due to the chat being in front of it,
by giving the welcome window a depth of -1.0.
The value of -1.0 is very arbitrary, but has some effect on
further development*, so there should be consideration concerning it.
* if something is supposed to be over/under the welcome window and
over/under something else with a different depth at the same time,
the resulting depth could become really ugly.
Of course it's always possible to change depths afterwards, but this often
breaks things, so the general scope of depths should
imo be considered, before this becomes a problem.
Currently we only do this when no players are in range of the chunk. We
also send the first client who posted the chunk a message indicating
that it's canceled, the hope being that this will be a performance win
in single player mode since you don't have to wait three seconds to
realize that the server won't generate the chunk for you.
We now check an atomic flag for every column sample in a chunk. We
could probably do this less frequently, but since it's a relaxed load it
has essentially no performance impact on Intel architectures.
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
audio::base had a lot of unnescessary abstractions and constructs.
The current code simplifies the API in a way that makes sense and
that will allow sound effects and fading to be added in an incremental
way.