veloren/common/systems/tests/phys/basic.rs
Marcel Märtens 3cd99b4711 This commit contains a wrong solution for the 0.1 problem before we knew of coth function
- fix the 0.1 speed problem that we went to low, but still havent solve the -0.1 acceleration problem
2023-03-09 19:07:51 +01:00

407 lines
15 KiB
Rust

use crate::utils;
use approx::assert_relative_eq;
use common::{comp::Controller, resources::Time};
use specs::WorldExt;
use std::error::Error;
use utils::{DT, DT_F64, EPSILON};
use vek::{approx, Vec2, Vec3};
use veloren_common_systems::add_local_systems;
#[test]
fn simple_run() {
let mut state = utils::setup();
utils::create_player(&mut state);
state.tick(
DT,
|dispatcher_builder| {
add_local_systems(dispatcher_builder);
},
false,
);
}
#[test]
fn dont_fall_outside_world() -> Result<(), Box<dyn Error>> {
let mut state = utils::setup();
let p1 = utils::create_player(&mut state);
{
let mut storage = state.ecs_mut().write_storage::<common::comp::Pos>();
storage
.insert(p1, common::comp::Pos(Vec3::new(1000.0, 1000.0, 265.0)))
.unwrap();
}
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 1000.0);
assert_relative_eq!(pos.0.y, 1000.0);
assert_relative_eq!(pos.0.z, 265.0);
assert_eq!(vel.0, Vec3::zero());
utils::tick(&mut state, DT);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 1000.0);
assert_relative_eq!(pos.0.y, 1000.0);
assert_relative_eq!(pos.0.z, 265.0);
assert_eq!(vel.0, Vec3::zero());
Ok(())
}
#[test]
fn fall_simple() -> Result<(), Box<dyn Error>> {
let mut state = utils::setup();
let p1 = utils::create_player(&mut state);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 16.0);
assert_relative_eq!(pos.0.y, 16.0);
assert_relative_eq!(pos.0.z, 265.0);
assert_eq!(vel.0, Vec3::zero());
utils::tick(&mut state, DT);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 16.0);
assert_relative_eq!(pos.0.y, 16.0);
assert_relative_eq!(pos.0.z, 264.9975, epsilon = EPSILON);
assert_relative_eq!(vel.0.z, -0.25, epsilon = EPSILON);
utils::tick(&mut state, DT);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.z, 264.9925, epsilon = EPSILON);
assert_relative_eq!(vel.0.z, -0.49969065, epsilon = EPSILON);
utils::tick(&mut state, DT);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.z, 264.985, epsilon = EPSILON);
assert_relative_eq!(vel.0.z, -0.7493813, epsilon = EPSILON);
utils::tick(&mut state, DT * 7);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(state.ecs_mut().read_resource::<Time>().0, DT_F64 * 10.0);
assert_relative_eq!(pos.0.z, 264.8102, epsilon = EPSILON);
assert_relative_eq!(vel.0.z, -2.4969761, epsilon = EPSILON);
Ok(())
}
#[test]
/// will fall in 20 x DT and 2 x 10*DT steps. compare the end result and make
/// log the "error" between both calculations
fn fall_dt_speed_diff() -> Result<(), Box<dyn Error>> {
let mut sstate = utils::setup();
let mut fstate = utils::setup();
let sp1 = utils::create_player(&mut sstate);
let fp1 = utils::create_player(&mut fstate);
for _ in 0..10 {
utils::tick(&mut sstate, DT);
}
utils::tick(&mut fstate, DT * 10);
let (spos, svel, _) = utils::get_transform(&sstate, sp1)?;
let (fpos, fvel, _) = utils::get_transform(&fstate, fp1)?;
assert_relative_eq!(spos.0.x, 16.0);
assert_relative_eq!(spos.0.y, 16.0);
assert_relative_eq!(spos.0.z, 264.86267, epsilon = EPSILON);
assert_relative_eq!(svel.0.z, -2.496151, epsilon = EPSILON);
assert_relative_eq!(fpos.0.x, 16.0);
assert_relative_eq!(fpos.0.y, 16.0);
assert_relative_eq!(fpos.0.z, 264.75, epsilon = EPSILON);
assert_relative_eq!(fvel.0.z, -2.5, epsilon = EPSILON);
assert_relative_eq!((spos.0.z - fpos.0.z).abs(), 0.1126709, epsilon = EPSILON);
assert_relative_eq!((svel.0.z - fvel.0.z).abs(), 0.0038490295, epsilon = EPSILON);
for _ in 0..10 {
utils::tick(&mut sstate, DT);
}
utils::tick(&mut fstate, DT * 10);
let (spos, svel, _) = utils::get_transform(&sstate, sp1)?;
let (fpos, fvel, _) = utils::get_transform(&fstate, fp1)?;
assert_relative_eq!(spos.0.x, 16.0);
assert_relative_eq!(spos.0.y, 16.0);
assert_relative_eq!(spos.0.z, 264.47607, epsilon = EPSILON);
assert_relative_eq!(svel.0.z, -4.9847627, epsilon = EPSILON);
assert_relative_eq!(fpos.0.x, 16.0);
assert_relative_eq!(fpos.0.y, 16.0);
assert_relative_eq!(fpos.0.z, 264.25073, epsilon = EPSILON);
assert_relative_eq!(fvel.0.z, -4.9930925, epsilon = EPSILON);
// Diff after 200ms
assert_relative_eq!((spos.0.z - fpos.0.z).abs(), 0.2253418, epsilon = EPSILON);
assert_relative_eq!((svel.0.z - fvel.0.z).abs(), 0.008329868, epsilon = EPSILON);
Ok(())
}
#[test]
fn walk_simple() -> Result<(), Box<dyn Error>> {
let mut state = utils::setup();
let p1 = utils::create_player(&mut state);
for _ in 0..100 {
utils::tick(&mut state, DT);
}
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.z, 257.0); // make sure it landed on ground
assert_eq!(vel.0, Vec3::zero());
let mut actions = Controller::default();
actions.inputs.move_dir = Vec2::new(1.0, 0.0);
utils::set_control(&mut state, p1, actions)?;
utils::tick(&mut state, DT);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 16.01, epsilon = EPSILON);
assert_relative_eq!(pos.0.y, 16.0);
assert_relative_eq!(pos.0.z, 257.0);
assert_relative_eq!(vel.0.x, 0.90703666, epsilon = EPSILON);
assert_relative_eq!(vel.0.y, 0.0);
assert_relative_eq!(vel.0.z, 0.0);
utils::tick(&mut state, DT);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 16.029068, epsilon = EPSILON);
assert_relative_eq!(vel.0.x, 1.7296565, epsilon = EPSILON);
utils::tick(&mut state, DT);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 16.05636, epsilon = EPSILON);
assert_relative_eq!(vel.0.x, 2.4756372, epsilon = EPSILON);
for _ in 0..8 {
utils::tick(&mut state, DT);
}
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 16.492111, epsilon = EPSILON);
assert_relative_eq!(vel.0.x, 6.411994, epsilon = EPSILON);
Ok(())
}
#[test]
fn walk_max() -> Result<(), Box<dyn Error>> {
let mut state = utils::setup();
for x in 2..30 {
utils::generate_chunk(&mut state, Vec2::new(x, 0));
}
let p1 = utils::create_player(&mut state);
for _ in 0..100 {
utils::tick(&mut state, DT);
}
let mut actions = Controller::default();
actions.inputs.move_dir = Vec2::new(1.0, 0.0);
utils::set_control(&mut state, p1, actions)?;
for _ in 0..500 {
utils::tick(&mut state, DT);
}
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 68.40794, epsilon = EPSILON);
assert_relative_eq!(vel.0.x, 9.695188, epsilon = EPSILON);
for _ in 0..100 {
utils::tick(&mut state, DT);
}
let (_, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(vel.0.x, 9.695188, epsilon = EPSILON);
Ok(())
}
#[test]
/// will run in 20 x DT and 2 x 10*DT steps. compare the end result and make
/// log the "error" between both calculations
fn walk_dt_speed_diff() -> Result<(), Box<dyn Error>> {
let mut sstate = utils::setup();
let mut fstate = utils::setup();
let sp1 = utils::create_player(&mut sstate);
let fp1 = utils::create_player(&mut fstate);
for _ in 0..100 {
utils::tick(&mut sstate, DT);
utils::tick(&mut fstate, DT);
}
let mut actions = Controller::default();
actions.inputs.move_dir = Vec2::new(1.0, 0.0);
utils::set_control(&mut sstate, sp1, actions.clone())?;
utils::set_control(&mut fstate, fp1, actions)?;
for _ in 0..10 {
utils::tick(&mut sstate, DT);
}
utils::tick(&mut fstate, DT * 10);
let (spos, svel, _) = utils::get_transform(&sstate, sp1)?;
let (fpos, fvel, _) = utils::get_transform(&fstate, fp1)?;
assert_relative_eq!(spos.0.x, 16.421423, epsilon = EPSILON);
assert_relative_eq!(spos.0.y, 16.0);
assert_relative_eq!(spos.0.z, 257.0);
assert_relative_eq!(svel.0.x, 6.071788, epsilon = EPSILON);
assert_relative_eq!(fpos.0.x, 16.993896, epsilon = EPSILON);
assert_relative_eq!(fpos.0.y, 16.0);
assert_relative_eq!(fpos.0.z, 257.0);
assert_relative_eq!(fvel.0.x, 3.7484815, epsilon = EPSILON);
assert_relative_eq!((spos.0.x - fpos.0.x).abs(), 0.5724735, epsilon = EPSILON);
assert_relative_eq!((svel.0.x - fvel.0.x).abs(), 2.3233063, epsilon = EPSILON);
for _ in 0..10 {
utils::tick(&mut sstate, DT);
}
utils::tick(&mut fstate, DT * 10);
let (spos, svel, _) = utils::get_transform(&sstate, sp1)?;
let (fpos, fvel, _) = utils::get_transform(&fstate, fp1)?;
assert_relative_eq!(spos.0.x, 17.248621, epsilon = EPSILON);
assert_relative_eq!(svel.0.x, 8.344364, epsilon = EPSILON);
assert_relative_eq!(fpos.0.x, 18.357212, epsilon = EPSILON);
assert_relative_eq!(fvel.0.x, 5.1417327, epsilon = EPSILON);
// Diff after 200ms
assert_relative_eq!((spos.0.x - fpos.0.x).abs(), 1.1085911, epsilon = EPSILON);
assert_relative_eq!((svel.0.x - fvel.0.x).abs(), 3.2026315, epsilon = EPSILON);
Ok(())
}
#[test]
fn cant_run_during_fall() -> Result<(), Box<dyn Error>> {
let mut state = utils::setup();
let p1 = utils::create_player(&mut state);
let mut actions = Controller::default();
actions.inputs.move_dir = Vec2::new(1.0, 0.0);
utils::set_control(&mut state, p1, actions)?;
utils::tick(&mut state, DT * 2);
let (pos, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(pos.0.x, 16.0);
assert_relative_eq!(pos.0.y, 16.0);
assert_relative_eq!(vel.0.x, 0.0);
assert_relative_eq!(vel.0.y, 0.0);
utils::tick(&mut state, DT * 2);
let (_, vel, _) = utils::get_transform(&state, p1)?;
assert_relative_eq!(state.ecs_mut().read_resource::<Time>().0, DT_F64 * 4.0);
assert_relative_eq!(pos.0.x, 16.0);
assert_relative_eq!(pos.0.y, 16.0);
assert_relative_eq!(vel.0.x, 0.04999693, epsilon = EPSILON);
assert_relative_eq!(vel.0.y, 0.0, epsilon = EPSILON);
Ok(())
}
// The problem with old_vec is that we cant start with 0.0 0.0 0.0 as it will make the first tick different on all examples
#[test]
fn physics_theory() -> Result<(), Box<dyn Error>> {
let tick = |i: usize, move_dir: f64, acc: f64, vel: f64, pos: f64, dt: f64| {
/*
ROLLING_FRICTION_FORCE + AIR_FRICTION_FORCE + TILT_FRICT_FORCE + ACCEL_FORCE = TOTAL_FORCE
TILT_FRICT_FORCE = 0.0
TOTAL_FORCE = depends on char = const
ACCEL_FORCE = TOTAL_FORCE - ROLLING_FRICTION_FORCE - AIR_FRICTION_FORCE
ACCEL = ACCEL_FORCE / MASS
ROLLING_FRICTION_FORCE => Indepent of vel
AIR_FRICTION_FORCE => propotional to vel²
https://www.energie-lexikon.info/fahrwiderstand.html
https://www.energie-lexikon.info/reibung.html
https://sciencing.com/calculate-force-friction-6454395.html
https://www.leifiphysik.de/mechanik/reibung-und-fortbewegung
*/
let mass = 1.0;
let air_friction_co = 0.9_f64;
let air_friction_area = 0.75_f64;
let air_density = 1.225_f64;
let c = air_friction_co * air_friction_area * 0.5 * air_density * mass ;
let acc = 9.2_f64 * move_dir; // btw: cant accelerate faster than gravity on foot
let old_vel = vel;
// controller
// I know what you think, wtf, yep: https://math.stackexchange.com/questions/1929436/line-integral-of-force-of-air-resistanc
// basically an integral of the air resistance formula which scales with v^2 transformed with an ODE.
// The function besically takes its last result calculates the inverse* of it, adds the newly get speed to it and then run tanh again
// *inverse of the tanh and the factors before.
let past_fak = (c / (mass * acc.abs() ) ).sqrt() * old_vel;
// the original algorithm isn't able to keep a speed over the terminal velocity based on acc. however that is necessary, e.g. for pushbacks, falling, external factors and stopping (because of we stop acc would be 0 and the terminal vel would be 0 too)
// here we decide to reduce that factor by c each second.
let over_vel_keep = (past_fak * c.powf(dt)).max(1.0) * past_fak.signum(); //TODO signum needed
let vel = ( ((mass * acc.abs() ) / c ).sqrt() * over_vel_keep) * ( ( past_fak.clamp(-1.0, 1.0) ).atanh() + acc.signum() * (c * acc.abs() / mass).sqrt() * dt ).tanh();
//let vel = ((mass * acc.abs() + old_acc ) / c).sqrt() * ( ( ( (c / (mass * acc.abs() ) ).sqrt() * old_vel).clamp(-1.0, 1.0) ).atanh() + acc.signum() * (c * acc.abs() / mass).sqrt() * dt ).tanh();
//physics
let distance_last = mass / c * ( ( ( old_vel * (c/acc / mass).sqrt()).atanh() ).cosh() ).ln();
let distance = mass / c * ( ( ( old_vel * (c/acc / mass).sqrt()).atanh() + dt* (c * acc / mass).sqrt()).cosh() ).ln();
let diff = distance - distance_last;
let diff = if !diff.is_finite() {
0.0
} else {
diff
};
let pos = pos + diff;
let ending = ((i+1) as f64 *dt * 10.0).round() as i64;
let line = format!("[{:0>2.1}]: move_dir: {:0>1.1}, over_vel_keep: {:0>4.4}, acc: {:0>4.4}, vel: {:0>4.4}, dist: {:0>7.4}, dist: {:0>7.4}, pos: {:0>7.4}, c: {:0>4.4}", (i+1) as f64 *dt, move_dir, over_vel_keep, acc, vel, distance_last, distance, pos, c);
if ending % 10 == 0 {
println!("\x1b[91m{}\x1b[0m", line)
} else if ending % 2 != 0 {
println!("\x1b[94m{}\x1b[0m", line)
} else {
println!("{}", line)
}
(acc, vel, pos)
};
let test_run = |tps: u32| {
let dt = 1.0 / tps as f64;
println!("");
println!("dt: {}", dt);
let (mut acc, mut vel, mut pos) = (0.0, 0.0, 0.0);
let mut i = 0;
for _ in 0..tps*2 {
(acc, vel, pos) = tick(i, 1.0, acc, vel, pos, dt);
i += 1;
}
for _ in 0..tps*2 {
(acc, vel, pos) = tick(i, 0.1, acc, vel, pos, dt);
i += 1;
}
for _ in 0..tps {
(acc, vel, pos) = tick(i, 1.0, acc, vel, pos, dt);
i += 1;
}
(vel, pos)
};
let (vel_final_01, pos_final_01) = test_run(10);
let (vel_final_02, pos_final_02) = test_run(5);
let (vel_final_10, pos_final_10) = test_run(1);
let vel_diff = (vel_final_02 - vel_final_01).abs();
let pos_diff = (pos_final_02 - pos_final_01).abs();
println!("[ #1 ] vel_diff: {:4.4}, pos_diff: {:4.4}", vel_diff, pos_diff);
let vel_diff = (vel_final_10 - vel_final_01).abs();
let pos_diff = (pos_final_10 - pos_final_01).abs();
println!("[ #2 ] vel_diff: {:4.4}, pos_diff: {:4.4}", vel_diff, pos_diff);
Ok(())
}