Setup spatial grid for entity versus entity collisions

This commit is contained in:
Imbris 2021-03-16 01:13:52 -04:00
parent 506f8fa226
commit d3bbca49ce
6 changed files with 399 additions and 93 deletions

1
Cargo.lock generated
View File

@ -5640,6 +5640,7 @@ dependencies = [
"bincode",
"hashbrown",
"indexmap",
"inline_tweak",
"rand 0.8.3",
"rayon",
"scopeguard",

View File

@ -246,6 +246,7 @@ impl Client {
ping_stream.send(PingMsg::Ping)?;
let mut ping_interval = tokio::time::interval(core::time::Duration::from_secs(1));
// Wait for initial sync
let mut ping_interval = tokio::time::interval(core::time::Duration::from_secs(1));
let (

View File

@ -6,6 +6,23 @@ pub use userdata_dir::userdata_dir;
#[cfg(feature = "tracy")] pub use tracy_client;
#[macro_export]
macro_rules! plot {
($name:expr, $value:expr) => {
#[cfg(feature = "tracy")]
{
use $crate::tracy_client::{create_plot, Plot};
static PLOT: Plot = create_plot!($name);
PLOT.point($value);
}
#[cfg(not(feature = "tracy"))]
{
// type check
let _: f64 = $value;
}
};
}
// https://discordapp.com/channels/676678179678715904/676685797524766720/723358438943621151
#[macro_export]
macro_rules! span {

View File

@ -40,3 +40,6 @@ tar = { version = "0.4.30", optional = true }
wasmer = { version = "1.0.0", optional = true, default-features = false, features = ["wat", "default-cranelift", "default-jit"] }
bincode = { version = "1.3.1", optional = true }
plugin-api = { package = "veloren-plugin-api", path = "../../plugin/api", optional = true }
# Tweak running code
inline_tweak = { version = "1.0.8", features = ["release_tweak"] }

View File

@ -1,3 +1,7 @@
mod spatial_grid;
use spatial_grid::SpatialGrid;
use common::{
comp::{
body::ship::figuredata::VOXEL_COLLIDER_MANIFEST, BeamSegment, Body, CharacterState,
@ -128,7 +132,7 @@ impl<'a> PhysicsData<'a> {
fn maintain_pushback_cache(&mut self) {
span!(_guard, "Maintain pushback cache");
//Add PreviousPhysCache for all relevant entities
// Add PreviousPhysCache for all relevant entities
for entity in (
&self.read.entities,
&self.write.velocities,
@ -155,7 +159,7 @@ impl<'a> PhysicsData<'a> {
});
}
//Update PreviousPhysCache
// Update PreviousPhysCache
for (_, vel, position, mut phys_cache, collider, scale, cs, _, _, _) in (
&self.read.entities,
&self.write.velocities,
@ -189,8 +193,67 @@ impl<'a> PhysicsData<'a> {
}
}
fn apply_pushback(&mut self, job: &mut Job<Sys>) {
fn construct_spatial_grid(&mut self) -> SpatialGrid {
span!(_guard, "Construct spatial grid");
let PhysicsData {
ref read,
ref write,
} = self;
// NOTE: assumes that entity max radius * 2 + max velocity per tick is less than
// half a chunk (16 blocks)
// NOTE: i32 places certain constraints on how far out collision works
// NOTE: uses the radius of the entity and their current position rather than
// the radius of their bounding sphere for the current frame of movement
// because the nonmoving entity is what is collided against in the inner
// loop of the pushback collision code
// TODO: maintain frame to frame? (requires handling deletion)
// TODO: if not maintaining frame to frame consider counting entities to
// preallocate?
// TODO: assess parallelizing (overhead might dominate here? would need to merge
// the vecs in each hashmap)
let lg2_cell_size = inline_tweak::release_tweak!(5);
let lg2_large_cell_size = 6;
let radius_cutoff = 8;
common_base::plot!("spatial grid cell size", (1 << lg2_cell_size) as f64);
// let mut radius_list = Vec::new();
let mut spatial_grid = SpatialGrid::new(lg2_cell_size, lg2_large_cell_size, radius_cutoff);
for (entity, pos, phys_cache, _, _, _, _, _) in (
&read.entities,
&write.positions,
&write.previous_phys_cache,
write.velocities.mask(),
!&read.projectiles, // Not needed because they are skipped in the inner loop below
!&read.mountings,
!&read.beams,
!&read.shockwaves,
)
.join()
{
// Note: to not get too fine grained we use a 2D grid for now
let radius_2d = phys_cache.scaled_radius.ceil() as u32;
let pos_2d = pos.0.xy().map(|e| e as i32);
const POS_TRUNCATION_ERROR: u32 = 1;
spatial_grid.insert(pos_2d, radius_2d + POS_TRUNCATION_ERROR, entity);
// radius_list.push(phys_cache.scaled_radius.ceil() as u32);
}
/* if !radius_list.is_empty() {
radius_list.sort();
common_base::plot!("radius:min", *radius_list.first().unwrap() as f64);
common_base::plot!("radius:max", *radius_list.last().unwrap() as f64);
common_base::plot!(
"radius:mean",
radius_list.iter().sum::<u32>() as f64 / radius_list.len() as f64
);
common_base::plot!("radius:mode", radius_list[radius_list.len() / 2] as f64);
} */
spatial_grid
}
fn apply_pushback(&mut self, job: &mut Job<Sys>, spatial_grid: &SpatialGrid) {
// TODO: make sure to check git stash show -p to make sure nothing was missed
span!(_guard, "Apply pushback");
let use_grid = inline_tweak::release_tweak!(true);
job.cpu_stats.measure(ParMode::Rayon);
let PhysicsData {
ref read,
@ -247,102 +310,244 @@ impl<'a> PhysicsData<'a> {
let mut entity_entity_collision_checks = 0;
let mut entity_entity_collisions = 0;
for (
entity_other,
other,
pos_other,
previous_cache_other,
mass_other,
collider_other,
_,
_,
_,
_,
char_state_other_maybe,
) in (
&read.entities,
&read.uids,
positions,
previous_phys_cache,
read.masses.maybe(),
read.colliders.maybe(),
!&read.projectiles,
!&read.mountings,
!&read.beams,
!&read.shockwaves,
read.char_states.maybe(),
)
.join()
{
let collision_boundary = previous_cache.collision_boundary
+ previous_cache_other.collision_boundary;
if previous_cache
.center
.distance_squared(previous_cache_other.center)
> collision_boundary.powi(2)
|| entity == entity_other
if use_grid {
let aabr = {
let center = previous_cache.center.xy().map(|e| e as i32);
let radius = previous_cache.collision_boundary.ceil() as i32;
// From conversion of center above
const CENTER_TRUNCATION_ERROR: i32 = 1;
let max_dist = radius + CENTER_TRUNCATION_ERROR;
Aabr {
min: center - max_dist,
max: center + max_dist,
}
};
spatial_grid
.in_aabr(aabr)
.filter_map(|entity| {
read.uids
.get(entity)
.zip(positions.get(entity))
.zip(previous_phys_cache.get(entity))
.map(|((uid, pos), previous_cache)| {
(
entity,
uid,
pos,
previous_cache,
read.masses.get(entity),
read.colliders.get(entity),
read.char_states.get(entity),
)
})
})
.for_each(
|(
entity_other,
other,
pos_other,
previous_cache_other,
mass_other,
collider_other,
char_state_other_maybe,
)| {
let collision_boundary = previous_cache.collision_boundary
+ previous_cache_other.collision_boundary;
if previous_cache
.center
.distance_squared(previous_cache_other.center)
> collision_boundary.powi(2)
|| entity == entity_other
{
return;
}
let collision_dist = previous_cache.scaled_radius
+ previous_cache_other.scaled_radius;
let z_limits_other =
calc_z_limit(char_state_other_maybe, collider_other);
let mass_other = mass_other
.map(|m| m.0)
.unwrap_or(previous_cache_other.scale);
//This check after the pos check, as we currently don't have
// that many
// massless entites [citation needed]
if mass_other == 0.0 {
return;
}
entity_entity_collision_checks += 1;
const MIN_COLLISION_DIST: f32 = 0.3;
let increments = ((previous_cache.velocity_dt
- previous_cache_other.velocity_dt)
.magnitude()
/ MIN_COLLISION_DIST)
.max(1.0)
.ceil()
as usize;
let step_delta = 1.0 / increments as f32;
let mut collided = false;
for i in 0..increments {
let factor = i as f32 * step_delta;
let pos = pos.0 + previous_cache.velocity_dt * factor;
let pos_other =
pos_other.0 + previous_cache_other.velocity_dt * factor;
let diff = pos.xy() - pos_other.xy();
if diff.magnitude_squared() <= collision_dist.powi(2)
&& pos.z + z_limits.1 * previous_cache.scale
>= pos_other.z
+ z_limits_other.0 * previous_cache_other.scale
&& pos.z + z_limits.0 * previous_cache.scale
<= pos_other.z
+ z_limits_other.1 * previous_cache_other.scale
{
if !collided {
physics.touch_entities.push(*other);
entity_entity_collisions += 1;
}
// Don't apply repulsive force to projectiles or if
// we're
// colliding
// with a terrain-like entity, or if we are a
// terrain-like
// entity
if diff.magnitude_squared() > 0.0
&& !is_projectile
&& !matches!(
collider_other,
Some(Collider::Voxel { .. })
)
&& !matches!(collider, Some(Collider::Voxel { .. }))
{
let force = 400.0
* (collision_dist - diff.magnitude())
* mass_other
/ (mass + mass_other);
vel_delta += Vec3::from(diff.normalized())
* force
* step_delta;
}
collided = true;
}
}
},
);
} else {
for (
entity_other,
other,
pos_other,
previous_cache_other,
mass_other,
collider_other,
_,
_,
_,
_,
char_state_other_maybe,
) in (
&read.entities,
&read.uids,
positions,
previous_phys_cache,
read.masses.maybe(),
read.colliders.maybe(),
!&read.projectiles,
!&read.mountings,
!&read.beams,
!&read.shockwaves,
read.char_states.maybe(),
)
.join()
{
continue;
}
let collision_dist =
previous_cache.scaled_radius + previous_cache_other.scaled_radius;
let z_limits_other = calc_z_limit(char_state_other_maybe, collider_other);
let mass_other = mass_other
.map(|m| m.0)
.unwrap_or(previous_cache_other.scale);
//This check after the pos check, as we currently don't have that many
// massless entites [citation needed]
if mass_other == 0.0 {
continue;
}
entity_entity_collision_checks += 1;
const MIN_COLLISION_DIST: f32 = 0.3;
let increments = ((previous_cache.velocity_dt
- previous_cache_other.velocity_dt)
.magnitude()
/ MIN_COLLISION_DIST)
.max(1.0)
.ceil() as usize;
let step_delta = 1.0 / increments as f32;
let mut collided = false;
for i in 0..increments {
let factor = i as f32 * step_delta;
let pos = pos.0 + previous_cache.velocity_dt * factor;
let pos_other = pos_other.0 + previous_cache_other.velocity_dt * factor;
let diff = pos.xy() - pos_other.xy();
if diff.magnitude_squared() <= collision_dist.powi(2)
&& pos.z + z_limits.1 * previous_cache.scale
>= pos_other.z + z_limits_other.0 * previous_cache_other.scale
&& pos.z + z_limits.0 * previous_cache.scale
<= pos_other.z + z_limits_other.1 * previous_cache_other.scale
let collision_boundary = previous_cache.collision_boundary
+ previous_cache_other.collision_boundary;
if previous_cache
.center
.distance_squared(previous_cache_other.center)
> collision_boundary.powi(2)
|| entity == entity_other
{
if !collided {
physics.touch_entities.push(*other);
entity_entity_collisions += 1;
}
continue;
}
// Don't apply repulsive force to projectiles or if we're colliding
// with a terrain-like entity, or if we are a terrain-like entity
if diff.magnitude_squared() > 0.0
&& !is_projectile
&& !matches!(collider_other, Some(Collider::Voxel { .. }))
&& !matches!(collider, Some(Collider::Voxel { .. }))
let collision_dist =
previous_cache.scaled_radius + previous_cache_other.scaled_radius;
let z_limits_other =
calc_z_limit(char_state_other_maybe, collider_other);
let mass_other = mass_other
.map(|m| m.0)
.unwrap_or(previous_cache_other.scale);
//This check after the pos check, as we currently don't have that many
// massless entites [citation needed]
if mass_other == 0.0 {
continue;
}
entity_entity_collision_checks += 1;
const MIN_COLLISION_DIST: f32 = 0.3;
let increments = ((previous_cache.velocity_dt
- previous_cache_other.velocity_dt)
.magnitude()
/ MIN_COLLISION_DIST)
.max(1.0)
.ceil() as usize;
let step_delta = 1.0 / increments as f32;
let mut collided = false;
for i in 0..increments {
let factor = i as f32 * step_delta;
let pos = pos.0 + previous_cache.velocity_dt * factor;
let pos_other =
pos_other.0 + previous_cache_other.velocity_dt * factor;
let diff = pos.xy() - pos_other.xy();
if diff.magnitude_squared() <= collision_dist.powi(2)
&& pos.z + z_limits.1 * previous_cache.scale
>= pos_other.z
+ z_limits_other.0 * previous_cache_other.scale
&& pos.z + z_limits.0 * previous_cache.scale
<= pos_other.z
+ z_limits_other.1 * previous_cache_other.scale
{
let force =
400.0 * (collision_dist - diff.magnitude()) * mass_other
if !collided {
physics.touch_entities.push(*other);
entity_entity_collisions += 1;
}
// Don't apply repulsive force to projectiles or if we're
// colliding
// with a terrain-like entity, or if we are a terrain-like
// entity
if diff.magnitude_squared() > 0.0
&& !is_projectile
&& !matches!(collider_other, Some(Collider::Voxel { .. }))
&& !matches!(collider, Some(Collider::Voxel { .. }))
{
let force = 400.0
* (collision_dist - diff.magnitude())
* mass_other
/ (mass + mass_other);
vel_delta += Vec3::from(diff.normalized()) * force * step_delta;
}
vel_delta +=
Vec3::from(diff.normalized()) * force * step_delta;
}
collided = true;
collided = true;
}
}
}
}
@ -835,7 +1040,9 @@ impl<'a> System<'a> for Sys {
// it means the step needs to take into account the speeds of both
// entities.
psd.maintain_pushback_cache();
psd.apply_pushback(job);
let spatial_grid = psd.construct_spatial_grid();
psd.apply_pushback(job, &spatial_grid);
psd.handle_movement_and_terrain(job);
}

View File

@ -0,0 +1,77 @@
use vek::*;
pub struct SpatialGrid {
// Uses two scales of grids so that we can have a hard limit on how far to search in the
// smaller grid
grid: hashbrown::HashMap<Vec2<i32>, Vec<specs::Entity>>,
large_grid: hashbrown::HashMap<Vec2<i32>, Vec<specs::Entity>>,
// Log base 2 of the cell size of the spatial grid
lg2_cell_size: usize,
// Log base 2 of the cell size of the large spatial grid
lg2_large_cell_size: usize,
// Entities with a radius over this value are store in the coarser large_grid
// This is the amount of buffer space we need to add when finding the intersections with cells
// in the regular grid
radius_cutoff: u32,
// Stores the largest radius of the entities in the large_grid
// This is the amount of buffer space we need to add when finding the intersections with cells
// in the larger grid
// note: could explore some distance field type thing for querying whether there are large
// entities nearby that necessitate expanding the cells searched for collision (and querying
// how much it needs to be expanded)
// TODO: log this to metrics?
largest_large_radius: u32,
}
impl SpatialGrid {
pub fn new(lg2_cell_size: usize, lg2_large_cell_size: usize, radius_cutoff: u32) -> Self {
Self {
grid: Default::default(),
large_grid: Default::default(),
lg2_cell_size,
lg2_large_cell_size,
radius_cutoff,
largest_large_radius: radius_cutoff,
}
}
/// Add an entity at the provided 2d pos into the spatial grid
pub fn insert(&mut self, pos: Vec2<i32>, radius: u32, entity: specs::Entity) {
if radius <= self.radius_cutoff {
let cell = pos.map(|e| e >> self.lg2_cell_size);
self.grid.entry(cell).or_default().push(entity);
} else {
let cell = pos.map(|e| e >> self.lg2_large_cell_size);
self.large_grid.entry(cell).or_default().push(entity);
self.largest_large_radius = self.largest_large_radius.max(radius);
}
}
/// Get an iterator over the entities overlapping the
/// provided axis aligned bounding region
/// NOTE: for best optimization of the iterator use `for_each` rather than a
/// for loop
// TODO: a circle would be tighter (how efficient would it be to query the cells
// intersecting a circle?)
pub fn in_aabr<'a>(&'a self, aabr: Aabr<i32>) -> impl Iterator<Item = specs::Entity> + 'a {
let iter = |max_entity_radius, grid: &'a hashbrown::HashMap<_, _>, lg2_cell_size| {
// Add buffer for other entity radius
let min = aabr.min - max_entity_radius as i32;
let max = aabr.max + max_entity_radius as i32;
// Convert to cells
let min = min.map(|e| e >> lg2_cell_size);
let max = max.map(|e| (e + (1 << lg2_cell_size) - 1) >> lg2_cell_size);
(min.x..=max.x)
.flat_map(move |x| (min.y..=max.y).map(move |y| Vec2::new(x, y)))
.flat_map(move |cell| grid.get(&cell).into_iter().flatten())
.copied()
};
iter(self.radius_cutoff, &self.grid, self.lg2_cell_size).chain(iter(
self.largest_large_radius,
&self.large_grid,
self.lg2_large_cell_size,
))
}
}