veloren/world/src/sim/erosion.rs

2067 lines
99 KiB
Rust
Raw Normal View History

2019-11-19 18:34:52 +00:00
use super::{diffusion, downhill, neighbors, uniform_idx_as_vec2, uphill, WORLD_SIZE};
use bitvec::prelude::{bitbox, bitvec, BitBox};
use crate::{config::CONFIG, util::RandomField};
use common::{terrain::TerrainChunkSize, vol::RectVolSize};
use noise::{NoiseFn, Point3};
use num::Float;
use ordered_float::NotNan;
use rayon::prelude::*;
use std::{
cmp::{Ordering, Reverse},
collections::BinaryHeap,
f32, f64, mem,
path::PathBuf,
u32,
};
use vek::*;
pub type Alt = f32;
pub type Compute = f64;
/// Compute the water flux at all chunks, given a list of chunk indices sorted by increasing
/// height.
pub fn get_drainage(newh: &[u32], downhill: &[isize], _boundary_len: usize) -> Box<[f32]> {
// FIXME: Make the below work. For now, we just use constant flux.
// Initially, flux is determined by rainfall. We currently treat this as the same as humidity,
// so we just use humidity as a proxy. The total flux across the whole map is normalize to
// 1.0, and we expect the average flux to be 0.5. To figure out how far from normal any given
// chunk is, we use its logit.
// NOTE: If there are no non-boundary chunks, we just set base_flux to 1.0; this should still
// work fine because in that case there's no erosion anyway.
// let base_flux = 1.0 / ((WORLD_SIZE.x * WORLD_SIZE.y) as f32);
let base_flux = 1.0;
let mut flux = vec![base_flux; WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
for &chunk_idx in newh.into_iter().rev() {
let chunk_idx = chunk_idx as usize;
let downhill_idx = downhill[chunk_idx];
if downhill_idx >= 0 {
flux[downhill_idx as usize] += flux[chunk_idx];
}
}
flux
}
/// Kind of water on this tile.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum RiverKind {
Ocean,
Lake {
/// In addition to a downhill node (pointing to, eventually, the bottom of the lake), each
/// lake also has a "pass" that identifies the direction out of which water should flow
/// from this lake if it is minimally flooded. While some lakes may be too full for this
/// to be the actual pass used by their enclosing lake, we still use this as a way to make
/// sure that lake connections to rivers flow in the correct direction.
neighbor_pass_pos: Vec2<i32>,
},
/// River should be maximal.
River {
/// Dimensions of the river's cross-sectional area, as m × m (rivers are approximated
/// as an open rectangular prism in the direction of the velocity vector).
cross_section: Vec2<f32>,
},
}
impl RiverKind {
pub fn is_river(&self) -> bool {
if let RiverKind::River { .. } = *self {
true
} else {
false
}
}
pub fn is_lake(&self) -> bool {
if let RiverKind::Lake { .. } = *self {
true
} else {
false
}
}
}
impl PartialOrd for RiverKind {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
match (*self, *other) {
(RiverKind::Ocean, RiverKind::Ocean) => Some(Ordering::Equal),
(RiverKind::Ocean, _) => Some(Ordering::Less),
(_, RiverKind::Ocean) => Some(Ordering::Greater),
(RiverKind::Lake { .. }, RiverKind::Lake { .. }) => None,
(RiverKind::Lake { .. }, _) => Some(Ordering::Less),
(_, RiverKind::Lake { .. }) => Some(Ordering::Greater),
(RiverKind::River { .. }, RiverKind::River { .. }) => None,
}
}
}
/// From velocity and cross_section we can calculate the volumetric flow rate, as the
/// cross-sectional area times the velocity.
///
/// TODO: we might choose to include a curve for the river, as long as it didn't allow it to
/// cross more than one neighboring chunk away. For now we defer this to rendering time.
///
/// NOTE: This structure is 57 (or more likely 64) bytes, which is kind of big.
#[derive(Clone, Debug, Default)]
pub struct RiverData {
/// A velocity vector (in m / minute, i.e. voxels / second from a game perspective).
///
/// TODO: To represent this in a better-packed way, use u8s instead (as "f8s").
pub(crate) velocity: Vec3<f32>,
/// The computed derivative for the segment of river starting at this chunk (and flowing
/// downhill). Should be 0 at endpoints. For rivers with more than one incoming segment, we
/// weight the derivatives by flux (cross-sectional area times velocity) which is correlated
/// with mass / second; treating the derivative as "velocity" with respect to length along the
/// river, we treat the weighted sum of incoming splines as the "momentum", and can divide it
/// by the total incoming mass as a way to find the velocity of the center of mass. We can
/// then use this derivative to find a "tangent" for the incoming river segment at this point,
/// and as the linear part of the interpolating spline at this point.
///
/// Note that we aren't going to have completely smooth curves here anyway, so we will probably
/// end up applying a dampening factor as well (maybe based on the length?) to prevent
/// extremely wild oscillations.
pub(crate) spline_derivative: Vec2<f32>,
/// If this chunk is part of a river, this should be true. We can't just compute this from the
/// cross section because once a river becomes visible, we want it to stay visible until it
/// reaches its sink.
pub river_kind: Option<RiverKind>,
/// We also have a second record for recording any rivers in nearby chunks that manage to
/// intersect this chunk, though this is unlikely to happen in current gameplay. This is
/// because river areas are allowed to cross arbitrarily many chunk boundaries, if they are
/// wide enough. In such cases we may choose to render the rivers as particularly deep in
/// those places.
pub(crate) neighbor_rivers: Vec<u32>,
}
impl RiverData {
pub fn is_river(&self) -> bool {
self.river_kind
.as_ref()
.map(RiverKind::is_river)
.unwrap_or(false)
}
pub fn is_lake(&self) -> bool {
self.river_kind
.as_ref()
.map(RiverKind::is_lake)
.unwrap_or(false)
}
}
/// Draw rivers and assign them heights, widths, and velocities. Take some liberties with the
/// constant factors etc. in order to make it more likely that we draw rivers at all.
pub fn get_rivers(
newh: &[u32],
water_alt: &[f32],
downhill: &[isize],
indirection: &[i32],
drainage: &[f32],
) -> Box<[RiverData]> {
// For continuity-preserving quadratic spline interpolation, we (appear to) need to build
// up the derivatives from the top down. Fortunately this computation seems tractable.
let mut rivers = vec![RiverData::default(); WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
let neighbor_coef = TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
// NOTE: This technically makes us discontinuous, so we should be cautious about using this.
let derivative_divisor = 1.0;
2019-11-19 18:34:52 +00:00
let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale as f64;
for &chunk_idx in newh.into_iter().rev() {
let chunk_idx = chunk_idx as usize;
let downhill_idx = downhill[chunk_idx];
if downhill_idx < 0 {
// We are in the ocean.
debug_assert!(downhill_idx == -2);
rivers[chunk_idx].river_kind = Some(RiverKind::Ocean);
continue;
}
let downhill_idx = downhill_idx as usize;
let downhill_pos = uniform_idx_as_vec2(downhill_idx);
let dxy = (downhill_pos - uniform_idx_as_vec2(chunk_idx)).map(|e| e as f64);
let neighbor_dim = neighbor_coef * dxy;
// First, we calculate the river's volumetric flow rate.
let chunk_drainage = drainage[chunk_idx] as f64;
// Volumetric flow rate is just the total drainage area to this chunk, times rainfall
// height per chunk per minute (needed in order to use this as a m³ volume).
// TODO: consider having different rainfall rates (and including this information in the
// computation of drainage).
let volumetric_flow_rate = chunk_drainage * CONFIG.rainfall_chunk_rate as f64;
let downhill_drainage = drainage[downhill_idx] as f64;
// We know the drainage to the downhill node is just chunk_drainage - 1.0 (the amount of
// rainfall this chunk is said to get), so we don't need to explicitly remember the
// incoming mass. How do we find a slope for endpoints where there is no incoming data?
// Currently, we just assume it's set to 0.0.
// TODO: Fix this when we add differing amounts of rainfall.
let incoming_drainage = downhill_drainage - 1.0;
let get_river_spline_derivative =
|neighbor_dim: Vec2<f64>, spline_derivative: Vec2<f32>| {
/*if incoming_drainage == 0.0 {
Vec2::zero()
} else */
{
// "Velocity of center of mass" of splines of incoming flows.
let river_prev_slope = spline_derivative.map(|e| e as f64)/* / incoming_drainage*/;
// NOTE: We need to make sure the slope doesn't get *too* crazy.
// ((dpx - cx) - 4 * MAX).abs() = bx
// NOTE: This will fail if the distance between chunks in any direction
// is exactly TerrainChunkSize::RECT * 4.0, but hopefully this should not be possible.
// NOTE: This isn't measuring actual distance, you can go farther on diagonals.
// let max_deriv = neighbor_dim - neighbor_coef * 4.0;
let max_deriv = neighbor_dim - neighbor_coef * 2.0 * 2.0.sqrt();
let extra_divisor = river_prev_slope
.map2(max_deriv, |e, f| (e / f).abs())
.reduce_partial_max();
// Set up the river's spline derivative. For each incoming river at pos with
// river_spline_derivative bx, we can compute our interpolated slope as:
// d_x = 2 * (chunk_pos - pos - bx) + bx
// = 2 * (chunk_pos - pos) - bx
//
// which is exactly twice what was weighted by uphill nodes to get our
// river_spline_derivative in the first place.
//
// NOTE: this probably implies that the distance shouldn't be normalized, since the
// distances aren't actually equal between x and y... we'll see what happens.
(if extra_divisor > 1.0 {
river_prev_slope / extra_divisor
} else {
river_prev_slope
})
.map(|e| e as f32)
}
};
let river = &rivers[chunk_idx];
let river_spline_derivative =
get_river_spline_derivative(neighbor_dim, river.spline_derivative);
let indirection_idx = indirection[chunk_idx];
// Find the lake we are flowing into.
let lake_idx = if indirection_idx < 0 {
2019-11-25 03:47:33 +00:00
// If we're a lake bottom, our own indirection is negative.
/* let mut lake = &mut rivers[chunk_idx];
let neighbor_pass_idx = downhill_idx;
// Mass flow from this lake is treated as a weighting factor (this is currently
// considered proportional to drainage, but in the direction of "lake side of pass to
// pass.").
let neighbor_pass_pos = downhill_pos;
lake.river_kind = Some(RiverKind::Lake {
neighbor_pass_pos: neighbor_pass_pos
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32),
});
2019-11-25 03:47:33 +00:00
lake.spline_derivative = Vec2::zero()/*river_spline_derivative*/; */
let pass_idx = (-indirection_idx) as usize;
2019-11-25 03:47:33 +00:00
/* let pass_pos = uniform_idx_as_vec2(pass_idx);
let lake_direction = neighbor_coef * (neighbor_pass_pos - pass_pos).map(|e| e as f64); */
let pass = &rivers[pass_idx];
2019-11-25 03:47:33 +00:00
/* // Our side of the pass must have already been traversed (even if our side of the pass
// is the lake bottom), so we acquire its computed river_spline_derivative.
debug_assert!(pass.is_lake()); */
// NOTE: Must exist since this lake had a downhill in the first place.
let neighbor_pass_idx = downhill[pass_idx] as usize/*downhill_idx*/;
/* let pass_spline_derivative = pass.spline_derivative.map(|e| e as f64)/*Vec2::zero()*/;
// Normally we want to not normalize, but for the lake we don't want to generate a
// super long edge since it could lead to a lot of oscillation... this is another
// reason why we shouldn't use the lake bottom.
// lake_direction.normalize();
// We want to assign the drained node from any lake to be a river.
let lake_drainage = /*drainage[chunk_idx]*/chunk_drainage;
let lake_neighbor_pass_incoming_drainage = incoming_drainage;
let weighted_flow = (lake_direction * 2.0 - pass_spline_derivative)
/ derivative_divisor
* lake_drainage
2019-11-25 03:47:33 +00:00
/ lake_neighbor_pass_incoming_drainage; */
let mut lake_neighbor_pass = &mut rivers[neighbor_pass_idx];
// We definitely shouldn't have encountered this yet!
debug_assert!(lake_neighbor_pass.velocity == Vec3::zero());
// TODO: Rethink making the lake neighbor pass always a river or lake, no matter how
// much incoming water there is? Sometimes it looks weird having a river emerge from a
// tiny pool.
lake_neighbor_pass.river_kind = Some(RiverKind::River {
cross_section: Vec2::default(),
});
2019-11-25 03:47:33 +00:00
/* // We also want to add to the out-flow side of the pass a (flux-weighted)
// derivative coming from the lake center.
//
// NOTE: Maybe consider utilizing 3D component of spline somehow? Currently this is
// basically a flat vector, but that might be okay from lake to other side of pass.
lake_neighbor_pass.spline_derivative += /*Vec2::new(weighted_flow.x, weighted_flow.y)*/
weighted_flow.map(|e| e as f32);
continue; */
chunk_idx
} else {
indirection_idx as usize
};
// Find the pass this lake is flowing into (i.e. water at the lake bottom gets
// pushed towards the point identified by pass_idx).
let pass_idx = if downhill[lake_idx] < 0 {
// Flows into nothing, so this lake is its own pass.
lake_idx
} else {
(-indirection[lake_idx]) as usize
};
2019-11-25 03:47:33 +00:00
// Add our spline derivative to the downhill river (weighted by the chunk's drainage).
// NOTE: Don't add the spline derivative to the lake side of the pass for our own lake,
// because we don't want to preserve weird curvature from before we hit the lake in the
// outflowing river (this will not apply to one-chunk lakes, which are their own pass).
if pass_idx != downhill_idx {
// TODO: consider utilizing height difference component of flux as well; currently we
// just discard it in figuring out the spline's slope.
let downhill_river = &mut rivers[downhill_idx];
let weighted_flow = (neighbor_dim * 2.0 - river_spline_derivative.map(|e| e as f64))
/ derivative_divisor
* chunk_drainage
/ incoming_drainage;
downhill_river.spline_derivative += weighted_flow.map(|e| e as f32);
}
let neighbor_pass_idx = downhill[pass_idx/*lake_idx*/];
// Find our own water height.
let chunk_water_alt = water_alt[chunk_idx];
if neighbor_pass_idx >= 0 {
// We may be a river. But we're not sure yet, since we still could be
// underwater. Check the lake height and see if our own water height is within ε of
// it.
// let pass_idx = (-indirection[lake_idx]) as usize;
let lake_water_alt = water_alt[lake_idx];
if chunk_water_alt == lake_water_alt {
// Not a river.
// Check whether we we are the lake side of the pass.
// NOTE: Safe because this is a lake.
let (neighbor_pass_pos, river_spline_derivative) = if pass_idx == chunk_idx
/*true*/
{
// This is a pass, so set our flow direction to point to the neighbor pass
// rather than downhill.
// NOTE: Safe because neighbor_pass_idx >= 0.
(
uniform_idx_as_vec2(downhill_idx),
// uniform_idx_as_vec2(neighbor_pass_idx as usize),
river_spline_derivative,
)
} else {
// Try pointing towards the lake side of the pass.
(uniform_idx_as_vec2(pass_idx), river_spline_derivative)
};
let mut lake = &mut rivers[chunk_idx];
lake.spline_derivative = river_spline_derivative;
lake.river_kind = Some(RiverKind::Lake {
neighbor_pass_pos: neighbor_pass_pos
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32),
});
continue;
}
// Otherwise, we must be a river.
} else {
// We are flowing into the ocean.
debug_assert!(neighbor_pass_idx == -2);
// But we are not the ocean, so we must be a river.
}
// Now, we know we are a river *candidate*. We still don't know whether we are actually a
// river, though. There are two ways for that to happen:
// (i) We are already a river.
// (ii) Using the GaucklerManningStrickler formula for cross-sectional average velocity
// of water, we establish that the river can be "big enough" to appear on the Veloren
// map.
//
// This is very imprecise, of course, and (ii) may (and almost certainly will) change over
// time.
//
// In both cases, we preemptively set our child to be a river, to make sure we have an
// unbroken stream. Also in both cases, we go to the effort of computing an effective
// water velocity vector and cross-sectional dimensions, as well as figuring out the
// derivative of our interpolating spline (since this percolates through the whole river
// network).
let downhill_water_alt = water_alt[downhill_idx];
let neighbor_distance = neighbor_dim.magnitude();
2019-11-19 18:34:52 +00:00
let dz = (downhill_water_alt - chunk_water_alt) / height_scale as f32;// * CONFIG.mountain_scale;
let slope = dz.abs() as f64 / neighbor_distance;
if slope == 0.0 {
// This is not a river--how did this even happen?
let pass_idx = (-indirection_idx) as usize;
log::error!("Our chunk (and downhill, lake, pass, neighbor_pass): {:?} (to {:?}, in {:?} via {:?} to {:?}), chunk water alt: {:?}, lake water alt: {:?}",
uniform_idx_as_vec2(chunk_idx),
uniform_idx_as_vec2(downhill_idx),
uniform_idx_as_vec2(lake_idx),
uniform_idx_as_vec2(pass_idx),
if neighbor_pass_idx >= 0 { Some(uniform_idx_as_vec2(neighbor_pass_idx as usize)) } else { None },
water_alt[chunk_idx],
water_alt[lake_idx]);
panic!("Should this happen at all?");
}
let slope_sqrt = slope.sqrt();
// Now, we compute a quantity that is proportional to the velocity of the chunk, derived
// from the Manning formula, equal to
// volumetric_flow_rate / slope_sqrt * CONFIG.river_roughness.
let almost_velocity = volumetric_flow_rate / slope_sqrt * CONFIG.river_roughness as f64;
// From this, we can figure out the width of the chunk if we know the height. For now, we
// hardcode the height to 0.5, but it should almost certainly be much more complicated than
// this.
// let mut height = 0.5f32;
// We approximate the river as a rectangular prism. Theoretically, we need to solve the
// following quintic equation to determine its width from its height:
//
// h^5 * w^5 = almost_velocity^3 * (w + 2 * h)^2.
//
// This is because one of the quantities in the Manning formula (the unknown) is R_h =
// (area of cross-section / h)^(2/3).
//
// Unfortunately, quintic equations do not in general have algebraic solutions, and it's
// not clear (to me anyway) that this one does in all cases.
//
// In practice, for high ratios of width to height, we can approximate the rectangular
// prism's perimeter as equal to its width, so R_h as equal to height. This greatly
// simplifies the calculation. For simplicity, we do this even for low ratios of width to
// height--I found that for most real rivers, at least big ones, this approximation is
// "good enough." We don't need to be *that* realistic :P
//
// NOTE: Derived from a paper on estimating river width.
let mut width = 5.0
* (CONFIG.river_width_to_depth as f64
* (CONFIG.river_width_to_depth as f64 + 2.0).powf(2.0 / 3.0))
.powf(3.0 / 8.0)
* volumetric_flow_rate.powf(3.0 / 8.0)
* slope.powf(-3.0 / 16.0)
* (CONFIG.river_roughness as f64).powf(3.0 / 8.0);
width = width.max(0.0);
let mut height = if width == 0.0 {
CONFIG.river_min_height as f64
} else {
(almost_velocity / width).powf(3.0 / 5.0)
};
// We can now weight the river's drainage by its direction, which we use to help improve
// the slope of the downhill node.
let river_direction = Vec3::new(
neighbor_dim.x,
neighbor_dim.y,
(dz as f64).signum() * (dz as f64),
);
// Now, we can check whether this is "really" a river.
// Currently, we just check that width and height are at least 0.5 and
// CONFIG.river_min_height.
let river = &rivers[chunk_idx];
let is_river = river.is_river() || width >= 0.5 && height >= CONFIG.river_min_height as f64;
let mut downhill_river = &mut rivers[downhill_idx];
if is_river {
// Provisionally make the downhill chunk a river as well.
downhill_river.river_kind = Some(RiverKind::River {
cross_section: Vec2::default(),
});
// Additionally, if the cross-sectional area for this river exceeds the max river
// width, the river is overflowing the two chunks adjacent to it, which we'd prefer to
// avoid since only its two immediate neighbors (orthogonal to the downhill direction)
// are guaranteed uphill of it.
// Solving this properly most likely requires modifying the erosion model to
// take channel width into account, which is a formidable task that likely requires
// rethinking the current grid-based erosion model (or at least, requires tracking some
// edges that aren't implied by the grid graph). For now, we will solve this problem
// by making the river deeper when it hits the max width, until it consumes all the
// available energy in this part of the river.
let max_width = TerrainChunkSize::RECT_SIZE.x as f64 * CONFIG.river_max_width as f64;
if width > max_width {
width = max_width;
height = (almost_velocity / width).powf(3.0 / 5.0);
}
}
// Now we can compute the river's approximate velocity magnitude as well, as
let velocity_magnitude =
1.0 / CONFIG.river_roughness as f64 * height.powf(2.0 / 3.0) * slope_sqrt;
// Set up the river's cross-sectional area.
let cross_section = Vec2::new(width as f32, height as f32);
// Set up the river's velocity vector.
let mut velocity = river_direction;
velocity.normalize();
velocity *= velocity_magnitude;
let mut river = &mut rivers[chunk_idx];
// NOTE: Not trying to do this more cleverly because we want to keep the river's neighbors.
// TODO: Actually put something in the neighbors.
river.velocity = velocity.map(|e| e as f32);
river.spline_derivative = river_spline_derivative;
river.river_kind = if is_river {
Some(RiverKind::River { cross_section })
} else {
None
};
}
rivers
}
/// Precompute the maximum slope at all points.
///
/// TODO: See if allocating in advance is worthwhile.
fn get_max_slope(h: &[/*f32*/Alt], rock_strength_nz: &(impl NoiseFn<Point3<f64>> + Sync)) -> Box<[f64]> {
let min_max_angle = (15.0/*6.0*//*30.0*//*6.0*//*15.0*/ / 360.0 * 2.0 * f64::consts::PI).tan();
let max_max_angle = (45.0/*54.0*//*50.0*//*54.0*//*45.0*/ / 360.0 * 2.0 * f64::consts::PI).tan();
let max_angle_range = max_max_angle - min_max_angle;
2019-11-19 18:34:52 +00:00
let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale as f64;
h.par_iter()
.enumerate()
.map(|(posi, &z)| {
2019-11-19 18:34:52 +00:00
let wposf = uniform_idx_as_vec2(posi).map(|e| e as f64) * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
let wposz = z as f64 / height_scale;// * CONFIG.mountain_scale as f64;
// Normalized to be between 6 and and 54 degrees.
let div_factor = /*32.0*//*16.0*//*64.0*//*256.0*/8.0/*8.0*//*1.0*//*4.0*//* * /*1.0*/16.0/* TerrainChunkSize::RECT_SIZE.x as f64 / 8.0 */*/;
let rock_strength = rock_strength_nz
.get([
wposf.x, /* / div_factor*/
wposf.y, /* / div_factor*/
2019-11-19 18:34:52 +00:00
wposz * div_factor,
]);
/* if rock_strength < -1.0 || rock_strength > 1.0 {
println!("Nooooo: {:?}", rock_strength);
} */
let rock_strength = rock_strength
.max(-1.0)
.min(1.0)
* 0.5
+ 0.5;
// Powering rock_strength^((1.25 - z)^6) means the maximum angle increases with z, but
// not too fast. At z = 0.25 the angle is not affected at all, below it the angle is
// lower, and above it the angle is higher.
//
// Logistic regression. Make sure x ∈ (0, 1).
let logit = |x: f64| x.ln() - (-x).ln_1p();
// 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
let logistic_2_base = 3.0f64.sqrt() * f64::consts::FRAC_2_PI;
// Assumes μ = 0, σ = 1
let logistic_cdf = |x: f64| (x / logistic_2_base).tanh() * 0.5 + 0.5;
// We do log-odds against center, so that our log odds are 0 when x = 0.25, lower when x is
// lower, and higher when x is higher.
//
2019-11-19 18:34:52 +00:00
// (NOTE: below sea level, we invert it).
//
// TODO: Make all this stuff configurable... but honestly, it's so complicated that I'm not
// sure anyone would be able to usefully tweak them on a per-map basis? Plus it's just a
// hacky heuristic anyway.
let center = /*0.25*/0.4;
2019-11-20 10:33:53 +00:00
let dmin = center - /*0.15;//0.05*/0.05;
let dmax = center + /*0.05*//*0.10*/0.05;//0.05;
let log_odds = |x: f64| logit(x) - logit(center);
let rock_strength = logistic_cdf(
1.0 * logit(rock_strength.min(1.0f64 - 1e-7).max(1e-7))
2019-11-19 18:34:52 +00:00
+ 1.0 * log_odds((wposz / CONFIG.mountain_scale as f64).abs().min(dmax).max(dmin)),
);
2019-11-19 18:34:52 +00:00
// let rock_strength = 0.5;
let max_slope = rock_strength * max_angle_range + min_max_angle;
// let max_slope = /*30.0.to_radians().tan();*/3.0.sqrt() / 3.0;
2019-11-19 18:34:52 +00:00
max_slope
})
.collect::<Vec<_>>()
.into_boxed_slice()
}
/// Erode all chunks by amount.
///
/// Our equation is:
///
/// dh(p) / dt = uplift(p)k * A(p)^m * slope(p)^n
///
/// where A(p) is the drainage area at p, m and n are constants
/// (we choose m = 0.4 and n = 1), and k is a constant. We choose
///
/// k = 2.244 * uplift.max() / (desired_max_height)
///
/// since this tends to produce mountains of max height desired_max_height; and we set
/// desired_max_height = 1.0 to reflect limitations of mountain scale.
///
/// This algorithm does this in four steps:
///
/// 1. Sort the nodes in h by height (so the lowest node by altitude is first in the
/// list, and the highest node by altitude is last).
/// 2. Iterate through the list in *reverse.* For each node, we compute its drainage area as
/// the sum of the drainage areas of its "children" nodes (i.e. the nodes with directed edges to
/// this node). To do this efficiently, we start with the "leaves" (the highest nodes), which
/// have no neighbors higher than them, hence no directed edges to them. We add their area to
/// themselves, and then to all neighbors that they flow into (their "ancestors" in the flow
/// graph); currently, this just means the node immediately downhill of this node.
/// As we go lower, we know that all our "children" already had their areas computed, which
/// means that we can repeat the process in order to derive all the final areas.
/// 3. Now, iterate through the list in *order.* Whether we used the filling method to compute a
/// "filled" version of each depression, or used the lake connection algoirthm described in [1],
/// each node is guaranteed to have zero or one drainage edges out, representing the direction
/// of water flow for that node. For nodes i with zero drainage edges out (boundary nodes and
/// lake bottoms) we set the slope to 0 (so the change in altitude is uplift(i))
/// For nodes with at least one drainage edge out, we take advantage of the fact that we are
/// computing new heights in order and rewrite our equation as (letting j = downhill[i], A[i]
/// be the computed area of point i, p(i) be the x-y position of point i,
/// flux(i) = k * A[i]^m / ((p(i) - p(j)).magnitude()), and δt = 1):
///
/// h[i](t + dt) = h[i](t) + δt * (uplift[i] + flux(i) * h[j](t + δt)) / (1 + flux(i) * δt).
///
/// Since we compute heights in ascending order by height, and j is downhill from i, h[j] will
/// always be the *new* h[j](t + δt), while h[i] will still not have been computed yet, so we
/// only need to visit each node once.
///
2019-11-19 18:34:52 +00:00
/// Afterwards, we also apply a hillslope diffusion process using an ADI (alternating direction
/// implicit) method:
///
/// https://github.com/fastscape-lem/fastscapelib-fortran/blob/master/src/Diffusion.f90
///
/// We also borrow the implementation for sediment transport from
///
/// https://github.com/fastscape-lem/fastscapelib-fortran/blob/master/src/StreamPowerLaw.f90
///
/// The approximate equation for soil production function (predictng the rate at which bedrock
/// turns into soil, increasing the distance between the basement and altitude) is taken from
/// equation (11) from [2]. This (among numerous other sources) also includes at least one
/// prediction that hillslope diffusion should be nonlinear, which we sort of attempt to
/// approximate.
///
/// [1] Guillaume Cordonnier, Jean Braun, Marie-Paule Cani, Bedrich Benes, Eric Galin, et al..
/// Large Scale Terrain Generation from Tectonic Uplift and Fluvial Erosion.
/// Computer Graphics Forum, Wiley, 2016, Proc. EUROGRAPHICS 2016, 35 (2), pp.165-175.
/// ⟨10.1111/cgf.12820⟩. ⟨hal-01262376⟩
///
/// [2] William E. Dietrich, Dino G. Bellugi, Leonard S. Sklar, Jonathan D. Stock
/// Geomorphic Transport Laws for Predicting Landscape Form and Dynamics.
/// Prediction in Geomorphology, Geophysical Monograph 135.
/// Copyright 2003 by the American Geophysical Union
/// 10.1029/135GM09
fn erode(
h: &mut [Alt],
b: &mut [Alt],
wh: &mut [Alt],
2019-11-19 18:34:52 +00:00
is_done: &mut BitBox,
done_val: bool,
erosion_base: f32,
max_uplift: f32,
max_g: f32,
2019-11-19 18:34:52 +00:00
kdsed: f64,
_seed: &RandomField,
rock_strength_nz: &(impl NoiseFn<Point3<f64>> + Sync),
uplift: impl Fn(usize) -> f32 + Sync,
n_f: impl Fn(usize) -> f32 + Sync,
m_f: impl Fn(usize) -> f32 + Sync,
kf: impl Fn(usize) -> f64 + Sync,
kd: impl Fn(usize) -> f64,
g: impl Fn(usize) -> f32 + Sync,
is_ocean: impl Fn(usize) -> bool + Sync,
) {
let compute_stats = true;
log::debug!("Done draining...");
2019-11-19 18:34:52 +00:00
let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale as f64;
let min_erosion_height = 0.0;//-f64::INFINITY as Alt;
2019-11-19 18:34:52 +00:00
let mmaxh = CONFIG.mountain_scale as f64 * height_scale;
// Minimum sediment thickness before we treat erosion as sediment based.
let sediment_thickness = 1.0;
2019-11-19 18:34:52 +00:00
// Since maximum uplift rate is expected to be 5.010e-4 m * y^-1, and
// 1.0 height units is 1.0 / height_scale m, whatever the
// max uplift rate is (in units / y), we can find dt by multiplying by
// 1.0 / height_scale m / unit and then dividing by 5.010e-4 m / y
// (to get dt in y / unit). More formally:
//
// max_uplift h_unit / dt y = 5.010e-4 m / y
//
// 1 h_unit = 1.0 / height_scale m
//
// max_uplift h_unit / dt * 1.0 / height_scale m / h_unit =
// max_uplift / height_scale m / dt =
// 5.010e-4 m / y
//
// max_uplift / height_scale m / dt / (5.010e-4 m / y) = 1
// (max_uplift / height_scale / 5.010e-4) y = dt
// 5e-7
let dt = max_uplift as f64 / height_scale /* * CONFIG.mountain_scale as f64*/ / /*5.010e-4*/1e-3;
2019-11-19 18:34:52 +00:00
println!("dt={:?}", dt);
let neighbor_coef = TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
let chunk_area = neighbor_coef.x * neighbor_coef.y;
let min_length = neighbor_coef.reduce_partial_min();
let max_stable = /*max_slope * */min_length * min_length / (dt/* / 2.0*/);//1.0/* + /*max_uplift as f64 / dt*/sed / dt*/;
2019-11-19 18:34:52 +00:00
// Landslide constant: ideally scaled to 10e-2 m / y^-1
let l = /*200.0 * max_uplift as f64;*/(1.0e-2 /*/ CONFIG.mountain_scale as f64*/ * height_scale);
let l_tot = l * dt;
// ε₀ = 0.000268 m/y, α = 0.03 (1/m). This is part of the soil production approximate
// equation:
//
// -∂z_b / ∂t = ε₀ * e^(-αH)
//
// where
// z_b is the elevation of the soil-bedrock interface (i.e. the basement),
// ε₀ is the production rate of exposed bedrock (H = 0),
// H is the soil thickness normal to the ground surface,
// and α is a parameter (units of 1 / length).
//
// Note that normal depth at i, for us, will be interpreted as the soil depth vector,
// sed_i = (0, h_i - b_i),
// projected onto the bedrock slope vector,
// bedrock_surface_i = (||p_i - p_j||, b_i - b_j),
// yielding the soil depth vector
// H_i = sed_i - sed_i ⋅ bedrock_surface_i / (bedrock_surface_i ⋅ bedrock_surface_i) * bedrock_surface_i
//
// = (0, h_i - b_i) -
// (0 * ||p_i - p_j|| + (h_i - b_i) * (b_i - b_j)) / (||p_i - p_j||^2 + (b_i - b_j)^2)
// * (||p_i - p_j||, b_i - b_j)
// = (0, h_i - b_i) -
// ((h_i - b_i) * (b_i - b_j)) / (||p_i - p_j||^2 + (b_i - b_j)^2)
// * (||p_i - p_j||, b_i - b_j)
// = (h_i - b_i) *
// ((0, 1) - (b_i - b_j) / (||p_i - p_j||^2 + (b_i - b_j)^2) * (||p_i - p_j||, b_i - b_j))
// H_i_fact = (b_i - b_j) / (||p_i - p_j||^2 + (b_i - b_j)^2)
// H_i = (h_i - b_i) * (((0, 1) - H_i_fact * (||p_i - p_j||, b_i - b_j)))
// = (h_i - b_i) * (-H_i_fact * ||p_i - p_j||, 1 - H_i_fact * (b_i - b_j))
// ||H_i|| = (h_i - b_i) * √((H_i_fact^2 * ||p_i - p_j||^2 + (1 - H_i_fact * (b_i - b_j))^2))
//
// where j is i's receiver and ||p_i - p_j|| is the horizontal displacement between them. The
// idea here is that we first compute the hypotenuse between the horizontal and vertical
// displacement of bedrock (getting the horizontal component of the triangle), and then this is
// taken as one of the non-hypotenuse sides of the triangle whose other non-hypotenuse side is
// the normal height H_i, while their square adds up to the vertical displacement (h_i - b_i).
// If h and b have different slopes, this may not work completely correctly, but this is
// probably fine as an approximation.
let epsilon_0 = 2.68e-4;
let alpha = 3e-2;
let epsilon_0_tot = epsilon_0 * dt;
2019-11-19 18:34:52 +00:00
// Net precipitation rate (m / year)
let p = 1.0 * height_scale;
/* let n = 2.4;// 1.0;//1.5;//2.4;//1.0;
let m = n * 0.5;// n * 0.4;// 0.96;// 0.4;//0.6;//0.96;//0.4; */
2019-11-19 18:34:52 +00:00
// Stream power erosion constant (bedrock), in m^(1-2m) / year (times dt).
let k_fb = // erosion_base as f64 + 2.244 / mmaxh as f64 * max_uplift as f64;
// 2.244*(5.010e-4)/512*5- (1.097e-5)
// 2.244*(5.010e-4)/2048*5- (1.097e-5)
// 2.244*(5.010e-4)/512- (8e-6)
// 2.244*(5.010e-4)/512- (2e-6)
// 2e-6 * dt;
// 8e-6 * dt
// 2e-5 * dt;
// 2.244/2048*5*32/(250000/4)*10^6
2019-11-20 10:33:53 +00:00
// ln(tan(30/360*2*pi))-ln(tan(6/360*2*pi))*1500 = 3378
//erosion_base as f64 + 2.244 / mmaxh as f64 * /*10.0*//*5.0*//*9.0*//*7.5*//*5.0*//*2.5*//*1.5*//*5.0*//*1.0*//*1.5*//*2.5*//*3.75*/ * max_uplift as f64;
// 2.5e-6 * dt;
2e-5 * dt;
// see http://geosci.uchicago.edu/~kite/doc/Whipple_and_Tucker_1999.pdf
//5e-6 * dt; // 2e-5 was designed for steady state uplift of 2mm / y whih would amount to 500 m / 250,000 y.
2019-11-19 18:34:52 +00:00
// (2.244*(5.010e-4)/512)/(2.244*(5.010e-4)/2500) = 4.88...
// 2.444 * 5
// Stream power erosion constant (sediment), in m^(1-2m) / year (times dt).
let k_fs_mult = 2.0;//2.0;/*1.5*/;
// let k_fs = k_fb * 1.0/*1.5*//*2.0*//*2.0*//*4.0*/;
2019-11-25 03:47:33 +00:00
// u = k * h_max / 2.244
// let uplift_scale = erosion_base as f64 + (k_fb * mmaxh / 2.244 / 5.010e-4 as f64 * mmaxh as f64) * dt;
let ((dh, indirection, newh, maxh, area), (mut max_slopes, ht)) = rayon::join(
|| {
let mut dh = downhill(|posi| h[posi], |posi| is_ocean(posi) && h[posi] <= 0.0);
log::debug!("Computed downhill...");
let (boundary_len, indirection, newh, maxh) = get_lakes(|posi| h[posi], &mut dh);
log::debug!("Got lakes...");
let area = get_drainage(&newh, &dh, boundary_len);
log::debug!("Got flux...");
(dh, indirection, newh, maxh, area)
},
|| {
rayon::join(
|| {
let max_slope = get_max_slope(h, rock_strength_nz);
log::debug!("Got max slopes...");
max_slope
},
|| {
// Store the elevation at t
h.to_vec().into_boxed_slice()
// h.into_par_iter().map(|e| e as f64).collect::<Vec<_>>().into_boxed_slice()
},
)
},
);
assert!(h.len() == dh.len() && dh.len() == area.len());
// Precompute factors for Stream Power Law.
let k_fact = dh.par_iter().enumerate()
.map(|(posi, &posj)| {
if posj < 0 {
// Egress with no outgoing flows, no stream power.
0.0
} else {
let posj = posj as usize;
let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posj)).map(|e| e as f64);
let neighbor_distance = (neighbor_coef * dxy).magnitude();
let old_b_i = b[posi];
let sed = (ht[posi] - old_b_i) as f64;
let k = if sed > sediment_thickness {
// Sediment
// k_fs
k_fs_mult * kf(posi)
} else {
// Bedrock
// k_fb
kf(posi)
} * dt;
let n = n_f(posi) as f64;
let m = m_f(posi) as f64;
k * (p * chunk_area * area[posi] as f64).powf(m) / neighbor_distance.powf(n)
}
})
.collect::<Vec<f64>>();
log::info!("Computed stream power factors...");
// max angle of slope depends on rock strength, which is computed from noise function.
// TODO: Make more principled.
let mid_slope = (30.0 / 360.0 * 2.0 * f64::consts::PI).tan();//1.0;
let mut lake_water_volume = vec![/*-1i32*/0.0 as Compute; WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
let mut elev = vec![/*-1i32*/0.0 as Compute; WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
let mut hp = vec![/*-1i32*/0.0 as Compute; WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
let mut deltah = vec![/*-1i32*/0.0 as Compute; WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
// calculate the elevation / SPL, including sediment flux
let tol = 1.0e-4 as Compute * (maxh as Compute + 1.0);
let mut err = 2.0 * tol;
// Some variables for tracking statistics, currently only for debugging purposes.
let mut minh = f64::INFINITY as Alt;
let mut maxh = 0.0;
let mut nland = 0usize;
let mut sums = 0.0;
let mut sumh = 0.0;
let mut sumsed = 0.0;
let mut sumsed_land = 0.0;
let mut ntherm = 0usize;
let avgz = |x, y: usize| if y == 0 { f64::INFINITY } else { x / y as f64 };
// Gauss-Seidel iteration
let mut lake_sediment = vec![/*-1i32*/0.0 as Compute; WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
let mut lake_sill = vec![/*-1i32*/-1isize; WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
let mut n_gs_stream_power_law = 0;
while err > tol && n_gs_stream_power_law < 99 {
log::info!("Stream power iteration #{:?}", n_gs_stream_power_law);
// Reset statistics in each loop.
maxh = 0.0;
minh = f64::INFINITY as Alt;
nland = 0usize;
sums = 0.0;
sumh = 0.0;
sumsed = 0.0;
sumsed_land = 0.0;
ntherm = 0usize;
// Keep track of how many iterations we've gone to test for convergence.
n_gs_stream_power_law += 1;
rayon::join(
|| {
// guess/update the elevation at t+Δt (k)
hp.par_iter_mut().zip(h.par_iter()).for_each(|(mut hp, h)| {
*hp = *h as Compute;
});
},
|| {
// calculate erosion/deposition at each node
deltah.par_iter_mut().enumerate().for_each(|(posi, mut deltah)| {
let uplift_i = uplift(posi) as Alt;
*deltah = (ht[posi] + uplift_i - h[posi]) as Compute;
});
},
);
// sum the erosion in stack order
//
// After:
// deltah_i = Σ{j ∈ {i} upstream_i(t)}(h_j(t, FINAL) + U_j * Δt - h_j(t + Δt, k))
for &posi in newh.iter().rev() {
let posi = posi as usize;
let posj = dh[posi];
if posj < 0 {
lake_sediment[posi] = deltah[posi];
} else {
let uplift_i = uplift(posi) as Alt;
let posj = posj as usize;
deltah[posi] -= ((ht[posi] + uplift_i) as Compute - hp[posi]);
let lposi = lake_sill[posi];
if lposi == posi as isize {
if deltah[posi] <= 0.0 {
lake_sediment[posi] = 0.0;
} else {
lake_sediment[posi] = deltah[posi];
}
}
deltah[posi] += (ht[posi] + uplift_i) as Compute - hp[posi];
deltah[posj] += deltah[posi];
}
}
// do ij=nn,1,-1
// ijk=stack(ij)
// ijr=rec(ijk)
// if (ijr.ne.ijk) then
// dh(ijk)=dh(ijk)-(ht(ijk)-hp(ijk))
// if (lake_sill(ijk).eq.ijk) then
// if (dh(ijk).le.0.d0) then
// lake_sediment(ijk)=0.d0
// else
// lake_sediment(ijk)=dh(ijk)
// endif
// endif
// dh(ijk)=dh(ijk)+(ht(ijk)-hp(ijk))
// dh(ijr)=dh(ijr)+dh(ijk)
// else
// lake_sediment(ijk)=dh(ijk)
// endif
// enddo
elev.par_iter_mut().enumerate().for_each(|(posi, mut elev)| {
if dh[posi] < 0 {
*elev = ht[posi] as Compute;
2019-11-19 18:34:52 +00:00
} else {
let uplift_i = uplift(posi) as Alt;
assert!(uplift_i.is_normal() && uplift_i > 0.0 || uplift_i == 0.0);
// One side of nonlinear equation (23):
//
// h_i(t) + U_i * Δt + G / (p̃ * Ã_i) * Σ{j ∈ upstream_i(t)}(h_j(t, FINAL) + U_j * Δt - h_j(t + Δt, k))
//
// where
//
// Ã_i = A_i / (∆x∆y) = N_i, number of cells upstream of cell i.
*elev = (ht[posi] + uplift_i) as Compute + (deltah[posi] - ((ht[posi] + uplift_i) as Compute - hp[posi])) * g(posi) as Compute / area[posi] as Compute;
}
});
// Iterate in ascending height order.
let mut sum_err = 0.0 as Compute;
for &posi in &*newh {
let posi = posi as usize;
let old_h_i = /*h*/elev[posi] as f64;
let old_b_i = b[posi];
let sed = (ht[posi] - old_b_i) as f64;
let posj = dh[posi];
if posj < 0 {
if posj == -1 {
panic!("Disconnected lake!");
2019-11-20 10:33:53 +00:00
}
if ht[posi] > 0.0 {
log::warn!("Ocean above zero?");
}
// wh for oceans is always at least min_erosion_height.
wh[posi] = min_erosion_height.max(ht[posi]);
lake_sill[posi] = posi as isize;
lake_water_volume[posi] = 0.0;
// max_slopes[posi] = kd(posi);
// Egress with no outgoing flows.
2019-11-19 18:34:52 +00:00
} else {
// *is_done.at(posi) = done_val;
let posj = posj as usize;
// let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posj)).map(|e| e as f64);
// Has an outgoing flow edge (posi, posj).
// flux(i) = k * A[i]^m / ((p(i) - p(j)).magnitude()), and δt = 1
// let neighbor_distance = (neighbor_coef * dxy).magnitude();
// Since the area is in meters^(2m) and neighbor_distance is in m, so long as m = 0.5,
// we have meters^(1) / meters^(1), so they should cancel out. Otherwise, we would
// want to multiply neighbor_distance by height_scale and area[posi] by
// height_scale^2, to make sure we were working in the correct units for dz
// (which has height_scale height unit = 1.0 meters).
/* let uplift_i = uplift(posi) as f64;
assert!(uplift_i.is_normal() && uplift_i == 0.0 || uplift_i.is_positive()); */
// h[i](t + dt) = (h[i](t) + δt * (uplift[i] + flux(i) * h[j](t + δt))) / (1 + flux(i) * δt).
// NOTE: posj has already been computed since it's downhill from us.
// Therefore, we can rely on wh being set to the water height for that node.
let h_j = h[posj] as f64;
let wh_j = wh[posj] as f64;
let mut new_h_i = /*old_h_i*/h[posi] as f64/* + uplift_i*/;
// Only perform erosion if we are above the water level of the previous node.
if old_h_i > wh_j {
// hi(t + ∂t) = (hi(t) + ∂t(ui + kp^mAi^m(hj(t + ∂t)/||pi - pj||))) / (1 + ∂t * kp^mAi^m / ||pi - pj||)
/* let k = if sed > sediment_thickness {
// Sediment
// k_fs
k_fs_mult * kf(posi)
} else {
// Bedrock
// k_fb
kf(posi)
} * dt;
// let k = k * uplift_i / max_uplift as f64;
let n = n_f(posi) as f64;
let m = m_f(posi) as f64; */
let n = n_f(posi) as f64;
if /*n == 1.0*/(n - 1.0).abs() <= 1.0e-3/*f64::EPSILON*/ {
let flux = /*k * (p * chunk_area * area[posi] as f64).powf(m) / neighbor_distance;*/k_fact[posi];
assert!(flux.is_normal() && flux.is_positive() || flux == 0.0);
new_h_i = (/*new_h_i*/old_h_i + flux * h_j) / (1.0 + flux);
} else {
// Local Newton-Raphson
let omega = 0.875f64 / n;
let tolp = 1.0e-3;
let mut errp = 2.0 * tolp;
let h0 = old_h_i;
let fact = k_fact[posi];// k * (p * chunk_area * area[posi] as f64).powf(m) / neighbor_distance.powf(n);
while errp > tolp {
let mut f = new_h_i - h0;
let mut df = 1.0;
// Want: h_i(t+Δt) = h0 - fact * (h_i(t+Δt) - h_j(t+Δt))^n
// Goal: h_i(t+Δt) - h0 + fact * (h_i(t+Δt) - h_j(t+Δt))^n = 0
f += fact * 0.0.max(new_h_i - h_j).powf(n);
// ∂h_i(t+Δt)/∂n = 1 + fact * n * (h_i(t+Δt) - h_j(t+Δt))^(n - 1)
df += fact * n * 0.0.max(new_h_i - h_j).powf(n - 1.0);
// hn = h_i(t+Δt, k) - (h_i(t+Δt, k) - (h0 - fact * (h_i(t+Δt, k) - h_j(t+Δt))^n)) / ∂h_i/∂n(t+Δt, k)
let hn = new_h_i - f / df;
// errp = |(h_i(t+Δt, k) - (h0 - fact * (h_i(t+Δt, k) - h_j(t+Δt))^n)) / ∂h_i/∂n(t+Δt, k)|
errp = (hn - new_h_i).abs();
// h_i(t+∆t, k+1) = ...
new_h_i = new_h_i * (1.0 - omega) + hn * omega;
}
/* omega=0.875d0/n
tolp=1.d-3
errp=2.d0*tolp
h0=elev(ijk)
do while (errp.gt.tolp)
f=h(ijk)-h0
df=1.d0
if (ht(ijk).gt.ht(ijr)) then
fact = kfint(ijk)*dt*a(ijk)**m/length(ijk)**n
f=f+fact*max(0.d0,h(ijk)-h(ijr))**n
df=df+fact*n*max(0.d0,h(ijk)-h(ijr))**(n-1.d0)
endif
hn=h(ijk)-f/df
errp=abs(hn-h(ijk))
h(ijk)=h(ijk)*(1.d0-omega)+hn*omega
enddo */
}
lake_sill[posi] = posi as isize;
lake_water_volume[posi] = 0.0;
/* // Thermal erosion (landslide)
let dz = (new_h_i - /*h_j*//*h_k*//*wh_j*/h_j).max(0.0) / height_scale/* * CONFIG.mountain_scale as f64*/;
let mag_slope = dz/*.abs()*/ / neighbor_distance;
let max_slope = max_slopes[posi] as f64;
if mag_slope > max_slope {
let dh = max_slope * neighbor_distance * height_scale/* / CONFIG.mountain_scale as f64*/;
// new_h_i = (ht[posi] as f64 + l_tot * (mag_slope - max_slope));
// new_h_i = new_h_i - l_tot * (mag_slope - max_slope);
// new_h_i = new_h_i - l_tot * (mag_slope - max_slope);
// new_h_i = hp[posj] + dh;
new_h_i = /*old_h_i.max*/(/*wh_j*//*ht[posi] as Compute*//*h_j*/hp[posj]/*ht[posj] as Compute*/ + dh).max(new_h_i - l_tot * (mag_slope - max_slope));
if compute_stats/* && new_h_i > wh_j*/ {
ntherm += 1;
}
} */
// If we dipped below the receiver's water level, set our height to the receiver's
// water level.
if new_h_i <= wh_j {
new_h_i = wh_j;
} else {
if compute_stats && new_h_i > 0.0 {
let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posj)).map(|e| e as f64);
let neighbor_distance = (neighbor_coef * dxy).magnitude();
let dz = (new_h_i - /*h_j*//*h_k*/wh_j).max(0.0) / height_scale/* * CONFIG.mountain_scale as f64*/;
let mag_slope = dz/*.abs()*/ / neighbor_distance;
nland += 1;
sumsed_land += sed;
sumh += new_h_i;
sums += mag_slope;
}
}
2019-11-20 10:33:53 +00:00
} else {
new_h_i = old_h_i;
let lposj = lake_sill[posj];
lake_sill[posi] = lposj;
if lposj >= 0 {
let lposj = lposj as usize;
lake_water_volume[lposj] += wh_j - new_h_i;
}
}
// Set max_slope to this node's water height (max of receiver's water height and
// this node's height).
wh[posi] = wh_j.max(new_h_i) as Alt;
// Prevent erosion from dropping us below our receiver, unless we were already below it.
// new_h_i = h_j.min(old_h_i + uplift_i).max(new_h_i);
// Find out if this is a lake bottom.
/* let indirection_idx = indirection[posi];
let is_lake_bottom = indirection_idx < 0;
let _fake_neighbor = is_lake_bottom && dxy.x.abs() > 1.0 && dxy.y.abs() > 1.0;
// Test the slope.
let max_slope = max_slopes[posi] as f64;
// Hacky version of thermal erosion: only consider lowest neighbor, don't redistribute
// uplift to other neighbors.
let (posk, h_k) = /* neighbors(posi)
.filter(|&posk| *is_done.at(posk) == done_val)
// .filter(|&posk| *is_done.at(posk) == done_val || is_ocean(posk))
.map(|posk| (posk, h[posk] as f64))
// .filter(|&(posk, h_k)| *is_done.at(posk) == done_val || h_k < 0.0)
.min_by(|&(_, a), &(_, b)| a.partial_cmp(&b).unwrap())
.unwrap_or((posj, h_j)); */
(posj, h_j);
// .max(h_j);
let (posk, h_k) = if h_k < h_j {
(posk, h_k)
} else {
(posj, h_j)
};
let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posk)).map(|e| e as f64);
let neighbor_distance = (neighbor_coef * dxy).magnitude();
let dz = (new_h_i - /*h_j*/h_k).max(0.0) / height_scale/* * CONFIG.mountain_scale as f64*/;
let mag_slope = dz/*.abs()*/ / neighbor_distance; */
// If you're on the lake bottom and not right next to your neighbor, don't compute a
// slope.
if
/* !is_lake_bottom */ /* !fake_neighbor */
true {
/* if
/* !is_lake_bottom && */
mag_slope > max_slope {
// println!("old slope: {:?}, new slope: {:?}, dz: {:?}, h_j: {:?}, new_h_i: {:?}", mag_slope, max_slope, dz, h_j, new_h_i);
// Thermal erosion says this can't happen, so we reduce dh_i to make the slope
// exactly max_slope.
// max_slope = (old_h_i + dh - h_j) / height_scale/* * CONFIG.mountain_scale */ / NEIGHBOR_DISTANCE
// dh = max_slope * NEIGHBOR_DISTANCE * height_scale/* / CONFIG.mountain_scale */ + h_j - old_h_i.
let dh = max_slope * neighbor_distance * height_scale/* / CONFIG.mountain_scale as f64*/;
new_h_i = /*h_j.max*/(h_k + dh).max(new_h_i - l_tot * (mag_slope - max_slope));
let dz = (new_h_i - /*h_j*/h_k).max(0.0) / height_scale/* * CONFIG.mountain_scale as f64*/;
let slope = dz/*.abs()*/ / neighbor_distance;
sums += slope;
/* max_slopes[posi] = /*(mag_slope - max_slope) * */kd(posi);
sums += mag_slope; */
// let slope = dz.signum() * max_slope;
// new_h_i = slope * neighbor_distance * height_scale /* / CONFIG.mountain_scale as f64 */ + h_j;
// sums += max_slope;
} else {
// max_slopes[posi] = 0.0;
sums += mag_slope;
// Just use the computed rate.
} */
h[posi] = new_h_i as Alt;
// Make sure to update the basement as well!
// b[posi] = (old_b_i + uplift_i).min(new_h_i) as f32;
}
2019-11-20 10:33:53 +00:00
}
// *is_done.at(posi) = done_val;
if compute_stats {
sumsed += sed;
let h_i = h[posi];
if h_i > 0.0 {
minh = h_i.min(minh);
}
maxh = h_i.max(maxh);
}
// Add sum of squares of errors.
sum_err += (h[posi] as Compute - hp[posi]).powi(2);
}
err = (sum_err / newh.len() as Compute).sqrt();
if max_g == 0.0 {
err = 0.0;
}
if n_gs_stream_power_law == 99 {
log::warn!("Beware: Gauss-Siedel scheme not convergent");
2019-11-20 10:33:53 +00:00
}
}
//b=min(h,b)
// update the basement
//
// NOTE: Despite this not quite applying since basement order and height order differ, we once
// again borrow the implicit FastScape stack order. If this becomes a problem we can easily
// compute a separate stack order just for basement.
for &posi in &*newh {
let posi = posi as usize;
let old_b_i = b[posi];
let h_i = h[posi];
let uplift_i = uplift(posi) as Alt;
// First, add uplift...
let mut new_b_i = (old_b_i + uplift_i).min(h_i);
let posj = dh[posi];
// Sediment height normal to bedrock. NOTE: Currently we can actually have sedment and
// bedrock slope at different heights, meaning there's no uniform slope. There are
// probably more correct ways to account for this, such as averaging, integrating, or doing
// things by mass / volume instead of height, but for now we use the time-honored
// technique of ignoring the problem.
let h_normal = if posj < 0 {
// Egress with no outgoing flows; for now, we assume this means normal and vertical
// coincide.
(h_i - new_b_i) as f64
} else {
let posj = posj as usize;
let b_j = b[posj];
let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posj)).map(|e| e as f64);
let neighbor_distance_squared = (neighbor_coef * dxy).magnitude_squared();
let vertical_sed = (h_i - new_b_i) as f64;
let db = (new_b_i - b_j) as f64;
// H_i_fact = (b_i - b_j) / (||p_i - p_j||^2 + (b_i - b_j)^2)
let h_i_fact = db / (neighbor_distance_squared + db * db);
let h_i_vertical = 1.0 - h_i_fact * db;
// ||H_i|| = (h_i - b_i) * √((H_i_fact^2 * ||p_i - p_j||^2 + (1 - H_i_fact * (b_i - b_j))^2))
vertical_sed * (h_i_fact * h_i_fact * neighbor_distance_squared + h_i_vertical * h_i_vertical).sqrt()
};
// Rate of sediment production: -∂z_b / ∂t = ε₀ * e^(-αH)
let p_i = epsilon_0_tot * f64::exp(-alpha * h_normal);
// println!("h_normal = {:?}, p_i = {:?}", h_normal, p_i);
new_b_i -= p_i as Alt;
b[posi] = new_b_i;
}
log::info!("Done updating basement and applying soil production...");
/* b.par_iter_mut().zip(h.par_iter()).enumerate().for_each(|(posi, (mut b, h))| {
let old_b_i = *b;
let uplift_i = uplift(posi) as Alt;
*b = (old_b_i + uplift_i).min(*h);
}); */
// update the height to reflect sediment flux.
h.par_iter_mut().enumerate().for_each(|(posi, mut h)| {
let lposi = lake_sill[posi];
if lposi >= 0 {
let lposi = lposi as usize;
if lake_water_volume[lposi] > 0.0 {
// +max(0.d0,min(lake_sediment(lake_sill(ij)),lake_water_volume(lake_sill(ij))))/
// lake_water_volume(lake_sill(ij))*(water(ij)-h(ij))
*h +=
(0.0.max(lake_sediment[lposi].min(lake_water_volume[lposi])) /
lake_water_volume[lposi] *
(wh[posi] - *h) as Compute) as Alt;
}
}
});
// do ij=1,nn
// if (lake_sill(ij).ne.0) then
// if (lake_water_volume(lake_sill(ij)).gt.0.d0) h(ij)=h(ij) &
// +max(0.d0,min(lake_sediment(lake_sill(ij)),lake_water_volume(lake_sill(ij))))/ &
// lake_water_volume(lake_sill(ij))*(water(ij)-h(ij))
// endif
// enddo
2019-11-20 10:33:53 +00:00
log::info!(
"Done applying stream power (max height: {:?}) (avg height: {:?}) ((min height: {:?}) avg slope: {:?})\n \
(old avg sediment thickness [all/land]: {:?} / {:?})\n \
(num land: {:?}) (num thermal: {:?})",
2019-11-20 10:33:53 +00:00
maxh,
avgz(sumh, nland),
minh,
avgz(sums, nland),
avgz(sumsed, newh.len()),
avgz(sumsed_land, nland),
nland,
ntherm,
2019-11-20 10:33:53 +00:00
);
// Apply thermal erosion.
maxh = 0.0;
minh = f64::INFINITY as Alt;
2019-11-20 10:33:53 +00:00
sumh = 0.0;
sums = 0.0;
sumsed = 0.0;
sumsed_land = 0.0;
nland = 0usize;
ntherm = 0usize;
2019-11-20 10:33:53 +00:00
for &posi in &*newh {
let posi = posi as usize;
let old_h_i = h/*b*/[posi] as f64;
let old_b_i = b[posi] as f64;
let sed = (old_h_i - old_b_i) as f64;
let max_slope = max_slopes[posi];
// Remember k_d for this chunk in max_slopes.
// higher max_slope => much lower kd_factor.
let kd_factor =
// 1.0;
(1.0 / (max_slope / mid_slope/*.sqrt()*//*.powf(0.03125)*/).powf(/*2.0*/2.0))/*.min(kdsed)*/;
max_slopes[posi] = if sed > sediment_thickness && kdsed > 0.0 {
// Sediment
kdsed/* * kd_factor*/
} else {
// Bedrock
kd(posi) / kd_factor
};
let posj = dh[posi];
2019-11-20 10:33:53 +00:00
if posj < 0 {
if posj == -1 {
panic!("Disconnected lake!");
}
// wh for oceans is always at least min_erosion_height.
wh[posi] = min_erosion_height.max(ht[posi]);
// Egress with no outgoing flows.
2019-11-20 10:33:53 +00:00
} else {
let posj = posj as usize;
// Find the water height for this chunk's receiver; we only apply thermal erosion
// for chunks above water.
let mut wh_j = wh[posj] as f64;
2019-11-20 10:33:53 +00:00
// If you're on the lake bottom and not right next to your neighbor, don't compute a
// slope.
let mut new_h_i = old_h_i;/*old_b_i;*/
2019-11-20 10:33:53 +00:00
if
/* !is_lake_bottom */ /* !fake_neighbor */
wh_j < old_h_i {
// NOTE: Currently assuming that talus angle is not eroded once the substance is
// totally submerged in water, and that talus angle if part of the substance is
// in water is 0 (or the same as the dry part, if this is set to wh_j), but
// actually that's probably not true.
let old_h_j = h[posj] as f64;
let h_j = /*h[posj] as f64*//*wh_j*/old_h_j;
// let h_j = b[posj] as f64;
2019-11-20 10:33:53 +00:00
/* let indirection_idx = indirection[posi];
let is_lake_bottom = indirection_idx < 0;
let _fake_neighbor = is_lake_bottom && dxy.x.abs() > 1.0 && dxy.y.abs() > 1.0; */
// Test the slope.
// Hacky version of thermal erosion: only consider lowest neighbor, don't redistribute
// uplift to other neighbors.
let (posk, h_k) = /* neighbors(posi)
.filter(|&posk| *is_done.at(posk) == done_val)
// .filter(|&posk| *is_done.at(posk) == done_val || is_ocean(posk))
.map(|posk| (posk, h[posk] as f64))
// .filter(|&(posk, h_k)| *is_done.at(posk) == done_val || h_k < 0.0)
.min_by(|&(_, a), &(_, b)| a.partial_cmp(&b).unwrap())
.unwrap_or((posj, h_j)); */
(posj, h_j);
// .max(h_j);
let (posk, h_k) = if h_k < h_j {
(posk, h_k)
} else {
(posj, h_j)
};
let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posk)).map(|e| e as f64);
let neighbor_distance = (neighbor_coef * dxy).magnitude();
let dz = (new_h_i - /*h_j*/h_k).max(0.0) / height_scale/* * CONFIG.mountain_scale as f64*/;
let mag_slope = dz/*.abs()*/ / neighbor_distance;
if
/* !is_lake_bottom && */
mag_slope > max_slope {
// println!("old slope: {:?}, new slope: {:?}, dz: {:?}, h_j: {:?}, new_h_i: {:?}", mag_slope, max_slope, dz, h_j, new_h_i);
// Thermal erosion says this can't happen, so we reduce dh_i to make the slope
// exactly max_slope.
2019-11-19 18:34:52 +00:00
// max_slope = (old_h_i + dh - h_j) / height_scale/* * CONFIG.mountain_scale */ / NEIGHBOR_DISTANCE
// dh = max_slope * NEIGHBOR_DISTANCE * height_scale/* / CONFIG.mountain_scale */ + h_j - old_h_i.
let dh = max_slope * neighbor_distance * height_scale/* / CONFIG.mountain_scale as f64*/;
// new_h_i = /*h_j.max*//*(h_k + dh).max*/(/*new_h_i*/ht[posi] as f64 + l_tot * (mag_slope - max_slope));
// new_h_i = /*h_j.max*//*(h_k + dh).max*/(/*new_h_i*/h_k + dh + l_tot * (mag_slope - max_slope));
// new_h_i = /*h_j.max*//*(h_k + dh).max*/(new_h_i - l_tot * (mag_slope - max_slope));
let dtherm = (l_tot * (mag_slope - max_slope)).min((dz - dh)/* / 2.0*/);
new_h_i = /*h_j.max*//*(h_k + dh).max*/(/*new_h_i*//*h_k + dh*/new_h_i - dtherm);
/* let new_h_j = (old_h_j + dtherm).min(old_h_j.max(new_h_i));
h[posj] = new_h_j as Alt;
wh_j = wh_j.max(new_h_j);
wh[posj] = wh_j as Alt; */
// No more hillslope processes on newly exposed bedrock.
max_slopes[posi] = 0.0;
// max_slopes[posi] = l;
if new_h_i <= wh_j {
new_h_i = wh_j;
} else {
if compute_stats && new_h_i > 0.0 {
let dz = (new_h_i - /*h_j*//*h_k*/wh_j).max(0.0) / height_scale/* * CONFIG.mountain_scale as f64*/;
let slope = dz/*.abs()*/ / neighbor_distance;
sums += slope;
// max_slopes[posi] = /*(mag_slope - max_slope) * */max_slopes[posi].max(kdsed);
/* max_slopes[posi] = /*(mag_slope - max_slope) * */kd(posi);
sums += mag_slope; */
/* if kd_factor < 1.0 {
max_slopes[posi] /= kd_factor;
} else {
max_slopes[posi] *= kd_factor;
} */
// max_slopes[posi] *= kd_factor;
nland += 1;
sumh += new_h_i;
sumsed_land += sed;
}
// let slope = dz.signum() * max_slope;
// new_h_i = slope * neighbor_distance * height_scale /* / CONFIG.mountain_scale as f64 */ + h_j;
// sums += max_slope;
}
if compute_stats {
ntherm += 1;
}
} else {
// Poorly emulating nonlinear hillslope transport as described by
// http://eps.berkeley.edu/~bill/papers/112.pdf.
// sqrt(3)/3*32*32/(128000/2)
max_slopes[posi] = (max_slopes[posi] * 1.0 / (1.0 - (mag_slope / max_slope).powi(2)));
/*if kd_factor < 1.0 {
max_slopes[posi] *= kd_factor;
}*/
/* if (old_h_i - old_b_i as f64) <= sediment_thickness {
max_slopes[posi] *= kd_factor;
} */
// max_slopes[posi] *= kd_factor;
if compute_stats && new_h_i > 0.0 {
sums += mag_slope;
// Just use the computed rate.
nland += 1;
sumh += new_h_i;
sumsed_land += sed;
}
}
h/*b*/[posi] = /*old_h_i.min(new_h_i)*/new_h_i as Alt;
2019-11-19 18:34:52 +00:00
// Make sure to update the basement as well!
2019-11-25 03:47:33 +00:00
// b[posi] = old_b_i.min(new_h_i) as f32;
b[posi] = old_b_i.min(old_b_i + (/*old_h_i.min(*/new_h_i/*)*/ - old_h_i)) as Alt;
// sumh += new_h_i;
}
// Set wh to this node's water height (max of receiver's water height and
// this node's height).
wh[posi] = wh_j.max(new_h_i) as Alt;
}
max_slopes[posi] = max_slopes[posi].min(max_stable);
// *is_done.at(posi) = done_val;
if compute_stats {
sumsed += sed;
let h_i = h[posi];
if h_i > 0.0 {
minh = h_i.min(minh);
}
maxh = h_i.max(maxh);
}
}
2019-11-19 18:34:52 +00:00
log::debug!(
"Done applying thermal erosion (max height: {:?}) (avg height: {:?}) (min height: {:?}) (avg slope: {:?})\n \
(avg sediment thickness [all/land]: {:?} / {:?})\n \
(num land: {:?}) (num thermal: {:?})",
2019-11-19 18:34:52 +00:00
maxh,
avgz(sumh, nland),
minh,
avgz(sums, nland),
avgz(sumsed, newh.len()),
avgz(sumsed_land, nland),
nland,
ntherm,
2019-11-19 18:34:52 +00:00
);
// Apply hillslope diffusion.
diffusion(WORLD_SIZE.x, WORLD_SIZE.y,
WORLD_SIZE.x as f64 * TerrainChunkSize::RECT_SIZE.x as f64 * height_scale/* / CONFIG.mountain_scale as f64*/,
WORLD_SIZE.y as f64 * TerrainChunkSize::RECT_SIZE.y as f64 * height_scale/* / CONFIG.mountain_scale as f64*/,
dt,
(),
h, b,
|posi| max_slopes[posi]/*kd*/,
/* kdsed */-1.0,
2019-11-19 18:34:52 +00:00
);
log::debug!("Done applying diffusion.");
log::debug!("Done eroding.");
}
/// The Planchon-Darboux algorithm for extracting drainage networks.
///
/// http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/sous_copyright/010031925.pdf
///
/// See https://github.com/mewo2/terrain/blob/master/terrain.js
pub fn fill_sinks(
h: impl Fn(usize) -> f32 + Sync,
is_ocean: impl Fn(usize) -> bool + Sync,
) -> Box<[f32]> {
// NOTE: We are using the "exact" version of depression-filling, which is slower but doesn't
// change altitudes.
2019-11-19 18:34:52 +00:00
let epsilon = /*1.0 / (1 << 7) as f32 * height_scale/* / CONFIG.mountain_scale */*/0.0;
let infinity = f32::INFINITY;
let range = 0..WORLD_SIZE.x * WORLD_SIZE.y;
let oldh = range
.into_par_iter()
.map(|posi| h(posi))
.collect::<Vec<_>>()
.into_boxed_slice();
let mut newh = oldh
.par_iter()
.enumerate()
.map(|(posi, &h)| {
let is_near_edge = is_ocean(posi);
if is_near_edge {
debug_assert!(h <= 0.0);
h
} else {
infinity
}
})
.collect::<Vec<_>>()
.into_boxed_slice();
loop {
let mut changed = false;
for posi in 0..newh.len() {
let nh = newh[posi];
let oh = oldh[posi];
if nh == oh {
continue;
}
for nposi in neighbors(posi) {
let onbh = newh[nposi];
let nbh = onbh + epsilon;
// If there is even one path downhill from this node's original height, fix
// the node's new height to be equal to its original height, and break out of the
// loop.
if oh >= nbh {
newh[posi] = oh;
changed = true;
break;
}
// Otherwise, we know this node's original height is below the new height of all of
// its neighbors. Then, we try to choose the minimum new height among all this
// node's neighbors that is (plus a constant epislon) below this node's new height.
//
// (If there is no such node, then the node's new height must be (minus a constant
// epsilon) lower than the new height of every neighbor, but above its original
// height. But this can't be true for *all* nodes, because if this is true for any
// node, it is not true of any of its neighbors. So all neighbors must either be
// their original heights, or we will have another iteration of the loop (one of
// its neighbors was changed to its minimum neighbor). In the second case, in the
// next round, all neighbor heights will be at most nh + epsilon).
if nh > nbh && nbh > oh {
newh[posi] = nbh;
changed = true;
}
}
}
if !changed {
return newh;
}
}
}
/// Computes which tiles are ocean tiles by
/// Algorithm for finding and connecting lakes. Assumes newh and downhill have already
/// been computed. When a lake's value is negative, it is its own lake root, and when it is 0, it
/// is on the boundary of Ω.
///
/// Returns a 4-tuple containing:
/// - The first indirection vector (associating chunk indices with their lake's root node).
/// - A list of chunks on the boundary (non-lake egress points).
/// - The second indirection vector (associating chunk indices with their lake's adjacency list).
/// - The adjacency list (stored in a single vector), indexed by the second indirection vector.
pub fn get_lakes<F: Float>(h: impl Fn(usize) -> F, downhill: &mut [isize]) -> (usize, Box<[i32]>, Box<[u32]>, F) {
// Associates each lake index with its root node (the deepest one in the lake), and a list of
// adjacent lakes. The list of adjacent lakes includes the lake index of the adjacent lake,
// and a node index in the adjacent lake which has a neighbor in this lake. The particular
// neighbor should be the one that generates the minimum "pass height" encountered so far,
// i.e. the chosen pair should minimize the maximum of the heights of the nodes in the pair.
// We start by taking steps to allocate an indirection vector to use for storing lake indices.
// Initially, each entry in this vector will contain 0. We iterate in ascending order through
// the sorted newh. If the node has downhill == -2, it is a boundary node Ω and we store it in
// the boundary vector. If the node has downhill == -1, it is a fresh lake, and we store 0 in
// it. If the node has non-negative downhill, we use the downhill index to find the next node
// down; if the downhill node has a lake entry < 0, then downhill is a lake and its entry
// can be negated to find an (over)estimate of the number of entries it needs. If the downhill
// node has a non-negative entry, then its entry is the lake index for this node, so we should
// access that entry and increment it, then set our own entry to it.
let mut boundary = Vec::with_capacity(downhill.len());
let mut indirection = vec![/*-1i32*/0i32; WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
let mut newh = Vec::with_capacity(downhill.len());
// Now, we know that the sum of all the indirection nodes will be the same as the number of
// nodes. We can allocate a *single* vector with 8 * nodes entries, to be used as storage
// space, and augment our indirection vector with the starting index, resulting in a vector of
// slices. As we go, we replace each lake entry with its index in the new indirection buffer,
// allowing
let mut lakes = vec![(-1, 0); /*(indirection.len() - boundary.len())*/indirection.len() * 8];
let mut indirection_ = vec![0u32; indirection.len()];
// First, find all the lakes.
let mut lake_roots = Vec::with_capacity(downhill.len()); // Test
for (chunk_idx, &dh) in (&*downhill)
.into_iter()
.enumerate()
.filter(|(_, &dh_idx)| dh_idx < 0)
{
if dh == -2 {
// On the boundary, add to the boundary vector.
boundary.push(chunk_idx);
// Still considered a lake root, though.
} else if dh == -1 {
lake_roots.push(chunk_idx);
} else {
panic!("Impossible.");
}
// Find all the nodes uphill from this lake. Since there is only one outgoing edge
// in the "downhill" graph, this is guaranteed never to visit a node more than
// once.
let start = newh.len();
let indirection_idx = (start * 8) as u32;
// New lake root
newh.push(chunk_idx as u32);
let mut cur = start;
while cur < newh.len() {
let node = newh[cur as usize];
for child in uphill(downhill, node as usize) {
// lake_idx is the index of our lake root.
indirection[child] = chunk_idx as i32;
indirection_[child] = indirection_idx;
newh.push(child as u32);
}
cur += 1;
}
// Find the number of elements pushed.
let length = (cur - start) * 8;
// New lake root (lakes have indirection set to -length).
indirection[chunk_idx] = -(length as i32);
indirection_[chunk_idx] = indirection_idx;
}
assert_eq!(newh.len(), downhill.len());
log::debug!("Old lake roots: {:?}", lake_roots.len());
let newh = newh.into_boxed_slice();
let mut maxh = -F::infinity();
// Now, we know that the sum of all the indirection nodes will be the same as the number of
// nodes. We can allocate a *single* vector with 8 * nodes entries, to be used as storage
// space, and augment our indirection vector with the starting index, resulting in a vector of
// slices. As we go, we replace each lake entry with its index in the new indirection buffer,
// allowing
for &chunk_idx_ in newh.into_iter() {
let chunk_idx = chunk_idx_ as usize;
let lake_idx_ = indirection_[chunk_idx];
let lake_idx = lake_idx_ as usize;
let height = h(chunk_idx_ as usize);
// While we're here, compute the max elevation difference from zero among all nodes.
maxh = maxh.max(height.abs());
// For every neighbor, check to see whether it is already set; if the neighbor is set,
// its height is ≤ our height. We should search through the edge list for the
// neighbor's lake to see if there's an entry; if not, we insert, and otherwise we
// get its height. We do the same thing in our own lake's entry list. If the maximum
// of the heights we get out from this process is greater than the maximum of this
// chunk and its neighbor chunk, we switch to this new edge.
for neighbor_idx in neighbors(chunk_idx) {
let neighbor_height = h(neighbor_idx);
let neighbor_lake_idx_ = indirection_[neighbor_idx];
let neighbor_lake_idx = neighbor_lake_idx_ as usize;
if neighbor_lake_idx_ < lake_idx_ {
// We found an adjacent node that is not on the boundary and has already
// been processed, and also has a non-matching lake. Therefore we can use
// split_at_mut to get disjoint slices.
let (lake, neighbor_lake) = {
// println!("Okay, {:?} < {:?}", neighbor_lake_idx, lake_idx);
let (neighbor_lake, lake) = lakes.split_at_mut(lake_idx);
(lake, &mut neighbor_lake[neighbor_lake_idx..])
};
// We don't actually need to know the real length here, because we've reserved
// enough spaces that we should always either find a -1 (available slot) or an
// entry for this chunk.
'outer: for pass in lake.iter_mut() {
if pass.0 == -1 {
// println!("One time, in my mind, one time... (neighbor lake={:?} lake={:?})", neighbor_lake_idx, lake_idx_);
*pass = (chunk_idx_ as i32, neighbor_idx as u32);
// Should never run out of -1s in the neighbor lake if we didn't find
// the neighbor lake in our lake.
*neighbor_lake
.iter_mut()
.filter(|neighbor_pass| neighbor_pass.0 == -1)
.next()
.unwrap() = (neighbor_idx as i32, chunk_idx_);
// panic!("Should never happen; maybe didn't reserve enough space in lakes?")
break;
} else if indirection_[pass.1 as usize] == neighbor_lake_idx_ {
for neighbor_pass in neighbor_lake.iter_mut() {
// Should never run into -1 while looping here, since (i, j)
// and (j, i) should be added together.
if indirection_[neighbor_pass.1 as usize] == lake_idx_ {
let pass_height = h(neighbor_pass.1 as usize);
let neighbor_pass_height = h(pass.1 as usize);
if height.max(neighbor_height)
< pass_height.max(neighbor_pass_height)
{
*pass = (chunk_idx_ as i32, neighbor_idx as u32);
*neighbor_pass = (neighbor_idx as i32, chunk_idx_);
}
break 'outer;
}
}
// Should always find a corresponding match in the neighbor lake if
// we found the neighbor lake in our lake.
let indirection_idx = indirection[chunk_idx];
let lake_chunk_idx = if indirection_idx >= 0 {
indirection_idx as usize
} else {
chunk_idx as usize
};
let indirection_idx = indirection[neighbor_idx];
let neighbor_lake_chunk_idx = if indirection_idx >= 0 {
indirection_idx as usize
} else {
neighbor_idx as usize
};
panic!(
"For edge {:?} between lakes {:?}, couldn't find partner \
for pass {:?}. \
Should never happen; maybe forgot to set both edges?",
(
(chunk_idx, uniform_idx_as_vec2(chunk_idx as usize)),
(neighbor_idx, uniform_idx_as_vec2(neighbor_idx as usize))
),
(
(
lake_chunk_idx,
uniform_idx_as_vec2(lake_chunk_idx as usize),
lake_idx_
),
(
neighbor_lake_chunk_idx,
uniform_idx_as_vec2(neighbor_lake_chunk_idx as usize),
neighbor_lake_idx_
)
),
(
(pass.0, uniform_idx_as_vec2(pass.0 as usize)),
(pass.1, uniform_idx_as_vec2(pass.1 as usize))
),
);
}
}
}
}
}
// Now it's time to calculate the lake connections graph T_L covering G_L.
let mut candidates = BinaryHeap::with_capacity(indirection.len());
// let mut pass_flows : Vec<i32> = vec![-1; indirection.len()];
// We start by going through each pass, deleting the ones that point out of boundary nodes and
// adding ones that point into boundary nodes from non-boundary nodes.
for edge in &mut lakes {
let edge: &mut (i32, u32) = edge;
// Only consider valid elements.
if edge.0 == -1 {
continue;
}
// Check to see if this edge points out *from* a boundary node.
// Delete it if so.
let from = edge.0 as usize;
let indirection_idx = indirection[from];
let lake_idx = if indirection_idx < 0 {
from
} else {
indirection_idx as usize
};
if downhill[lake_idx] == -2 {
edge.0 = -1;
continue;
}
// This edge is not pointing out from a boundary node.
// Check to see if this edge points *to* a boundary node.
// Add it to the candidate set if so.
let to = edge.1 as usize;
let indirection_idx = indirection[to];
let lake_idx = if indirection_idx < 0 {
to
} else {
indirection_idx as usize
};
if downhill[lake_idx] == -2 {
// Find the pass height
let pass = h(from).max(h(to));
candidates.push(Reverse((
NotNan::new(pass).unwrap(),
(edge.0 as u32, edge.1),
)));
}
}
let mut pass_flows_sorted: Vec<usize> = Vec::with_capacity(indirection.len());
// Now all passes pointing to the boundary are in candidates.
// As long as there are still candidates, we continue...
// NOTE: After a lake is added to the stream tree, the lake bottom's indirection entry no
// longer negates its maximum number of passes, but the lake side of the chosen pass. As such,
// we should make sure not to rely on using it this way afterwards.
// provides information about the number of candidate passes in a lake.
2019-12-11 14:13:46 +00:00
while let Some(Reverse((_, (chunk_idx, neighbor_idx)))) = candidates.pop() {
// We have the smallest candidate.
let lake_idx = indirection_[chunk_idx as usize] as usize;
let indirection_idx = indirection[chunk_idx as usize];
let lake_chunk_idx = if indirection_idx >= 0 {
indirection_idx as usize
} else {
chunk_idx as usize
};
if downhill[lake_chunk_idx] >= 0 {
// Candidate lake has already been connected.
continue;
}
// println!("Got here...");
assert_eq!(downhill[lake_chunk_idx], -1);
// Candidate lake has not yet been connected, and is the lowest candidate.
// Delete all other outgoing edges.
let max_len = -if indirection_idx < 0 {
indirection_idx
} else {
indirection[indirection_idx as usize]
} as usize;
// Add this chunk to the tree.
downhill[lake_chunk_idx] = neighbor_idx as isize;
// Also set the indirection of the lake bottom to the negation of the
// lake side of the chosen pass (chunk_idx).
// NOTE: This can't overflow i32 because WORLD_SIZE.x * WORLD_SIZE.y should fit in an i32.
indirection[lake_chunk_idx] = -(chunk_idx as i32);
// Add this edge to the sorted list.
pass_flows_sorted.push(lake_chunk_idx);
// pass_flows_sorted.push((chunk_idx as u32, neighbor_idx as u32));
for edge in &mut lakes[lake_idx..lake_idx + max_len] {
if *edge == (chunk_idx as i32, neighbor_idx as u32) {
// Skip deleting this edge.
continue;
}
// Delete the old edge, and remember it.
let edge = mem::replace(edge, (-1, 0));
if edge.0 == -1 {
// Don't fall off the end of the list.
break;
}
// Don't add incoming pointers from already-handled lakes or boundary nodes.
let indirection_idx = indirection[edge.1 as usize];
let neighbor_lake_idx = if indirection_idx < 0 {
edge.1 as usize
} else {
indirection_idx as usize
};
if downhill[neighbor_lake_idx] != -1 {
continue;
}
// Find the pass height
let pass = h(edge.0 as usize).max(h(edge.1 as usize));
// Put the reverse edge in candidates, sorted by height, then chunk idx, and finally
// neighbor idx.
candidates.push(Reverse((
NotNan::new(pass).unwrap(),
(edge.1, edge.0 as u32),
)));
}
// println!("I am a pass: {:?}", (uniform_idx_as_vec2(chunk_idx as usize), uniform_idx_as_vec2(neighbor_idx as usize)));
}
log::debug!("Total lakes: {:?}", pass_flows_sorted.len());
// Perform the bfs once again.
let mut newh = Vec::with_capacity(downhill.len());
(&*boundary)
.iter()
.chain(pass_flows_sorted.iter())
.for_each(|&chunk_idx| {
// Find all the nodes uphill from this lake. Since there is only one outgoing edge
// in the "downhill" graph, this is guaranteed never to visit a node more than
// once.
let start = newh.len();
// First, find the neighbor pass (assuming this is not the ocean).
let neighbor_pass_idx = downhill[chunk_idx];
let first_idx = if neighbor_pass_idx < 0 {
// This is the ocean.
chunk_idx
} else {
// This is a "real" lake.
let neighbor_pass_idx = neighbor_pass_idx as usize;
// Let's find our side of the pass.
let pass_idx = -indirection[chunk_idx];
// NOTE: Since only lakes are on the boundary, this should be a valid array index.
assert!(pass_idx >= 0);
let pass_idx = pass_idx as usize;
// Now, we should recompute flow paths so downhill nodes are contiguous.
// Carving strategy: reverse the path from the lake side of the pass to the
// lake bottom, and also set the lake side of the pass's downhill to its
// neighbor pass.
//
// TODO: Implement filling strategy (not just carving strategy).
let mut to_idx = neighbor_pass_idx;
let mut from_idx = pass_idx;
// NOTE: Since our side of the lake pass must be in the same basin as chunk_idx,
// and chunk_idx is the basin bottom, we must reach it before we reach an ocean
// node or other node with an invalid index.
while from_idx != chunk_idx {
// Reverse this (from, to) edge by first replacing to_idx with from_idx,
// then replacing from_idx's downhill with the old to_idx, and finally
// replacing from_idx with from_idx's old downhill.
//
// println!("Reversing (lake={:?}): to={:?}, from={:?}, dh={:?}", chunk_idx, to_idx, from_idx, downhill[from_idx]);
from_idx = mem::replace(
&mut downhill[from_idx],
mem::replace(
&mut to_idx,
// NOTE: This cast should be valid since the node is either a path on the way
// to a lake bottom, or a lake bottom with an actual pass outwards.
from_idx
) as isize,
) as usize;
}
// Remember to set the actual lake's from_idx properly!
downhill[from_idx] = to_idx as isize;
// Use our side of the pass as the initial node in the stack order.
// TODO: Verify that this stack order will not "double reach" any lake chunks.
pass_idx
};
// newh.push(chunk_idx as u32);
// New lake root
newh.push(first_idx as u32);
let mut cur = start;
while cur < newh.len() {
let node = newh[cur as usize];
for child in uphill(downhill, node as usize) {
// lake_idx is the index of our lake root.
// Check to make sure child (flowing into us) is in the same lake.
if indirection[child] == chunk_idx as i32 || child == chunk_idx
// // Check to make sure child (flowing into us) isn't a lake.
// if indirection[child] >= 0 || child == chunk_idx
/* Note: equal to chunk_idx should be same */
{
// assert!(h[child] >= h[node as usize]);
newh.push(child as u32);
}
}
cur += 1;
}
});
assert_eq!(newh.len(), downhill.len());
(boundary.len(), indirection, newh.into_boxed_slice(), maxh)
}
/// Perform erosion n times.
pub fn do_erosion(
erosion_base: f32,
_max_uplift: f32,
n_steps: usize,
seed: &RandomField,
rock_strength_nz: &(impl NoiseFn<Point3<f64>> + Sync),
oldh: impl Fn(usize) -> f32 + Sync,
2019-11-19 18:34:52 +00:00
oldb: impl Fn(usize) -> f32 + Sync,
is_ocean: impl Fn(usize) -> bool + Sync,
uplift: impl Fn(usize) -> f32 + Sync,
n: impl Fn(usize) -> f32 + Sync,
theta: impl Fn(usize) -> f32 + Sync,
kf: impl Fn(usize) -> f64 + Sync,
kd: impl Fn(usize) -> f64 + Sync,
g: impl Fn(usize) -> f32 + Sync,
) -> (Box<[Alt]>, Box<[Alt]>) {
log::info!("Initializing erosion arrays...");
let oldh_ = (0..WORLD_SIZE.x * WORLD_SIZE.y)
.into_par_iter()
.map(|posi| oldh(posi) as Alt)
.collect::<Vec<_>>()
.into_boxed_slice();
2019-11-19 18:34:52 +00:00
// Topographic basement (The height of bedrock, not including sediment).
let mut b = (0..WORLD_SIZE.x * WORLD_SIZE.y)
.into_par_iter()
.map(|posi| oldb(posi) as Alt)
2019-11-19 18:34:52 +00:00
.collect::<Vec<_>>()
.into_boxed_slice();
// Stream power law slope exponent--link between channel slope and erosion rate.
let n = (0..WORLD_SIZE.x * WORLD_SIZE.y)
.into_par_iter()
.map(|posi| n(posi))
.collect::<Vec<_>>()
.into_boxed_slice();
// Stream power law concavity index (θ = m/n), turned into an exponent on drainage
// (which is a proxy for discharge according to Hack's Law).
let m = (0..WORLD_SIZE.x * WORLD_SIZE.y)
.into_par_iter()
.map(|posi| theta(posi) * n[posi])
.collect::<Vec<_>>()
.into_boxed_slice();
// Stream power law erodability constant for fluvial erosion (bedrock)
let kf = (0..WORLD_SIZE.x * WORLD_SIZE.y)
.into_par_iter()
.map(|posi| kf(posi))
.collect::<Vec<_>>()
.into_boxed_slice();
// Stream power law erodability constant for hillslope diffusion (bedrock)
let kd = (0..WORLD_SIZE.x * WORLD_SIZE.y)
.into_par_iter()
.map(|posi| kd(posi))
.collect::<Vec<_>>()
.into_boxed_slice();
// Deposition coefficient
let g = (0..WORLD_SIZE.x * WORLD_SIZE.y)
.into_par_iter()
.map(|posi| g(posi))
.collect::<Vec<_>>()
.into_boxed_slice();
2019-11-20 10:33:53 +00:00
let mut wh = vec![0.0; WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
// TODO: Don't do this, maybe?
// (To elaborate, maybe we should have varying uplift or compute it some other way).
let uplift = (0..oldh_.len())
.into_par_iter()
.map(|posi| uplift(posi))
.collect::<Vec<_>>()
.into_boxed_slice();
let sum_uplift = uplift
.into_par_iter()
.cloned()
.map(|e| e as f64)
.sum::<f64>();
log::debug!("Sum uplifts: {:?}", sum_uplift);
let max_uplift = uplift
.into_par_iter()
.cloned()
.max_by(|a, b| a.partial_cmp(&b).unwrap())
.unwrap();
let max_g = g
.into_par_iter()
.cloned()
.max_by(|a, b| a.partial_cmp(&b).unwrap())
.unwrap();
log::debug!("Max uplift: {:?}", max_uplift);
log::debug!("Max g: {:?}", max_g);
2019-11-19 18:34:52 +00:00
// Height of terrain, including sediment.
let mut h = oldh_;
2019-11-19 18:34:52 +00:00
// 0.01 / 2e-5 = 500
// Bedrock transport coefficients (diffusivity) in m^2 / year. For now, we set them all to be equal
// on land, but in theory we probably want to at least differentiate between soil, bedrock, and
// sediment.
let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale as f64;
2019-11-20 10:33:53 +00:00
let mmaxh = CONFIG.mountain_scale as f64 * height_scale;
let dt = max_uplift as f64 / height_scale /* * CONFIG.mountain_scale as f64*/ / 5.010e-4;
2019-11-25 03:47:33 +00:00
let k_fb = /*(erosion_base as f64 + 2.244 / mmaxh as f64 * /*10.0*//*5.0*//*9.0*//*7.5*//*5.0*//*2.5*//*1.5*/4.0/*1.0*//*3.75*/ * max_uplift as f64) / dt;*/
2.0e-5 * dt;
2019-11-20 10:33:53 +00:00
let kd_bedrock =
/*1e-2*//*0.25e-2*/1e-2 / 1.0 * height_scale * height_scale/* / (CONFIG.mountain_scale as f64 * CONFIG.mountain_scale as f64) */
2019-11-20 10:33:53 +00:00
/* * k_fb / 2e-5 */;
let kdsed =
/*1.5e-2*//*1e-4*//*1.25e-2*/1.5e-2 / 1.0 * height_scale * height_scale/* / (CONFIG.mountain_scale as f64 * CONFIG.mountain_scale as f64) */
2019-11-20 10:33:53 +00:00
/* * k_fb / 2e-5 */;
// let kd = |posi: usize| kd_bedrock; // if is_ocean(posi) { /*0.0*/kd_bedrock } else { kd_bedrock };
let n = |posi: usize| n[posi];
let m = |posi: usize| m[posi];
let kd = |posi: usize| kd[posi]; // if is_ocean(posi) { /*0.0*/kd_bedrock } else { kd_bedrock };
let kf = |posi: usize| kf[posi];
let g = |posi: usize| g[posi];
2019-11-19 18:34:52 +00:00
// Hillslope diffusion coefficient for sediment.
let mut is_done = bitbox![0; WORLD_SIZE.x * WORLD_SIZE.y];
for i in 0..n_steps {
log::debug!("Erosion iteration #{:?}", i);
erode(
&mut h,
2019-11-19 18:34:52 +00:00
&mut b,
2019-11-20 10:33:53 +00:00
&mut wh,
2019-11-19 18:34:52 +00:00
&mut is_done,
// The value to use to indicate that erosion is complete on a chunk. Should toggle
// once per iteration, to avoid having to reset the bits, and start at true, since
// we initialize to 0 (false).
i & 1 == 0,
erosion_base,
max_uplift,
max_g,
-1.0,
// kdsed,
seed,
rock_strength_nz,
|posi| uplift[posi],
n,
m,
kf,
2019-11-19 18:34:52 +00:00
kd,
g,
|posi| is_ocean(posi),
);
}
2019-11-19 18:34:52 +00:00
(h, b)
}