mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
Move rrt algorithm into its own function
This commit is contained in:
@ -673,16 +673,6 @@ where
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Enable when airbraking/sensible flight is a thing
|
// Enable when airbraking/sensible flight is a thing
|
||||||
/// Attempts to find a path from a start to the end using an informed
|
|
||||||
/// RRT-Connect algorithm. A point is sampled from a bounding spheroid
|
|
||||||
/// between the start and end. Two separate rapidly exploring random
|
|
||||||
/// trees extend toward the sampled point. Nodes are stored in k-d trees
|
|
||||||
/// for quicker nearest node calculations. Points are sampled until the
|
|
||||||
/// trees connect. A final path is then reconstructed from the nodes.
|
|
||||||
/// This pathfinding algorithm is more appropriate for 3D pathfinding
|
|
||||||
/// with wider gaps, such as flying through a forest than for terrain
|
|
||||||
/// with narrow gaps, such as navigating a maze.
|
|
||||||
/// Returns a path and whether that path is complete or not.
|
|
||||||
#[cfg(rrt_pathfinding)]
|
#[cfg(rrt_pathfinding)]
|
||||||
fn find_air_path<V>(
|
fn find_air_path<V>(
|
||||||
vol: &V,
|
vol: &V,
|
||||||
@ -694,7 +684,6 @@ where
|
|||||||
V: BaseVol<Vox = Block> + ReadVol,
|
V: BaseVol<Vox = Block> + ReadVol,
|
||||||
{
|
{
|
||||||
let radius = traversal_cfg.node_tolerance;
|
let radius = traversal_cfg.node_tolerance;
|
||||||
let mut path = Vec::new();
|
|
||||||
let mut connect = false;
|
let mut connect = false;
|
||||||
let total_dist_sqrd = startf.distance_squared(endf);
|
let total_dist_sqrd = startf.distance_squared(endf);
|
||||||
// First check if a straight line path works
|
// First check if a straight line path works
|
||||||
@ -706,8 +695,10 @@ where
|
|||||||
.powi(2)
|
.powi(2)
|
||||||
>= total_dist_sqrd
|
>= total_dist_sqrd
|
||||||
{
|
{
|
||||||
|
let mut path = Vec::new();
|
||||||
path.push(endf.map(|e| e.floor() as i32));
|
path.push(endf.map(|e| e.floor() as i32));
|
||||||
connect = true;
|
connect = true;
|
||||||
|
(Some(path.into_iter().collect()), connect)
|
||||||
// Else use RRTs
|
// Else use RRTs
|
||||||
} else {
|
} else {
|
||||||
let is_traversable = |start: &Vec3<f32>, end: &Vec3<f32>| {
|
let is_traversable = |start: &Vec3<f32>, end: &Vec3<f32>| {
|
||||||
@ -720,10 +711,31 @@ where
|
|||||||
//vol.get(*pos).ok().copied().unwrap_or_else(Block::empty).
|
//vol.get(*pos).ok().copied().unwrap_or_else(Block::empty).
|
||||||
// is_fluid();
|
// is_fluid();
|
||||||
};
|
};
|
||||||
let mut node_index1: usize = 0;
|
informed_rrt_connect(start, end, is_traversable)
|
||||||
let mut node_index2: usize = 0;
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Attempts to find a path from a start to the end using an informed
|
||||||
|
/// RRT-Connect algorithm. A point is sampled from a bounding spheroid
|
||||||
|
/// between the start and end. Two separate rapidly exploring random
|
||||||
|
/// trees extend toward the sampled point. Nodes are stored in k-d trees
|
||||||
|
/// for quicker nearest node calculations. Points are sampled until the
|
||||||
|
/// trees connect. A final path is then reconstructed from the nodes.
|
||||||
|
/// This pathfinding algorithm is more appropriate for 3D pathfinding
|
||||||
|
/// with wider gaps, such as flying through a forest than for terrain
|
||||||
|
/// with narrow gaps, such as navigating a maze.
|
||||||
|
/// Returns a path and whether that path is complete or not.
|
||||||
|
#[cfg(rrt_pathfinding)]
|
||||||
|
fn informed_rrt_connect(
|
||||||
|
start: Vec3<f32>,
|
||||||
|
end: Vec3<f32>,
|
||||||
|
is_valid_edge: impl Fn(&Vec3<f32>, &Vec3<f32>) -> bool,
|
||||||
|
) -> (Option<Path<Vec3<i32>>>, bool) {
|
||||||
|
let mut path = Vec::new();
|
||||||
|
|
||||||
// Each tree has a vector of nodes
|
// Each tree has a vector of nodes
|
||||||
|
let mut node_index1: usize = 0;
|
||||||
|
let mut node_index2: usize = 0;
|
||||||
let mut nodes1 = Vec::new();
|
let mut nodes1 = Vec::new();
|
||||||
let mut nodes2 = Vec::new();
|
let mut nodes2 = Vec::new();
|
||||||
|
|
||||||
@ -758,6 +770,8 @@ where
|
|||||||
let mut connection1_idx = 0;
|
let mut connection1_idx = 0;
|
||||||
let mut connection2_idx = 0;
|
let mut connection2_idx = 0;
|
||||||
|
|
||||||
|
let mut connect = false;
|
||||||
|
|
||||||
// Scalar non-dimensional value that is proportional to the size of the
|
// Scalar non-dimensional value that is proportional to the size of the
|
||||||
// sample spheroid volume. This increases in value until a path is found.
|
// sample spheroid volume. This increases in value until a path is found.
|
||||||
let mut search_parameter = 0.01;
|
let mut search_parameter = 0.01;
|
||||||
@ -791,13 +805,11 @@ where
|
|||||||
let nearest2 = nodes2[nearest_index2];
|
let nearest2 = nodes2[nearest_index2];
|
||||||
|
|
||||||
// Extend toward the sampled point from the nearest node of each tree
|
// Extend toward the sampled point from the nearest node of each tree
|
||||||
let new_point1 =
|
let new_point1 = nearest1 + (sampled_point1 - nearest1).normalized().map(|a| a * radius);
|
||||||
nearest1 + (sampled_point1 - nearest1).normalized().map(|a| a * radius);
|
let new_point2 = nearest2 + (sampled_point2 - nearest2).normalized().map(|a| a * radius);
|
||||||
let new_point2 =
|
|
||||||
nearest2 + (sampled_point2 - nearest2).normalized().map(|a| a * radius);
|
|
||||||
|
|
||||||
// Ensure the new nodes are valid/traversable
|
// Ensure the new nodes are valid/traversable
|
||||||
if is_traversable(&nearest1, &new_point1) {
|
if is_valid_edge(&nearest1, &new_point1) {
|
||||||
kdtree1
|
kdtree1
|
||||||
.add(&[new_point1.x, new_point1.y, new_point1.z], node_index1)
|
.add(&[new_point1.x, new_point1.y, new_point1.z], node_index1)
|
||||||
.unwrap_or_default();
|
.unwrap_or_default();
|
||||||
@ -821,7 +833,7 @@ where
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Repeat the validity check for the second tree
|
// Repeat the validity check for the second tree
|
||||||
if is_traversable(&nearest2, &new_point2) {
|
if is_valid_edge(&nearest2, &new_point2) {
|
||||||
kdtree2
|
kdtree2
|
||||||
.add(&[new_point2.x, new_point2.y, new_point1.z], node_index2)
|
.add(&[new_point2.x, new_point2.y, new_point1.z], node_index2)
|
||||||
.unwrap_or_default();
|
.unwrap_or_default();
|
||||||
@ -887,8 +899,7 @@ where
|
|||||||
}
|
}
|
||||||
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
||||||
// Construct the path
|
// Construct the path
|
||||||
while current_node_index1 != 0
|
while current_node_index1 != 0 && nodes1[current_node_index1].distance_squared(startf) > 4.0
|
||||||
&& nodes1[current_node_index1].distance_squared(startf) > 4.0
|
|
||||||
{
|
{
|
||||||
current_node_index1 = *parents1.get(¤t_node_index1).unwrap_or(&0);
|
current_node_index1 = *parents1.get(¤t_node_index1).unwrap_or(&0);
|
||||||
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
||||||
@ -929,8 +940,6 @@ where
|
|||||||
}
|
}
|
||||||
path = new_path;
|
path = new_path;
|
||||||
}
|
}
|
||||||
(Some(path.into_iter().collect()), connect)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a random point within a radially symmetrical ellipsoid with given
|
/// Returns a random point within a radially symmetrical ellipsoid with given
|
||||||
/// foci and a `search parameter` to determine the size of the ellipse beyond
|
/// foci and a `search parameter` to determine the size of the ellipse beyond
|
||||||
|
Reference in New Issue
Block a user