n.t('parameters.invoke.layer.rgNoRegion'));
}
// Must have at least 1 prompt or IP Adapter
if (l.positivePrompt === null && l.negativePrompt === null && l.ipAdapters.length === 0) {
problems.push(i18n.t('parameters.invoke.layer.rgNoPromptsOrIPAdapters'));
}
l.ipAdapters.forEach((ipAdapter) => {
// Must have model
if (!ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
// Model base must match
if (ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
// Must have an image
if (!ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
});
}
if (!fieldTemplate) {
reasons.push(i18n.t('parameters.invoke.missingFieldTemplate'));
return;
}
if (problems.length) {
const content = upperFirst(problems.join(', '));
reasons.push({ prefix, content });
}
});
} else {
// Handling for all other tabs
selectControlAdapterAll(controlAdapters)
.filter((ca) => ca.isEnabled)
.forEach((ca, i) => {
if (!ca.isEnabled) {
return;
}
if (fieldTemplate.required && field.value === undefined && !hasConnection) {
reasons.push(
i18n.t('parameters.invoke.missingInputForField', {
nodeLabel: node.data.label || nodeTemplate.title,
fieldLabel: field.label || fieldTemplate.title,
})
);
return;
}
});
});
}
} else {
if (dynamicPrompts.prompts.length === 0 && getShouldProcessPrompt(positivePrompt)) {
reasons.push(i18n.t('parameters.invoke.noPrompts'));
if (!ca.model) {
reasons.push({ content: i18n.t('parameters.invoke.noModelForControlAdapter', { number: i + 1 }) });
} else if (ca.model.base !== model?.base) {
// This should never happen, just a sanity check
reasons.push({
content: i18n.t('parameters.invoke.incompatibleBaseModelForControlAdapter', { number: i + 1 }),
});
}
if (
!ca.controlImage ||
(isControlNetOrT2IAdapter(ca) && !ca.processedControlImage && ca.processorType !== 'none')
) {
reasons.push({
content: i18n.t('parameters.invoke.noControlImageForControlAdapter', { number: i + 1 }),
});
}
});
}
}
if (!model) {
reasons.push(i18n.t('parameters.invoke.noModelSelected'));
}
if (activeTabName === 'generation') {
// Handling for generation tab
controlLayers.present.layers
.filter((l) => l.isEnabled)
.flatMap((l) => {
if (l.type === 'control_adapter_layer') {
return l.controlAdapter;
} else if (l.type === 'ip_adapter_layer') {
return l.ipAdapter;
} else if (l.type === 'regional_guidance_layer') {
return l.ipAdapters;
}
return [];
})
.forEach((ca, i) => {
const hasNoModel = !ca.model;
const mismatchedModelBase = ca.model?.base !== model?.base;
const hasNoImage = !ca.image;
const imageNotProcessed =
(ca.type === 'controlnet' || ca.type === 't2i_adapter') && !ca.processedImage && ca.processorConfig;
if (hasNoModel) {
reasons.push(
i18n.t('parameters.invoke.noModelForControlAdapter', {
number: i + 1,
})
);
}
if (mismatchedModelBase) {
// This should never happen, just a sanity check
reasons.push(
i18n.t('parameters.invoke.incompatibleBaseModelForControlAdapter', {
number: i + 1,
})
);
}
if (hasNoImage) {
reasons.push(
i18n.t('parameters.invoke.noControlImageForControlAdapter', {
number: i + 1,
})
);
}
if (imageNotProcessed) {
reasons.push(
i18n.t('parameters.invoke.imageNotProcessedForControlAdapter', {
number: i + 1,
})
);
}
});
} else {
// Handling for all other tabs
selectControlAdapterAll(controlAdapters)
.filter((ca) => ca.isEnabled)
.forEach((ca, i) => {
if (!ca.isEnabled) {
return;
}
if (!ca.model) {
reasons.push(
i18n.t('parameters.invoke.noModelForControlAdapter', {
number: i + 1,
})
);
} else if (ca.model.base !== model?.base) {
// This should never happen, just a sanity check
reasons.push(
i18n.t('parameters.invoke.incompatibleBaseModelForControlAdapter', {
number: i + 1,
})
);
}
if (
!ca.controlImage ||
(isControlNetOrT2IAdapter(ca) && !ca.processedControlImage && ca.processorType !== 'none')
) {
reasons.push(
i18n.t('parameters.invoke.noControlImageForControlAdapter', {
number: i + 1,
})
);
}
});
}
return { isReady: !reasons.length, reasons };
}
return { isReady: !reasons.length, reasons };
}
);
);
export const useIsReadyToEnqueue = () => {
const { isReady, reasons } = useAppSelector(selector);
return { isReady, reasons };
const templates = useStore($templates);
const selector = useMemo(() => createSelector(templates), [templates]);
const value = useAppSelector(selector);
return value;
};

View File

@ -21,8 +21,6 @@ import {
setShouldShowBoundingBox,
} from 'features/canvas/store/canvasSlice';
import type { CanvasLayer } from 'features/canvas/store/canvasTypes';
import { LAYER_NAMES_DICT } from 'features/canvas/store/canvasTypes';
import { ViewerButton } from 'features/gallery/components/ImageViewer/ViewerButton';
import { memo, useCallback, useMemo } from 'react';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
@ -217,110 +215,107 @@ const IAICanvasToolbar = () => {
[dispatch, isMaskEnabled]
);
const value = useMemo(() => LAYER_NAMES_DICT.filter((o) => o.value === layer)[0], [layer]);
const layerOptions = useMemo<{ label: string; value: CanvasLayer }[]>(
() => [
{ label: t('unifiedCanvas.base'), value: 'base' },
{ label: t('unifiedCanvas.mask'), value: 'mask' },
],
[t]
);
const layerValue = useMemo(() => layerOptions.filter((o) => o.value === layer)[0] ?? null, [layer, layerOptions]);
return (
<Flex w="full" gap={2} alignItems="center">
<Flex flex={1} justifyContent="center">
<Flex gap={2} marginInlineEnd="auto" />
</Flex>
<Flex flex={1} gap={2} justifyContent="center">
<Tooltip label={`${t('unifiedCanvas.layer')} (Q)`}>
<FormControl isDisabled={isStaging} w="5rem">
<Combobox value={value} options={LAYER_NAMES_DICT} onChange={handleChangeLayer} />
</FormControl>
</Tooltip>
<Flex alignItems="center" gap={2} flexWrap="wrap">
<Tooltip label={`${t('unifiedCanvas.layer')} (Q)`}>
<FormControl isDisabled={isStaging} w="5rem">
<Combobox value={layerValue} options={layerOptions} onChange={handleChangeLayer} />
</FormControl>
</Tooltip>
<IAICanvasMaskOptions />
<IAICanvasToolChooserOptions />
<IAICanvasMaskOptions />
<IAICanvasToolChooserOptions />
<ButtonGroup>
<IconButton
aria-label={`${t('unifiedCanvas.move')} (V)`}
tooltip={`${t('unifiedCanvas.move')} (V)`}
icon={<PiHandGrabbingBold />}
isChecked={tool === 'move' || isStaging}
onClick={handleSelectMoveTool}
/>
<IconButton
aria-label={`${shouldShowBoundingBox ? t('unifiedCanvas.hideBoundingBox') : t('unifiedCanvas.showBoundingBox')} (Shift + H)`}
tooltip={`${shouldShowBoundingBox ? t('unifiedCanvas.hideBoundingBox') : t('unifiedCanvas.showBoundingBox')} (Shift + H)`}
icon={shouldShowBoundingBox ? <PiEyeBold /> : <PiEyeSlashBold />}
onClick={handleSetShouldShowBoundingBox}
isDisabled={isStaging}
/>
<IconButton
aria-label={`${t('unifiedCanvas.resetView')} (R)`}
tooltip={`${t('unifiedCanvas.resetView')} (R)`}
icon={<PiCrosshairSimpleBold />}
onClick={handleClickResetCanvasView}
/>
</ButtonGroup>
<ButtonGroup>
<IconButton
aria-label={`${t('unifiedCanvas.move')} (V)`}
tooltip={`${t('unifiedCanvas.move')} (V)`}
icon={<PiHandGrabbingBold />}
isChecked={tool === 'move' || isStaging}
onClick={handleSelectMoveTool}
/>
<IconButton
aria-label={`${shouldShowBoundingBox ? t('unifiedCanvas.hideBoundingBox') : t('unifiedCanvas.showBoundingBox')} (Shift + H)`}
tooltip={`${shouldShowBoundingBox ? t('unifiedCanvas.hideBoundingBox') : t('unifiedCanvas.showBoundingBox')} (Shift + H)`}
icon={shouldShowBoundingBox ? <PiEyeBold /> : <PiEyeSlashBold />}
onClick={handleSetShouldShowBoundingBox}
isDisabled={isStaging}
/>
<IconButton
aria-label={`${t('unifiedCanvas.resetView')} (R)`}
tooltip={`${t('unifiedCanvas.resetView')} (R)`}
icon={<PiCrosshairSimpleBold />}
onClick={handleClickResetCanvasView}
/>
</ButtonGroup>
<ButtonGroup>
<ButtonGroup>
<IconButton
aria-label={`${t('unifiedCanvas.mergeVisible')} (Shift+M)`}
tooltip={`${t('unifiedCanvas.mergeVisible')} (Shift+M)`}
icon={<PiStackBold />}
onClick={handleMergeVisible}
isDisabled={isStaging}
/>
<IconButton
aria-label={`${t('unifiedCanvas.saveToGallery')} (Shift+S)`}
tooltip={`${t('unifiedCanvas.saveToGallery')} (Shift+S)`}
icon={<PiFloppyDiskBold />}
onClick={handleSaveToGallery}
isDisabled={isStaging}
/>
{isClipboardAPIAvailable && (
<IconButton
aria-label={`${t('unifiedCanvas.mergeVisible')} (Shift+M)`}
tooltip={`${t('unifiedCanvas.mergeVisible')} (Shift+M)`}
icon={<PiStackBold />}
onClick={handleMergeVisible}
aria-label={`${t('unifiedCanvas.copyToClipboard')} (Cmd/Ctrl+C)`}
tooltip={`${t('unifiedCanvas.copyToClipboard')} (Cmd/Ctrl+C)`}
icon={<PiCopyBold />}
onClick={handleCopyImageToClipboard}
isDisabled={isStaging}
/>
<IconButton
aria-label={`${t('unifiedCanvas.saveToGallery')} (Shift+S)`}
tooltip={`${t('unifiedCanvas.saveToGallery')} (Shift+S)`}
icon={<PiFloppyDiskBold />}
onClick={handleSaveToGallery}
isDisabled={isStaging}
/>
{isClipboardAPIAvailable && (
<IconButton
aria-label={`${t('unifiedCanvas.copyToClipboard')} (Cmd/Ctrl+C)`}
tooltip={`${t('unifiedCanvas.copyToClipboard')} (Cmd/Ctrl+C)`}
icon={<PiCopyBold />}
onClick={handleCopyImageToClipboard}
isDisabled={isStaging}
/>
)}
<IconButton
aria-label={`${t('unifiedCanvas.downloadAsImage')} (Shift+D)`}
tooltip={`${t('unifiedCanvas.downloadAsImage')} (Shift+D)`}
icon={<PiDownloadSimpleBold />}
onClick={handleDownloadAsImage}
isDisabled={isStaging}
/>
</ButtonGroup>
<ButtonGroup>
<IAICanvasUndoButton />
<IAICanvasRedoButton />
</ButtonGroup>
)}
<IconButton
aria-label={`${t('unifiedCanvas.downloadAsImage')} (Shift+D)`}
tooltip={`${t('unifiedCanvas.downloadAsImage')} (Shift+D)`}
icon={<PiDownloadSimpleBold />}
onClick={handleDownloadAsImage}
isDisabled={isStaging}
/>
</ButtonGroup>
<ButtonGroup>
<IAICanvasUndoButton />
<IAICanvasRedoButton />
</ButtonGroup>
<ButtonGroup>
<IconButton
aria-label={`${t('common.upload')}`}
tooltip={`${t('common.upload')}`}
icon={<PiUploadSimpleBold />}
isDisabled={isStaging}
{...getUploadButtonProps()}
/>
<input {...getUploadInputProps()} />
<IconButton
aria-label={`${t('unifiedCanvas.clearCanvas')}`}
tooltip={`${t('unifiedCanvas.clearCanvas')}`}
icon={<PiTrashSimpleBold />}
onClick={handleResetCanvas}
colorScheme="error"
isDisabled={isStaging}
/>
</ButtonGroup>
<ButtonGroup>
<IAICanvasSettingsButtonPopover />
</ButtonGroup>
</Flex>
<Flex flex={1} justifyContent="center">
<Flex gap={2} marginInlineStart="auto">
<ViewerButton />
</Flex>
</Flex>
<ButtonGroup>
<IconButton
aria-label={`${t('common.upload')}`}
tooltip={`${t('common.upload')}`}
icon={<PiUploadSimpleBold />}
isDisabled={isStaging}
{...getUploadButtonProps()}
/>
<input {...getUploadInputProps()} />
<IconButton
aria-label={`${t('unifiedCanvas.clearCanvas')}`}
tooltip={`${t('unifiedCanvas.clearCanvas')}`}
icon={<PiTrashSimpleBold />}
onClick={handleResetCanvas}
colorScheme="error"
isDisabled={isStaging}
/>
</ButtonGroup>
<ButtonGroup>
<IAICanvasSettingsButtonPopover />
</ButtonGroup>
</Flex>
);
};

View File

@ -5,11 +5,6 @@ import { z } from 'zod';
export type CanvasLayer = 'base' | 'mask';
export const LAYER_NAMES_DICT: { label: string; value: CanvasLayer }[] = [
{ label: 'Base', value: 'base' },
{ label: 'Mask', value: 'mask' },
];
const zBoundingBoxScaleMethod = z.enum(['none', 'auto', 'manual']);
export type BoundingBoxScaleMethod = z.infer<typeof zBoundingBoxScaleMethod>;
export const isBoundingBoxScaleMethod = (v: unknown): v is BoundingBoxScaleMethod =>

View File

@ -5,22 +5,7 @@ import type {
ParameterT2IAdapterModel,
} from 'features/parameters/types/parameterSchemas';
import type { components } from 'services/api/schema';
import type {
CannyImageProcessorInvocation,
ColorMapImageProcessorInvocation,
ContentShuffleImageProcessorInvocation,
DepthAnythingImageProcessorInvocation,
DWOpenposeImageProcessorInvocation,
HedImageProcessorInvocation,
LineartAnimeImageProcessorInvocation,
LineartImageProcessorInvocation,
MediapipeFaceProcessorInvocation,
MidasDepthImageProcessorInvocation,
MlsdImageProcessorInvocation,
NormalbaeImageProcessorInvocation,
PidiImageProcessorInvocation,
ZoeDepthImageProcessorInvocation,
} from 'services/api/types';
import type { Invocation } from 'services/api/types';
import type { O } from 'ts-toolbelt';
import { z } from 'zod';
@ -28,20 +13,20 @@ import { z } from 'zod';
* Any ControlNet processor node
*/
export type ControlAdapterProcessorNode =
| CannyImageProcessorInvocation
| ColorMapImageProcessorInvocation
| ContentShuffleImageProcessorInvocation
| DepthAnythingImageProcessorInvocation
| HedImageProcessorInvocation
| LineartAnimeImageProcessorInvocation
| LineartImageProcessorInvocation
| MediapipeFaceProcessorInvocation
| MidasDepthImageProcessorInvocation
| MlsdImageProcessorInvocation
| NormalbaeImageProcessorInvocation
| DWOpenposeImageProcessorInvocation
| PidiImageProcessorInvocation
| ZoeDepthImageProcessorInvocation;
| Invocation<'canny_image_processor'>
| Invocation<'color_map_image_processor'>
| Invocation<'content_shuffle_image_processor'>
| Invocation<'depth_anything_image_processor'>
| Invocation<'hed_image_processor'>
| Invocation<'lineart_anime_image_processor'>
| Invocation<'lineart_image_processor'>
| Invocation<'mediapipe_face_processor'>
| Invocation<'midas_depth_image_processor'>
| Invocation<'mlsd_image_processor'>
| Invocation<'normalbae_image_processor'>
| Invocation<'dw_openpose_image_processor'>
| Invocation<'pidi_image_processor'>
| Invocation<'zoe_depth_image_processor'>;
/**
* Any ControlNet processor type
@ -71,7 +56,7 @@ export const isControlAdapterProcessorType = (v: unknown): v is ControlAdapterPr
* The Canny processor node, with parameters flagged as required
*/
export type RequiredCannyImageProcessorInvocation = O.Required<
CannyImageProcessorInvocation,
Invocation<'canny_image_processor'>,
'type' | 'low_threshold' | 'high_threshold' | 'image_resolution' | 'detect_resolution'
>;
@ -79,7 +64,7 @@ export type RequiredCannyImageProcessorInvocation = O.Required<
* The Color Map processor node, with parameters flagged as required
*/
export type RequiredColorMapImageProcessorInvocation = O.Required<
ColorMapImageProcessorInvocation,
Invocation<'color_map_image_processor'>,
'type' | 'color_map_tile_size'
>;
@ -87,7 +72,7 @@ export type RequiredColorMapImageProcessorInvocation = O.Required<
* The ContentShuffle processor node, with parameters flagged as required
*/
export type RequiredContentShuffleImageProcessorInvocation = O.Required<
ContentShuffleImageProcessorInvocation,
Invocation<'content_shuffle_image_processor'>,
'type' | 'detect_resolution' | 'image_resolution' | 'w' | 'h' | 'f'
>;
@ -95,7 +80,7 @@ export type RequiredContentShuffleImageProcessorInvocation = O.Required<
* The DepthAnything processor node, with parameters flagged as required
*/
export type RequiredDepthAnythingImageProcessorInvocation = O.Required<
DepthAnythingImageProcessorInvocation,
Invocation<'depth_anything_image_processor'>,
'type' | 'model_size' | 'resolution' | 'offload'
>;
@ -108,7 +93,7 @@ export const isDepthAnythingModelSize = (v: unknown): v is DepthAnythingModelSiz
* The HED processor node, with parameters flagged as required
*/
export type RequiredHedImageProcessorInvocation = O.Required<
HedImageProcessorInvocation,
Invocation<'hed_image_processor'>,
'type' | 'detect_resolution' | 'image_resolution' | 'scribble'
>;
@ -116,7 +101,7 @@ export type RequiredHedImageProcessorInvocation = O.Required<
* The Lineart Anime processor node, with parameters flagged as required
*/
export type RequiredLineartAnimeImageProcessorInvocation = O.Required<
LineartAnimeImageProcessorInvocation,
Invocation<'lineart_anime_image_processor'>,
'type' | 'detect_resolution' | 'image_resolution'
>;
@ -124,7 +109,7 @@ export type RequiredLineartAnimeImageProcessorInvocation = O.Required<
* The Lineart processor node, with parameters flagged as required
*/
export type RequiredLineartImageProcessorInvocation = O.Required<
LineartImageProcessorInvocation,
Invocation<'lineart_image_processor'>,
'type' | 'detect_resolution' | 'image_resolution' | 'coarse'
>;
@ -132,7 +117,7 @@ export type RequiredLineartImageProcessorInvocation = O.Required<
* The MediapipeFace processor node, with parameters flagged as required
*/
export type RequiredMediapipeFaceProcessorInvocation = O.Required<
MediapipeFaceProcessorInvocation,
Invocation<'mediapipe_face_processor'>,
'type' | 'max_faces' | 'min_confidence' | 'image_resolution' | 'detect_resolution'
>;
@ -140,7 +125,7 @@ export type RequiredMediapipeFaceProcessorInvocation = O.Required<
* The MidasDepth processor node, with parameters flagged as required
*/
export type RequiredMidasDepthImageProcessorInvocation = O.Required<
MidasDepthImageProcessorInvocation,
Invocation<'midas_depth_image_processor'>,
'type' | 'a_mult' | 'bg_th' | 'image_resolution' | 'detect_resolution'
>;
@ -148,7 +133,7 @@ export type RequiredMidasDepthImageProcessorInvocation = O.Required<
* The MLSD processor node, with parameters flagged as required
*/
export type RequiredMlsdImageProcessorInvocation = O.Required<
MlsdImageProcessorInvocation,
Invocation<'mlsd_image_processor'>,
'type' | 'detect_resolution' | 'image_resolution' | 'thr_v' | 'thr_d'
>;
@ -156,7 +141,7 @@ export type RequiredMlsdImageProcessorInvocation = O.Required<
* The NormalBae processor node, with parameters flagged as required
*/
export type RequiredNormalbaeImageProcessorInvocation = O.Required<
NormalbaeImageProcessorInvocation,
Invocation<'normalbae_image_processor'>,
'type' | 'detect_resolution' | 'image_resolution'
>;
@ -164,7 +149,7 @@ export type RequiredNormalbaeImageProcessorInvocation = O.Required<
* The DW Openpose processor node, with parameters flagged as required
*/
export type RequiredDWOpenposeImageProcessorInvocation = O.Required<
DWOpenposeImageProcessorInvocation,
Invocation<'dw_openpose_image_processor'>,
'type' | 'image_resolution' | 'draw_body' | 'draw_face' | 'draw_hands'
>;
@ -172,14 +157,14 @@ export type RequiredDWOpenposeImageProcessorInvocation = O.Required<
* The Pidi processor node, with parameters flagged as required
*/
export type RequiredPidiImageProcessorInvocation = O.Required<
PidiImageProcessorInvocation,
Invocation<'pidi_image_processor'>,
'type' | 'detect_resolution' | 'image_resolution' | 'safe' | 'scribble'
>;
/**
* The ZoeDepth processor node, with parameters flagged as required
*/
export type RequiredZoeDepthImageProcessorInvocation = O.Required<ZoeDepthImageProcessorInvocation, 'type'>;
export type RequiredZoeDepthImageProcessorInvocation = O.Required<Invocation<'zoe_depth_image_processor'>, 'type'>;
/**
* Any ControlNet Processor node, with its parameters flagged as required

View File

@ -18,7 +18,12 @@ export const AddLayerButton = memo(() => {
return (
<Menu>
<MenuButton as={Button} leftIcon={<PiPlusBold />} variant="ghost">
<MenuButton
as={Button}
leftIcon={<PiPlusBold />}
variant="ghost"
data-testid="control-layers-add-layer-menu-button"
>
{t('controlLayers.addLayer')}
</MenuButton>
<MenuList>

View File

@ -19,7 +19,6 @@ export const CALayer = memo(({ layerId }: Props) => {
const dispatch = useAppDispatch();
const isSelected = useAppSelector((s) => selectCALayerOrThrow(s.controlLayers.present, layerId).isSelected);
const onClick = useCallback(() => {
// Must be capture so that the layer is selected before deleting/resetting/etc
dispatch(layerSelected(layerId));
}, [dispatch, layerId]);
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen: true });

View File

@ -42,10 +42,10 @@ export const ControlAdapterImagePreview = memo(
const [isMouseOverImage, setIsMouseOverImage] = useState(false);
const { currentData: controlImage, isError: isErrorControlImage } = useGetImageDTOQuery(
controlAdapter.image?.imageName ?? skipToken
controlAdapter.image?.name ?? skipToken
);
const { currentData: processedControlImage, isError: isErrorProcessedControlImage } = useGetImageDTOQuery(
controlAdapter.processedImage?.imageName ?? skipToken
controlAdapter.processedImage?.name ?? skipToken
);
const [changeIsIntermediate] = useChangeImageIsIntermediateMutation();
@ -124,7 +124,7 @@ export const ControlAdapterImagePreview = memo(
controlImage &&
processedControlImage &&
!isMouseOverImage &&
!controlAdapter.isProcessingImage &&
!controlAdapter.processorPendingBatchId &&
controlAdapter.processorConfig !== null;
useEffect(() => {
@ -190,7 +190,7 @@ export const ControlAdapterImagePreview = memo(
/>
</>
{controlAdapter.isProcessingImage && (
{controlAdapter.processorPendingBatchId !== null && (
<Flex
position="absolute"
top={0}

View File

@ -42,6 +42,7 @@ export const ControlAdapterModelCombobox = memo(({ modelKey, onChange: onChangeM
selectedModel,
getIsDisabled,
isLoading,
groupByType: true,
});
return (

View File

@ -34,9 +34,7 @@ export const IPAdapterImagePreview = memo(
const optimalDimension = useAppSelector(selectOptimalDimension);
const shift = useShiftModifier();
const { currentData: controlImage, isError: isErrorControlImage } = useGetImageDTOQuery(
image?.imageName ?? skipToken
);
const { currentData: controlImage, isError: isErrorControlImage } = useGetImageDTOQuery(image?.name ?? skipToken);
const handleResetControlImage = useCallback(() => {
onChangeImage(null);
}, [onChangeImage]);

View File

@ -2,14 +2,13 @@ import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { DepthAnythingModelSize, DepthAnythingProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { CA_PROCESSOR_DATA, isDepthAnythingModelSize } from 'features/controlLayers/util/controlAdapters';
import { isDepthAnythingModelSize } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<DepthAnythingProcessorConfig>;
const DEFAULTS = CA_PROCESSOR_DATA['depth_anything_image_processor'].buildDefaults();
export const DepthAnythingProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
@ -38,12 +37,7 @@ export const DepthAnythingProcessor = memo(({ onChange, config }: Props) => {
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.modelSize')}</FormLabel>
<Combobox
value={value}
defaultInputValue={DEFAULTS.model_size}
options={options}
onChange={handleModelSizeChange}
/>
<Combobox value={value} options={options} onChange={handleModelSizeChange} isSearchable={false} />
</FormControl>
</ProcessorWrapper>
);

View File

@ -32,7 +32,7 @@ export const ControlLayersPanelContent = memo(() => {
</Flex>
{layerIdTypePairs.length > 0 && (
<ScrollableContent>
<Flex flexDir="column" gap={2}>
<Flex flexDir="column" gap={2} data-testid="control-layers-layer-list">
{layerIdTypePairs.map(({ id, type }) => (
<LayerWrapper key={id} id={id} type={type} />
))}

View File

@ -1,12 +1,30 @@
import { Flex, IconButton, Popover, PopoverBody, PopoverContent, PopoverTrigger } from '@invoke-ai/ui-library';
import {
Checkbox,
Flex,
FormControl,
FormLabel,
IconButton,
Popover,
PopoverBody,
PopoverContent,
PopoverTrigger,
} from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { setShouldInvertBrushSizeScrollDirection } from 'features/canvas/store/canvasSlice';
import { GlobalMaskLayerOpacity } from 'features/controlLayers/components/GlobalMaskLayerOpacity';
import { memo } from 'react';
import type { ChangeEvent } from 'react';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { RiSettings4Fill } from 'react-icons/ri';
const ControlLayersSettingsPopover = () => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const shouldInvertBrushSizeScrollDirection = useAppSelector((s) => s.canvas.shouldInvertBrushSizeScrollDirection);
const handleChangeShouldInvertBrushSizeScrollDirection = useCallback(
(e: ChangeEvent<HTMLInputElement>) => dispatch(setShouldInvertBrushSizeScrollDirection(e.target.checked)),
[dispatch]
);
return (
<Popover isLazy>
<PopoverTrigger>
@ -16,6 +34,13 @@ const ControlLayersSettingsPopover = () => {
<PopoverBody>
<Flex direction="column" gap={2}>
<GlobalMaskLayerOpacity />
<FormControl w="full">
<FormLabel flexGrow={1}>{t('unifiedCanvas.invertBrushSizeScrollDirection')}</FormLabel>
<Checkbox
isChecked={shouldInvertBrushSizeScrollDirection}
onChange={handleChangeShouldInvertBrushSizeScrollDirection}
/>
</FormControl>
</Flex>
</PopoverBody>
</PopoverContent>

View File

@ -4,14 +4,17 @@ import { BrushSize } from 'features/controlLayers/components/BrushSize';
import ControlLayersSettingsPopover from 'features/controlLayers/components/ControlLayersSettingsPopover';
import { ToolChooser } from 'features/controlLayers/components/ToolChooser';
import { UndoRedoButtonGroup } from 'features/controlLayers/components/UndoRedoButtonGroup';
import { ViewerButton } from 'features/gallery/components/ImageViewer/ViewerButton';
import { ToggleProgressButton } from 'features/gallery/components/ImageViewer/ToggleProgressButton';
import { ViewerToggleMenu } from 'features/gallery/components/ImageViewer/ViewerToggleMenu';
import { memo } from 'react';
export const ControlLayersToolbar = memo(() => {
return (
<Flex w="full" gap={2}>
<Flex flex={1} justifyContent="center">
<Flex gap={2} marginInlineEnd="auto" />
<Flex gap={2} marginInlineEnd="auto">
<ToggleProgressButton />
</Flex>
</Flex>
<Flex flex={1} gap={2} justifyContent="center">
<BrushSize />
@ -21,7 +24,7 @@ export const ControlLayersToolbar = memo(() => {
</Flex>
<Flex flex={1} justifyContent="center">
<Flex gap={2} marginInlineStart="auto">
<ViewerButton />
<ViewerToggleMenu />
</Flex>
</Flex>
</Flex>

View File

@ -20,6 +20,7 @@ export const DeleteAllLayersButton = memo(() => {
variant="ghost"
colorScheme="error"
isDisabled={isDisabled}
data-testid="control-layers-delete-all-layers-button"
>
{t('controlLayers.deleteAll')}
</Button>

View File

@ -8,6 +8,7 @@ import { LayerTitle } from 'features/controlLayers/components/LayerCommon/LayerT
import { LayerVisibilityToggle } from 'features/controlLayers/components/LayerCommon/LayerVisibilityToggle';
import { LayerWrapper } from 'features/controlLayers/components/LayerCommon/LayerWrapper';
import {
iiLayerDenoisingStrengthChanged,
iiLayerImageChanged,
layerSelected,
selectIILayerOrThrow,
@ -36,6 +37,13 @@ export const IILayer = memo(({ layerId }: Props) => {
[dispatch, layerId]
);
const onChangeDenoisingStrength = useCallback(
(denoisingStrength: number) => {
dispatch(iiLayerDenoisingStrengthChanged({ layerId, denoisingStrength }));
},
[dispatch, layerId]
);
const droppableData = useMemo<IILayerImageDropData>(
() => ({
actionType: 'SET_II_LAYER_IMAGE',
@ -67,7 +75,7 @@ export const IILayer = memo(({ layerId }: Props) => {
</Flex>
{isOpen && (
<Flex flexDir="column" gap={3} px={3} pb={3}>
<ImageToImageStrength />
<ImageToImageStrength value={layer.denoisingStrength} onChange={onChangeDenoisingStrength} />
<InitialImagePreview
image={layer.image}
onChangeImage={onChangeImage}

View File

@ -32,7 +32,7 @@ export const InitialImagePreview = memo(({ image, onChangeImage, droppableData,
const optimalDimension = useAppSelector(selectOptimalDimension);
const shift = useShiftModifier();
const { currentData: imageDTO, isError: isErrorControlImage } = useGetImageDTOQuery(image?.imageName ?? skipToken);
const { currentData: imageDTO, isError: isErrorControlImage } = useGetImageDTOQuery(image?.name ?? skipToken);
const onReset = useCallback(() => {
onChangeImage(null);

View File

@ -1,19 +1,26 @@
import { Flex, Spacer, useDisclosure } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { IPALayerIPAdapterWrapper } from 'features/controlLayers/components/IPALayer/IPALayerIPAdapterWrapper';
import { LayerDeleteButton } from 'features/controlLayers/components/LayerCommon/LayerDeleteButton';
import { LayerTitle } from 'features/controlLayers/components/LayerCommon/LayerTitle';
import { LayerVisibilityToggle } from 'features/controlLayers/components/LayerCommon/LayerVisibilityToggle';
import { LayerWrapper } from 'features/controlLayers/components/LayerCommon/LayerWrapper';
import { memo } from 'react';
import { layerSelected, selectIPALayerOrThrow } from 'features/controlLayers/store/controlLayersSlice';
import { memo, useCallback } from 'react';
type Props = {
layerId: string;
};
export const IPALayer = memo(({ layerId }: Props) => {
const dispatch = useAppDispatch();
const isSelected = useAppSelector((s) => selectIPALayerOrThrow(s.controlLayers.present, layerId).isSelected);
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen: true });
const onClick = useCallback(() => {
dispatch(layerSelected(layerId));
}, [dispatch, layerId]);
return (
<LayerWrapper borderColor="base.800">
<LayerWrapper onClick={onClick} borderColor={isSelected ? 'base.400' : 'base.800'}>
<Flex gap={3} alignItems="center" p={3} cursor="pointer" onDoubleClick={onToggle}>
<LayerVisibilityToggle layerId={layerId} />
<LayerTitle type="ip_adapter_layer" />

View File

@ -45,6 +45,7 @@ export const RGLayerNegativePrompt = memo(({ layerId }: Props) => {
variant="darkFilled"
paddingRight={30}
fontSize="sm"
spellCheck={false}
/>
<PromptOverlayButtonWrapper>
<RGLayerPromptDeleteButton layerId={layerId} polarity="negative" />

View File

@ -45,6 +45,7 @@ export const RGLayerPositivePrompt = memo(({ layerId }: Props) => {
variant="darkFilled"
paddingRight={30}
minH={28}
spellCheck={false}
/>
<PromptOverlayButtonWrapper>
<RGLayerPromptDeleteButton layerId={layerId} polarity="positive" />

View File

@ -130,11 +130,11 @@ const useStageRenderer = (
}, [stage, state.size.width, state.size.height, wrapper]);
useLayoutEffect(() => {
log.trace('Rendering tool preview');
if (asPreview) {
// Preview should not display tool
return;
}
log.trace('Rendering tool preview');
renderers.renderToolPreview(
stage,
tool,
@ -178,15 +178,24 @@ const useStageRenderer = (
// Preview should not display bboxes
return;
}
renderers.renderBbox(stage, state.layers, tool, onBboxChanged);
renderers.renderBboxes(stage, state.layers, tool);
}, [stage, asPreview, state.layers, tool, onBboxChanged, renderers]);
useLayoutEffect(() => {
log.trace('Rendering background');
if (asPreview) {
// Preview should not check for transparency
return;
}
log.trace('Updating bboxes');
debouncedRenderers.updateBboxes(stage, state.layers, onBboxChanged);
}, [stage, asPreview, state.layers, onBboxChanged]);
useLayoutEffect(() => {
if (asPreview) {
// The preview should not have a background
return;
}
log.trace('Rendering background');
renderers.renderBackground(stage, state.size.width, state.size.height);
}, [stage, asPreview, state.size.width, state.size.height, renderers]);
@ -196,11 +205,11 @@ const useStageRenderer = (
}, [stage, layerIds, renderers]);
useLayoutEffect(() => {
log.trace('Rendering no layers message');
if (asPreview) {
// The preview should not display the no layers message
return;
}
log.trace('Rendering no layers message');
renderers.renderNoLayersMessage(stage, layerCount, state.size.width, state.size.height);
}, [stage, layerCount, renderers, asPreview, state.size.width, state.size.height]);
@ -233,7 +242,14 @@ export const StageComponent = memo(({ asPreview = false }: Props) => {
return (
<Flex overflow="hidden" w="full" h="full">
<Flex ref={wrapperRef} w="full" h="full" alignItems="center" justifyContent="center">
<Flex ref={containerRef} tabIndex={-1} bg="base.850" borderRadius="base" overflow="hidden" />
<Flex
ref={containerRef}
tabIndex={-1}
bg="base.850"
borderRadius="base"
overflow="hidden"
data-testid="control-layers-canvas"
/>
</Flex>
</Flex>
);

View File

@ -224,5 +224,10 @@ export const useMouseEvents = () => {
[selectedLayerType, tool, shouldInvertBrushSizeScrollDirection, dispatch, brushSize]
);
return { onMouseDown, onMouseUp, onMouseMove, onMouseLeave, onMouseWheel };
const handlers = useMemo(
() => ({ onMouseDown, onMouseUp, onMouseMove, onMouseLeave, onMouseWheel }),
[onMouseDown, onMouseUp, onMouseMove, onMouseLeave, onMouseWheel]
);
return handlers;
};

View File

@ -27,7 +27,7 @@ import { modelChanged } from 'features/parameters/store/generationSlice';
import type { ParameterAutoNegative } from 'features/parameters/types/parameterSchemas';
import { getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import type { IRect, Vector2d } from 'konva/lib/types';
import { isEqual, partition } from 'lodash-es';
import { isEqual, partition, unset } from 'lodash-es';
import { atom } from 'nanostores';
import type { RgbColor } from 'react-colorful';
import type { UndoableOptions } from 'redux-undo';
@ -49,7 +49,7 @@ import type {
} from './types';
export const initialControlLayersState: ControlLayersState = {
_version: 1,
_version: 3,
selectedLayerId: null,
brushSize: 100,
layers: [],
@ -124,6 +124,12 @@ const getVectorMaskPreviewColor = (state: ControlLayersState): RgbColor => {
const lastColor = rgLayers[rgLayers.length - 1]?.previewColor;
return LayerColors.next(lastColor);
};
const exclusivelySelectLayer = (state: ControlLayersState, layerId: string) => {
for (const layer of state.layers) {
layer.isSelected = layer.id === layerId;
}
state.selectedLayerId = layerId;
};
export const controlLayersSlice = createSlice({
name: 'controlLayers',
@ -131,14 +137,7 @@ export const controlLayersSlice = createSlice({
reducers: {
//#region Any Layer Type
layerSelected: (state, action: PayloadAction<string>) => {
for (const layer of state.layers.filter(isRenderableLayer)) {
if (layer.id === action.payload) {
layer.isSelected = true;
state.selectedLayerId = action.payload;
} else {
layer.isSelected = false;
}
}
exclusivelySelectLayer(state, action.payload);
},
layerVisibilityToggled: (state, action: PayloadAction<string>) => {
const layer = state.layers.find((l) => l.id === action.payload);
@ -167,7 +166,6 @@ export const controlLayersSlice = createSlice({
// The layer was fully erased, empty its objects to prevent accumulation of invisible objects
layer.maskObjects = [];
layer.uploadedMaskImage = null;
layer.needsPixelBbox = false;
}
}
},
@ -178,7 +176,6 @@ export const controlLayersSlice = createSlice({
layer.maskObjects = [];
layer.bbox = null;
layer.isEnabled = true;
layer.needsPixelBbox = false;
layer.bboxNeedsUpdate = false;
layer.uploadedMaskImage = null;
}
@ -244,17 +241,16 @@ export const controlLayersSlice = createSlice({
controlAdapter,
};
state.layers.push(layer);
state.selectedLayerId = layer.id;
for (const layer of state.layers.filter(isRenderableLayer)) {
if (layer.id !== layerId) {
layer.isSelected = false;
}
}
exclusivelySelectLayer(state, layer.id);
},
prepare: (controlAdapter: ControlNetConfigV2 | T2IAdapterConfigV2) => ({
payload: { layerId: uuidv4(), controlAdapter },
}),
},
caLayerRecalled: (state, action: PayloadAction<ControlAdapterLayer>) => {
state.layers.push({ ...action.payload, isSelected: true });
exclusivelySelectLayer(state, action.payload.id);
},
caLayerImageChanged: (state, action: PayloadAction<{ layerId: string; imageDTO: ImageDTO | null }>) => {
const { layerId, imageDTO } = action.payload;
const layer = selectCALayerOrThrow(state, layerId);
@ -338,19 +334,13 @@ export const controlLayersSlice = createSlice({
const layer = selectCALayerOrThrow(state, layerId);
layer.opacity = opacity;
},
caLayerIsProcessingImageChanged: (
caLayerProcessorPendingBatchIdChanged: (
state,
action: PayloadAction<{ layerId: string; isProcessingImage: boolean }>
action: PayloadAction<{ layerId: string; batchId: string | null }>
) => {
const { layerId, isProcessingImage } = action.payload;
const { layerId, batchId } = action.payload;
const layer = selectCALayerOrThrow(state, layerId);
layer.controlAdapter.isProcessingImage = isProcessingImage;
},
caLayerControlNetsDeleted: (state) => {
state.layers = state.layers.filter((l) => !isControlAdapterLayer(l) || l.controlAdapter.type !== 'controlnet');
},
caLayerT2IAdaptersDeleted: (state) => {
state.layers = state.layers.filter((l) => !isControlAdapterLayer(l) || l.controlAdapter.type !== 't2i_adapter');
layer.controlAdapter.processorPendingBatchId = batchId;
},
//#endregion
@ -362,12 +352,17 @@ export const controlLayersSlice = createSlice({
id: getIPALayerId(layerId),
type: 'ip_adapter_layer',
isEnabled: true,
isSelected: true,
ipAdapter,
};
state.layers.push(layer);
exclusivelySelectLayer(state, layer.id);
},
prepare: (ipAdapter: IPAdapterConfigV2) => ({ payload: { layerId: uuidv4(), ipAdapter } }),
},
ipaLayerRecalled: (state, action: PayloadAction<IPAdapterLayer>) => {
state.layers.push(action.payload);
},
ipaLayerImageChanged: (state, action: PayloadAction<{ layerId: string; imageDTO: ImageDTO | null }>) => {
const { layerId, imageDTO } = action.payload;
const layer = selectIPALayerOrThrow(state, layerId);
@ -401,9 +396,6 @@ export const controlLayersSlice = createSlice({
const layer = selectIPALayerOrThrow(state, layerId);
layer.ipAdapter.clipVisionModel = clipVisionModel;
},
ipaLayersDeleted: (state) => {
state.layers = state.layers.filter((l) => !isIPAdapterLayer(l));
},
//#endregion
//#region CA or IPA Layers
@ -445,7 +437,6 @@ export const controlLayersSlice = createSlice({
x: 0,
y: 0,
autoNegative: 'invert',
needsPixelBbox: false,
positivePrompt: '',
negativePrompt: null,
ipAdapters: [],
@ -453,15 +444,14 @@ export const controlLayersSlice = createSlice({
uploadedMaskImage: null,
};
state.layers.push(layer);
state.selectedLayerId = layer.id;
for (const layer of state.layers.filter(isRenderableLayer)) {
if (layer.id !== layerId) {
layer.isSelected = false;
}
}
exclusivelySelectLayer(state, layer.id);
},
prepare: () => ({ payload: { layerId: uuidv4() } }),
},
rgLayerRecalled: (state, action: PayloadAction<RegionalGuidanceLayer>) => {
state.layers.push({ ...action.payload, isSelected: true });
exclusivelySelectLayer(state, action.payload.id);
},
rgLayerPositivePromptChanged: (state, action: PayloadAction<{ layerId: string; prompt: string | null }>) => {
const { layerId, prompt } = action.payload;
const layer = selectRGLayerOrThrow(state, layerId);
@ -501,9 +491,6 @@ export const controlLayersSlice = createSlice({
});
layer.bboxNeedsUpdate = true;
layer.uploadedMaskImage = null;
if (!layer.needsPixelBbox && tool === 'eraser') {
layer.needsPixelBbox = true;
}
},
prepare: (payload: { layerId: string; points: [number, number, number, number]; tool: DrawingTool }) => ({
payload: { ...payload, lineUuid: uuidv4() },
@ -642,16 +629,17 @@ export const controlLayersSlice = createSlice({
isEnabled: true,
image: imageDTO ? imageDTOToImageWithDims(imageDTO) : null,
isSelected: true,
denoisingStrength: 0.75,
};
state.layers.push(layer);
state.selectedLayerId = layer.id;
for (const layer of state.layers.filter(isRenderableLayer)) {
if (layer.id !== layerId) {
layer.isSelected = false;
}
}
exclusivelySelectLayer(state, layer.id);
},
prepare: (imageDTO: ImageDTO | null) => ({ payload: { layerId: 'initial_image_layer', imageDTO } }),
prepare: (imageDTO: ImageDTO | null) => ({ payload: { layerId: INITIAL_IMAGE_LAYER_ID, imageDTO } }),
},
iiLayerRecalled: (state, action: PayloadAction<InitialImageLayer>) => {
state.layers = state.layers.filter((l) => (isInitialImageLayer(l) ? false : true));
state.layers.push({ ...action.payload, isSelected: true });
exclusivelySelectLayer(state, action.payload.id);
},
iiLayerImageChanged: (state, action: PayloadAction<{ layerId: string; imageDTO: ImageDTO | null }>) => {
const { layerId, imageDTO } = action.payload;
@ -666,6 +654,11 @@ export const controlLayersSlice = createSlice({
const layer = selectIILayerOrThrow(state, layerId);
layer.opacity = opacity;
},
iiLayerDenoisingStrengthChanged: (state, action: PayloadAction<{ layerId: string; denoisingStrength: number }>) => {
const { layerId, denoisingStrength } = action.payload;
const layer = selectIILayerOrThrow(state, layerId);
layer.denoisingStrength = denoisingStrength;
},
//#endregion
//#region Globals
@ -799,6 +792,7 @@ export const {
allLayersDeleted,
// CA Layers
caLayerAdded,
caLayerRecalled,
caLayerImageChanged,
caLayerProcessedImageChanged,
caLayerModelChanged,
@ -806,21 +800,20 @@ export const {
caLayerProcessorConfigChanged,
caLayerIsFilterEnabledChanged,
caLayerOpacityChanged,
caLayerIsProcessingImageChanged,
caLayerControlNetsDeleted,
caLayerT2IAdaptersDeleted,
caLayerProcessorPendingBatchIdChanged,
// IPA Layers
ipaLayerAdded,
ipaLayerRecalled,
ipaLayerImageChanged,
ipaLayerMethodChanged,
ipaLayerModelChanged,
ipaLayerCLIPVisionModelChanged,
ipaLayersDeleted,
// CA or IPA Layers
caOrIPALayerWeightChanged,
caOrIPALayerBeginEndStepPctChanged,
// RG Layers
rgLayerAdded,
rgLayerRecalled,
rgLayerPositivePromptChanged,
rgLayerNegativePromptChanged,
rgLayerPreviewColorChanged,
@ -839,8 +832,10 @@ export const {
rgLayerIPAdapterCLIPVisionModelChanged,
// II Layer
iiLayerAdded,
iiLayerRecalled,
iiLayerImageChanged,
iiLayerOpacityChanged,
iiLayerDenoisingStrengthChanged,
// Globals
positivePromptChanged,
negativePromptChanged,
@ -860,6 +855,19 @@ export const selectControlLayersSlice = (state: RootState) => state.controlLayer
/* eslint-disable-next-line @typescript-eslint/no-explicit-any */
const migrateControlLayersState = (state: any): any => {
if (state._version === 1) {
// Reset state for users on v1 (e.g. beta users), some changes could cause
state = deepClone(initialControlLayersState);
}
if (state._version === 2) {
// The CA `isProcessingImage` flag was replaced with a `processorPendingBatchId` property, fix up CA layers
for (const layer of (state as ControlLayersState).layers) {
if (layer.type === 'control_adapter_layer') {
layer.controlAdapter.processorPendingBatchId = null;
unset(layer.controlAdapter, 'isProcessingImage');
}
}
}
return state;
};
@ -886,21 +894,22 @@ export const RG_LAYER_NAME = 'regional_guidance_layer';
export const RG_LAYER_LINE_NAME = 'regional_guidance_layer.line';
export const RG_LAYER_OBJECT_GROUP_NAME = 'regional_guidance_layer.object_group';
export const RG_LAYER_RECT_NAME = 'regional_guidance_layer.rect';
export const INITIAL_IMAGE_LAYER_ID = 'singleton_initial_image_layer';
export const INITIAL_IMAGE_LAYER_NAME = 'initial_image_layer';
export const INITIAL_IMAGE_LAYER_IMAGE_NAME = 'initial_image_layer.image';
export const LAYER_BBOX_NAME = 'layer.bbox';
export const COMPOSITING_RECT_NAME = 'compositing-rect';
// Getters for non-singleton layer and object IDs
const getRGLayerId = (layerId: string) => `${RG_LAYER_NAME}_${layerId}`;
export const getRGLayerId = (layerId: string) => `${RG_LAYER_NAME}_${layerId}`;
const getRGLayerLineId = (layerId: string, lineId: string) => `${layerId}.line_${lineId}`;
const getRGLayerRectId = (layerId: string, lineId: string) => `${layerId}.rect_${lineId}`;
export const getRGLayerObjectGroupId = (layerId: string, groupId: string) => `${layerId}.objectGroup_${groupId}`;
export const getLayerBboxId = (layerId: string) => `${layerId}.bbox`;
const getCALayerId = (layerId: string) => `control_adapter_layer_${layerId}`;
export const getCALayerId = (layerId: string) => `control_adapter_layer_${layerId}`;
export const getCALayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
export const getIILayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
const getIPALayerId = (layerId: string) => `ip_adapter_layer_${layerId}`;
export const getIPALayerId = (layerId: string) => `ip_adapter_layer_${layerId}`;
export const controlLayersPersistConfig: PersistConfig<ControlLayersState> = {
name: controlLayersSlice.name,

View File

@ -1,90 +1,119 @@
import type {
ControlNetConfigV2,
ImageWithDims,
IPAdapterConfigV2,
T2IAdapterConfigV2,
import {
zControlNetConfigV2,
zImageWithDims,
zIPAdapterConfigV2,
zT2IAdapterConfigV2,
} from 'features/controlLayers/util/controlAdapters';
import type { AspectRatioState } from 'features/parameters/components/ImageSize/types';
import type {
ParameterAutoNegative,
ParameterHeight,
ParameterNegativePrompt,
ParameterNegativeStylePromptSDXL,
ParameterPositivePrompt,
ParameterPositiveStylePromptSDXL,
ParameterWidth,
import {
type ParameterHeight,
type ParameterNegativePrompt,
type ParameterNegativeStylePromptSDXL,
type ParameterPositivePrompt,
type ParameterPositiveStylePromptSDXL,
type ParameterWidth,
zAutoNegative,
zParameterNegativePrompt,
zParameterPositivePrompt,
zParameterStrength,
} from 'features/parameters/types/parameterSchemas';
import type { IRect } from 'konva/lib/types';
import type { RgbColor } from 'react-colorful';
import { z } from 'zod';
export type DrawingTool = 'brush' | 'eraser';
const zTool = z.enum(['brush', 'eraser', 'move', 'rect']);
export type Tool = z.infer<typeof zTool>;
const zDrawingTool = zTool.extract(['brush', 'eraser']);
export type DrawingTool = z.infer<typeof zDrawingTool>;
export type Tool = DrawingTool | 'move' | 'rect';
const zPoints = z.array(z.number()).refine((points) => points.length % 2 === 0, {
message: 'Must have an even number of points',
});
const zVectorMaskLine = z.object({
id: z.string(),
type: z.literal('vector_mask_line'),
tool: zDrawingTool,
strokeWidth: z.number().min(1),
points: zPoints,
});
export type VectorMaskLine = z.infer<typeof zVectorMaskLine>;
export type VectorMaskLine = {
id: string;
type: 'vector_mask_line';
tool: DrawingTool;
strokeWidth: number;
points: number[];
};
const zVectorMaskRect = z.object({
id: z.string(),
type: z.literal('vector_mask_rect'),
x: z.number(),
y: z.number(),
width: z.number().min(1),
height: z.number().min(1),
});
export type VectorMaskRect = z.infer<typeof zVectorMaskRect>;
export type VectorMaskRect = {
id: string;
type: 'vector_mask_rect';
x: number;
y: number;
width: number;
height: number;
};
const zLayerBase = z.object({
id: z.string(),
isEnabled: z.boolean().default(true),
isSelected: z.boolean().default(true),
});
type LayerBase = {
id: string;
isEnabled: boolean;
};
const zRect = z.object({
x: z.number(),
y: z.number(),
width: z.number().min(1),
height: z.number().min(1),
});
const zRenderableLayerBase = zLayerBase.extend({
x: z.number(),
y: z.number(),
bbox: zRect.nullable(),
bboxNeedsUpdate: z.boolean(),
});
type RenderableLayerBase = LayerBase & {
x: number;
y: number;
bbox: IRect | null;
bboxNeedsUpdate: boolean;
isSelected: boolean;
};
const zControlAdapterLayer = zRenderableLayerBase.extend({
type: z.literal('control_adapter_layer'),
opacity: z.number().gte(0).lte(1),
isFilterEnabled: z.boolean(),
controlAdapter: z.discriminatedUnion('type', [zControlNetConfigV2, zT2IAdapterConfigV2]),
});
export type ControlAdapterLayer = z.infer<typeof zControlAdapterLayer>;
export type ControlAdapterLayer = RenderableLayerBase & {
type: 'control_adapter_layer'; // technically, also t2i adapter layer
opacity: number;
isFilterEnabled: boolean;
controlAdapter: ControlNetConfigV2 | T2IAdapterConfigV2;
};
const zIPAdapterLayer = zLayerBase.extend({
type: z.literal('ip_adapter_layer'),
ipAdapter: zIPAdapterConfigV2,
});
export type IPAdapterLayer = z.infer<typeof zIPAdapterLayer>;
export type IPAdapterLayer = LayerBase & {
type: 'ip_adapter_layer';
ipAdapter: IPAdapterConfigV2;
};
const zRgbColor = z.object({
r: z.number().int().min(0).max(255),
g: z.number().int().min(0).max(255),
b: z.number().int().min(0).max(255),
});
const zRegionalGuidanceLayer = zRenderableLayerBase.extend({
type: z.literal('regional_guidance_layer'),
maskObjects: z.array(z.discriminatedUnion('type', [zVectorMaskLine, zVectorMaskRect])),
positivePrompt: zParameterPositivePrompt.nullable(),
negativePrompt: zParameterNegativePrompt.nullable(),
ipAdapters: z.array(zIPAdapterConfigV2),
previewColor: zRgbColor,
autoNegative: zAutoNegative,
uploadedMaskImage: zImageWithDims.nullable(),
});
export type RegionalGuidanceLayer = z.infer<typeof zRegionalGuidanceLayer>;
export type RegionalGuidanceLayer = RenderableLayerBase & {
type: 'regional_guidance_layer';
maskObjects: (VectorMaskLine | VectorMaskRect)[];
positivePrompt: ParameterPositivePrompt | null;
negativePrompt: ParameterNegativePrompt | null; // Up to one text prompt per mask
ipAdapters: IPAdapterConfigV2[]; // Any number of image prompts
previewColor: RgbColor;
autoNegative: ParameterAutoNegative;
needsPixelBbox: boolean; // Needs the slower pixel-based bbox calculation - set to true when an there is an eraser object
uploadedMaskImage: ImageWithDims | null;
};
const zInitialImageLayer = zRenderableLayerBase.extend({
type: z.literal('initial_image_layer'),
opacity: z.number().gte(0).lte(1),
image: zImageWithDims.nullable(),
denoisingStrength: zParameterStrength,
});
export type InitialImageLayer = z.infer<typeof zInitialImageLayer>;
export type InitialImageLayer = RenderableLayerBase & {
type: 'initial_image_layer';
opacity: number;
image: ImageWithDims | null;
};
export type Layer = RegionalGuidanceLayer | ControlAdapterLayer | IPAdapterLayer | InitialImageLayer;
export const zLayer = z.discriminatedUnion('type', [
zRegionalGuidanceLayer,
zControlAdapterLayer,
zIPAdapterLayer,
zInitialImageLayer,
]);
export type Layer = z.infer<typeof zLayer>;
export type ControlLayersState = {
_version: 1;
_version: 3;
selectedLayerId: string | null;
layers: Layer[];
brushSize: number;

View File

@ -2,7 +2,6 @@ import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { imageDataToDataURL } from 'features/canvas/util/blobToDataURL';
import { RG_LAYER_OBJECT_GROUP_NAME } from 'features/controlLayers/store/controlLayersSlice';
import Konva from 'konva';
import type { Layer as KonvaLayerType } from 'konva/lib/Layer';
import type { IRect } from 'konva/lib/types';
import { assert } from 'tsafe';
@ -54,34 +53,30 @@ const getImageDataBbox = (imageData: ImageData): Extents | null => {
};
/**
* Get the bounding box of a regional prompt konva layer. This function has special handling for regional prompt layers.
* @param layer The konva layer to get the bounding box of.
* @param preview Whether to open a new tab displaying the rendered layer, which is used to calculate the bbox.
* Clones a regional guidance konva layer onto an offscreen stage/canvas. This allows the pixel data for a given layer
* to be captured, manipulated or analyzed without interference from other layers.
* @param layer The konva layer to clone.
* @returns The cloned stage and layer.
*/
export const getLayerBboxPixels = (layer: KonvaLayerType, preview: boolean = false): IRect | null => {
// To calculate the layer's bounding box, we must first export it to a pixel array, then do some math.
//
// Though it is relatively fast, we can't use Konva's `getClientRect`. It programmatically determines the rect
// by calculating the extents of individual shapes from their "vector" shape data.
//
// This doesn't work when some shapes are drawn with composite operations that "erase" pixels, like eraser lines.
// These shapes' extents are still calculated as if they were solid, leading to a bounding box that is too large.
const getIsolatedRGLayerClone = (layer: Konva.Layer): { stageClone: Konva.Stage; layerClone: Konva.Layer } => {
const stage = layer.getStage();
// Construct and offscreen canvas on which we will do the bbox calculations.
// Construct an offscreen canvas with the same dimensions as the layer's stage.
const offscreenStageContainer = document.createElement('div');
const offscreenStage = new Konva.Stage({
const stageClone = new Konva.Stage({
container: offscreenStageContainer,
x: stage.x(),
y: stage.y(),
width: stage.width(),
height: stage.height(),
});
// Clone the layer and filter out unwanted children.
const layerClone = layer.clone();
offscreenStage.add(layerClone);
stageClone.add(layerClone);
for (const child of layerClone.getChildren()) {
if (child.name() === RG_LAYER_OBJECT_GROUP_NAME) {
if (child.name() === RG_LAYER_OBJECT_GROUP_NAME && child.hasChildren()) {
// We need to cache the group to ensure it composites out eraser strokes correctly
child.opacity(1);
child.cache();
@ -91,11 +86,31 @@ export const getLayerBboxPixels = (layer: KonvaLayerType, preview: boolean = fal
}
}
return { stageClone, layerClone };
};
/**
* Get the bounding box of a regional prompt konva layer. This function has special handling for regional prompt layers.
* @param layer The konva layer to get the bounding box of.
* @param preview Whether to open a new tab displaying the rendered layer, which is used to calculate the bbox.
*/
export const getLayerBboxPixels = (layer: Konva.Layer, preview: boolean = false): IRect | null => {
// To calculate the layer's bounding box, we must first export it to a pixel array, then do some math.
//
// Though it is relatively fast, we can't use Konva's `getClientRect`. It programmatically determines the rect
// by calculating the extents of individual shapes from their "vector" shape data.
//
// This doesn't work when some shapes are drawn with composite operations that "erase" pixels, like eraser lines.
// These shapes' extents are still calculated as if they were solid, leading to a bounding box that is too large.
const { stageClone, layerClone } = getIsolatedRGLayerClone(layer);
// Get a worst-case rect using the relatively fast `getClientRect`.
const layerRect = layerClone.getClientRect();
if (layerRect.width === 0 || layerRect.height === 0) {
return null;
}
// Capture the image data with the above rect.
const layerImageData = offscreenStage
const layerImageData = stageClone
.toCanvas(layerRect)
.getContext('2d')
?.getImageData(0, 0, layerRect.width, layerRect.height);
@ -114,8 +129,8 @@ export const getLayerBboxPixels = (layer: KonvaLayerType, preview: boolean = fal
// Correct the bounding box to be relative to the layer's position.
const correctedLayerBbox = {
x: layerBbox.minX - Math.floor(stage.x()) + layerRect.x - Math.floor(layer.x()),
y: layerBbox.minY - Math.floor(stage.y()) + layerRect.y - Math.floor(layer.y()),
x: layerBbox.minX - Math.floor(stageClone.x()) + layerRect.x - Math.floor(layer.x()),
y: layerBbox.minY - Math.floor(stageClone.y()) + layerRect.y - Math.floor(layer.y()),
width: layerBbox.maxX - layerBbox.minX,
height: layerBbox.maxY - layerBbox.minY,
};
@ -123,7 +138,13 @@ export const getLayerBboxPixels = (layer: KonvaLayerType, preview: boolean = fal
return correctedLayerBbox;
};
export const getLayerBboxFast = (layer: KonvaLayerType): IRect => {
/**
* Get the bounding box of a konva layer. This function is faster than `getLayerBboxPixels` but less accurate. It
* should only be used when there are no eraser strokes or shapes in the layer.
* @param layer The konva layer to get the bounding box of.
* @returns The bounding box of the layer.
*/
export const getLayerBboxFast = (layer: Konva.Layer): IRect => {
const bbox = layer.getClientRect(GET_CLIENT_RECT_CONFIG);
return {
x: Math.floor(bbox.x),

View File

@ -1,23 +1,93 @@
import type { S } from 'services/api/types';
import type { Invocation } from 'services/api/types';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
import { describe, test } from 'vitest';
import type {
CannyProcessorConfig,
CLIPVisionModelV2,
ColorMapProcessorConfig,
ContentShuffleProcessorConfig,
ControlModeV2,
DepthAnythingModelSize,
DepthAnythingProcessorConfig,
DWOpenposeProcessorConfig,
HedProcessorConfig,
IPMethodV2,
LineartAnimeProcessorConfig,
LineartProcessorConfig,
MediapipeFaceProcessorConfig,
MidasDepthProcessorConfig,
MlsdProcessorConfig,
NormalbaeProcessorConfig,
PidiProcessorConfig,
ProcessorConfig,
ProcessorTypeV2,
ZoeDepthProcessorConfig,
} from './controlAdapters';
describe('Control Adapter Types', () => {
test('ProcessorType', () => assert<Equals<ProcessorConfig['type'], ProcessorTypeV2>>());
test('IP Adapter Method', () => assert<Equals<NonNullable<S['IPAdapterInvocation']['method']>, IPMethodV2>>());
test('CLIP Vision Model', () =>
assert<Equals<NonNullable<S['IPAdapterInvocation']['clip_vision_model']>, CLIPVisionModelV2>>());
test('Control Mode', () => assert<Equals<NonNullable<S['ControlNetInvocation']['control_mode']>, ControlModeV2>>());
test('DepthAnything Model Size', () =>
assert<Equals<NonNullable<S['DepthAnythingImageProcessorInvocation']['model_size']>, DepthAnythingModelSize>>());
test('ProcessorType', () => {
assert<Equals<ProcessorConfig['type'], ProcessorTypeV2>>();
});
test('IP Adapter Method', () => {
assert<Equals<NonNullable<Invocation<'ip_adapter'>['method']>, IPMethodV2>>();
});
test('CLIP Vision Model', () => {
assert<Equals<NonNullable<Invocation<'ip_adapter'>['clip_vision_model']>, CLIPVisionModelV2>>();
});
test('Control Mode', () => {
assert<Equals<NonNullable<Invocation<'controlnet'>['control_mode']>, ControlModeV2>>();
});
test('DepthAnything Model Size', () => {
assert<Equals<NonNullable<Invocation<'depth_anything_image_processor'>['model_size']>, DepthAnythingModelSize>>();
});
test('Processor Configs', () => {
// The processor configs are manually modeled zod schemas. This test ensures that the inferred types are correct.
// The types prefixed with `_` are types generated from OpenAPI, while the types without the prefix are manually modeled.
assert<Equals<_CannyProcessorConfig, CannyProcessorConfig>>();
assert<Equals<_ColorMapProcessorConfig, ColorMapProcessorConfig>>();
assert<Equals<_ContentShuffleProcessorConfig, ContentShuffleProcessorConfig>>();
assert<Equals<_DepthAnythingProcessorConfig, DepthAnythingProcessorConfig>>();
assert<Equals<_HedProcessorConfig, HedProcessorConfig>>();
assert<Equals<_LineartAnimeProcessorConfig, LineartAnimeProcessorConfig>>();
assert<Equals<_LineartProcessorConfig, LineartProcessorConfig>>();
assert<Equals<_MediapipeFaceProcessorConfig, MediapipeFaceProcessorConfig>>();
assert<Equals<_MidasDepthProcessorConfig, MidasDepthProcessorConfig>>();
assert<Equals<_MlsdProcessorConfig, MlsdProcessorConfig>>();
assert<Equals<_NormalbaeProcessorConfig, NormalbaeProcessorConfig>>();
assert<Equals<_DWOpenposeProcessorConfig, DWOpenposeProcessorConfig>>();
assert<Equals<_PidiProcessorConfig, PidiProcessorConfig>>();
assert<Equals<_ZoeDepthProcessorConfig, ZoeDepthProcessorConfig>>();
});
});
// Types derived from OpenAPI
type _CannyProcessorConfig = Required<
Pick<Invocation<'canny_image_processor'>, 'id' | 'type' | 'low_threshold' | 'high_threshold'>
>;
type _ColorMapProcessorConfig = Required<
Pick<Invocation<'color_map_image_processor'>, 'id' | 'type' | 'color_map_tile_size'>
>;
type _ContentShuffleProcessorConfig = Required<
Pick<Invocation<'content_shuffle_image_processor'>, 'id' | 'type' | 'w' | 'h' | 'f'>
>;
type _DepthAnythingProcessorConfig = Required<
Pick<Invocation<'depth_anything_image_processor'>, 'id' | 'type' | 'model_size'>
>;
type _HedProcessorConfig = Required<Pick<Invocation<'hed_image_processor'>, 'id' | 'type' | 'scribble'>>;
type _LineartAnimeProcessorConfig = Required<Pick<Invocation<'lineart_anime_image_processor'>, 'id' | 'type'>>;
type _LineartProcessorConfig = Required<Pick<Invocation<'lineart_image_processor'>, 'id' | 'type' | 'coarse'>>;
type _MediapipeFaceProcessorConfig = Required<
Pick<Invocation<'mediapipe_face_processor'>, 'id' | 'type' | 'max_faces' | 'min_confidence'>
>;
type _MidasDepthProcessorConfig = Required<
Pick<Invocation<'midas_depth_image_processor'>, 'id' | 'type' | 'a_mult' | 'bg_th'>
>;
type _MlsdProcessorConfig = Required<Pick<Invocation<'mlsd_image_processor'>, 'id' | 'type' | 'thr_v' | 'thr_d'>>;
type _NormalbaeProcessorConfig = Required<Pick<Invocation<'normalbae_image_processor'>, 'id' | 'type'>>;
type _DWOpenposeProcessorConfig = Required<
Pick<Invocation<'dw_openpose_image_processor'>, 'id' | 'type' | 'draw_body' | 'draw_face' | 'draw_hands'>
>;
type _PidiProcessorConfig = Required<Pick<Invocation<'pidi_image_processor'>, 'id' | 'type' | 'safe' | 'scribble'>>;
type _ZoeDepthProcessorConfig = Required<Pick<Invocation<'zoe_depth_image_processor'>, 'id' | 'type'>>;

View File

@ -1,117 +1,176 @@
import { deepClone } from 'common/util/deepClone';
import type {
ParameterControlNetModel,
ParameterIPAdapterModel,
ParameterT2IAdapterModel,
} from 'features/parameters/types/parameterSchemas';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { merge, omit } from 'lodash-es';
import type {
BaseModelType,
CannyImageProcessorInvocation,
ColorMapImageProcessorInvocation,
ContentShuffleImageProcessorInvocation,
ControlNetModelConfig,
DepthAnythingImageProcessorInvocation,
DWOpenposeImageProcessorInvocation,
Graph,
HedImageProcessorInvocation,
ImageDTO,
LineartAnimeImageProcessorInvocation,
LineartImageProcessorInvocation,
MediapipeFaceProcessorInvocation,
MidasDepthImageProcessorInvocation,
MlsdImageProcessorInvocation,
NormalbaeImageProcessorInvocation,
PidiImageProcessorInvocation,
T2IAdapterModelConfig,
ZoeDepthImageProcessorInvocation,
} from 'services/api/types';
import type { BaseModelType, ControlNetModelConfig, Graph, ImageDTO, T2IAdapterModelConfig } from 'services/api/types';
import { z } from 'zod';
const zId = z.string().min(1);
const zCannyProcessorConfig = z.object({
id: zId,
type: z.literal('canny_image_processor'),
low_threshold: z.number().int().gte(0).lte(255),
high_threshold: z.number().int().gte(0).lte(255),
});
export type CannyProcessorConfig = z.infer<typeof zCannyProcessorConfig>;
const zColorMapProcessorConfig = z.object({
id: zId,
type: z.literal('color_map_image_processor'),
color_map_tile_size: z.number().int().gte(1),
});
export type ColorMapProcessorConfig = z.infer<typeof zColorMapProcessorConfig>;
const zContentShuffleProcessorConfig = z.object({
id: zId,
type: z.literal('content_shuffle_image_processor'),
w: z.number().int().gte(0),
h: z.number().int().gte(0),
f: z.number().int().gte(0),
});
export type ContentShuffleProcessorConfig = z.infer<typeof zContentShuffleProcessorConfig>;
const zDepthAnythingModelSize = z.enum(['large', 'base', 'small']);
export type DepthAnythingModelSize = z.infer<typeof zDepthAnythingModelSize>;
export const isDepthAnythingModelSize = (v: unknown): v is DepthAnythingModelSize =>
zDepthAnythingModelSize.safeParse(v).success;
const zDepthAnythingProcessorConfig = z.object({
id: zId,
type: z.literal('depth_anything_image_processor'),
model_size: zDepthAnythingModelSize,
});
export type DepthAnythingProcessorConfig = z.infer<typeof zDepthAnythingProcessorConfig>;
export type CannyProcessorConfig = Required<
Pick<CannyImageProcessorInvocation, 'id' | 'type' | 'low_threshold' | 'high_threshold'>
>;
export type ColorMapProcessorConfig = Required<
Pick<ColorMapImageProcessorInvocation, 'id' | 'type' | 'color_map_tile_size'>
>;
export type ContentShuffleProcessorConfig = Required<
Pick<ContentShuffleImageProcessorInvocation, 'id' | 'type' | 'w' | 'h' | 'f'>
>;
export type DepthAnythingProcessorConfig = Required<
Pick<DepthAnythingImageProcessorInvocation, 'id' | 'type' | 'model_size'>
>;
export type HedProcessorConfig = Required<Pick<HedImageProcessorInvocation, 'id' | 'type' | 'scribble'>>;
type LineartAnimeProcessorConfig = Required<Pick<LineartAnimeImageProcessorInvocation, 'id' | 'type'>>;
export type LineartProcessorConfig = Required<Pick<LineartImageProcessorInvocation, 'id' | 'type' | 'coarse'>>;
export type MediapipeFaceProcessorConfig = Required<
Pick<MediapipeFaceProcessorInvocation, 'id' | 'type' | 'max_faces' | 'min_confidence'>
>;
export type MidasDepthProcessorConfig = Required<
Pick<MidasDepthImageProcessorInvocation, 'id' | 'type' | 'a_mult' | 'bg_th'>
>;
export type MlsdProcessorConfig = Required<Pick<MlsdImageProcessorInvocation, 'id' | 'type' | 'thr_v' | 'thr_d'>>;
type NormalbaeProcessorConfig = Required<Pick<NormalbaeImageProcessorInvocation, 'id' | 'type'>>;
export type DWOpenposeProcessorConfig = Required<
Pick<DWOpenposeImageProcessorInvocation, 'id' | 'type' | 'draw_body' | 'draw_face' | 'draw_hands'>
>;
export type PidiProcessorConfig = Required<Pick<PidiImageProcessorInvocation, 'id' | 'type' | 'safe' | 'scribble'>>;
type ZoeDepthProcessorConfig = Required<Pick<ZoeDepthImageProcessorInvocation, 'id' | 'type'>>;
const zHedProcessorConfig = z.object({
id: zId,
type: z.literal('hed_image_processor'),
scribble: z.boolean(),
});
export type HedProcessorConfig = z.infer<typeof zHedProcessorConfig>;
export type ProcessorConfig =
| CannyProcessorConfig
| ColorMapProcessorConfig
| ContentShuffleProcessorConfig
| DepthAnythingProcessorConfig
| HedProcessorConfig
| LineartAnimeProcessorConfig
| LineartProcessorConfig
| MediapipeFaceProcessorConfig
| MidasDepthProcessorConfig
| MlsdProcessorConfig
| NormalbaeProcessorConfig
| DWOpenposeProcessorConfig
| PidiProcessorConfig
| ZoeDepthProcessorConfig;
const zLineartAnimeProcessorConfig = z.object({
id: zId,
type: z.literal('lineart_anime_image_processor'),
});
export type LineartAnimeProcessorConfig = z.infer<typeof zLineartAnimeProcessorConfig>;
export type ImageWithDims = {
imageName: string;
width: number;
height: number;
};
const zLineartProcessorConfig = z.object({
id: zId,
type: z.literal('lineart_image_processor'),
coarse: z.boolean(),
});
export type LineartProcessorConfig = z.infer<typeof zLineartProcessorConfig>;
type ControlAdapterBase = {
id: string;
weight: number;
image: ImageWithDims | null;
processedImage: ImageWithDims | null;
isProcessingImage: boolean;
processorConfig: ProcessorConfig | null;
beginEndStepPct: [number, number];
};
const zMediapipeFaceProcessorConfig = z.object({
id: zId,
type: z.literal('mediapipe_face_processor'),
max_faces: z.number().int().gte(1),
min_confidence: z.number().gte(0).lte(1),
});
export type MediapipeFaceProcessorConfig = z.infer<typeof zMediapipeFaceProcessorConfig>;
const zMidasDepthProcessorConfig = z.object({
id: zId,
type: z.literal('midas_depth_image_processor'),
a_mult: z.number().gte(0),
bg_th: z.number().gte(0),
});
export type MidasDepthProcessorConfig = z.infer<typeof zMidasDepthProcessorConfig>;
const zMlsdProcessorConfig = z.object({
id: zId,
type: z.literal('mlsd_image_processor'),
thr_v: z.number().gte(0),
thr_d: z.number().gte(0),
});
export type MlsdProcessorConfig = z.infer<typeof zMlsdProcessorConfig>;
const zNormalbaeProcessorConfig = z.object({
id: zId,
type: z.literal('normalbae_image_processor'),
});
export type NormalbaeProcessorConfig = z.infer<typeof zNormalbaeProcessorConfig>;
const zDWOpenposeProcessorConfig = z.object({
id: zId,
type: z.literal('dw_openpose_image_processor'),
draw_body: z.boolean(),
draw_face: z.boolean(),
draw_hands: z.boolean(),
});
export type DWOpenposeProcessorConfig = z.infer<typeof zDWOpenposeProcessorConfig>;
const zPidiProcessorConfig = z.object({
id: zId,
type: z.literal('pidi_image_processor'),
safe: z.boolean(),
scribble: z.boolean(),
});
export type PidiProcessorConfig = z.infer<typeof zPidiProcessorConfig>;
const zZoeDepthProcessorConfig = z.object({
id: zId,
type: z.literal('zoe_depth_image_processor'),
});
export type ZoeDepthProcessorConfig = z.infer<typeof zZoeDepthProcessorConfig>;
const zProcessorConfig = z.discriminatedUnion('type', [
zCannyProcessorConfig,
zColorMapProcessorConfig,
zContentShuffleProcessorConfig,
zDepthAnythingProcessorConfig,
zHedProcessorConfig,
zLineartAnimeProcessorConfig,
zLineartProcessorConfig,
zMediapipeFaceProcessorConfig,
zMidasDepthProcessorConfig,
zMlsdProcessorConfig,
zNormalbaeProcessorConfig,
zDWOpenposeProcessorConfig,
zPidiProcessorConfig,
zZoeDepthProcessorConfig,
]);
export type ProcessorConfig = z.infer<typeof zProcessorConfig>;
export const zImageWithDims = z.object({
name: z.string(),
width: z.number().int().positive(),
height: z.number().int().positive(),
});
export type ImageWithDims = z.infer<typeof zImageWithDims>;
const zBeginEndStepPct = z
.tuple([z.number().gte(0).lte(1), z.number().gte(0).lte(1)])
.refine(([begin, end]) => begin < end, {
message: 'Begin must be less than end',
});
const zControlAdapterBase = z.object({
id: zId,
weight: z.number().gte(0).lte(1),
image: zImageWithDims.nullable(),
processedImage: zImageWithDims.nullable(),
processorConfig: zProcessorConfig.nullable(),
processorPendingBatchId: z.string().nullable().default(null),
beginEndStepPct: zBeginEndStepPct,
});
const zControlModeV2 = z.enum(['balanced', 'more_prompt', 'more_control', 'unbalanced']);
export type ControlModeV2 = z.infer<typeof zControlModeV2>;
export const isControlModeV2 = (v: unknown): v is ControlModeV2 => zControlModeV2.safeParse(v).success;
export type ControlNetConfigV2 = ControlAdapterBase & {
type: 'controlnet';
model: ParameterControlNetModel | null;
controlMode: ControlModeV2;
};
export const isControlNetConfigV2 = (ca: ControlNetConfigV2 | T2IAdapterConfigV2): ca is ControlNetConfigV2 =>
ca.type === 'controlnet';
export const zControlNetConfigV2 = zControlAdapterBase.extend({
type: z.literal('controlnet'),
model: zModelIdentifierField.nullable(),
controlMode: zControlModeV2,
});
export type ControlNetConfigV2 = z.infer<typeof zControlNetConfigV2>;
export type T2IAdapterConfigV2 = ControlAdapterBase & {
type: 't2i_adapter';
model: ParameterT2IAdapterModel | null;
};
export const isT2IAdapterConfigV2 = (ca: ControlNetConfigV2 | T2IAdapterConfigV2): ca is T2IAdapterConfigV2 =>
ca.type === 't2i_adapter';
export const zT2IAdapterConfigV2 = zControlAdapterBase.extend({
type: z.literal('t2i_adapter'),
model: zModelIdentifierField.nullable(),
});
export type T2IAdapterConfigV2 = z.infer<typeof zT2IAdapterConfigV2>;
const zCLIPVisionModelV2 = z.enum(['ViT-H', 'ViT-G']);
export type CLIPVisionModelV2 = z.infer<typeof zCLIPVisionModelV2>;
@ -121,16 +180,17 @@ const zIPMethodV2 = z.enum(['full', 'style', 'composition']);
export type IPMethodV2 = z.infer<typeof zIPMethodV2>;
export const isIPMethodV2 = (v: unknown): v is IPMethodV2 => zIPMethodV2.safeParse(v).success;
export type IPAdapterConfigV2 = {
id: string;
type: 'ip_adapter';
weight: number;
method: IPMethodV2;
image: ImageWithDims | null;
model: ParameterIPAdapterModel | null;
clipVisionModel: CLIPVisionModelV2;
beginEndStepPct: [number, number];
};
export const zIPAdapterConfigV2 = z.object({
id: zId,
type: z.literal('ip_adapter'),
weight: z.number().gte(0).lte(1),
method: zIPMethodV2,
image: zImageWithDims.nullable(),
model: zModelIdentifierField.nullable(),
clipVisionModel: zCLIPVisionModelV2,
beginEndStepPct: zBeginEndStepPct,
});
export type IPAdapterConfigV2 = z.infer<typeof zIPAdapterConfigV2>;
const zProcessorTypeV2 = z.enum([
'canny_image_processor',
@ -190,7 +250,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
buildNode: (image, config) => ({
...config,
type: 'canny_image_processor',
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -207,7 +267,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
buildNode: (image, config) => ({
...config,
type: 'color_map_image_processor',
image: { image_name: image.imageName },
image: { image_name: image.name },
}),
},
content_shuffle_image_processor: {
@ -223,7 +283,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -239,7 +299,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
resolution: minDim(image),
}),
},
@ -254,7 +314,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -269,7 +329,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -285,7 +345,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -302,7 +362,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -319,7 +379,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -336,7 +396,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -351,7 +411,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -369,7 +429,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
image_resolution: minDim(image),
}),
},
@ -385,7 +445,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
detect_resolution: minDim(image),
image_resolution: minDim(image),
}),
@ -400,7 +460,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
}),
buildNode: (image, config) => ({
...config,
image: { image_name: image.imageName },
image: { image_name: image.name },
}),
},
};
@ -413,8 +473,8 @@ export const initialControlNetV2: Omit<ControlNetConfigV2, 'id'> = {
controlMode: 'balanced',
image: null,
processedImage: null,
isProcessingImage: false,
processorConfig: CA_PROCESSOR_DATA.canny_image_processor.buildDefaults(),
processorPendingBatchId: null,
};
export const initialT2IAdapterV2: Omit<T2IAdapterConfigV2, 'id'> = {
@ -424,8 +484,8 @@ export const initialT2IAdapterV2: Omit<T2IAdapterConfigV2, 'id'> = {
beginEndStepPct: [0, 1],
image: null,
processedImage: null,
isProcessingImage: false,
processorConfig: CA_PROCESSOR_DATA.canny_image_processor.buildDefaults(),
processorPendingBatchId: null,
};
export const initialIPAdapterV2: Omit<IPAdapterConfigV2, 'id'> = {
@ -462,7 +522,7 @@ export const buildControlAdapterProcessorV2 = (
};
export const imageDTOToImageWithDims = ({ image_name, width, height }: ImageDTO): ImageWithDims => ({
imageName: image_name,
name: image_name,
width,
height,
});

View File

@ -437,8 +437,8 @@ const renderRegionalGuidanceLayer = (
konvaObjectGroup.opacity(1);
compositingRect.setAttrs({
// The rect should be the size of the layer - use the fast method bc it's OK if the rect is larger
...getLayerBboxFast(konvaLayer),
// The rect should be the size of the layer - use the fast method if we don't have a pixel-perfect bbox already
...(!reduxLayer.bboxNeedsUpdate && reduxLayer.bbox ? reduxLayer.bbox : getLayerBboxFast(konvaLayer)),
fill: rgbColor,
opacity: globalMaskLayerOpacity,
// Draw this rect only where there are non-transparent pixels under it (e.g. the mask shapes)
@ -464,6 +464,7 @@ const createInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLay
id: reduxLayer.id,
name: INITIAL_IMAGE_LAYER_NAME,
imageSmoothingEnabled: true,
listening: false,
});
stage.add(konvaLayer);
return konvaLayer;
@ -483,6 +484,9 @@ const updateInitialImageLayerImageAttrs = (
konvaImage: Konva.Image,
reduxLayer: InitialImageLayer
) => {
// Konva erroneously reports NaN for width and height when the stage is hidden. This causes errors when caching,
// but it doesn't seem to break anything.
// TODO(psyche): Investigate and report upstream.
const newWidth = stage.width() / stage.scaleX();
const newHeight = stage.height() / stage.scaleY();
if (
@ -510,7 +514,7 @@ const updateInitialImageLayerImageSource = async (
reduxLayer: InitialImageLayer
) => {
if (reduxLayer.image) {
const { imageName } = reduxLayer.image;
const imageName = reduxLayer.image.name;
const req = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await req.unwrap();
req.unsubscribe();
@ -543,7 +547,7 @@ const renderInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLay
let imageSourceNeedsUpdate = false;
if (canvasImageSource instanceof HTMLImageElement) {
const image = reduxLayer.image;
if (image && canvasImageSource.id !== getCALayerImageId(reduxLayer.id, image.imageName)) {
if (image && canvasImageSource.id !== getCALayerImageId(reduxLayer.id, image.name)) {
imageSourceNeedsUpdate = true;
} else if (!image) {
imageSourceNeedsUpdate = true;
@ -564,6 +568,7 @@ const createControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLay
id: reduxLayer.id,
name: CA_LAYER_NAME,
imageSmoothingEnabled: true,
listening: false,
});
stage.add(konvaLayer);
return konvaLayer;
@ -585,7 +590,7 @@ const updateControlNetLayerImageSource = async (
) => {
const image = reduxLayer.controlAdapter.processedImage ?? reduxLayer.controlAdapter.image;
if (image) {
const { imageName } = image;
const imageName = image.name;
const req = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await req.unwrap();
req.unsubscribe();
@ -618,6 +623,9 @@ const updateControlNetLayerImageAttrs = (
reduxLayer: ControlAdapterLayer
) => {
let needsCache = false;
// Konva erroneously reports NaN for width and height when the stage is hidden. This causes errors when caching,
// but it doesn't seem to break anything.
// TODO(psyche): Investigate and report upstream.
const newWidth = stage.width() / stage.scaleX();
const newHeight = stage.height() / stage.scaleY();
const hasFilter = konvaImage.filters() !== null && konvaImage.filters().length > 0;
@ -653,7 +661,7 @@ const renderControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLay
let imageSourceNeedsUpdate = false;
if (canvasImageSource instanceof HTMLImageElement) {
const image = reduxLayer.controlAdapter.processedImage ?? reduxLayer.controlAdapter.image;
if (image && canvasImageSource.id !== getCALayerImageId(reduxLayer.id, image.imageName)) {
if (image && canvasImageSource.id !== getCALayerImageId(reduxLayer.id, image.name)) {
imageSourceNeedsUpdate = true;
} else if (!image) {
imageSourceNeedsUpdate = true;
@ -702,6 +710,7 @@ const renderLayers = (
if (isInitialImageLayer(reduxLayer)) {
renderInitialImageLayer(stage, reduxLayer);
}
// IP Adapter layers are not rendered
}
};
@ -716,6 +725,7 @@ const createBboxRect = (reduxLayer: Layer, konvaLayer: Konva.Layer) => {
id: getLayerBboxId(reduxLayer.id),
name: LAYER_BBOX_NAME,
strokeWidth: 1,
visible: false,
});
konvaLayer.add(rect);
return rect;
@ -725,18 +735,10 @@ const createBboxRect = (reduxLayer: Layer, konvaLayer: Konva.Layer) => {
* Renders the bounding boxes for the layers.
* @param stage The konva stage to render on
* @param reduxLayers An array of all redux layers to draw bboxes for
* @param selectedLayerId The selected layer's id
* @param tool The current tool
* @param onBboxChanged Callback for when the bbox is changed
* @param onBboxMouseDown Callback for when the bbox is clicked
* @returns
*/
const renderBbox = (
stage: Konva.Stage,
reduxLayers: Layer[],
tool: Tool,
onBboxChanged: (layerId: string, bbox: IRect | null) => void
) => {
const renderBboxes = (stage: Konva.Stage, reduxLayers: Layer[], tool: Tool) => {
// Hide all bboxes so they don't interfere with getClientRect
for (const bboxRect of stage.find<Konva.Rect>(`.${LAYER_BBOX_NAME}`)) {
bboxRect.visible(false);
@ -747,36 +749,59 @@ const renderBbox = (
return;
}
for (const reduxLayer of reduxLayers) {
if (reduxLayer.type === 'regional_guidance_layer') {
const konvaLayer = stage.findOne<Konva.Layer>(`#${reduxLayer.id}`);
assert(konvaLayer, `Layer ${reduxLayer.id} not found in stage`);
for (const reduxLayer of reduxLayers.filter(isRegionalGuidanceLayer)) {
if (!reduxLayer.bbox) {
continue;
}
const konvaLayer = stage.findOne<Konva.Layer>(`#${reduxLayer.id}`);
assert(konvaLayer, `Layer ${reduxLayer.id} not found in stage`);
let bbox = reduxLayer.bbox;
const bboxRect = konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`) ?? createBboxRect(reduxLayer, konvaLayer);
// We only need to recalculate the bbox if the layer has changed and it has objects
if (reduxLayer.bboxNeedsUpdate && reduxLayer.maskObjects.length) {
// We only need to use the pixel-perfect bounding box if the layer has eraser strokes
bbox = reduxLayer.needsPixelBbox ? getLayerBboxPixels(konvaLayer) : getLayerBboxFast(konvaLayer);
// Update the layer's bbox in the redux store
onBboxChanged(reduxLayer.id, bbox);
bboxRect.setAttrs({
visible: !reduxLayer.bboxNeedsUpdate,
listening: reduxLayer.isSelected,
x: reduxLayer.bbox.x,
y: reduxLayer.bbox.y,
width: reduxLayer.bbox.width,
height: reduxLayer.bbox.height,
stroke: reduxLayer.isSelected ? BBOX_SELECTED_STROKE : '',
});
}
};
/**
* Calculates the bbox of each regional guidance layer. Only calculates if the mask has changed.
* @param stage The konva stage to render on.
* @param reduxLayers An array of redux layers to calculate bboxes for
* @param onBboxChanged Callback for when the bounding box changes
*/
const updateBboxes = (
stage: Konva.Stage,
reduxLayers: Layer[],
onBboxChanged: (layerId: string, bbox: IRect | null) => void
) => {
for (const rgLayer of reduxLayers.filter(isRegionalGuidanceLayer)) {
const konvaLayer = stage.findOne<Konva.Layer>(`#${rgLayer.id}`);
assert(konvaLayer, `Layer ${rgLayer.id} not found in stage`);
// We only need to recalculate the bbox if the layer has changed
if (rgLayer.bboxNeedsUpdate) {
const bboxRect = konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`) ?? createBboxRect(rgLayer, konvaLayer);
// Hide the bbox while we calculate the new bbox, else the bbox will be included in the calculation
const visible = bboxRect.visible();
bboxRect.visible(false);
if (rgLayer.maskObjects.length === 0) {
// No objects - no bbox to calculate
onBboxChanged(rgLayer.id, null);
} else {
// Calculate the bbox by rendering the layer and checking its pixels
onBboxChanged(rgLayer.id, getLayerBboxPixels(konvaLayer));
}
if (!bbox) {
continue;
}
const rect = konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`) ?? createBboxRect(reduxLayer, konvaLayer);
rect.setAttrs({
visible: true,
listening: reduxLayer.isSelected,
x: bbox.x,
y: bbox.y,
width: bbox.width,
height: bbox.height,
stroke: reduxLayer.isSelected ? BBOX_SELECTED_STROKE : '',
});
// Restore the visibility of the bbox
bboxRect.visible(visible);
}
}
};
@ -893,10 +918,11 @@ const renderNoLayersMessage = (stage: Konva.Stage, layerCount: number, width: nu
export const renderers = {
renderToolPreview,
renderLayers,
renderBbox,
renderBboxes,
renderBackground,
renderNoLayersMessage,
arrangeLayers,
updateBboxes,
};
const DEBOUNCE_MS = 300;
@ -904,10 +930,11 @@ const DEBOUNCE_MS = 300;
export const debouncedRenderers = {
renderToolPreview: debounce(renderToolPreview, DEBOUNCE_MS),
renderLayers: debounce(renderLayers, DEBOUNCE_MS),
renderBbox: debounce(renderBbox, DEBOUNCE_MS),
renderBboxes: debounce(renderBboxes, DEBOUNCE_MS),
renderBackground: debounce(renderBackground, DEBOUNCE_MS),
renderNoLayersMessage: debounce(renderNoLayersMessage, DEBOUNCE_MS),
arrangeLayers: debounce(arrangeLayers, DEBOUNCE_MS),
updateBboxes: debounce(updateBboxes, DEBOUNCE_MS),
};
/**

View File

@ -46,18 +46,16 @@ export const getImageUsage = (
const isControlLayerImage = controlLayers.layers.some((l) => {
if (isRegionalGuidanceLayer(l)) {
return l.ipAdapters.some((ipa) => ipa.image?.imageName === image_name);
return l.ipAdapters.some((ipa) => ipa.image?.name === image_name);
}
if (isControlAdapterLayer(l)) {
return (
l.controlAdapter.image?.imageName === image_name || l.controlAdapter.processedImage?.imageName === image_name
);
return l.controlAdapter.image?.name === image_name || l.controlAdapter.processedImage?.name === image_name;
}
if (isIPAdapterLayer(l)) {
return l.ipAdapter.image?.imageName === image_name;
return l.ipAdapter.image?.name === image_name;
}
if (isInitialImageLayer(l)) {
return l.image?.imageName === image_name;
return l.image?.name === image_name;
}
return false;
});

View File

@ -1,23 +1,21 @@
import type { Modifier } from '@dnd-kit/core';
import { getEventCoordinates } from '@dnd-kit/utilities';
import { createSelector } from '@reduxjs/toolkit';
import { useStore } from '@nanostores/react';
import { useAppSelector } from 'app/store/storeHooks';
import { selectNodesSlice } from 'features/nodes/store/nodesSlice';
import { $viewport } from 'features/nodes/store/nodesSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { useCallback } from 'react';
const selectZoom = createSelector([selectNodesSlice, activeTabNameSelector], (nodes, activeTabName) =>
activeTabName === 'workflows' ? nodes.viewport.zoom : 1
);
/**
* Applies scaling to the drag transform (if on node editor tab) and centers it on cursor.
*/
export const useScaledModifer = () => {
const zoom = useAppSelector(selectZoom);
const activeTabName = useAppSelector(activeTabNameSelector);
const workflowsViewport = useStore($viewport);
const modifier: Modifier = useCallback(
({ activatorEvent, draggingNodeRect, transform }) => {
if (draggingNodeRect && activatorEvent) {
const zoom = activeTabName === 'workflows' ? workflowsViewport.zoom : 1;
const activatorCoordinates = getEventCoordinates(activatorEvent);
if (!activatorCoordinates) {
@ -42,7 +40,7 @@ export const useScaledModifer = () => {
return transform;
},
[zoom]
[activeTabName, workflowsViewport.zoom]
);
return modifier;

View File

@ -73,6 +73,7 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
const handleSendToImageToImage = useCallback(() => {
dispatch(sentImageToImg2Img());
dispatch(iiLayerAdded(imageDTO));
dispatch(setActiveTab('generation'));
}, [dispatch, imageDTO]);
const handleSendToCanvas = useCallback(() => {

View File

@ -11,6 +11,7 @@ import type { GallerySelectionDraggableData, ImageDraggableData, TypesafeDraggab
import { getGalleryImageDataTestId } from 'features/gallery/components/ImageGrid/getGalleryImageDataTestId';
import { useMultiselect } from 'features/gallery/hooks/useMultiselect';
import { useScrollIntoView } from 'features/gallery/hooks/useScrollIntoView';
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
import type { MouseEvent } from 'react';
import { memo, useCallback, useMemo, useState } from 'react';
import { useTranslation } from 'react-i18next';
@ -102,6 +103,10 @@ const GalleryImage = (props: HoverableImageProps) => {
setIsHovered(true);
}, []);
const onDoubleClick = useCallback(() => {
dispatch(isImageViewerOpenChanged(true));
}, [dispatch]);
const handleMouseOut = useCallback(() => {
setIsHovered(false);
}, []);
@ -143,6 +148,7 @@ const GalleryImage = (props: HoverableImageProps) => {
>
<IAIDndImage
onClick={handleClick}
onDoubleClick={onDoubleClick}
imageDTO={imageDTO}
draggableData={draggableData}
isSelected={isSelected}

View File

@ -1,5 +1,6 @@
import { Box, Flex, IconButton, Tooltip, useShiftModifier } from '@invoke-ai/ui-library';
import { getOverlayScrollbarsParams } from 'common/components/OverlayScrollbars/constants';
import { Formatter } from 'fracturedjsonjs';
import { isString } from 'lodash-es';
import { OverlayScrollbarsComponent } from 'overlayscrollbars-react';
import type { CSSProperties } from 'react';
@ -7,6 +8,8 @@ import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCopyBold, PiDownloadSimpleBold } from 'react-icons/pi';
const formatter = new Formatter();
type Props = {
label: string;
data: unknown;
@ -20,7 +23,7 @@ const overlayscrollbarsOptions = getOverlayScrollbarsParams('scroll', 'scroll').
const DataViewer = (props: Props) => {
const { label, data, fileName, withDownload = true, withCopy = true, extraCopyActions } = props;
const dataString = useMemo(() => (isString(data) ? data : JSON.stringify(data, null, 2)), [data]);
const dataString = useMemo(() => (isString(data) ? data : formatter.Serialize(data)) ?? '', [data]);
const shift = useShiftModifier();
const handleCopy = useCallback(() => {
navigator.clipboard.writeText(dataString);

View File

@ -1,12 +1,10 @@
import { useAppSelector } from 'app/store/storeHooks';
import { MetadataControlNets } from 'features/metadata/components/MetadataControlNets';
import { MetadataControlNetsV2 } from 'features/metadata/components/MetadataControlNetsV2';
import { MetadataIPAdapters } from 'features/metadata/components/MetadataIPAdapters';
import { MetadataIPAdaptersV2 } from 'features/metadata/components/MetadataIPAdaptersV2';
import { MetadataItem } from 'features/metadata/components/MetadataItem';
import { MetadataLayers } from 'features/metadata/components/MetadataLayers';
import { MetadataLoRAs } from 'features/metadata/components/MetadataLoRAs';
import { MetadataT2IAdapters } from 'features/metadata/components/MetadataT2IAdapters';
import { MetadataT2IAdaptersV2 } from 'features/metadata/components/MetadataT2IAdaptersV2';
import { handlers } from 'features/metadata/util/handlers';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { memo } from 'react';
@ -39,8 +37,7 @@ const ImageMetadataActions = (props: Props) => {
<MetadataItem metadata={metadata} handlers={handlers.scheduler} />
<MetadataItem metadata={metadata} handlers={handlers.cfgScale} />
<MetadataItem metadata={metadata} handlers={handlers.cfgRescaleMultiplier} />
<MetadataItem metadata={metadata} handlers={handlers.initialImage} />
<MetadataItem metadata={metadata} handlers={handlers.strength} />
{activeTabName !== 'generation' && <MetadataItem metadata={metadata} handlers={handlers.strength} />}
<MetadataItem metadata={metadata} handlers={handlers.hrfEnabled} />
<MetadataItem metadata={metadata} handlers={handlers.hrfMethod} />
<MetadataItem metadata={metadata} handlers={handlers.hrfStrength} />
@ -52,12 +49,10 @@ const ImageMetadataActions = (props: Props) => {
<MetadataItem metadata={metadata} handlers={handlers.refinerStart} />
<MetadataItem metadata={metadata} handlers={handlers.refinerSteps} />
<MetadataLoRAs metadata={metadata} />
{activeTabName === 'generation' && <MetadataLayers metadata={metadata} />}
{activeTabName !== 'generation' && <MetadataControlNets metadata={metadata} />}
{activeTabName !== 'generation' && <MetadataT2IAdapters metadata={metadata} />}
{activeTabName !== 'generation' && <MetadataIPAdapters metadata={metadata} />}
{activeTabName === 'generation' && <MetadataControlNetsV2 metadata={metadata} />}
{activeTabName === 'generation' && <MetadataT2IAdaptersV2 metadata={metadata} />}
{activeTabName === 'generation' && <MetadataIPAdaptersV2 metadata={metadata} />}
</>
);
};

View File

@ -16,6 +16,7 @@ import ParamUpscalePopover from 'features/parameters/components/Upscale/ParamUps
import { useIsQueueMutationInProgress } from 'features/queue/hooks/useIsQueueMutationInProgress';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { selectSystemSlice } from 'features/system/store/systemSlice';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { useGetAndLoadEmbeddedWorkflow } from 'features/workflowLibrary/hooks/useGetAndLoadEmbeddedWorkflow';
import { memo, useCallback } from 'react';
import { useHotkeys } from 'react-hotkeys-hook';
@ -84,6 +85,7 @@ const CurrentImageButtons = () => {
}
dispatch(sentImageToImg2Img());
dispatch(iiLayerAdded(imageDTO));
dispatch(setActiveTab('generation'));
}, [dispatch, imageDTO]);
useHotkeys('shift+i', handleSendToImageToImage, [imageDTO]);

View File

@ -103,24 +103,11 @@ const CurrentImagePreview = ({
dataTestId="image-preview"
/>
)}
<AnimatePresence>
{shouldShowImageDetails && imageDTO && withMetadata && (
<Box
as={motion.div}
key="metadataViewer"
initial={initial}
animate={animateMetadata}
exit={exit}
position="absolute"
top={0}
width="full"
height="full"
borderRadius="base"
>
<ImageMetadataViewer image={imageDTO} />
</Box>
)}
</AnimatePresence>
{shouldShowImageDetails && imageDTO && withMetadata && (
<Box position="absolute" opacity={0.8} top={0} width="full" height="full" borderRadius="base">
<ImageMetadataViewer image={imageDTO} />
</Box>
)}
<AnimatePresence>
{withNextPrevButtons && shouldShowNextPrevButtons && imageDTO && (
<Box
@ -152,10 +139,6 @@ const animateArrows: AnimationProps['animate'] = {
opacity: 1,
transition: { duration: 0.07 },
};
const animateMetadata: AnimationProps['animate'] = {
opacity: 0.8,
transition: { duration: 0.07 },
};
const exit: AnimationProps['exit'] = {
opacity: 0,
transition: { duration: 0.07 },

View File

@ -1,39 +0,0 @@
import { Button } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import type { InvokeTabName } from 'features/ui/store/tabMap';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsDownUpBold } from 'react-icons/pi';
import { useImageViewer } from './useImageViewer';
const TAB_NAME_TO_TKEY_SHORT: Record<InvokeTabName, string> = {
generation: 'controlLayers.controlLayers',
canvas: 'ui.tabs.canvas',
workflows: 'ui.tabs.workflows',
models: 'ui.tabs.models',
queue: 'ui.tabs.queue',
};
export const EditorButton = () => {
const { t } = useTranslation();
const { onClose } = useImageViewer();
const activeTabName = useAppSelector(activeTabNameSelector);
const tooltip = useMemo(
() => t('gallery.switchTo', { tab: t(TAB_NAME_TO_TKEY_SHORT[activeTabName]) }),
[t, activeTabName]
);
return (
<Button
aria-label={tooltip}
tooltip={tooltip}
onClick={onClose}
variant="outline"
leftIcon={<PiArrowsDownUpBold />}
>
{t(TAB_NAME_TO_TKEY_SHORT[activeTabName])}
</Button>
);
};

View File

@ -10,7 +10,7 @@ import { useHotkeys } from 'react-hotkeys-hook';
import CurrentImageButtons from './CurrentImageButtons';
import CurrentImagePreview from './CurrentImagePreview';
import { EditorButton } from './EditorButton';
import { ViewerToggleMenu } from './ViewerToggleMenu';
const VIEWER_ENABLED_TABS: InvokeTabName[] = ['canvas', 'generation', 'workflows'];
@ -60,7 +60,7 @@ export const ImageViewer = memo(() => {
</Flex>
<Flex flex={1} justifyContent="center">
<Flex gap={2} marginInlineStart="auto">
<EditorButton />
<ViewerToggleMenu />
</Flex>
</Flex>
</Flex>

View File

@ -0,0 +1,45 @@
import { Flex } from '@invoke-ai/ui-library';
import { ToggleMetadataViewerButton } from 'features/gallery/components/ImageViewer/ToggleMetadataViewerButton';
import { ToggleProgressButton } from 'features/gallery/components/ImageViewer/ToggleProgressButton';
import { memo } from 'react';
import CurrentImageButtons from './CurrentImageButtons';
import CurrentImagePreview from './CurrentImagePreview';
export const ImageViewerWorkflows = memo(() => {
return (
<Flex
layerStyle="first"
borderRadius="base"
position="absolute"
flexDirection="column"
top={0}
right={0}
bottom={0}
left={0}
p={2}
rowGap={4}
alignItems="center"
justifyContent="center"
zIndex={10} // reactflow puts its minimap at 5, so we need to be above that
>
<Flex w="full" gap={2}>
<Flex flex={1} justifyContent="center">
<Flex gap={2} marginInlineEnd="auto">
<ToggleProgressButton />
<ToggleMetadataViewerButton />
</Flex>
</Flex>
<Flex flex={1} gap={2} justifyContent="center">
<CurrentImageButtons />
</Flex>
<Flex flex={1} justifyContent="center">
<Flex gap={2} marginInlineStart="auto" />
</Flex>
</Flex>
<CurrentImagePreview />
</Flex>
);
});
ImageViewerWorkflows.displayName = 'ImageViewerWorkflows';

View File

@ -35,6 +35,7 @@ export const ToggleMetadataViewerButton = memo(() => {
isDisabled={!imageDTO}
variant="outline"
colorScheme={shouldShowImageDetails ? 'invokeBlue' : 'base'}
data-testid="toggle-show-metadata-button"
/>
);
});

View File

@ -22,6 +22,7 @@ export const ToggleProgressButton = memo(() => {
onClick={onClick}
variant="outline"
colorScheme={shouldShowProgressInViewer ? 'invokeBlue' : 'base'}
data-testid="toggle-show-progress-button"
/>
);
});

View File

@ -1,25 +0,0 @@
import { Button } from '@invoke-ai/ui-library';
import { useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsDownUpBold } from 'react-icons/pi';
import { useImageViewer } from './useImageViewer';
export const ViewerButton = () => {
const { t } = useTranslation();
const { onOpen } = useImageViewer();
const tooltip = useMemo(() => t('gallery.switchTo', { tab: t('common.viewer') }), [t]);
return (
<Button
aria-label={tooltip}
tooltip={tooltip}
onClick={onOpen}
variant="outline"
pointerEvents="auto"
leftIcon={<PiArrowsDownUpBold />}
>
{t('common.viewer')}
</Button>
);
};

View File

@ -0,0 +1,67 @@
import {
Button,
Flex,
Icon,
Popover,
PopoverArrow,
PopoverBody,
PopoverContent,
PopoverTrigger,
Text,
} from '@invoke-ai/ui-library';
import { useTranslation } from 'react-i18next';
import { PiCaretDownBold, PiCheckBold, PiEyeBold, PiPencilBold } from 'react-icons/pi';
import { useImageViewer } from './useImageViewer';
export const ViewerToggleMenu = () => {
const { t } = useTranslation();
const { isOpen, onClose, onOpen } = useImageViewer();
return (
<Popover isLazy>
<PopoverTrigger>
<Button variant="outline" data-testid="toggle-viewer-menu-button">
<Flex gap={3} w="full" alignItems="center">
{isOpen ? <Icon as={PiEyeBold} /> : <Icon as={PiPencilBold} />}
<Text fontSize="md">{isOpen ? t('common.viewing') : t('common.editing')}</Text>
<Icon as={PiCaretDownBold} />
</Flex>
</Button>
</PopoverTrigger>
<PopoverContent p={2}>
<PopoverArrow />
<PopoverBody>
<Flex flexDir="column">
<Button onClick={onOpen} variant="ghost" h="auto" w="auto" p={2}>
<Flex gap={2} w="full">
<Icon as={PiCheckBold} visibility={isOpen ? 'visible' : 'hidden'} />
<Flex flexDir="column" gap={2} alignItems="flex-start">
<Text fontWeight="semibold" color="base.100">
{t('common.viewing')}
</Text>
<Text fontWeight="normal" color="base.300">
{t('common.viewingDesc')}
</Text>
</Flex>
</Flex>
</Button>
<Button onClick={onClose} variant="ghost" h="auto" w="auto" p={2}>
<Flex gap={2} w="full">
<Icon as={PiCheckBold} visibility={isOpen ? 'hidden' : 'visible'} />
<Flex flexDir="column" gap={2} alignItems="flex-start">
<Text fontWeight="semibold" color="base.100">
{t('common.editing')}
</Text>
<Text fontWeight="normal" color="base.300">
{t('common.editingDesc')}
</Text>
</Flex>
</Flex>
</Button>
</Flex>
</PopoverBody>
</PopoverContent>
</Popover>
);
};

View File

@ -1,8 +1,6 @@
import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice, isAnyOf } from '@reduxjs/toolkit';
import type { PersistConfig, RootState } from 'app/store/store';
import { rgLayerAdded } from 'features/controlLayers/store/controlLayersSlice';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { uniqBy } from 'lodash-es';
import { boardsApi } from 'services/api/endpoints/boards';
import { imagesApi } from 'services/api/endpoints/images';
@ -23,7 +21,7 @@ const initialGalleryState: GalleryState = {
boardSearchText: '',
limit: INITIAL_IMAGE_LIMIT,
offset: 0,
isImageViewerOpen: false,
isImageViewerOpen: true,
};
export const gallerySlice = createSlice({
@ -83,12 +81,6 @@ export const gallerySlice = createSlice({
},
},
extraReducers: (builder) => {
builder.addCase(setActiveTab, (state) => {
state.isImageViewerOpen = false;
});
builder.addCase(rgLayerAdded, (state) => {
state.isImageViewerOpen = false;
});
builder.addMatcher(isAnyBoardDeleted, (state, action) => {
const deletedBoardId = action.meta.arg.originalArgs;
if (deletedBoardId === state.selectedBoardId) {

View File

@ -75,8 +75,8 @@ export const LoRACard = memo((props: LoRACardProps) => {
<CompositeNumberInput
value={lora.weight}
onChange={handleChange}
min={-5}
max={5}
min={-10}
max={10}
step={0.01}
w={20}
flexShrink={0}

View File

@ -1,72 +0,0 @@
import { MetadataItemView } from 'features/metadata/components/MetadataItemView';
import type { ControlNetConfigV2Metadata, MetadataHandlers } from 'features/metadata/types';
import { handlers } from 'features/metadata/util/handlers';
import { useCallback, useEffect, useMemo, useState } from 'react';
type Props = {
metadata: unknown;
};
export const MetadataControlNetsV2 = ({ metadata }: Props) => {
const [controlNets, setControlNets] = useState<ControlNetConfigV2Metadata[]>([]);
useEffect(() => {
const parse = async () => {
try {
const parsed = await handlers.controlNetsV2.parse(metadata);
setControlNets(parsed);
} catch (e) {
setControlNets([]);
}
};
parse();
}, [metadata]);
const label = useMemo(() => handlers.controlNetsV2.getLabel(), []);
return (
<>
{controlNets.map((controlNet) => (
<MetadataViewControlNet
key={controlNet.id}
label={label}
controlNet={controlNet}
handlers={handlers.controlNetsV2}
/>
))}
</>
);
};
const MetadataViewControlNet = ({
label,
controlNet,
handlers,
}: {
label: string;
controlNet: ControlNetConfigV2Metadata;
handlers: MetadataHandlers<ControlNetConfigV2Metadata[], ControlNetConfigV2Metadata>;
}) => {
const onRecall = useCallback(() => {
if (!handlers.recallItem) {
return;
}
handlers.recallItem(controlNet, true);
}, [handlers, controlNet]);
const [renderedValue, setRenderedValue] = useState<React.ReactNode>(null);
useEffect(() => {
const _renderValue = async () => {
if (!handlers.renderItemValue) {
setRenderedValue(null);
return;
}
const rendered = await handlers.renderItemValue(controlNet);
setRenderedValue(rendered);
};
_renderValue();
}, [handlers, controlNet]);
return <MetadataItemView label={label} isDisabled={false} onRecall={onRecall} renderedValue={renderedValue} />;
};

View File

@ -3,6 +3,7 @@ import { MetadataItemView } from 'features/metadata/components/MetadataItemView'
import { useMetadataItem } from 'features/metadata/hooks/useMetadataItem';
import type { MetadataHandlers } from 'features/metadata/types';
import { MetadataParseFailedToken } from 'features/metadata/util/parsers';
import { isSymbol } from 'lodash-es';
type MetadataItemProps<T> = {
metadata: unknown;
@ -17,6 +18,10 @@ const _MetadataItem = typedMemo(<T,>({ metadata, handlers, direction = 'row' }:
return null;
}
if (handlers.getIsVisible && !isSymbol(value) && !handlers.getIsVisible(value)) {
return null;
}
return (
<MetadataItemView
label={label}

View File

@ -1,5 +1,6 @@
import type { Layer } from 'features/controlLayers/store/types';
import { MetadataItemView } from 'features/metadata/components/MetadataItemView';
import type { IPAdapterConfigV2Metadata, MetadataHandlers } from 'features/metadata/types';
import type { MetadataHandlers } from 'features/metadata/types';
import { handlers } from 'features/metadata/util/handlers';
import { useCallback, useEffect, useMemo, useState } from 'react';
@ -7,52 +8,47 @@ type Props = {
metadata: unknown;
};
export const MetadataIPAdaptersV2 = ({ metadata }: Props) => {
const [ipAdapters, setIPAdapters] = useState<IPAdapterConfigV2Metadata[]>([]);
export const MetadataLayers = ({ metadata }: Props) => {
const [layers, setLayers] = useState<Layer[]>([]);
useEffect(() => {
const parse = async () => {
try {
const parsed = await handlers.ipAdaptersV2.parse(metadata);
setIPAdapters(parsed);
const parsed = await handlers.layers.parse(metadata);
setLayers(parsed);
} catch (e) {
setIPAdapters([]);
setLayers([]);
}
};
parse();
}, [metadata]);
const label = useMemo(() => handlers.ipAdaptersV2.getLabel(), []);
const label = useMemo(() => handlers.layers.getLabel(), []);
return (
<>
{ipAdapters.map((ipAdapter) => (
<MetadataViewIPAdapter
key={ipAdapter.id}
label={label}
ipAdapter={ipAdapter}
handlers={handlers.ipAdaptersV2}
/>
{layers.map((layer) => (
<MetadataViewLayer key={layer.id} label={label} layer={layer} handlers={handlers.layers} />
))}
</>
);
};
const MetadataViewIPAdapter = ({
const MetadataViewLayer = ({
label,
ipAdapter,
layer,
handlers,
}: {
label: string;
ipAdapter: IPAdapterConfigV2Metadata;
handlers: MetadataHandlers<IPAdapterConfigV2Metadata[], IPAdapterConfigV2Metadata>;
layer: Layer;
handlers: MetadataHandlers<Layer[], Layer>;
}) => {
const onRecall = useCallback(() => {
if (!handlers.recallItem) {
return;
}
handlers.recallItem(ipAdapter, true);
}, [handlers, ipAdapter]);
handlers.recallItem(layer, true);
}, [handlers, layer]);
const [renderedValue, setRenderedValue] = useState<React.ReactNode>(null);
useEffect(() => {
@ -61,12 +57,12 @@ const MetadataViewIPAdapter = ({
setRenderedValue(null);
return;
}
const rendered = await handlers.renderItemValue(ipAdapter);
const rendered = await handlers.renderItemValue(layer);
setRenderedValue(rendered);
};
_renderValue();
}, [handlers, ipAdapter]);
}, [handlers, layer]);
return <MetadataItemView label={label} isDisabled={false} onRecall={onRecall} renderedValue={renderedValue} />;
};

View File

@ -1,72 +0,0 @@
import { MetadataItemView } from 'features/metadata/components/MetadataItemView';
import type { MetadataHandlers, T2IAdapterConfigV2Metadata } from 'features/metadata/types';
import { handlers } from 'features/metadata/util/handlers';
import { useCallback, useEffect, useMemo, useState } from 'react';
type Props = {
metadata: unknown;
};
export const MetadataT2IAdaptersV2 = ({ metadata }: Props) => {
const [t2iAdapters, setT2IAdapters] = useState<T2IAdapterConfigV2Metadata[]>([]);
useEffect(() => {
const parse = async () => {
try {
const parsed = await handlers.t2iAdaptersV2.parse(metadata);
setT2IAdapters(parsed);
} catch (e) {
setT2IAdapters([]);
}
};
parse();
}, [metadata]);
const label = useMemo(() => handlers.t2iAdaptersV2.getLabel(), []);
return (
<>
{t2iAdapters.map((t2iAdapter) => (
<MetadataViewT2IAdapter
key={t2iAdapter.id}
label={label}
t2iAdapter={t2iAdapter}
handlers={handlers.t2iAdaptersV2}
/>
))}
</>
);
};
const MetadataViewT2IAdapter = ({
label,
t2iAdapter,
handlers,
}: {
label: string;
t2iAdapter: T2IAdapterConfigV2Metadata;
handlers: MetadataHandlers<T2IAdapterConfigV2Metadata[], T2IAdapterConfigV2Metadata>;
}) => {
const onRecall = useCallback(() => {
if (!handlers.recallItem) {
return;
}
handlers.recallItem(t2iAdapter, true);
}, [handlers, t2iAdapter]);
const [renderedValue, setRenderedValue] = useState<React.ReactNode>(null);
useEffect(() => {
const _renderValue = async () => {
if (!handlers.renderItemValue) {
setRenderedValue(null);
return;
}
const rendered = await handlers.renderItemValue(t2iAdapter);
setRenderedValue(rendered);
};
_renderValue();
}, [handlers, t2iAdapter]);
return <MetadataItemView label={label} isDisabled={false} onRecall={onRecall} renderedValue={renderedValue} />;
};

View File

@ -1,9 +1,4 @@
import type { ControlNetConfig, IPAdapterConfig, T2IAdapterConfig } from 'features/controlAdapters/store/types';
import type {
ControlNetConfigV2,
IPAdapterConfigV2,
T2IAdapterConfigV2,
} from 'features/controlLayers/util/controlAdapters';
import type { O } from 'ts-toolbelt';
/**
@ -50,6 +45,14 @@ export type MetadataParseFunc<T = unknown> = (metadata: unknown) => Promise<T>;
*/
export type MetadataValidateFunc<T> = (value: T) => Promise<T>;
/**
* A function that determines whether a metadata item should be visible.
*
* @param value The value to check.
* @returns True if the item should be visible, false otherwise.
*/
type MetadataGetIsVisibleFunc<T> = (value: T) => boolean;
export type MetadataHandlers<TValue = unknown, TItem = unknown> = {
/**
* Gets the label of the current metadata item as a string.
@ -111,6 +114,14 @@ export type MetadataHandlers<TValue = unknown, TItem = unknown> = {
* @returns The rendered item.
*/
renderItemValue?: MetadataRenderValueFunc<TItem>;
/**
* Checks if a parsed metadata value should be visible.
* If not provided, the item is always visible.
*
* @param value The value to check.
* @returns True if the item should be visible, false otherwise.
*/
getIsVisible?: MetadataGetIsVisibleFunc<TValue>;
};
// TODO(psyche): The types for item handlers should be able to be inferred from the type of the value:
@ -127,6 +138,7 @@ type BuildMetadataHandlersArg<TValue, TItem> = {
getLabel: MetadataGetLabelFunc;
renderValue?: MetadataRenderValueFunc<TValue>;
renderItemValue?: MetadataRenderValueFunc<TItem>;
getIsVisible?: MetadataGetIsVisibleFunc<TValue>;
};
export type BuildMetadataHandlers = <TValue, TItem>(
@ -140,11 +152,3 @@ export type AnyControlAdapterConfigMetadata =
| ControlNetConfigMetadata
| T2IAdapterConfigMetadata
| IPAdapterConfigMetadata;
export type ControlNetConfigV2Metadata = O.NonNullable<ControlNetConfigV2, 'model'>;
export type T2IAdapterConfigV2Metadata = O.NonNullable<T2IAdapterConfigV2, 'model'>;
export type IPAdapterConfigV2Metadata = O.NonNullable<IPAdapterConfigV2, 'model'>;
export type AnyControlAdapterConfigV2Metadata =
| ControlNetConfigV2Metadata
| T2IAdapterConfigV2Metadata
| IPAdapterConfigV2Metadata;

View File

@ -1,9 +1,9 @@
import { objectKeys } from 'common/util/objectKeys';
import { toast } from 'common/util/toast';
import type { Layer } from 'features/controlLayers/store/types';
import type { LoRA } from 'features/lora/store/loraSlice';
import type {
AnyControlAdapterConfigMetadata,
AnyControlAdapterConfigV2Metadata,
BuildMetadataHandlers,
MetadataGetLabelFunc,
MetadataHandlers,
@ -16,6 +16,7 @@ import { fetchModelConfig } from 'features/metadata/util/modelFetchingHelpers';
import { validators } from 'features/metadata/util/validators';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { t } from 'i18next';
import { assert } from 'tsafe';
import { parsers } from './parsers';
import { recallers } from './recallers';
@ -44,13 +45,48 @@ const renderControlAdapterValue: MetadataRenderValueFunc<AnyControlAdapterConfig
return `${value.model.key} (${value.model.base.toUpperCase()}) - ${value.weight}`;
}
};
const renderControlAdapterValueV2: MetadataRenderValueFunc<AnyControlAdapterConfigV2Metadata> = async (value) => {
try {
const modelConfig = await fetchModelConfig(value.model.key ?? 'none');
return `${modelConfig.name} (${modelConfig.base.toUpperCase()}) - ${value.weight}`;
} catch {
return `${value.model.key} (${value.model.base.toUpperCase()}) - ${value.weight}`;
const renderLayerValue: MetadataRenderValueFunc<Layer> = async (layer) => {
if (layer.type === 'initial_image_layer') {
let rendered = t('controlLayers.globalInitialImageLayer');
if (layer.image) {
rendered += ` (${layer.image})`;
}
return rendered;
}
if (layer.type === 'control_adapter_layer') {
let rendered = t('controlLayers.globalControlAdapterLayer');
const model = layer.controlAdapter.model;
if (model) {
rendered += ` (${model.name} - ${model.base.toUpperCase()})`;
}
return rendered;
}
if (layer.type === 'ip_adapter_layer') {
let rendered = t('controlLayers.globalIPAdapterLayer');
const model = layer.ipAdapter.model;
if (model) {
rendered += ` (${model.name} - ${model.base.toUpperCase()})`;
}
return rendered;
}
if (layer.type === 'regional_guidance_layer') {
const rendered = t('controlLayers.regionalGuidanceLayer');
const items: string[] = [];
if (layer.positivePrompt) {
items.push(`Positive: ${layer.positivePrompt}`);
}
if (layer.negativePrompt) {
items.push(`Negative: ${layer.negativePrompt}`);
}
if (layer.ipAdapters.length > 0) {
items.push(`${layer.ipAdapters.length} IP Adapters`);
}
return `${rendered} (${items.join(', ')})`;
}
assert(false, 'Unknown layer type');
};
const renderLayersValue: MetadataRenderValueFunc<Layer[]> = async (layers) => {
return `${layers.length} ${t('controlLayers.layers', { count: layers.length })}`;
};
const parameterSetToast = (parameter: string, description?: string) => {
@ -73,26 +109,6 @@ const parameterNotSetToast = (parameter: string, description?: string) => {
});
};
// const allParameterSetToast = (description?: string) => {
// toast({
// title: t('toast.parametersSet'),
// status: 'info',
// description,
// duration: 2500,
// isClosable: true,
// });
// };
// const allParameterNotSetToast = (description?: string) => {
// toast({
// title: t('toast.parametersNotSet'),
// status: 'warning',
// description,
// duration: 2500,
// isClosable: true,
// });
// };
const buildParse =
<TValue, TItem>(arg: {
parser: MetadataParseFunc<TValue>;
@ -171,6 +187,7 @@ const buildHandlers: BuildMetadataHandlers = ({
itemValidator,
renderValue,
renderItemValue,
getIsVisible,
}) => ({
parse: buildParse({ parser, getLabel }),
parseItem: itemParser ? buildParseItem({ itemParser, getLabel }) : undefined,
@ -179,6 +196,7 @@ const buildHandlers: BuildMetadataHandlers = ({
getLabel,
renderValue: renderValue ?? resolveToString,
renderItemValue: renderItemValue ?? resolveToString,
getIsVisible,
});
export const handlers = {
@ -198,12 +216,6 @@ export const handlers = {
recaller: recallers.cfgScale,
}),
height: buildHandlers({ getLabel: () => t('metadata.height'), parser: parsers.height, recaller: recallers.height }),
initialImage: buildHandlers({
getLabel: () => t('metadata.initImage'),
parser: parsers.initialImage,
recaller: recallers.initialImage,
renderValue: async (imageDTO) => imageDTO.image_name,
}),
negativePrompt: buildHandlers({
getLabel: () => t('metadata.negativePrompt'),
parser: parsers.negativePrompt,
@ -350,35 +362,17 @@ export const handlers = {
itemValidator: validators.t2iAdapter,
renderItemValue: renderControlAdapterValue,
}),
controlNetsV2: buildHandlers({
getLabel: () => t('common.controlNet'),
parser: parsers.controlNetsV2,
itemParser: parsers.controlNetV2,
recaller: recallers.controlNetsV2,
itemRecaller: recallers.controlNetV2,
validator: validators.controlNetsV2,
itemValidator: validators.controlNetV2,
renderItemValue: renderControlAdapterValueV2,
}),
ipAdaptersV2: buildHandlers({
getLabel: () => t('common.ipAdapter'),
parser: parsers.ipAdaptersV2,
itemParser: parsers.ipAdapterV2,
recaller: recallers.ipAdaptersV2,
itemRecaller: recallers.ipAdapterV2,
validator: validators.ipAdaptersV2,
itemValidator: validators.ipAdapterV2,
renderItemValue: renderControlAdapterValueV2,
}),
t2iAdaptersV2: buildHandlers({
getLabel: () => t('common.t2iAdapter'),
parser: parsers.t2iAdaptersV2,
itemParser: parsers.t2iAdapterV2,
recaller: recallers.t2iAdaptersV2,
itemRecaller: recallers.t2iAdapterV2,
validator: validators.t2iAdaptersV2,
itemValidator: validators.t2iAdapterV2,
renderItemValue: renderControlAdapterValueV2,
layers: buildHandlers({
getLabel: () => t('controlLayers.layers_one'),
parser: parsers.layers,
itemParser: parsers.layer,
recaller: recallers.layers,
itemRecaller: recallers.layer,
validator: validators.layers,
itemValidator: validators.layer,
renderItemValue: renderLayerValue,
renderValue: renderLayersValue,
getIsVisible: (value) => value.length > 0,
}),
} as const;
@ -435,9 +429,9 @@ export const parseAndRecallImageDimensions = async (metadata: unknown) => {
};
// These handlers should be omitted when recalling to control layers
const TO_CONTROL_LAYERS_SKIP_KEYS: (keyof typeof handlers)[] = ['controlNets', 'ipAdapters', 't2iAdapters'];
const TO_CONTROL_LAYERS_SKIP_KEYS: (keyof typeof handlers)[] = ['controlNets', 'ipAdapters', 't2iAdapters', 'strength'];
// These handlers should be omitted when recalling to the rest of the app
const NOT_TO_CONTROL_LAYERS_SKIP_KEYS: (keyof typeof handlers)[] = ['controlNetsV2', 'ipAdaptersV2', 't2iAdaptersV2'];
const NOT_TO_CONTROL_LAYERS_SKIP_KEYS: (keyof typeof handlers)[] = ['layers'];
export const parseAndRecallAllMetadata = async (
metadata: unknown,

View File

@ -1,4 +1,5 @@
import { getStore } from 'app/store/nanostores/store';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { isModelIdentifier, isModelIdentifierV2 } from 'features/nodes/types/common';
import { modelsApi } from 'services/api/endpoints/models';
import type { AnyModelConfig, BaseModelType, ModelType } from 'services/api/types';
@ -68,6 +69,24 @@ const fetchModelConfigByAttrs = async (name: string, base: BaseModelType, type:
}
};
/**
* Fetches the model config given an identifier. First attempts to fetch by key, then falls back to fetching by attrs.
* @param identifier The model identifier.
* @returns A promise that resolves to the model config.
* @throws {ModelConfigNotFoundError} If the model config is unable to be fetched.
*/
export const fetchModelConfigByIdentifier = async (identifier: ModelIdentifierField): Promise<AnyModelConfig> => {
try {
return await fetchModelConfig(identifier.key);
} catch {
try {
return await fetchModelConfigByAttrs(identifier.name, identifier.base, identifier.type);
} catch {
throw new ModelConfigNotFoundError(`Unable to retrieve model config for identifier ${identifier}`);
}
}
};
/**
* Fetches the model config for a given model key and type, and ensures that the model config is of a specific type.
* @param key The model key.

View File

@ -1,10 +1,12 @@
import { getStore } from 'app/store/nanostores/store';
import {
initialControlNet,
initialIPAdapter,
initialT2IAdapter,
} from 'features/controlAdapters/util/buildControlAdapter';
import { buildControlAdapterProcessor } from 'features/controlAdapters/util/buildControlAdapterProcessor';
import { getCALayerId, getIPALayerId, INITIAL_IMAGE_LAYER_ID } from 'features/controlLayers/store/controlLayersSlice';
import type { ControlAdapterLayer, InitialImageLayer, IPAdapterLayer, Layer } from 'features/controlLayers/store/types';
import { zLayer } from 'features/controlLayers/store/types';
import {
CA_PROCESSOR_DATA,
imageDTOToImageWithDims,
@ -17,12 +19,9 @@ import type { LoRA } from 'features/lora/store/loraSlice';
import { defaultLoRAConfig } from 'features/lora/store/loraSlice';
import type {
ControlNetConfigMetadata,
ControlNetConfigV2Metadata,
IPAdapterConfigMetadata,
IPAdapterConfigV2Metadata,
MetadataParseFunc,
T2IAdapterConfigMetadata,
T2IAdapterConfigV2Metadata,
} from 'features/metadata/types';
import { fetchModelConfigWithTypeGuard, getModelKey } from 'features/metadata/util/modelFetchingHelpers';
import { zControlField, zIPAdapterField, zModelIdentifierField, zT2IAdapterField } from 'features/nodes/types/common';
@ -69,8 +68,7 @@ import {
isParameterWidth,
} from 'features/parameters/types/parameterSchemas';
import { get, isArray, isString } from 'lodash-es';
import { getImageDTO, imagesApi } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import { getImageDTO } from 'services/api/endpoints/images';
import {
isControlNetModelConfig,
isIPAdapterModelConfig,
@ -80,6 +78,7 @@ import {
isT2IAdapterModelConfig,
isVAEModelConfig,
} from 'services/api/types';
import { assert } from 'tsafe';
import { v4 as uuidv4 } from 'uuid';
export const MetadataParsePendingToken = Symbol('pending');
@ -149,14 +148,6 @@ const parseCFGRescaleMultiplier: MetadataParseFunc<ParameterCFGRescaleMultiplier
const parseScheduler: MetadataParseFunc<ParameterScheduler> = (metadata) =>
getProperty(metadata, 'scheduler', isParameterScheduler);
const parseInitialImage: MetadataParseFunc<ImageDTO> = async (metadata) => {
const imageName = await getProperty(metadata, 'init_image', isString);
const imageDTORequest = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await imageDTORequest.unwrap();
imageDTORequest.unsubscribe();
return imageDTO;
};
const parseWidth: MetadataParseFunc<ParameterWidth> = (metadata) => getProperty(metadata, 'width', isParameterWidth);
const parseHeight: MetadataParseFunc<ParameterHeight> = (metadata) =>
@ -309,7 +300,7 @@ const parseControlNet: MetadataParseFunc<ControlNetConfigMetadata> = async (meta
const parseAllControlNets: MetadataParseFunc<ControlNetConfigMetadata[]> = async (metadata) => {
try {
const controlNetsRaw = await getProperty(metadata, 'controlnets', isArray || undefined);
const controlNetsRaw = await getProperty(metadata, 'controlnets', isArray);
const parseResults = await Promise.allSettled(controlNetsRaw.map((cn) => parseControlNet(cn)));
const controlNets = parseResults
.filter((result): result is PromiseFulfilledResult<ControlNetConfigMetadata> => result.status === 'fulfilled')
@ -439,8 +430,103 @@ const parseAllIPAdapters: MetadataParseFunc<IPAdapterConfigMetadata[]> = async (
}
};
//#region V2/Control Layers
const parseControlNetV2: MetadataParseFunc<ControlNetConfigV2Metadata> = async (metadataItem) => {
//#region Control Layers
const parseLayer: MetadataParseFunc<Layer> = async (metadataItem) => zLayer.parseAsync(metadataItem);
const parseLayers: MetadataParseFunc<Layer[]> = async (metadata) => {
// We need to support recalling pre-Control Layers metadata into Control Layers. A separate set of parsers handles
// taking pre-CL metadata and parsing it into layers. It doesn't always map 1-to-1, so this is best-effort. For
// example, CL Control Adapters don't support resize mode, so we simply omit that property.
try {
const layers: Layer[] = [];
try {
const control_layers = await getProperty(metadata, 'control_layers');
const controlLayersRaw = await getProperty(control_layers, 'layers', isArray);
const controlLayersParseResults = await Promise.allSettled(controlLayersRaw.map(parseLayer));
const controlLayers = controlLayersParseResults
.filter((result): result is PromiseFulfilledResult<Layer> => result.status === 'fulfilled')
.map((result) => result.value);
layers.push(...controlLayers);
} catch {
// no-op
}
try {
const controlNetsRaw = await getProperty(metadata, 'controlnets', isArray);
const controlNetsParseResults = await Promise.allSettled(
controlNetsRaw.map(async (cn) => await parseControlNetToControlAdapterLayer(cn))
);
const controlNetsAsLayers = controlNetsParseResults
.filter((result): result is PromiseFulfilledResult<ControlAdapterLayer> => result.status === 'fulfilled')
.map((result) => result.value);
layers.push(...controlNetsAsLayers);
} catch {
// no-op
}
try {
const t2iAdaptersRaw = await getProperty(metadata, 't2iAdapters', isArray);
const t2iAdaptersParseResults = await Promise.allSettled(
t2iAdaptersRaw.map(async (cn) => await parseT2IAdapterToControlAdapterLayer(cn))
);
const t2iAdaptersAsLayers = t2iAdaptersParseResults
.filter((result): result is PromiseFulfilledResult<ControlAdapterLayer> => result.status === 'fulfilled')
.map((result) => result.value);
layers.push(...t2iAdaptersAsLayers);
} catch {
// no-op
}
try {
const ipAdaptersRaw = await getProperty(metadata, 'ipAdapters', isArray);
const ipAdaptersParseResults = await Promise.allSettled(
ipAdaptersRaw.map(async (cn) => await parseIPAdapterToIPAdapterLayer(cn))
);
const ipAdaptersAsLayers = ipAdaptersParseResults
.filter((result): result is PromiseFulfilledResult<IPAdapterLayer> => result.status === 'fulfilled')
.map((result) => result.value);
layers.push(...ipAdaptersAsLayers);
} catch {
// no-op
}
try {
const initialImageLayer = await parseInitialImageToInitialImageLayer(metadata);
layers.push(initialImageLayer);
} catch {
// no-op
}
return layers;
} catch {
return [];
}
};
const parseInitialImageToInitialImageLayer: MetadataParseFunc<InitialImageLayer> = async (metadata) => {
const denoisingStrength = await getProperty(metadata, 'strength', isParameterStrength);
const imageName = await getProperty(metadata, 'init_image', isString);
const imageDTO = await getImageDTO(imageName);
assert(imageDTO, 'ImageDTO is null');
const layer: InitialImageLayer = {
id: INITIAL_IMAGE_LAYER_ID,
type: 'initial_image_layer',
bbox: null,
bboxNeedsUpdate: true,
x: 0,
y: 0,
isEnabled: true,
opacity: 1,
image: imageDTOToImageWithDims(imageDTO),
isSelected: true,
denoisingStrength,
};
return layer;
};
const parseControlNetToControlAdapterLayer: MetadataParseFunc<ControlAdapterLayer> = async (metadataItem) => {
const control_model = await getProperty(metadataItem, 'control_model');
const key = await getModelKey(control_model, 'controlnet');
const controlNetModel = await fetchModelConfigWithTypeGuard(key, isControlNetModelConfig);
@ -469,7 +555,6 @@ const parseControlNetV2: MetadataParseFunc<ControlNetConfigV2Metadata> = async (
.catch(null)
.parse(await getProperty(metadataItem, 'control_mode'));
const id = uuidv4();
const defaultPreprocessor = controlNetModel.default_settings?.preprocessor;
const processorConfig = isProcessorTypeV2(defaultPreprocessor)
? CA_PROCESSOR_DATA[defaultPreprocessor].buildDefaults()
@ -481,36 +566,35 @@ const parseControlNetV2: MetadataParseFunc<ControlNetConfigV2Metadata> = async (
const imageDTO = image ? await getImageDTO(image.image_name) : null;
const processedImageDTO = processedImage ? await getImageDTO(processedImage.image_name) : null;
const controlNet: ControlNetConfigV2Metadata = {
id,
type: 'controlnet',
model: zModelIdentifierField.parse(controlNetModel),
weight: typeof control_weight === 'number' ? control_weight : initialControlNetV2.weight,
beginEndStepPct,
controlMode: control_mode ?? initialControlNetV2.controlMode,
image: imageDTO ? imageDTOToImageWithDims(imageDTO) : null,
processedImage: processedImageDTO ? imageDTOToImageWithDims(processedImageDTO) : null,
processorConfig,
isProcessingImage: false,
const layer: ControlAdapterLayer = {
id: getCALayerId(uuidv4()),
bbox: null,
bboxNeedsUpdate: true,
isEnabled: true,
isFilterEnabled: true,
isSelected: true,
opacity: 1,
type: 'control_adapter_layer',
x: 0,
y: 0,
controlAdapter: {
id: uuidv4(),
type: 'controlnet',
model: zModelIdentifierField.parse(controlNetModel),
weight: typeof control_weight === 'number' ? control_weight : initialControlNetV2.weight,
beginEndStepPct,
controlMode: control_mode ?? initialControlNetV2.controlMode,
image: imageDTO ? imageDTOToImageWithDims(imageDTO) : null,
processedImage: processedImageDTO ? imageDTOToImageWithDims(processedImageDTO) : null,
processorConfig,
processorPendingBatchId: null,
},
};
return controlNet;
return layer;
};
const parseAllControlNetsV2: MetadataParseFunc<ControlNetConfigV2Metadata[]> = async (metadata) => {
try {
const controlNetsRaw = await getProperty(metadata, 'controlnets', isArray || undefined);
const parseResults = await Promise.allSettled(controlNetsRaw.map((cn) => parseControlNetV2(cn)));
const controlNets = parseResults
.filter((result): result is PromiseFulfilledResult<ControlNetConfigV2Metadata> => result.status === 'fulfilled')
.map((result) => result.value);
return controlNets;
} catch {
return [];
}
};
const parseT2IAdapterV2: MetadataParseFunc<T2IAdapterConfigV2Metadata> = async (metadataItem) => {
const parseT2IAdapterToControlAdapterLayer: MetadataParseFunc<ControlAdapterLayer> = async (metadataItem) => {
const t2i_adapter_model = await getProperty(metadataItem, 't2i_adapter_model');
const key = await getModelKey(t2i_adapter_model, 't2i_adapter');
const t2iAdapterModel = await fetchModelConfigWithTypeGuard(key, isT2IAdapterModelConfig);
@ -536,7 +620,6 @@ const parseT2IAdapterV2: MetadataParseFunc<T2IAdapterConfigV2Metadata> = async (
.catch(null)
.parse(await getProperty(metadataItem, 'end_step_percent'));
const id = uuidv4();
const defaultPreprocessor = t2iAdapterModel.default_settings?.preprocessor;
const processorConfig = isProcessorTypeV2(defaultPreprocessor)
? CA_PROCESSOR_DATA[defaultPreprocessor].buildDefaults()
@ -548,35 +631,34 @@ const parseT2IAdapterV2: MetadataParseFunc<T2IAdapterConfigV2Metadata> = async (
const imageDTO = image ? await getImageDTO(image.image_name) : null;
const processedImageDTO = processedImage ? await getImageDTO(processedImage.image_name) : null;
const t2iAdapter: T2IAdapterConfigV2Metadata = {
id,
type: 't2i_adapter',
model: zModelIdentifierField.parse(t2iAdapterModel),
weight: typeof weight === 'number' ? weight : initialT2IAdapterV2.weight,
beginEndStepPct,
image: imageDTO ? imageDTOToImageWithDims(imageDTO) : null,
processedImage: processedImageDTO ? imageDTOToImageWithDims(processedImageDTO) : null,
processorConfig,
isProcessingImage: false,
const layer: ControlAdapterLayer = {
id: getCALayerId(uuidv4()),
bbox: null,
bboxNeedsUpdate: true,
isEnabled: true,
isFilterEnabled: true,
isSelected: true,
opacity: 1,
type: 'control_adapter_layer',
x: 0,
y: 0,
controlAdapter: {
id: uuidv4(),
type: 't2i_adapter',
model: zModelIdentifierField.parse(t2iAdapterModel),
weight: typeof weight === 'number' ? weight : initialT2IAdapterV2.weight,
beginEndStepPct,
image: imageDTO ? imageDTOToImageWithDims(imageDTO) : null,
processedImage: processedImageDTO ? imageDTOToImageWithDims(processedImageDTO) : null,
processorConfig,
processorPendingBatchId: null,
},
};
return t2iAdapter;
return layer;
};
const parseAllT2IAdaptersV2: MetadataParseFunc<T2IAdapterConfigV2Metadata[]> = async (metadata) => {
try {
const t2iAdaptersRaw = await getProperty(metadata, 't2iAdapters', isArray);
const parseResults = await Promise.allSettled(t2iAdaptersRaw.map((t2iAdapter) => parseT2IAdapterV2(t2iAdapter)));
const t2iAdapters = parseResults
.filter((result): result is PromiseFulfilledResult<T2IAdapterConfigV2Metadata> => result.status === 'fulfilled')
.map((result) => result.value);
return t2iAdapters;
} catch {
return [];
}
};
const parseIPAdapterV2: MetadataParseFunc<IPAdapterConfigV2Metadata> = async (metadataItem) => {
const parseIPAdapterToIPAdapterLayer: MetadataParseFunc<IPAdapterLayer> = async (metadataItem) => {
const ip_adapter_model = await getProperty(metadataItem, 'ip_adapter_model');
const key = await getModelKey(ip_adapter_model, 'ip_adapter');
const ipAdapterModel = await fetchModelConfigWithTypeGuard(key, isIPAdapterModelConfig);
@ -602,39 +684,32 @@ const parseIPAdapterV2: MetadataParseFunc<IPAdapterConfigV2Metadata> = async (me
.catch(null)
.parse(await getProperty(metadataItem, 'end_step_percent'));
const id = uuidv4();
const beginEndStepPct: [number, number] = [
begin_step_percent ?? initialIPAdapterV2.beginEndStepPct[0],
end_step_percent ?? initialIPAdapterV2.beginEndStepPct[1],
];
const imageDTO = image ? await getImageDTO(image.image_name) : null;
const ipAdapter: IPAdapterConfigV2Metadata = {
id,
type: 'ip_adapter',
model: zModelIdentifierField.parse(ipAdapterModel),
weight: typeof weight === 'number' ? weight : initialIPAdapterV2.weight,
beginEndStepPct,
image: imageDTO ? imageDTOToImageWithDims(imageDTO) : null,
clipVisionModel: initialIPAdapterV2.clipVisionModel, // TODO: This needs to be added to the zIPAdapterField...
method: method ?? initialIPAdapterV2.method,
const layer: IPAdapterLayer = {
id: getIPALayerId(uuidv4()),
type: 'ip_adapter_layer',
isEnabled: true,
isSelected: true,
ipAdapter: {
id: uuidv4(),
type: 'ip_adapter',
model: zModelIdentifierField.parse(ipAdapterModel),
weight: typeof weight === 'number' ? weight : initialIPAdapterV2.weight,
beginEndStepPct,
image: imageDTO ? imageDTOToImageWithDims(imageDTO) : null,
clipVisionModel: initialIPAdapterV2.clipVisionModel, // TODO: This needs to be added to the zIPAdapterField...
method: method ?? initialIPAdapterV2.method,
},
};
return ipAdapter;
};
const parseAllIPAdaptersV2: MetadataParseFunc<IPAdapterConfigV2Metadata[]> = async (metadata) => {
try {
const ipAdaptersRaw = await getProperty(metadata, 'ipAdapters', isArray);
const parseResults = await Promise.allSettled(ipAdaptersRaw.map((ipAdapter) => parseIPAdapterV2(ipAdapter)));
const ipAdapters = parseResults
.filter((result): result is PromiseFulfilledResult<IPAdapterConfigV2Metadata> => result.status === 'fulfilled')
.map((result) => result.value);
return ipAdapters;
} catch {
return [];
}
return layer;
};
//#endregion
export const parsers = {
createdBy: parseCreatedBy,
@ -647,7 +722,6 @@ export const parsers = {
cfgScale: parseCFGScale,
cfgRescaleMultiplier: parseCFGRescaleMultiplier,
scheduler: parseScheduler,
initialImage: parseInitialImage,
width: parseWidth,
height: parseHeight,
steps: parseSteps,
@ -672,10 +746,9 @@ export const parsers = {
t2iAdapters: parseAllT2IAdapters,
ipAdapter: parseIPAdapter,
ipAdapters: parseAllIPAdapters,
controlNetV2: parseControlNetV2,
controlNetsV2: parseAllControlNetsV2,
t2iAdapterV2: parseT2IAdapterV2,
t2iAdaptersV2: parseAllT2IAdaptersV2,
ipAdapterV2: parseIPAdapterV2,
ipAdaptersV2: parseAllIPAdaptersV2,
controlNetToControlLayer: parseControlNetToControlAdapterLayer,
t2iAdapterToControlAdapterLayer: parseT2IAdapterToControlAdapterLayer,
ipAdapterToIPAdapterLayer: parseIPAdapterToIPAdapterLayer,
layer: parseLayer,
layers: parseLayers,
} as const;

Some files were not shown because too many files have changed in this diff Show More