mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
674 lines
29 KiB
GLSL
674 lines
29 KiB
GLSL
#ifndef SRGB_GLSL
|
||
#define SRGB_GLSL
|
||
|
||
#extension GL_EXT_samplerless_texture_functions : enable
|
||
|
||
// Linear RGB, attenuation coefficients for water at roughly R, G, B wavelengths.
|
||
// See https://en.wikipedia.org/wiki/Electromagnetic_absorption_by_water
|
||
const vec3 MU_WATER = vec3(0.6, 0.04, 0.01);
|
||
|
||
// // NOTE: Automatic in v4.0
|
||
// float
|
||
// mip_map_level(in vec2 texture_coordinate)
|
||
// {
|
||
// // The OpenGL Graphics System: A Specification 4.2
|
||
// // - chapter 3.9.11, equation 3.21
|
||
//
|
||
//
|
||
// vec2 dx_vtc = dFdx(texture_coordinate);
|
||
// vec2 dy_vtc = dFdy(texture_coordinate);
|
||
// float delta_max_sqr = max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc));
|
||
//
|
||
//
|
||
// //return max(0.0, 0.5 * log2(delta_max_sqr) - 1.0); // == log2(sqrt(delta_max_sqr));
|
||
// return 0.5 * log2(delta_max_sqr); // == log2(sqrt(delta_max_sqr));
|
||
// }
|
||
|
||
//https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
|
||
vec3 srgb_to_linear(vec3 srgb) {
|
||
bvec3 cutoff = lessThan(srgb, vec3(0.04045));
|
||
vec3 higher = pow((srgb + vec3(0.055))/vec3(1.055), vec3(2.4));
|
||
vec3 lower = srgb/vec3(12.92);
|
||
|
||
return mix(higher, lower, cutoff);
|
||
}
|
||
|
||
vec3 linear_to_srgb(vec3 col) {
|
||
// bvec3 cutoff = lessThan(col, vec3(0.0060));
|
||
// return mix(11.500726 * col, , cutoff);
|
||
vec3 s1 = vec3(sqrt(col.r), sqrt(col.g), sqrt(col.b));
|
||
vec3 s2 = vec3(sqrt(s1.r), sqrt(s1.g), sqrt(s1.b));
|
||
vec3 s3 = vec3(sqrt(s2.r), sqrt(s2.g), sqrt(s2.b));
|
||
return vec3(
|
||
mix(11.500726 * col.r, (0.585122381 * s1.r + 0.783140355 * s2.r - 0.368262736 * s3.r), clamp((col.r - 0.0060) * 10000.0, 0.0, 1.0)),
|
||
mix(11.500726 * col.g, (0.585122381 * s1.g + 0.783140355 * s2.g - 0.368262736 * s3.g), clamp((col.g - 0.0060) * 10000.0, 0.0, 1.0)),
|
||
mix(11.500726 * col.b, (0.585122381 * s1.b + 0.783140355 * s2.b - 0.368262736 * s3.b), clamp((col.b - 0.0060) * 10000.0, 0.0, 1.0))
|
||
);
|
||
}
|
||
|
||
float pow5(float x) {
|
||
float x2 = x * x;
|
||
return x2 * x2 * x;
|
||
}
|
||
|
||
vec4 pow5(vec4 x) {
|
||
vec4 x2 = x * x;
|
||
return x2 * x2 * x;
|
||
}
|
||
|
||
// Fresnel angle for perfectly specular dialectric materials.
|
||
|
||
// Schlick approximation
|
||
vec3 schlick_fresnel(vec3 Rs, float cosTheta) {
|
||
// auto pow5 = [](Float v) { return (v * v) * (v * v) * v; };
|
||
// return Rs + pow5(1 - cosTheta) * (Spectrum(1.) - Rs);
|
||
return Rs + pow5(1.0 - cosTheta) * (1.0 - Rs);
|
||
}
|
||
|
||
// Beckmann Distribution
|
||
float BeckmannDistribution_D(float NdotH, float alpha) {
|
||
const float PI = 3.1415926535897932384626433832795;
|
||
float NdotH2 = NdotH * NdotH;
|
||
float NdotH2m2 = NdotH2 * alpha * alpha;
|
||
float k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2);
|
||
return mix(k_spec, 0.0, NdotH == 0.0);
|
||
}
|
||
|
||
// Voxel Distribution
|
||
float BeckmannDistribution_D_Voxel(vec3 wh, vec3 voxel_norm, float alpha) {
|
||
vec3 sides = sign(voxel_norm);
|
||
// vec3 cos_sides_i = /*sides * */sides * norm;
|
||
// vec3 cos_sides_o = max(sides * view_dir, 0.0);
|
||
|
||
vec3 NdotH = wh * sides;//max(wh * sides, 0.0);/*cos_sides_i*///max(sides * wh, 0.0);
|
||
|
||
const float PI = 3.1415926535897932384626433832795;
|
||
vec3 NdotH2 = NdotH * NdotH;
|
||
vec3 NdotH2m2 = NdotH2 * alpha * alpha;
|
||
vec3 k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2);
|
||
return dot(mix(k_spec, /*cos_sides_o*/vec3(0.0), equal(NdotH, vec3(0.0))), /*cos_sides_i*/abs(voxel_norm));
|
||
// // const float PI = 3.1415926535897932384626433832795;
|
||
// const vec3 normals[6] = vec3[](vec3(1,0,0), vec3(0,1,0), vec3(0,0,1), vec3(-1,0,0), vec3(0,-1,0), vec3(0,0,-1));
|
||
|
||
// float voxel_norm = 0.0;
|
||
// for (int i = 0; i < 6; i ++) {
|
||
// // Light reflecting off the half-angle can shine on up to three sides.
|
||
// // So, the idea here is to figure out the ratio of visibility of each of these
|
||
// // three sides such that their sum adds to 1, then computing a Beckmann Distribution for each side times
|
||
// // the this ratio.
|
||
// //
|
||
// // The ratio of these normals in each direction should be the sum of their cosines with the light over π,
|
||
// // I think.
|
||
// //
|
||
// // cos (wh, theta)
|
||
// //
|
||
// // - one normal
|
||
// //
|
||
// // The ratio of each of the three exposed sides should just be the slope.
|
||
// vec3 side = normals[i];
|
||
// float side_share = max(dot(norm, side), 0.0);
|
||
// float NdotH = max(dot(wh, side), 0.0);
|
||
// voxel_norm += side_share * BeckmannDistribution_D(NdotH, alpha);
|
||
// // voxel_norm += normals[i] * side_visible * max(dot(-cam_dir, normals[i]), 0.0);
|
||
// // voxel_norm += normals[i] * side_visible * max(dot(-cam_dir, normals[i]), 0.0);
|
||
// }
|
||
|
||
// /* float NdotH = dot(wh, norm);
|
||
// float NdotH2 = NdotH * NdotH;
|
||
// float NdotH2m2 = NdotH2 * alpha * alpha;
|
||
|
||
// float k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2);
|
||
// return mix(k_spec, 0.0, NdotH == 0.0); */
|
||
// return voxel_norm;
|
||
}
|
||
|
||
float TrowbridgeReitzDistribution_D_Voxel(vec3 wh, vec3 voxel_norm, float alpha) {
|
||
vec3 sides = sign(voxel_norm);
|
||
// vec3 cos_sides_i = /*sides * */sides * norm;
|
||
// vec3 cos_sides_o = max(sides * view_dir, 0.0);
|
||
|
||
vec3 NdotH = wh * sides;//max(wh * sides, 0.0);/*cos_sides_i*///max(sides * wh, 0.0);
|
||
|
||
const float PI = 3.1415926535897932384626433832795;
|
||
vec3 NdotH2 = NdotH * NdotH;
|
||
// vec3 m2 = alpha * alpha;
|
||
// vec3 NdotH2m2 = NdotH2 * m2;
|
||
vec3 NdotH2m2 = NdotH2 * alpha * alpha;
|
||
// vec3 Tan2Theta = (1 - NdotH2) / NdotH2;
|
||
// vec3 e = (NdotH2 / m2 + (1 - NdotH2) / m2) * Tan2Theta;
|
||
// vec3 e = 1 / m2 * (1 - NdotH2) / NdotH2;
|
||
vec3 e = (1 - NdotH2) / NdotH2m2;
|
||
vec3 k_spec = 1.0 / (PI * NdotH2m2 * NdotH2 * (1 + e) * (1 + e));
|
||
// vec3 k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2);
|
||
return dot(mix(k_spec, /*cos_sides_o*/vec3(0.0), equal(NdotH, vec3(0.0))), /*cos_sides_i*/abs(voxel_norm));
|
||
}
|
||
|
||
float BeckmannDistribution_Lambda(vec3 norm, vec3 dir, float alpha) {
|
||
float CosTheta = /*max(dot(norm, dir), 0.0);*/dot(norm, dir);
|
||
/* if (CosTheta == 0.0) {
|
||
return 0.0;
|
||
}
|
||
float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
|
||
float TanTheta = SinTheta / CosTheta;
|
||
float absTanTheta = abs(TanTheta); */
|
||
// vec3 w = normalize(dir - dot(dir, norm) * (norm));
|
||
// float CosTheta = w.z;
|
||
float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
|
||
float TanTheta = SinTheta / CosTheta;
|
||
float absTanTheta = abs(TanTheta);
|
||
/* if (isinf(absTanTheta)) {
|
||
return 0.0;
|
||
} */
|
||
/* float CosPhi = mix(clamp(projDirNorm.x / sinTheta, -1.0, 1.0), 0.0, sinTheta == 0.0);
|
||
float SinPhi = mix(clamp(projDirNorm.y / sinTheta, -1.0, 1.0), 0.0, sinTheta == 0.0);
|
||
float alpha = sqrt(CosPhi * CosPhi * alphax * alphax + SinPhi * SinPhi * alphay * alphay); */
|
||
// Float absTanTheta = std::abs(TanTheta(w));
|
||
// if (std::isinf(absTanTheta)) return 0.;
|
||
// <<Compute alpha for direction w>>
|
||
// Float alpha = std::sqrt(Cos2Phi(w) * alphax * alphax +
|
||
// Sin2Phi(w) * alphay * alphay);
|
||
float a = 1.0 / (alpha * absTanTheta);
|
||
/* if (a >= 1.6) {
|
||
return 0.0;
|
||
}
|
||
|
||
return (1.0 - 1.259 * a + 0.396 * a * a) / (3.535 * a + 2.181 * a * a); */
|
||
|
||
return mix(max(0.0, (1.0 - 1.259 * a + 0.396 * a * a) / (3.535 * a + 2.181 * a * a)), 0.0, isinf(absTanTheta) || a >= 1.6);
|
||
// Float a = 1 / (alpha * absTanTheta);
|
||
// if (a >= 1.6f)
|
||
// return 0;
|
||
// return (1 - 1.259f * a + 0.396f * a * a) /
|
||
// (3.535f * a + 2.181f * a * a);
|
||
// return 1 / (1 + Lambda(wo) + Lambda(wi));
|
||
}
|
||
|
||
float BeckmannDistribution_G(vec3 norm, vec3 dir, vec3 light_dir, float alpha) {
|
||
// return 1 / (1 + Lambda(wo) + Lambda(wi));
|
||
return 1.0 / (1.0 + BeckmannDistribution_Lambda(norm, dir, alpha) + BeckmannDistribution_Lambda(norm, -light_dir, alpha));
|
||
}
|
||
|
||
// Fresnel blending
|
||
//
|
||
// http://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models.html#fragment-MicrofacetDistributionPublicMethods-2
|
||
// and
|
||
// http://www.pbr-book.org/3ed-2018/Reflection_Models/Fresnel_Incidence_Effects.html
|
||
vec3 FresnelBlend_f(vec3 norm, vec3 dir, vec3 light_dir, vec3 R_d, vec3 R_s, float alpha) {
|
||
const float PI = 3.1415926535897932384626433832795;
|
||
alpha = alpha * sqrt(2.0);
|
||
float cos_wi = /*max(*/dot(-light_dir, norm)/*, 0.0)*/;
|
||
float cos_wo = /*max(*/dot(dir, norm)/*, 0.0)*/;
|
||
|
||
vec3 diffuse = (28.0 / (23.0 * PI)) * R_d *
|
||
(1.0 - R_s) *
|
||
(1.0 - pow5(1.0 - 0.5 * abs(cos_wi))) *
|
||
(1.0 - pow5(1.0 - 0.5 * abs(cos_wo)));
|
||
/* Spectrum diffuse = (28.f/(23.f*Pi)) * Rd *
|
||
(Spectrum(1.f) - Rs) *
|
||
(1 - pow5(1 - .5f * AbsCosTheta(wi))) *
|
||
(1 - pow5(1 - .5f * AbsCosTheta(wo))); */
|
||
// Vector3f wh = wi + wo;
|
||
vec3 wh = -light_dir + dir;
|
||
#if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0
|
||
bool is_blocked = cos_wi == 0.0 || cos_wo == 0.0;
|
||
#else
|
||
bool is_blocked = cos_wi <= 0.0 || cos_wo <= 0.0;
|
||
#endif
|
||
if (is_blocked) {
|
||
return vec3(/*diffuse*/0.0);
|
||
}
|
||
// if (cos_wo < 0.0) {
|
||
// return /*vec3(0.0)*/diffuse;
|
||
// }
|
||
/* if (cos_wi == 0.0 || cos_wo == 0.0) {
|
||
return vec3(0.0);
|
||
} */
|
||
/* if (wh.x == 0 && wh.y == 0 && wh.z == 0) {
|
||
return vec3(0.0);
|
||
// return Spectrum(0);
|
||
} */
|
||
wh = normalize(wh);//mix(normalize(wh), vec3(0.0), equal(light_dir, dir));
|
||
float dot_wi_wh = dot(-light_dir, wh);
|
||
vec3 specular = dot(norm, dir) > 0.0 ? vec3(0.0) : (BeckmannDistribution_D(dot(wh, norm), alpha) /
|
||
(4 * abs(dot_wi_wh) *
|
||
max(abs(cos_wi), abs(cos_wo))) *
|
||
schlick_fresnel(R_s, dot_wi_wh));
|
||
// Spectrum specular = distribution->D(wh) /
|
||
// (4 * AbsDot(wi, wh) *
|
||
// std::max(AbsCosTheta(wi), AbsCosTheta(wo))) *
|
||
// SchlickFresnel(Dot(wi, wh));
|
||
return mix(/*diffuse*//* + specular*/diffuse + specular, vec3(0.0), bvec3(all(equal(light_dir, dir))));
|
||
}
|
||
|
||
// Fresnel blending
|
||
//
|
||
// http://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models.html#fragment-MicrofacetDistributionPublicMethods-2
|
||
// and
|
||
// http://www.pbr-book.org/3ed-2018/Reflection_Models/Fresnel_Incidence_Effects.html
|
||
vec3 FresnelBlend_Voxel_f(vec3 norm, vec3 dir, vec3 light_dir, vec3 R_d, vec3 R_s, float alpha, vec3 voxel_norm, float dist) {
|
||
const float PI = 3.1415926535897932384626433832795;
|
||
alpha = alpha * sqrt(2.0);
|
||
float cos_wi = /*max(*/dot(-light_dir, norm)/*, 0.0)*/;
|
||
float cos_wo = /*max(*/dot(dir, norm)/*, 0.0)*/;
|
||
|
||
#if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0
|
||
vec4 AbsNdotL = abs(vec4(light_dir, cos_wi));
|
||
vec4 AbsNdotV = abs(vec4(dir, cos_wo));
|
||
#else
|
||
vec3 sides = sign(voxel_norm);
|
||
vec4 AbsNdotL = vec4(max(-light_dir * sides, 0.0), abs(cos_wi));
|
||
vec4 AbsNdotV = vec4(max(dir * sides, 0.0), abs(cos_wo));
|
||
#endif
|
||
|
||
// float R_r = 1.0 - R_s;
|
||
// float R_r = 1.0 - schlick_fresnel(R_s, cos_wi);
|
||
// // Rs + pow5(1.0 - cosTheta) * (1.0 - Rs)
|
||
// vec4 R_r = 1.0 - (R_s + (1.0 - R_s) * schlick_fresnel(R_s, cos_wi));
|
||
// mat4 R_r = 1.0 - (vec4(R_s, 0.0) + vec4(1.0 - R_s, 0.0) * pow5(1.0 - AbsNdotL));
|
||
// vec4 AbsNdotL5 = pow5(1.0 - AbsNdotL);
|
||
// vec4 R_s4 = vec4(R_s, 0.0);
|
||
// mat4 R_r =
|
||
// // mat4(1.0 - (R_s.r + (1.0 - R_s.r) * AbsNdotL5),
|
||
// // 1.0 - (R_s.g + (1.0 - R_s.g) * AbsNdotL5),
|
||
// // 1.0 - (R_s.b + (1.0 - R_s.b) * AbsNdotL5),
|
||
// // vec4(0.0)
|
||
// // );
|
||
// mat4(1.0 - (R_s4 + (1.0 - R_s4) * AbsNdotL5.x),
|
||
// 1.0 - (R_s4 + (1.0 - R_s4) * AbsNdotL5.y),
|
||
// 1.0 - (R_s4 + (1.0 - R_s4) * AbsNdotL5.z),
|
||
// 1.0 - (R_s4 + (1.0 - R_s4) * AbsNdotL5.w)
|
||
// );
|
||
// * ) (R1.0 - R_s.r) 1.0 - (vec4(R_s, 0.0) + vec4(1.0 - R_s, 0.0) * pow5(1.0 - AbsNdotL));
|
||
|
||
vec4 diffuse_factor =
|
||
// vec4(abs(vec4(-light_dir * sides, cos_wi)))
|
||
(1.0 - pow5(1.0 - 0.5 * AbsNdotL)) *
|
||
// (1.0 - pow5(1.0 - 0.5 * abs(vec4(-light_dir * sides, cos_wi)))) *
|
||
// (1.0 - pow5(1.0 - 0.5 * abs(vec4(dir * sides, cos_wo))))
|
||
(1.0 - pow5(1.0 - 0.5 * AbsNdotV))
|
||
// vec4(1.0)
|
||
;
|
||
/* vec4 diffuse_factor =
|
||
(1.0 - pow5(1.0 - 0.5 * max(vec4(-light_dir * sides, abs(cos_wi)), 0.0))) *
|
||
(1.0 - pow5(1.0 - 0.5 * max(vec4(dir * sides, abs(cos_wo)), 0.0))); */
|
||
|
||
vec3 diffuse = (28.0 / (23.0 * PI))/*(1.0 / PI)*/ * R_d *
|
||
(1.0 - R_s) *
|
||
//vec3(
|
||
dot(diffuse_factor, /*R_r * */vec4(abs(norm) * (1.0 - dist), dist))
|
||
//)
|
||
;
|
||
|
||
vec3 wh = -light_dir + dir;
|
||
#if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0
|
||
bool is_blocked = cos_wi == 0.0 || cos_wo == 0.0;
|
||
#else
|
||
bool is_blocked = cos_wi <= 0.0 || cos_wo <= 0.0;
|
||
#endif
|
||
if (is_blocked) {
|
||
return vec3(/*diffuse*/0.0);
|
||
}
|
||
wh = normalize(wh);//mix(normalize(wh), vec3(0.0), equal(light_dir, dir));
|
||
float dot_wi_wh = dot(-light_dir, wh);
|
||
// float distr = TrowbridgeReitzDistribution_D_Voxel(wh, voxel_norm, alpha);
|
||
float distr = BeckmannDistribution_D_Voxel(wh, voxel_norm, alpha);
|
||
// float distr = BeckmannDistribution_D(dot(wh, norm), alpha);
|
||
vec3 specular = distr /
|
||
(4 * abs(dot_wi_wh) *
|
||
max(abs(cos_wi), abs(cos_wo))) *
|
||
schlick_fresnel(R_s, dot_wi_wh);
|
||
return mix(/*diffuse*//* + specular*/diffuse + specular, vec3(0.0), bvec3(all(equal(light_dir, dir))));
|
||
}
|
||
|
||
// Phong reflection.
|
||
//
|
||
// Note: norm, dir, light_dir must all be normalizd.
|
||
vec3 light_reflection_factor2(vec3 norm, vec3 dir, vec3 light_dir, vec3 k_d, vec3 k_s, float alpha) {
|
||
// TODO: These are supposed to be the differential changes in the point location p, in tangent space.
|
||
// That is, assuming we can parameterize a 2D surface by some function p : R² → R³, mapping from
|
||
// points in a plane to 3D points on the surface, we can define
|
||
// ∂p(u,v)/∂u and ∂p(u,v)/∂v representing the changes in the pont location as we move along these
|
||
// coordinates.
|
||
//
|
||
// Then we can define the normal at a point, n(u,v) = ∂p(u,v)/∂u × ∂p(u,v)/∂v.
|
||
//
|
||
// Additionally, we can define the change in *normals* at each point using the
|
||
// Weingarten equations (see http://www.pbr-book.org/3ed-2018/Shapes/Spheres.html):
|
||
//
|
||
// ∂n/∂u = (fF - eG) / (EG - F²) ∂p/∂u + (eF - fE) / (EG - F²) ∂p/∂v
|
||
// ∂n/∂v = (gF - fG) / (EG - F²) ∂p/∂u + (fF - gE) / (EG - F²) ∂p/∂v
|
||
//
|
||
// where
|
||
//
|
||
// E = |∂p/∂u ⋅ ∂p/∂u|
|
||
// F = ∂p/∂u ⋅ ∂p/∂u
|
||
// G = |∂p/∂v ⋅ ∂p/∂v|
|
||
//
|
||
// and
|
||
//
|
||
// e = n ⋅ ∂²p/∂u²
|
||
// f = n ⋅ ∂²p/(∂u∂v)
|
||
// g = n ⋅ ∂²p/∂v²
|
||
//
|
||
// For planes (see http://www.pbr-book.org/3ed-2018/Shapes/Triangle_Meshes.html) we have
|
||
// e = f = g = 0 (since the plane has no curvature of any sort) so we get:
|
||
//
|
||
// ∂n/∂u = (0, 0, 0)
|
||
// ∂n/∂v = (0, 0, 0)
|
||
//
|
||
// To find ∂p/∂u and ∂p/∂v, we first write p and u parametrically:
|
||
// p(u, v) = p0 + u ∂p/∂u + v ∂p/∂v
|
||
//
|
||
// ( u₀ - u₂ v₀ - v₂
|
||
// u₁ - u₂ v₁ - v₂ )
|
||
//
|
||
// Basis: plane norm = norm = (0, 0, 1), x vector = any orthgonal vector on the plane.
|
||
// vec3 w_i =
|
||
// vec3 w_i = vec3(view_mat * vec4(-light_dir, 1.0));
|
||
// vec3 w_o = vec3(view_mat * vec4(light_dir, 1.0));
|
||
float g = 1.0;// BeckmannDistribution_G(norm, dir, light_dir, alpha);
|
||
return FresnelBlend_f(norm, dir, light_dir, k_d/* * max(dot(norm, -light_dir), 0.0)*/, k_s * g, alpha);
|
||
// const float PI = 3.141592;
|
||
// alpha = alpha * sqrt(2.0);
|
||
// float ndotL = /*max*/(dot(norm, -light_dir)/*, 0.0*/);
|
||
|
||
// //if (ndotL > 0.0/* && dot(s_norm, -light_dir) > 0.0*/) {
|
||
// vec3 H = normalize(-light_dir + dir);
|
||
|
||
// float NdotH = dot(norm, H);
|
||
// float NdotH2 = NdotH * NdotH;
|
||
// float NdotH2m2 = NdotH2 * alpha * alpha;
|
||
// float k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2);
|
||
// return mix(k_s * k_spec, vec3(0.0), bvec3(ndotL <= 0.0 || NdotH == 0.0));
|
||
// //
|
||
// // (k_d * (L ⋅ N) + k_s * (R ⋅ V)^α)
|
||
// // return k_d * ndotL + mix(k_s * pow(max(dot(norm, H), 0.0), alpha * 4.0), vec3(0.0), bvec3(ndotL == 0.0));
|
||
// // }
|
||
// // return vec3(0.0);
|
||
}
|
||
|
||
vec3 light_reflection_factor(vec3 norm, vec3 dir, vec3 light_dir, vec3 k_d, vec3 k_s, float alpha, vec3 voxel_norm, float voxel_lighting) {
|
||
#if (LIGHTING_ALGORITHM == LIGHTING_ALGORITHM_LAMBERTIAN)
|
||
const float PI = 3.141592;
|
||
#if (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_VOXEL)
|
||
#if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0
|
||
vec4 AbsNdotL = abs(vec4(light_dir, dot(norm, light_dir)));
|
||
#else
|
||
vec3 sides = sign(voxel_norm);
|
||
vec4 AbsNdotL = max(vec4(-light_dir * sides, dot(norm, -light_dir)), 0.0);
|
||
#endif
|
||
float diffuse = dot(AbsNdotL, vec4(abs(voxel_norm) * (1.0 - voxel_lighting), voxel_lighting));
|
||
#elif (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_MICROFACET)
|
||
#if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0
|
||
float diffuse = abs(dot(norm, light_dir));
|
||
#else
|
||
float diffuse = max(dot(norm, -light_dir), 0.0);
|
||
#endif
|
||
#endif
|
||
return k_d / PI * diffuse;
|
||
#elif (LIGHTING_ALGORITHM == LIGHTING_ALGORITHM_BLINN_PHONG)
|
||
const float PI = 3.141592;
|
||
alpha = alpha * sqrt(2.0);
|
||
#if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0
|
||
float ndotL = abs(dot(norm, light_dir));
|
||
#else
|
||
float ndotL = max(dot(norm, -light_dir), 0.0);
|
||
#endif
|
||
|
||
if (ndotL > 0.0) {
|
||
#if (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_VOXEL)
|
||
#if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0
|
||
vec4 AbsNdotL = abs(vec4(light_dir, ndotL));
|
||
#else
|
||
vec3 sides = sign(voxel_norm);
|
||
vec4 AbsNdotL = max(vec4(-light_dir * sides, ndotL), 0.0);
|
||
#endif
|
||
float diffuse = dot(AbsNdotL, vec4(abs(voxel_norm) * (1.0 - voxel_lighting), voxel_lighting));
|
||
#elif (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_MICROFACET)
|
||
float diffuse = ndotL;
|
||
#endif
|
||
vec3 H = normalize(-light_dir + dir);
|
||
|
||
#if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0
|
||
float NdotH = abs(dot(norm, H));
|
||
#else
|
||
float NdotH = max(dot(norm, H), 0.0);
|
||
#endif
|
||
return (1.0 - k_s) / PI * k_d * diffuse + k_s * pow(NdotH, alpha/* * 4.0*/);
|
||
}
|
||
|
||
return vec3(0.0);
|
||
#elif (LIGHTING_ALGORITHM == LIGHTING_ALGORITHM_ASHIKHMIN)
|
||
#if (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_VOXEL)
|
||
return FresnelBlend_Voxel_f(norm, dir, light_dir, k_d/* * max(dot(norm, -light_dir), 0.0)*/, k_s, alpha, voxel_norm, voxel_lighting);
|
||
#elif (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_MICROFACET)
|
||
//if (voxel_lighting < 1.0) {
|
||
return FresnelBlend_f(norm, dir, light_dir, k_d/* * max(dot(norm, -light_dir), 0.0)*/, k_s, alpha);
|
||
//} else {
|
||
// return FresnelBlend_f(norm, dir, light_dir, k_d/* * max(dot(norm, -light_dir), 0.0)*/, k_s, alpha);
|
||
//}
|
||
#endif
|
||
#endif
|
||
}
|
||
|
||
float rel_luminance(vec3 rgb)
|
||
{
|
||
// https://en.wikipedia.org/wiki/Relative_luminance
|
||
const vec3 W = vec3(0.2126, 0.7152, 0.0722);
|
||
return dot(rgb, W);
|
||
}
|
||
|
||
// From https://discourse.vvvv.org/t/infinite-ray-intersects-with-infinite-plane/10537
|
||
// out of laziness.
|
||
bool IntersectRayPlane(vec3 rayOrigin, vec3 rayDirection, vec3 posOnPlane, vec3 planeNormal, inout vec3 intersectionPoint)
|
||
{
|
||
float rDotn = dot(rayDirection, planeNormal);
|
||
|
||
//parallel to plane or pointing away from plane?
|
||
if (rDotn < 0.0000001 )
|
||
return false;
|
||
|
||
float s = dot(planeNormal, (posOnPlane - rayOrigin)) / rDotn;
|
||
|
||
intersectionPoint = rayOrigin + s * rayDirection;
|
||
|
||
return true;
|
||
}
|
||
|
||
// Compute uniform attenuation due to beam passing through a substance that fills an area below a horizontal plane
|
||
// (e.g. in most cases, water below the water surface depth) using the simplest form of the Beer-Lambert law
|
||
// (https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law):
|
||
//
|
||
// I(z) = I₀ e^(-μz)
|
||
//
|
||
// We compute this value, except for the initial intensity which may be multiplied out later.
|
||
//
|
||
// wpos is the position of the point being hit.
|
||
// ray_dir is the reversed direction of the ray (going "out" of the point being hit).
|
||
// mu is the attenuation coefficient for R, G, and B wavelenghts.
|
||
// surface_alt is the estimated altitude of the horizontal surface separating the substance from air.
|
||
// defaultpos is the position to use in computing the distance along material at this point if there was a failure.
|
||
//
|
||
// Ideally, defaultpos is set so we can avoid branching on error.
|
||
vec3 compute_attenuation(vec3 wpos, vec3 ray_dir, vec3 mu, float surface_alt, vec3 defaultpos) {
|
||
#if (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_IMPORTANCE)
|
||
return vec3(1.0);
|
||
#elif (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_RADIANCE)
|
||
#if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0
|
||
return vec3(1.0);
|
||
#else
|
||
// return vec3(1.0);
|
||
/*if (mu == vec3(0.0)) {
|
||
return vec3(1.0);
|
||
}*//* else {
|
||
return vec3(0.0);
|
||
}*/
|
||
// return vec3(0.0);
|
||
// vec3 surface_dir = /*surface_alt < wpos.z ? vec3(0.0, 0.0, -1.0) : vec3(0.0, 0.0, 1.0)*/vec3(0.0, 0.0, sign(surface_alt - wpos.z));
|
||
ray_dir = faceforward(ray_dir, vec3(0.0, 0.0, -1.0), ray_dir);
|
||
vec3 surface_dir = surface_alt < wpos.z ? vec3(0.0, 0.0, -1.0) : vec3(0.0, 0.0, 1.0);
|
||
// vec3 surface_dir = faceforward(vec3(0.0, 0.0, 1.0), ray_dir, vec3(0.0, 0.0, 1.0));
|
||
bool _intersects_surface = IntersectRayPlane(wpos, ray_dir, vec3(0.0, 0.0, surface_alt), surface_dir, defaultpos);
|
||
float depth = length(defaultpos - wpos);
|
||
return exp(-mu * depth);
|
||
#endif
|
||
#endif
|
||
}
|
||
|
||
// vec3 compute_attenuation2(vec3 wpos, vec3 ray_dir, vec3 mu, float surface_alt, vec3 defaultpos) {
|
||
// #if (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_IMPORTANCE)
|
||
// return vec3(1.0);
|
||
// #elif (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_RADIANCE)
|
||
// // return vec3(1.0);
|
||
// /*if (mu == vec3(0.0)) {
|
||
// return vec3(1.0);
|
||
// }*//* else {
|
||
// return vec3(0.0);
|
||
// }*/
|
||
// // return vec3(0.0);
|
||
// // vec3 surface_dir = /*surface_alt < wpos.z ? vec3(0.0, 0.0, -1.0) : vec3(0.0, 0.0, 1.0)*/vec3(0.0, 0.0, sign(surface_alt - wpos.z));
|
||
// vec3 surface_dir = surface_alt < wpos.z ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
|
||
// // vec3 surface_dir = faceforward(vec3(0.0, 0.0, 1.0), ray_dir, vec3(0.0, 0.0, 1.0));
|
||
// bool _intersects_surface = IntersectRayPlane(wpos, ray_dir, vec3(0.0, 0.0, surface_alt), surface_dir, defaultpos);
|
||
// float depth = length(defaultpos - wpos);
|
||
// return exp(-mu * depth);
|
||
// #endif
|
||
// }
|
||
|
||
// Same as compute_attenuation but since both point are known, set a maximum to make sure we don't exceed the length
|
||
// from the default point.
|
||
vec3 compute_attenuation_point(vec3 wpos, vec3 ray_dir, vec3 mu, float surface_alt, vec3 defaultpos) {
|
||
#if (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_IMPORTANCE)
|
||
return pow(1.0 - mu, vec3(3));
|
||
#elif (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_RADIANCE)
|
||
// return vec3(1.0);
|
||
/*if (mu == vec3(0.0)) {
|
||
return vec3(1.0);
|
||
}*//* else {
|
||
return vec3(0.0);
|
||
}*/
|
||
// return vec3(0.0);
|
||
vec3 surface_dir = /*surface_alt < wpos.z ? vec3(0.0, 0.0, -1.0) : vec3(0.0, 0.0, 1.0)*/vec3(0.0, 0.0, sign(wpos.z - surface_alt));
|
||
// vec3 surface_dir = surface_alt < wpos.z ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
|
||
// vec3 surface_dir = faceforward(vec3(0.0, 0.0, 1.0), ray_dir, vec3(0.0, 0.0, 1.0));
|
||
float max_length = dot(defaultpos - wpos, defaultpos - wpos);
|
||
bool _intersects_surface = IntersectRayPlane(wpos, ray_dir, vec3(0.0, 0.0, surface_alt), surface_dir, defaultpos);
|
||
float depth2 = min(max_length, dot(defaultpos - wpos, defaultpos - wpos));
|
||
return exp(-mu * sqrt(depth2));
|
||
#endif
|
||
}
|
||
|
||
//#ifdef HAS_SHADOW_MAPS
|
||
// #if (SHADOW_MODE == SHADOW_MODE_MAP)
|
||
//uniform sampler2DShadow t_directed_shadow_maps;
|
||
//// uniform sampler2DArrayShadow t_directed_shadow_maps;
|
||
//
|
||
//float ShadowCalculationDirected(in vec4 /*light_pos[2]*/sun_pos, uint lightIndex)
|
||
//{
|
||
// float bias = 0.0;//-0.0001;// 0.05 / (2.0 * view_distance.x);
|
||
// // const vec3 sampleOffsetDirections[20] = vec3[]
|
||
// // (
|
||
// // vec3( 1, 1, 1), vec3( 1, -1, 1), vec3(-1, -1, 1), vec3(-1, 1, 1),
|
||
// // vec3( 1, 1, -1), vec3( 1, -1, -1), vec3(-1, -1, -1), vec3(-1, 1, -1),
|
||
// // vec3( 1, 1, 0), vec3( 1, -1, 0), vec3(-1, -1, 0), vec3(-1, 1, 0),
|
||
// // vec3( 1, 0, 1), vec3(-1, 0, 1), vec3( 1, 0, -1), vec3(-1, 0, -1),
|
||
// // vec3( 0, 1, 1), vec3( 0, -1, 1), vec3( 0, -1, -1), vec3( 0, 1, -1)
|
||
// // // vec3(0, 0, 0)
|
||
// // );
|
||
// /* if (lightIndex >= light_shadow_count.z) {
|
||
// return 1.0;
|
||
// } */
|
||
// // vec3 fragPos = sun_pos.xyz;// / sun_pos.w;//light_pos[lightIndex].xyz;
|
||
// float visibility = textureProj(t_directed_shadow_maps, sun_pos);
|
||
// // float visibility = textureProj(t_directed_shadow_maps, vec4(fragPos.xy, /*lightIndex, */fragPos.z + bias, sun_pos.w));
|
||
// return visibility;
|
||
// // return mix(visibility, 0.0, sun_pos.z < -1.0);
|
||
// // return mix(mix(0.0, 1.0, visibility == 1.0), 1.0, sign(sun_pos.w) * sun_pos.z > /*1.0*/abs(sun_pos.w));
|
||
// // return visibility == 1.0 ? 1.0 : 0.0;
|
||
// /* if (visibility == 1.0) {
|
||
// return 1.0;
|
||
// } */
|
||
// // return visibility;
|
||
// /* if (fragPos.z > 1.0) {
|
||
// return 1.0;
|
||
// } */
|
||
// // if (visibility <= 0.75) {
|
||
// // return 0.0;
|
||
// // }
|
||
// // int samples = 20;
|
||
// // float shadow = 0.0;
|
||
// // // float bias = 0.0001;
|
||
// // float viewDistance = length(cam_pos.xyz - fragPos);
|
||
// // // float diskRadius = 0.2 * (1.0 + (viewDistance / screen_res.w)) / 25.0;
|
||
// // float diskRadius = 0.0008;//0.005;// / (2.0 * view_distance.x);//(1.0 + (viewDistance / screen_res.w)) / 25.0;
|
||
// // for(int i = 0; i < samples; ++i)
|
||
// // {
|
||
// // vec3 currentDepth = fragPos + vec3(sampleOffsetDirections[i].xyz) * diskRadius + bias;
|
||
// // visibility = texture(t_directed_shadow_maps, vec4(currentDepth.xy, lightIndex, currentDepth.z)/*, -2.5*/);
|
||
// // shadow += mix(visibility, 1.0, visibility >= 0.5);
|
||
// // }
|
||
// // shadow /= float(samples);
|
||
// // return shadow;
|
||
//}
|
||
// #elif (SHADOW_MODE == SHADOW_MODE_NONE || SHADOW_MODE == SHADOW_MODE_CHEAP)
|
||
//float ShadowCalculationDirected(in vec4 light_pos[2], uint lightIndex)
|
||
//{
|
||
// return 1.0;
|
||
//}
|
||
// #endif
|
||
//#else
|
||
//float ShadowCalculationDirected(in vec4 light_pos[2], uint lightIndex)
|
||
//{
|
||
// return 1.0;
|
||
//}
|
||
//#endif
|
||
|
||
vec3 greedy_extract_col_light_attr(texture2D t_col_light, sampler s_col_light, vec2 f_uv_pos, out float f_light, out float f_glow, out float f_ao, out uint f_attr, out float f_sky_exposure) {
|
||
// TODO: Figure out how to use `texture` and modulation to avoid needing to do manual filtering
|
||
// TODO: Use `texture` instead
|
||
//vec2 light = texture(t_col_light, f_uv_pos).xy / 31;
|
||
|
||
uvec4 tex_00 = uvec4(texelFetch(sampler2D(t_col_light, s_col_light), ivec2(f_uv_pos) + ivec2(0, 0), 0) * 255);
|
||
uvec4 tex_10 = uvec4(texelFetch(sampler2D(t_col_light, s_col_light), ivec2(f_uv_pos) + ivec2(1, 0), 0) * 255);
|
||
uvec4 tex_01 = uvec4(texelFetch(sampler2D(t_col_light, s_col_light), ivec2(f_uv_pos) + ivec2(0, 1), 0) * 255);
|
||
uvec4 tex_11 = uvec4(texelFetch(sampler2D(t_col_light, s_col_light), ivec2(f_uv_pos) + ivec2(1, 1), 0) * 255);
|
||
vec3 light_00 = vec3(tex_00.rg >> 3u, tex_00.a & 1u);
|
||
vec3 light_10 = vec3(tex_10.rg >> 3u, tex_10.a & 1u);
|
||
vec3 light_01 = vec3(tex_01.rg >> 3u, tex_01.a & 1u);
|
||
vec3 light_11 = vec3(tex_11.rg >> 3u, tex_11.a & 1u);
|
||
vec3 light_0 = mix(light_00, light_01, fract(f_uv_pos.y));
|
||
vec3 light_1 = mix(light_10, light_11, fract(f_uv_pos.y));
|
||
vec3 light = mix(light_0, light_1, fract(f_uv_pos.x));
|
||
|
||
vec3 f_col = vec3(
|
||
float(((tex_00.r & 0x7u) << 1u) | (tex_00.b & 0xF0u)),
|
||
float(tex_00.a & 0xFE),
|
||
float(((tex_00.g & 0x7u) << 1u) | ((tex_00.b & 0x0Fu) << 4u))
|
||
) / 255.0;
|
||
|
||
f_ao = light.z;
|
||
f_light = light.x / 31.0;
|
||
f_sky_exposure = light.x / 31.0 + (1.0 - f_ao) * 0.5;
|
||
f_glow = light.y / 31.0;
|
||
f_attr = tex_00.g >> 3u;
|
||
return srgb_to_linear(f_col);
|
||
}
|
||
|
||
vec3 greedy_extract_col_light_kind_terrain(
|
||
texture2D t_col_light, sampler s_col_light,
|
||
utexture2D t_kind,
|
||
vec2 f_uv_pos,
|
||
out float f_light, out float f_glow, out float f_ao, out float f_sky_exposure, out uint f_kind
|
||
) {
|
||
float _f_attr;
|
||
f_kind = uint(texelFetch(t_kind, ivec2(f_uv_pos), 0).r);
|
||
return greedy_extract_col_light_attr(t_col_light, s_col_light, f_uv_pos, f_light, f_glow, f_ao, _f_attr, f_sky_exposure);
|
||
}
|
||
|
||
vec3 greedy_extract_col_light_figure(texture2D t_col_light, sampler s_col_light, vec2 f_uv_pos, out float f_light, out uint f_attr) {
|
||
float _f_sky_exposure, _f_light, _f_glow, _f_ao;
|
||
return greedy_extract_col_light_attr(t_col_light, s_col_light, f_uv_pos, f_light, _f_glow, _f_ao, f_attr, _f_sky_exposure);
|
||
}
|
||
|
||
#endif
|