Refactor and abstract fluid dynamics

This commit is contained in:
Ludvig Böklin 2021-05-21 11:13:47 +02:00
parent 5f44101486
commit 74f9945ab3
9 changed files with 560 additions and 273 deletions

View File

@ -16,6 +16,7 @@ pub mod theropod;
use crate::{
assets::{self, Asset},
comp::{fluid_dynamics::*, Ori, Vel},
consts::{HUMAN_DENSITY, WATER_DENSITY},
make_case_elim,
npc::NpcKind,
@ -23,6 +24,7 @@ use crate::{
use serde::{Deserialize, Serialize};
use specs::{Component, DerefFlaggedStorage};
use specs_idvs::IdvStorage;
use std::f32::consts::PI;
use vek::*;
use super::{BuffKind, Density, Mass};
@ -316,9 +318,9 @@ impl Body {
_ => Vec3::new(1.0, 0.75, 1.4),
},
Body::BirdMedium(_) => Vec3::new(2.0, 1.0, 1.5),
Body::BirdLarge(_) => Vec3::new(2.0, 6.0, 3.5),
Body::Dragon(_) => Vec3::new(16.0, 10.0, 16.0),
Body::BirdMedium(body) => body.dimensions(),
Body::BirdLarge(body) => body.dimensions(),
Body::Dragon(body) => body.dimensions(),
Body::FishMedium(_) => Vec3::new(0.5, 2.0, 0.8),
Body::FishSmall(_) => Vec3::new(0.3, 1.2, 0.6),
Body::Golem(_) => Vec3::new(5.0, 5.0, 7.5),
@ -732,3 +734,121 @@ impl Body {
impl Component for Body {
type Storage = DerefFlaggedStorage<Self, IdvStorage<Self>>;
}
impl Body {
pub fn aerodynamic_forces(
&self,
ori: Option<&Ori>,
rel_flow: &Vel,
fluid_density: f32,
) -> Vec3<f32> {
match (self, ori) {
(Body::BirdMedium(bird), Some(ori)) => bird_medium::FlyingBirdMedium::from((bird, ori))
.aerodynamic_forces(rel_flow, fluid_density),
(Body::BirdLarge(bird), Some(ori)) => bird_large::FlyingBirdLarge::from((bird, ori))
.aerodynamic_forces(rel_flow, fluid_density),
(Body::Dragon(not_bird), Some(ori)) => dragon::FlyingDragon::from((not_bird, ori))
.aerodynamic_forces(rel_flow, fluid_density),
_ => self.drag(rel_flow, fluid_density),
}
}
}
impl Drag for Body {
/// Parasite drag is the sum of pressure drag and skin friction.
/// Skin friction is the drag arising from the shear forces between a fluid
/// and a surface, while pressure drag is due to flow separation. Both are
/// viscous effects.
///
/// This coefficient includes the reference area.
fn parasite_drag_coefficient(&self) -> f32 {
// Reference area and drag coefficient assumes best-case scenario of the
// orientation producing least amount of drag
match self {
// Cross-section, head/feet first
Body::BipedLarge(_) | Body::BipedSmall(_) | Body::Golem(_) | Body::Humanoid(_) => {
const SCALE: f32 = 0.7;
let radius = self.dimensions().xy().map(|a| SCALE * a * 0.5);
const CD: f32 = 0.7;
CD * PI * radius.x * radius.y
},
// Cross-section, nose/tail first
Body::Theropod(_)
| Body::QuadrupedMedium(_)
| Body::QuadrupedSmall(_)
| Body::QuadrupedLow(_) => {
let radius = self.dimensions().map(|a| a * 0.5);
let cd: f32 = if matches!(self, Body::QuadrupedLow(_)) {
0.7
} else {
1.0
};
cd * PI * radius.x * radius.z
},
Body::BirdMedium(bird) => bird.parasite_drag_coefficient(),
Body::BirdLarge(bird) => bird.parasite_drag_coefficient(),
Body::Dragon(not_bird) => not_bird.parasite_drag_coefficient(),
// Cross-section, zero-lift angle; exclude the fins
Body::FishMedium(_) | Body::FishSmall(_) => {
let radius = self.dimensions().map(|a| a * 0.5);
// "A Simple Method to Determine Drag Coefficients in Aquatic Animals",
// D. Bilo and W. Nachtigall, 1980
const CD: f32 = 0.031;
CD * PI * radius.x * radius.z
},
Body::Object(object) => match object {
// very streamlined objects
object::Body::Arrow
| object::Body::ArrowSnake
| object::Body::ArrowTurret
| object::Body::FireworkBlue
| object::Body::FireworkGreen
| object::Body::FireworkPurple
| object::Body::FireworkRed
| object::Body::FireworkWhite
| object::Body::FireworkYellow
| object::Body::MultiArrow => {
let radius = self.dimensions().map(|a| a * 0.5);
const CD: f32 = 0.02;
CD * PI * radius.x * radius.z
},
// spherical-ish objects
object::Body::BoltFire
| object::Body::BoltFireBig
| object::Body::BoltNature
| object::Body::Bomb
| object::Body::PotionBlue
| object::Body::PotionGreen
| object::Body::PotionRed
| object::Body::Pouch
| object::Body::Pumpkin
| object::Body::Pumpkin2
| object::Body::Pumpkin3
| object::Body::Pumpkin4
| object::Body::Pumpkin5 => {
let radius = self.dimensions().xy().map(|a| a * 0.5);
const CD: f32 = 0.5;
CD * PI * radius.product()
},
_ => {
let dim = self.dimensions();
const CD: f32 = 2.0;
CD * (PI / 6.0 * dim.x * dim.y * dim.z).powf(2.0 / 3.0)
},
},
Body::Ship(_) => {
// Airships tend to use the square of the cube root of its volume for
// reference area
let dim = self.dimensions();
(PI / 6.0 * dim.x * dim.y * dim.z).powf(2.0 / 3.0)
},
}
}
}

View File

@ -1,6 +1,13 @@
use crate::{make_case_elim, make_proj_elim};
use crate::{
comp::{
fluid_dynamics::{Drag, WingShape, WingState, Glide},
Ori,
},
make_case_elim, make_proj_elim,
};
use rand::{seq::SliceRandom, thread_rng};
use serde::{Deserialize, Serialize};
use vek::*;
make_proj_elim!(
body,
@ -23,6 +30,18 @@ impl Body {
let body_type = *(&ALL_BODY_TYPES).choose(rng).unwrap();
Self { species, body_type }
}
/// Dimensions of the body (wings folded)
pub const fn dimensions(&self) -> Vec3<f32> { Vec3::new(1.0, 5.0, 2.4) }
/// Distance from wing tip to wing tip and leading edge to trailing edge
/// respectively
// TODO: Check
pub const fn wing_dimensions(&self) -> Vec2<f32> { Vec2::new(7.0, 1.0) }
pub fn flying<'a>(&'a self, ori: &'a Ori) -> FlyingBirdLarge<'a> {
FlyingBirdLarge::from((self, ori))
}
}
impl From<Body> for super::Body {
@ -83,3 +102,55 @@ make_case_elim!(
);
pub const ALL_BODY_TYPES: [BodyType; 2] = [BodyType::Female, BodyType::Male];
#[derive(Copy, Clone)]
pub struct FlyingBirdLarge<'a> {
wing_shape: WingShape,
wing_state: WingState,
planform_area: f32,
body: &'a Body,
ori: &'a Ori,
}
impl<'a> From<(&'a Body, &'a Ori)> for FlyingBirdLarge<'a> {
fn from((body, ori): (&'a Body, &'a Ori)) -> Self {
let Vec2 {
x: span_length,
y: chord_length,
} = body.wing_dimensions();
let planform_area = WingShape::elliptical_planform_area(span_length, chord_length);
FlyingBirdLarge {
wing_shape: WingShape::elliptical(span_length, chord_length),
wing_state: WingState::Flapping,
planform_area,
body,
ori,
}
}
}
impl Drag for Body {
fn parasite_drag_coefficient(&self) -> f32 {
let radius = self.dimensions().map(|a| a * 0.5);
// "Field Estimates of body::Body Drag Coefficient on the Basis of
// Dives in Passerine Birds", Anders Hedenström and Felix Liechti, 2001
const CD: f32 = 0.2;
CD * std::f32::consts::PI * radius.x * radius.z
}
}
impl Drag for FlyingBirdLarge<'_> {
fn parasite_drag_coefficient(&self) -> f32 {
self.body.parasite_drag_coefficient() + self.planform_area * 0.004
}
}
impl Glide for FlyingBirdLarge<'_> {
fn wing_shape(&self) -> &WingShape { &self.wing_shape }
fn is_gliding(&self) -> bool { matches!(self.wing_state, WingState::Fixed) }
fn planform_area(&self) -> f32 { self.planform_area }
fn ori(&self) -> &Ori { self.ori }
}

View File

@ -1,6 +1,13 @@
use crate::{make_case_elim, make_proj_elim};
use crate::{
comp::{
fluid_dynamics::{Drag, WingShape, WingState, Glide},
Ori,
},
make_case_elim, make_proj_elim,
};
use rand::{seq::SliceRandom, thread_rng};
use serde::{Deserialize, Serialize};
use vek::*;
make_proj_elim!(
body,
@ -23,6 +30,18 @@ impl Body {
let body_type = *(&ALL_BODY_TYPES).choose(rng).unwrap();
Self { species, body_type }
}
/// Dimensions of the body (wings folded)
pub const fn dimensions(&self) -> Vec3<f32> { Vec3::new(0.5, 1.0, 1.1) }
/// Distance from wing tip to wing tip and leading edge to trailing edge
/// respectively
// TODO: Check
pub const fn wing_dimensions(&self) -> Vec2<f32> { Vec2::new(2.0, 0.4) }
pub fn flying<'a>(&'a self, ori: &'a Ori) -> FlyingBirdMedium<'a> {
FlyingBirdMedium::from((self, ori))
}
}
impl From<Body> for super::Body {
@ -102,3 +121,55 @@ make_case_elim!(
}
);
pub const ALL_BODY_TYPES: [BodyType; 2] = [BodyType::Female, BodyType::Male];
#[derive(Copy, Clone)]
pub struct FlyingBirdMedium<'a> {
wing_shape: WingShape,
wing_state: WingState,
planform_area: f32,
body: &'a Body,
ori: &'a Ori,
}
impl<'a> From<(&'a Body, &'a Ori)> for FlyingBirdMedium<'a> {
fn from((body, ori): (&'a Body, &'a Ori)) -> Self {
let Vec2 {
x: span_length,
y: chord_length,
} = body.wing_dimensions();
let planform_area = WingShape::elliptical_planform_area(span_length, chord_length);
FlyingBirdMedium {
wing_shape: WingShape::elliptical(span_length, chord_length),
wing_state: WingState::Flapping,
planform_area,
body,
ori,
}
}
}
impl Drag for Body {
fn parasite_drag_coefficient(&self) -> f32 {
let radius = self.dimensions().map(|a| a * 0.5);
// "Field Estimates of body::Body Drag Coefficient on the Basis of
// Dives in Passerine Birds", Anders Hedenström and Felix Liechti, 2001
const CD: f32 = 0.2;
CD * std::f32::consts::PI * radius.x * radius.z
}
}
impl Drag for FlyingBirdMedium<'_> {
fn parasite_drag_coefficient(&self) -> f32 {
self.body.parasite_drag_coefficient() + self.planform_area * 0.004
}
}
impl Glide for FlyingBirdMedium<'_> {
fn wing_shape(&self) -> &WingShape { &self.wing_shape }
fn is_gliding(&self) -> bool { matches!(self.wing_state, WingState::Fixed) }
fn planform_area(&self) -> f32 { self.planform_area }
fn ori(&self) -> &Ori { self.ori }
}

View File

@ -1,6 +1,13 @@
use crate::{make_case_elim, make_proj_elim};
use crate::{
comp::{
fluid_dynamics::{Drag, Glide, WingShape, WingState},
Ori,
},
make_case_elim, make_proj_elim,
};
use rand::{seq::SliceRandom, thread_rng};
use serde::{Deserialize, Serialize};
use vek::*;
make_proj_elim!(
body,
@ -23,6 +30,18 @@ impl Body {
let body_type = *(&ALL_BODY_TYPES).choose(rng).unwrap();
Self { species, body_type }
}
/// Dimensions of the body (wings folded)
pub const fn dimensions(&self) -> Vec3<f32> { Vec3::new(5.0, 10.0, 16.0) }
/// Distance from wing tip to wing tip and leading edge to trailing edge
/// respectively
// TODO: Check
pub const fn wing_dimensions(&self) -> Vec2<f32> { Vec2::new(16.0, 5.0) }
pub fn flying<'a>(&'a self, ori: &'a Ori) -> FlyingDragon<'a> {
FlyingDragon::from((self, ori))
}
}
impl From<Body> for super::Body {
@ -77,3 +96,55 @@ make_case_elim!(
);
pub const ALL_BODY_TYPES: [BodyType; 2] = [BodyType::Female, BodyType::Male];
#[derive(Copy, Clone)]
pub struct FlyingDragon<'a> {
wing_shape: WingShape,
wing_state: WingState,
planform_area: f32,
body: &'a Body,
ori: &'a Ori,
}
impl<'a> From<(&'a Body, &'a Ori)> for FlyingDragon<'a> {
fn from((body, ori): (&'a Body, &'a Ori)) -> Self {
let Vec2 {
x: span_length,
y: chord_length,
} = body.wing_dimensions();
let planform_area = WingShape::elliptical_planform_area(span_length, chord_length);
FlyingDragon {
wing_shape: WingShape::elliptical(span_length, chord_length),
wing_state: WingState::Flapping,
planform_area,
body,
ori,
}
}
}
impl Drag for Body {
fn parasite_drag_coefficient(&self) -> f32 {
let radius = self.dimensions().map(|a| a * 0.5);
// "Field Estimates of body::Body Drag Coefficient on the Basis of
// Dives in Passerine Birds", Anders Hedenström and Felix Liechti, 2001
const CD: f32 = 0.2;
CD * std::f32::consts::PI * radius.x * radius.z
}
}
impl Drag for FlyingDragon<'_> {
fn parasite_drag_coefficient(&self) -> f32 {
self.body.parasite_drag_coefficient() + self.planform_area * 0.004
}
}
impl Glide for FlyingDragon<'_> {
fn wing_shape(&self) -> &WingShape { &self.wing_shape }
fn is_gliding(&self) -> bool { matches!(self.wing_state, WingState::Fixed) }
fn planform_area(&self) -> f32 { self.planform_area }
fn ori(&self) -> &Ori { self.ori }
}

View File

@ -1,5 +1,3 @@
#[cfg(not(target_arch = "wasm32"))]
use super::body::{object, Body};
use super::{Density, Ori, Vel};
use crate::{
consts::{AIR_DENSITY, LAVA_DENSITY, WATER_DENSITY},
@ -120,20 +118,12 @@ impl Default for Fluid {
}
}
pub struct Wings {
pub aspect_ratio: f32,
pub planform_area: f32,
pub ori: Ori,
}
pub trait Drag: Clone {
/// Drag coefficient for skin friction and flow separation.
/// (Multiplied by reference area.)
fn parasite_drag_coefficient(&self) -> f32;
#[cfg(not(target_arch = "wasm32"))]
impl Body {
pub fn aerodynamic_forces(
&self,
rel_flow: &Vel,
fluid_density: f32,
wings: Option<&Wings>,
) -> Vec3<f32> {
fn drag(&self, rel_flow: &Vel, fluid_density: f32) -> Vec3<f32> {
let v_sq = rel_flow.0.magnitude_squared();
if v_sq < 0.25 {
// don't bother with miniscule forces
@ -141,181 +131,100 @@ impl Body {
} else {
let rel_flow_dir = Dir::new(rel_flow.0 / v_sq.sqrt());
// All the coefficients come pre-multiplied by their reference area
0.5 * fluid_density
* v_sq
* match wings {
Some(&Wings {
aspect_ratio,
planform_area,
ori,
}) => {
if aspect_ratio > 25.0 {
tracing::warn!(
"Calculating lift for wings with an aspect ratio of {}. The \
formulas are only valid for aspect ratios below 25.",
aspect_ratio
)
};
let ar = aspect_ratio.min(24.0);
// We have an elliptical wing; proceed to calculate its lift and drag
// aoa will be positive when we're pitched up and negative otherwise
let aoa = angle_of_attack(&ori, &rel_flow_dir);
// c_l will be positive when aoa is positive (we have positive lift,
// producing an upward force) and negative otherwise
let c_l = lift_coefficient(ar, planform_area, aoa);
// lift dir will be orthogonal to the local relative flow vector.
// Local relative flow is the resulting vector of (relative) freestream
// flow + downwash (created by the vortices
// of the wing tips)
let lift_dir: Dir = {
// induced angle of attack
let aoa_i = c_l / (PI * ar);
// effective angle of attack; the aoa as seen by aerofoil after
// downwash
let aoa_eff = aoa - aoa_i;
// Angle between chord line and local relative wind is aoa_eff
// radians. Direction of lift is
// perpendicular to local relative wind.
// At positive lift, local relative wind will be below our cord line
// at an angle of aoa_eff. Thus if
// we pitch down by aoa_eff radians then
// our chord line will be colinear with local relative wind vector
// and our up will be the direction
// of lift.
ori.pitched_down(aoa_eff).up()
};
// drag coefficient
let c_d = {
// Oswald's efficiency factor (empirically derived--very magical)
// (this definition should not be used for aspect ratios > 25)
let e = 1.78 * (1.0 - 0.045 * ar.powf(0.68)) - 0.64;
// induced drag coefficient (drag due to lift)
let cdi = c_l.powi(2) / (PI * e * ar);
zero_lift_drag_coefficient(planform_area)
+ self.parasite_drag_coefficient()
+ cdi
};
debug_assert!(c_d.is_sign_positive());
debug_assert!(c_l.is_sign_positive() || aoa.is_sign_negative());
c_l * *lift_dir + c_d * *rel_flow_dir
},
_ => self.parasite_drag_coefficient() * *rel_flow_dir,
}
0.5 * fluid_density * v_sq * self.parasite_drag_coefficient() * *rel_flow_dir
}
}
}
/// Parasite drag is the sum of pressure drag and skin friction.
/// Skin friction is the drag arising from the shear forces between a fluid
/// and a surface, while pressure drag is due to flow separation. Both are
/// viscous effects.
///
/// This coefficient includes the reference area.
fn parasite_drag_coefficient(&self) -> f32 {
// Reference area and drag coefficient assumes best-case scenario of the
// orientation producing least amount of drag
match self {
// Cross-section, head/feet first
Body::BipedLarge(_) | Body::BipedSmall(_) | Body::Golem(_) | Body::Humanoid(_) => {
let dim = self.dimensions().xy().map(|a| 0.7 * a * 0.5);
const CD: f32 = 0.7;
CD * PI * dim.x * dim.y
},
pub trait Glide: Drag {
const STALL_ANGLE: f32 = PI * 0.1;
// Cross-section, nose/tail first
Body::Theropod(_)
| Body::QuadrupedMedium(_)
| Body::QuadrupedSmall(_)
| Body::QuadrupedLow(_) => {
let dim = self.dimensions().map(|a| a * 0.5);
let cd: f32 = if matches!(self, Body::QuadrupedLow(_)) {
0.7
fn wing_shape(&self) -> &WingShape;
fn planform_area(&self) -> f32;
fn ori(&self) -> &Ori;
fn is_gliding(&self) -> bool;
/// Total lift coefficient for a finite wing of symmetric aerofoil shape and
/// elliptical pressure distribution. (Multiplied by reference area.)
fn lift_coefficient(&self, angle_of_attack: f32) -> f32 {
let aoa_abs = angle_of_attack.abs();
self.planform_area()
* if self.is_gliding() { 1.0 } else { 0.2 }
* if aoa_abs <= Self::STALL_ANGLE {
self.wing_shape().lift_slope() * angle_of_attack
} else {
// This is when flow separation and turbulence starts to kick in.
// Going to just make something up (based on some data), as the alternative is
// to just throw your hands up and return 0
let aoa_s = angle_of_attack.signum();
let c_l_max = self.wing_shape().lift_slope() * Self::STALL_ANGLE;
let deg_45 = PI / 4.0;
if aoa_abs < deg_45 {
// drop directly to 0.6 * max lift at stall angle
// then climb back to max at 45°
Lerp::lerp(0.6 * c_l_max, c_l_max, aoa_abs / deg_45) * aoa_s
} else {
1.0
};
cd * PI * dim.x * dim.z
},
// let's just say lift goes down linearly again until we're at 90°
Lerp::lerp(c_l_max, 0.0, (aoa_abs - deg_45) / deg_45) * aoa_s
}
}
}
// Cross-section, zero-lift angle; exclude the wings (width * 0.2)
Body::BirdMedium(_) | Body::BirdLarge(_) | Body::Dragon(_) => {
let dim = self.dimensions().map(|a| a * 0.5);
let cd: f32 = match self {
// "Field Estimates of Body Drag Coefficient on the Basis of Dives in Passerine
// Birds", Anders Hedenström and Felix Liechti, 2001
Body::BirdLarge(_) | Body::BirdMedium(_) => 0.2,
// arbitrary
_ => 0.7,
};
cd * PI * dim.x * 0.2 * dim.z
},
/// Total drag coefficient (multiplied by reference area)
fn drag_coefficient(&self, aspect_ratio: f32, lift_coefficient: f32) -> f32 {
self.parasite_drag_coefficient() + induced_drag_coefficient(aspect_ratio, lift_coefficient)
}
// Cross-section, zero-lift angle; exclude the fins (width * 0.2)
Body::FishMedium(_) | Body::FishSmall(_) => {
let dim = self.dimensions().map(|a| a * 0.5);
// "A Simple Method to Determine Drag Coefficients in Aquatic Animals",
// D. Bilo and W. Nachtigall, 1980
const CD: f32 = 0.031;
CD * PI * dim.x * 0.2 * dim.z
},
fn aerodynamic_forces(&self, rel_flow: &Vel, fluid_density: f32) -> Vec3<f32> {
let v_sq = rel_flow.0.magnitude_squared();
if v_sq < 0.1 {
// don't bother with miniscule forces
Vec3::zero()
} else {
let q = 0.5 * fluid_density * v_sq;
let rel_flow_dir = Dir::new(rel_flow.0 / v_sq.sqrt());
if self.is_gliding() {
let ori = self.ori();
let ar = self.wing_shape().aspect_ratio();
// aoa will be positive when we're pitched up and negative otherwise
let aoa = angle_of_attack(ori, &rel_flow_dir);
// c_l will be positive when aoa is positive (we have positive lift,
// producing an upward force) and negative otherwise
let c_l = self.lift_coefficient(aoa);
Body::Object(object) => match object {
// very streamlined objects
object::Body::Arrow
| object::Body::ArrowSnake
| object::Body::ArrowTurret
| object::Body::FireworkBlue
| object::Body::FireworkGreen
| object::Body::FireworkPurple
| object::Body::FireworkRed
| object::Body::FireworkWhite
| object::Body::FireworkYellow
| object::Body::MultiArrow => {
let dim = self.dimensions().map(|a| a * 0.5);
const CD: f32 = 0.02;
CD * PI * dim.x * dim.z
},
let lift = q * c_l * *lift_dir(ori, ar, c_l, aoa);
let drag = q * self.drag_coefficient(ar, c_l) * *rel_flow_dir;
// spherical-ish objects
object::Body::BoltFire
| object::Body::BoltFireBig
| object::Body::BoltNature
| object::Body::Bomb
| object::Body::PotionBlue
| object::Body::PotionGreen
| object::Body::PotionRed
| object::Body::Pouch
| object::Body::Pumpkin
| object::Body::Pumpkin2
| object::Body::Pumpkin3
| object::Body::Pumpkin4
| object::Body::Pumpkin5 => {
let dim = self.dimensions().map(|a| a * 0.5);
const CD: f32 = 0.5;
CD * PI * dim.x * dim.z
},
_ => {
let dim = self.dimensions();
const CD: f32 = 2.0;
CD * (PI / 6.0 * dim.x * dim.y * dim.z).powf(2.0 / 3.0)
},
},
Body::Ship(_) => {
// Airships tend to use the square of the cube root of its volume for
// reference area
let dim = self.dimensions();
(PI / 6.0 * dim.x * dim.y * dim.z).powf(2.0 / 3.0)
},
lift + drag
} else {
q * self.parasite_drag_coefficient() * *rel_flow_dir
}
}
}
}
pub fn lift_dir(ori: &Ori, aspect_ratio: f32, lift_coefficient: f32, angle_of_attack: f32) -> Dir {
// lift dir will be orthogonal to the local relative flow vector. Local relative
// flow is the resulting vector of (relative) freestream flow + downwash
// (created by the vortices of the wing tips)
// induced angle of attack
let aoa_i = lift_coefficient / (PI * aspect_ratio);
// effective angle of attack; the aoa as seen by aerofoil after downwash
let aoa_eff = angle_of_attack - aoa_i;
// Angle between chord line and local relative wind is aoa_eff radians.
// Direction of lift is perpendicular to local relative wind. At positive lift,
// local relative wind will be below our cord line at an angle of aoa_eff. Thus
// if we pitch down by aoa_eff radians then our chord line will be colinear with
// local relative wind vector and our up will be the direction of lift.
ori.pitched_down(aoa_eff).up()
}
/// Geometric angle of attack
///
/// # Note
@ -329,68 +238,99 @@ pub fn angle_of_attack(ori: &Ori, rel_flow_dir: &Dir) -> f32 {
.unwrap_or(0.0)
}
/// Total lift coefficient for a finite wing of symmetric aerofoil shape and
/// elliptical pressure distribution.
pub fn lift_coefficient(aspect_ratio: f32, planform_area: f32, aoa: f32) -> f32 {
let aoa_abs = aoa.abs();
let stall_angle = PI * 0.1;
planform_area
* if aoa_abs < stall_angle {
lift_slope(aspect_ratio, None) * aoa
} else {
// This is when flow separation and turbulence starts to kick in.
// Going to just make something up (based on some data), as the alternative is
// to just throw your hands up and return 0
let aoa_s = aoa.signum();
let c_l_max = lift_slope(aspect_ratio, None) * stall_angle;
let deg_45 = PI / 4.0;
if aoa_abs < deg_45 {
// drop directly to 0.6 * max lift at stall angle
// then climb back to max at 45°
Lerp::lerp(0.6 * c_l_max, c_l_max, aoa_abs / deg_45) * aoa_s
} else {
// let's just say lift goes down linearly again until we're at 90°
Lerp::lerp(c_l_max, 0.0, (aoa_abs - deg_45) / deg_45) * aoa_s
}
}
#[derive(Copy, Clone)]
pub enum WingState {
Fixed,
Flapping,
Retracted,
}
/// The zero-lift profile drag coefficient is the parasite drag on the wings
/// at the angle of attack which generates no lift
pub fn zero_lift_drag_coefficient(planform_area: f32) -> f32 { planform_area * 0.004 }
#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
pub enum WingShape {
Elliptical { aspect_ratio: f32 },
// Tapered { aspect_ratio: f32, e: f32 },
Swept { aspect_ratio: f32, angle: f32 },
// Delta,
}
/// The change in lift over change in angle of attack¹. Multiplying by angle
/// of attack gives the lift coefficient (for a finite wing, not aerofoil).
/// Aspect ratio is the ratio of total wing span squared over planform area.
///
/// # Notes
/// Only valid for symmetric, elliptical wings at small² angles of attack³.
/// Does not apply to twisted, cambered or delta wings. (It still gives a
/// reasonably accurate approximation if the wing shape is not truly
/// elliptical.)
/// 1. geometric angle of attack, i.e. the pitch angle relative to
/// freestream flow
/// 2. up to around ~18°, at which point maximum lift has been achieved and
/// thereafter falls precipitously, causing a stall (this is the stall
/// angle) 3. effective aoa, i.e. geometric aoa - induced aoa; assumes
/// no sideslip
// TODO: Look into handling tapered wings
fn lift_slope(aspect_ratio: f32, sweep_angle: Option<f32>) -> f32 {
// lift slope for a thin aerofoil, given by Thin Aerofoil Theory
let a0 = 2.0 * PI;
if let Some(sweep) = sweep_angle {
// for swept wings we use Kuchemann's modification to Helmbold's
// equation
let a0_cos_sweep = a0 * sweep.cos();
let x = a0_cos_sweep / (PI * aspect_ratio);
a0_cos_sweep / ((1.0 + x.powi(2)).sqrt() + x)
} else if aspect_ratio < 4.0 {
// for low aspect ratio wings (AR < 4) we use Helmbold's equation
let x = a0 / (PI * aspect_ratio);
a0 / ((1.0 + x.powi(2)).sqrt() + x)
} else {
// for high aspect ratio wings (AR > 4) we use the equation given by
// Prandtl's lifting-line theory
a0 / (1.0 + (a0 / (PI * aspect_ratio)))
impl WingShape {
pub fn aspect_ratio(&self) -> f32 {
match self {
Self::Elliptical { aspect_ratio } => *aspect_ratio,
Self::Swept { aspect_ratio, .. } => *aspect_ratio,
}
}
pub fn elliptical_planform_area(span_length: f32, chord_length: f32) -> f32 {
std::f32::consts::PI * span_length * chord_length * 0.25
}
pub fn elliptical(span_length: f32, chord_length: f32) -> Self {
Self::Elliptical {
aspect_ratio: span_length.powi(2)
/ Self::elliptical_planform_area(span_length, chord_length),
}
}
/// The change in lift over change in angle of attack¹. Multiplying by angle
/// of attack gives the lift coefficient (for a finite wing, not aerofoil).
/// Aspect ratio is the ratio of total wing span squared over planform area.
///
/// # Notes
/// Only valid for symmetric, elliptical wings at small² angles of attack³.
/// Does not apply to twisted, cambered or delta wings. (It still gives a
/// reasonably accurate approximation if the wing shape is not truly
/// elliptical.)
/// 1. geometric angle of attack, i.e. the pitch angle relative to
/// freestream flow
/// 2. up to around ~18°, at which point maximum lift has been achieved and
/// thereafter falls precipitously, causing a stall (this is the stall
/// angle) 3. effective aoa, i.e. geometric aoa - induced aoa; assumes
/// no sideslip
pub fn lift_slope(&self) -> f32 {
// lift slope for a thin aerofoil, given by Thin Aerofoil Theory
let a0 = 2.0 * PI;
match self {
WingShape::Elliptical { aspect_ratio } => {
if aspect_ratio < &4.0 {
// for low aspect ratio wings (AR < 4) we use Helmbold's equation
let x = a0 / (PI * aspect_ratio);
a0 / ((1.0 + x.powi(2)).sqrt() + x)
} else {
// for high aspect ratio wings (AR > 4) we use the equation given by
// Prandtl's lifting-line theory
a0 / (1.0 + (a0 / (PI * aspect_ratio)))
}
},
// WingShape::Tapered { aspect_ratio, e } => todo!(),
WingShape::Swept {
aspect_ratio,
angle,
} => {
// for swept wings we use Kuchemann's modification to Helmbold's
// equation
let a0_cos_sweep = a0 * angle.cos();
let x = a0_cos_sweep / (PI * aspect_ratio);
a0_cos_sweep / ((1.0 + x.powi(2)).sqrt() + x)
},
}
}
}
/// Induced drag coefficient (drag due to lift)
pub fn induced_drag_coefficient(aspect_ratio: f32, lift_coefficient: f32) -> f32 {
let ar = aspect_ratio;
if ar > 25.0 {
tracing::warn!(
"Calculating induced drag for wings with a given aspect ratio of {}. The formulas are \
only valid for aspect ratios below 25, so it will be substituted.",
ar
)
};
let ar = ar.min(24.0);
// Oswald's efficiency factor (empirically derived--very magical)
// (this definition should not be used for aspect ratios > 25)
let e = 1.78 * (1.0 - 0.045 * ar.powf(0.68)) - 0.64;
// induced drag coefficient (drag due to lift)
lift_coefficient.powi(2) / (PI * e * ar)
}

View File

@ -2,7 +2,7 @@
pub const MAX_PICKUP_RANGE: f32 = 8.0;
pub const MAX_MOUNT_RANGE: f32 = 14.0;
pub const GRAVITY: f32 = 9.8;
pub const GRAVITY: f32 = 25.0;
pub const FRIC_GROUND: f32 = 0.15;
// Values for air taken from http://www-mdp.eng.cam.ac.uk/web/library/enginfo/aerothermal_dvd_only/aero/atmos/atmos.html

View File

@ -6,6 +6,7 @@
#![feature(
arbitrary_enum_discriminant,
associated_type_defaults,
bindings_after_at,
bool_to_option,
const_generics,
fundamental,

View File

@ -1,8 +1,9 @@
use super::utils::handle_climb;
use crate::{
comp::{
fluid_dynamics::angle_of_attack, inventory::slot::EquipSlot, CharacterState, Ori,
StateUpdate, Vel,
fluid_dynamics::{angle_of_attack, Drag, Glide, WingShape},
inventory::slot::EquipSlot,
CharacterState, Ori, StateUpdate, Vel,
},
states::behavior::{CharacterBehavior, JoinData},
util::{Dir, Plane, Projection},
@ -17,7 +18,7 @@ const PITCH_SLOW_TIME: f32 = 0.5;
pub struct Data {
/// The aspect ratio is the ratio of the span squared to actual planform
/// area
pub aspect_ratio: f32,
pub wing_shape: WingShape,
pub planform_area: f32,
pub ori: Ori,
last_vel: Vel,
@ -36,7 +37,7 @@ impl Data {
let planform_area = PI * chord_length * span_length * 0.25;
let aspect_ratio = span_length.powi(2) / planform_area;
Self {
aspect_ratio,
wing_shape: WingShape::Elliptical { aspect_ratio },
planform_area,
ori,
last_vel: Vel::zero(),
@ -69,6 +70,20 @@ impl Data {
}
}
impl Drag for Data {
fn parasite_drag_coefficient(&self) -> f32 { self.planform_area * 0.004 }
}
impl Glide for Data {
fn wing_shape(&self) -> &WingShape { &self.wing_shape }
fn is_gliding(&self) -> bool { true }
fn planform_area(&self) -> f32 { self.planform_area }
fn ori(&self) -> &Ori { &self.ori }
}
impl CharacterBehavior for Data {
fn behavior(&self, data: &JoinData) -> StateUpdate {
let mut update = StateUpdate::from(data);

View File

@ -1,7 +1,7 @@
use common::{
comp::{
body::ship::figuredata::{VoxelCollider, VOXEL_COLLIDER_MANIFEST},
fluid_dynamics::{Fluid, LiquidKind, Wings},
fluid_dynamics::{Fluid, LiquidKind, Glide},
BeamSegment, Body, CharacterState, Collider, Density, Mass, Mounting, Ori, PhysicsState,
Pos, PosVelDefer, PreviousPhysCache, Projectile, Scale, Shockwave, Stats, Sticky, Vel,
},
@ -9,7 +9,6 @@ use common::{
event::{EventBus, ServerEvent},
outcome::Outcome,
resources::DeltaTime,
states,
terrain::{Block, TerrainGrid},
uid::Uid,
util::{Projection, SpatialGrid},
@ -43,7 +42,9 @@ fn fluid_density(height: f32, fluid: &Fluid) -> Density {
fn integrate_forces(
dt: &DeltaTime,
mut vel: Vel,
(body, wings): (&Body, Option<&Wings>),
ori: Option<&Ori>,
body: &Body,
character_state: Option<&CharacterState>,
density: &Density,
mass: &Mass,
fluid: &Fluid,
@ -59,10 +60,18 @@ fn integrate_forces(
// Aerodynamic/hydrodynamic forces
if !rel_flow.0.is_approx_zero() {
debug_assert!(!rel_flow.0.map(|a| a.is_nan()).reduce_or());
let impulse = dt.0 * body.aerodynamic_forces(&rel_flow, fluid_density.0, wings);
debug_assert!(!impulse.map(|a| a.is_nan()).reduce_or());
if !impulse.is_approx_zero() {
let new_v = vel.0 + impulse / mass.0;
let aerodynamic_forces = body.aerodynamic_forces(ori, &rel_flow, fluid_density.0)
+ match character_state {
Some(CharacterState::Glide(glider)) => {
glider.aerodynamic_forces(&rel_flow, fluid_density.0)
},
_ => Vec3::zero(),
};
// let impulse = dt.0 * body.aerodynamic_forces(ori, &rel_flow,
// fluid_density.0);
debug_assert!(!aerodynamic_forces.map(|a| a.is_nan()).reduce_or());
if !aerodynamic_forces.is_approx_zero() {
let new_v = vel.0 + dt.0 * aerodynamic_forces / mass.0;
// If the new velocity is in the opposite direction, it's because the forces
// involved are too high for the current tick to handle. We deal with this by
// removing the component of our velocity vector along the direction of force.
@ -71,7 +80,7 @@ fn integrate_forces(
if new_v.dot(vel.0) < 0.0 {
// Multiply by a factor to prevent full stop, as this can cause things to get
// stuck in high-density medium
vel.0 -= vel.0.projected(&impulse) * 0.9;
vel.0 -= vel.0.projected(&aerodynamic_forces) * 0.9;
} else {
vel.0 = new_v;
}
@ -81,8 +90,7 @@ fn integrate_forces(
// Hydrostatic/aerostatic forces
// modify gravity to account for the effective density as a result of buoyancy
let down_force = dt.0 * gravity * (density.0 - fluid_density.0) / density.0;
vel.0.z -= down_force;
vel.0.z -= dt.0 * gravity * (density.0 - fluid_density.0) / density.0;
vel
}
@ -576,6 +584,7 @@ impl<'a> PhysicsData<'a> {
read.character_states.maybe(),
&write.physics_states,
&read.masses,
write.orientations.maybe(),
&read.densities,
!&read.mountings,
)
@ -594,6 +603,7 @@ impl<'a> PhysicsData<'a> {
character_state,
physics_state,
mass,
ori,
density,
_,
)| {
@ -617,24 +627,12 @@ impl<'a> PhysicsData<'a> {
vel.0.z -= dt.0 * GRAVITY;
},
Some(fluid) => {
let wings = match character_state {
Some(&CharacterState::Glide(states::glide::Data {
aspect_ratio,
planform_area,
ori,
..
})) => Some(Wings {
aspect_ratio,
planform_area,
ori,
}),
_ => None,
};
vel.0 = integrate_forces(
&dt,
*vel,
(body, wings.as_ref()),
ori,
body,
character_state,
density,
mass,
&fluid,