veloren/voxygen/src/ui/mod.rs

1075 lines
46 KiB
Rust

mod cache;
mod event;
mod graphic;
mod scale;
mod widgets;
#[macro_use]
pub mod img_ids;
#[macro_use]
pub mod fonts;
#[cfg(feature = "egui-ui")] pub mod egui;
pub mod ice;
pub mod keyed_jobs;
pub use event::Event;
pub use graphic::{Graphic, Id as GraphicId, Rotation, SampleStrat, Transform};
pub use keyed_jobs::KeyedJobs;
pub use scale::{Scale, ScaleMode};
pub use widgets::{
image_frame::ImageFrame,
image_slider::ImageSlider,
ingame::{Ingame, Ingameable},
item_tooltip::{ItemTooltip, ItemTooltipManager, ItemTooltipable},
outlined_text::OutlinedText,
radio_list::RadioList,
slot,
toggle_button::ToggleButton,
tooltip::{Tooltip, TooltipManager, Tooltipable},
};
use crate::{
error::Error,
render::{
create_ui_quad, create_ui_tri, DynamicModel, Mesh, RenderError, Renderer, UiBoundLocals,
UiDrawer, UiLocals, UiMode, UiVertex,
},
window::Window,
};
#[rustfmt::skip]
use ::image::GenericImageView;
use cache::Cache;
use common::{slowjob::SlowJobPool, util::srgba_to_linear};
use common_base::span;
use conrod_core::{
event::Input,
graph::{self, Graph},
image::{Id as ImageId, Map},
input::{touch::Touch, Motion, Widget},
render::{Primitive, PrimitiveKind},
text::{self, font},
widget::{self, id::Generator},
Rect, Scalar, UiBuilder, UiCell,
};
use core::{convert::TryInto, f32, f64, ops::Range};
use graphic::TexId;
use hashbrown::hash_map::Entry;
use std::time::Duration;
use tracing::{error, warn};
use vek::*;
#[derive(Debug)]
pub enum UiError {
RenderError(RenderError),
}
enum DrawKind {
Image(TexId),
// Text and non-textured geometry
Plain,
}
enum DrawCommand {
Draw { kind: DrawKind, verts: Range<u32> },
Scissor(Aabr<u16>),
WorldPos(Option<usize>),
}
impl DrawCommand {
fn image(verts: Range<usize>, id: TexId) -> DrawCommand {
DrawCommand::Draw {
kind: DrawKind::Image(id),
verts: verts
.start
.try_into()
.expect("Vertex count for UI rendering does not fit in a u32!")
..verts
.end
.try_into()
.expect("Vertex count for UI rendering does not fit in a u32!"),
}
}
fn plain(verts: Range<usize>) -> DrawCommand {
DrawCommand::Draw {
kind: DrawKind::Plain,
verts: verts
.start
.try_into()
.expect("Vertex count for UI rendering does not fit in a u32!")
..verts
.end
.try_into()
.expect("Vertex count for UI rendering does not fit in a u32!"),
}
}
}
pub struct Ui {
pub ui: conrod_core::Ui,
image_map: Map<(graphic::Id, Rotation)>,
cache: Cache,
// Draw commands for the next render
draw_commands: Vec<DrawCommand>,
// Mesh buffer for UI vertices; we reuse its allocation in order to limit vector reallocations
// during redrawing.
mesh: Mesh<UiVertex>,
// Model for drawing the ui
model: DynamicModel<UiVertex>,
// Consts for default ui drawing position (ie the interface)
interface_locals: UiBoundLocals,
// Consts to specify positions of ingame elements (e.g. Nametags)
ingame_locals: Vec<UiBoundLocals>,
// Whether the window was resized since the last maintain, for updating scaling
window_resized: bool,
// Scale factor changed
scale_factor_changed: Option<f64>,
// Used to delay cache resizing until after current frame is drawn
need_cache_resize: bool,
// Whether a graphic was replaced with replaced_graphic since the last maintain call
graphic_replaced: bool,
// Scaling of the ui
scale: Scale,
// Tooltips
tooltip_manager: TooltipManager,
// Item tooltips manager
item_tooltip_manager: ItemTooltipManager,
// Scissor for the whole window
window_scissor: Aabr<u16>,
}
impl Ui {
pub fn new(window: &mut Window) -> Result<Self, Error> {
let scale_factor = window.scale_factor();
let renderer = window.renderer_mut();
let physical_resolution = renderer.resolution();
let scale = Scale::new(
physical_resolution,
scale_factor,
ScaleMode::Absolute(1.0),
1.0,
);
let win_dims = scale.scaled_resolution().into_array();
let mut ui = UiBuilder::new(win_dims).build();
// NOTE: Since we redraw the actual frame each time whether or not the UI needs
// to be updated, there's no reason to set the redraw count higher than
// 1.
ui.set_num_redraw_frames(1);
let item_tooltip_manager = ItemTooltipManager::new(
ui.widget_id_generator(),
Duration::from_millis(1),
Duration::from_millis(0),
scale.scale_factor_logical(),
);
let tooltip_manager = TooltipManager::new(
ui.widget_id_generator(),
Duration::from_millis(1),
Duration::from_millis(0),
scale.scale_factor_logical(),
);
let interface_locals = renderer.create_ui_bound_locals(&[UiLocals::default()]);
Ok(Self {
ui,
image_map: Map::new(),
cache: Cache::new(renderer)?,
draw_commands: Vec::new(),
mesh: Mesh::new(),
model: renderer.create_dynamic_model(100),
interface_locals,
ingame_locals: Vec::new(),
window_resized: false,
scale_factor_changed: None,
need_cache_resize: false,
graphic_replaced: false,
scale,
tooltip_manager,
item_tooltip_manager,
window_scissor: default_scissor(physical_resolution),
})
}
// Set the scaling mode of the ui.
pub fn set_scaling_mode(&mut self, mode: ScaleMode) {
self.scale.set_scaling_mode(mode);
// To clear the cache (it won't be resized in this case)
self.need_cache_resize = true;
// Give conrod the new size.
let (w, h) = self.scale.scaled_resolution().into_tuple();
self.ui.handle_event(Input::Resize(w, h));
}
pub fn scale_factor_changed(&mut self, scale_factor: f64) {
self.scale_factor_changed = Some(scale_factor);
}
// Get a copy of Scale
pub fn scale(&self) -> Scale { self.scale }
pub fn add_graphic(&mut self, graphic: Graphic) -> ImageId {
self.image_map
.insert((self.cache.add_graphic(graphic), Rotation::None))
}
pub fn add_graphic_with_rotations(&mut self, graphic: Graphic) -> img_ids::Rotations {
let graphic_id = self.cache.add_graphic(graphic);
img_ids::Rotations {
none: self.image_map.insert((graphic_id, Rotation::None)),
cw90: self.image_map.insert((graphic_id, Rotation::Cw90)),
cw180: self.image_map.insert((graphic_id, Rotation::Cw180)),
cw270: self.image_map.insert((graphic_id, Rotation::Cw270)),
// Hacky way to make sure a source rectangle always faces north regardless of player
// orientation.
// This is an easy way to get around Conrod's lack of rotation data for images (for this
// specific use case).
source_north: self.image_map.insert((graphic_id, Rotation::SourceNorth)),
// Hacky way to make sure a target rectangle always faces north regardless of player
// orientation.
// This is an easy way to get around Conrod's lack of rotation data for images (for this
// specific use case).
target_north: self.image_map.insert((graphic_id, Rotation::TargetNorth)),
}
}
pub fn replace_graphic(&mut self, id: ImageId, graphic: Graphic) {
let graphic_id = if let Some((graphic_id, _)) = self.image_map.get(&id) {
*graphic_id
} else {
error!("Failed to replace graphic the provided id is not in use");
return;
};
self.cache.replace_graphic(graphic_id, graphic);
self.image_map.replace(id, (graphic_id, Rotation::None));
self.graphic_replaced = true;
}
pub fn new_font(&mut self, font: crate::ui::ice::RawFont) -> font::Id {
let font = text::Font::from_bytes(font.0).unwrap();
self.ui.fonts.insert(font)
}
pub fn id_generator(&mut self) -> Generator { self.ui.widget_id_generator() }
pub fn set_widgets(&mut self) -> (UiCell, &mut ItemTooltipManager, &mut TooltipManager) {
(
self.ui.set_widgets(),
&mut self.item_tooltip_manager,
&mut self.tooltip_manager,
)
}
pub fn set_item_widgets(&mut self) -> (UiCell, &mut ItemTooltipManager) {
(self.ui.set_widgets(), &mut self.item_tooltip_manager)
}
// Accepts Option so widget can be unfocused.
pub fn focus_widget(&mut self, id: Option<widget::Id>) {
self.ui.keyboard_capture(match id {
Some(id) => id,
None => self.ui.window,
});
}
// Get id of current widget capturing keyboard.
pub fn widget_capturing_keyboard(&self) -> Option<widget::Id> {
self.ui.global_input().current.widget_capturing_keyboard
}
// Get whether a widget besides the window is capturing the mouse.
pub fn no_widget_capturing_mouse(&self) -> bool {
self.ui
.global_input()
.current
.widget_capturing_mouse
.filter(|id| id != &self.ui.window)
.is_none()
}
// Get the widget graph.
pub fn widget_graph(&self) -> &Graph { self.ui.widget_graph() }
pub fn handle_event(&mut self, event: Event) {
match event.0 {
Input::Resize(w, h) => {
if w > 0.0 && h > 0.0 {
self.window_resized = true;
}
},
Input::Touch(touch) => self.ui.handle_event(Input::Touch(Touch {
xy: self.scale.scale_point(touch.xy.into()).into_array(),
..touch
})),
Input::Motion(motion) => self.ui.handle_event(Input::Motion(match motion {
Motion::MouseCursor { x, y } => {
let (x, y) = self.scale.scale_point(Vec2::new(x, y)).into_tuple();
Motion::MouseCursor { x, y }
},
Motion::MouseRelative { x, y } => {
let (x, y) = self.scale.scale_point(Vec2::new(x, y)).into_tuple();
Motion::MouseRelative { x, y }
},
Motion::Scroll { x, y } => {
let (x, y) = self.scale.scale_point(Vec2::new(x, y)).into_tuple();
Motion::Scroll { x, y }
},
_ => motion,
})),
_ => self.ui.handle_event(event.0),
}
}
pub fn widget_input(&self, id: widget::Id) -> Widget { self.ui.widget_input(id) }
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
pub fn maintain(
&mut self,
renderer: &mut Renderer,
pool: Option<&SlowJobPool>,
view_projection_mat: Option<Mat4<f32>>,
) {
span!(_guard, "maintain", "Ui::maintain");
// Maintain tooltip manager
self.tooltip_manager
.maintain(self.ui.global_input(), self.scale.scale_factor_logical());
// Maintain tooltip manager
self.item_tooltip_manager
.maintain(self.ui.global_input(), self.scale.scale_factor_logical());
// Handle scale factor changing
let need_resize = if let Some(scale_factor) = self.scale_factor_changed.take() {
self.scale.scale_factor_changed(scale_factor)
} else {
false
};
// Handle window resizing.
let need_resize = if self.window_resized {
self.window_resized = false;
let surface_resolution = renderer.resolution();
let (old_w, old_h) = self.scale.scaled_resolution().into_tuple();
self.scale.surface_resized(surface_resolution);
let (w, h) = self.scale.scaled_resolution().into_tuple();
self.ui.handle_event(Input::Resize(w, h));
self.window_scissor = default_scissor(surface_resolution);
// Avoid panic in graphic cache when minimizing.
// Avoid resetting cache if window size didn't change
// Somewhat inefficient for elements that won't change size after a window
// resize
let res = renderer.resolution();
res.x > 0 && res.y > 0 && !(old_w == w && old_h == h)
} else {
false
} || need_resize;
if need_resize {
self.need_cache_resize = true;
}
if self.need_cache_resize {
// Resize graphic cache
// FIXME: Handle errors here.
self.cache.resize(renderer).unwrap();
self.need_cache_resize = false;
}
let mut retry = false;
self.maintain_internal(renderer, pool, view_projection_mat, &mut retry);
if retry {
// Update the glyph cache and try again.
self.maintain_internal(renderer, pool, view_projection_mat, &mut retry);
}
}
fn maintain_internal(
&mut self,
renderer: &mut Renderer,
pool: Option<&SlowJobPool>,
view_projection_mat: Option<Mat4<f32>>,
retry: &mut bool,
) {
span!(_guard, "internal", "Ui::maintain_internal");
let (graphic_cache, text_cache, glyph_cache, cache_tex) = self.cache.cache_mut_and_tex();
let mut primitives = if *retry || self.graphic_replaced {
// If this is a retry, always redraw.
// Also redraw if a texture was swapped out by replace_graphic in order to
// regenerate invalidated textures and clear out any invalid `TexId`s
self.graphic_replaced = false;
self.ui.draw()
} else {
// Otherwise, redraw only if widgets were actually updated.
match self.ui.draw_if_changed() {
Some(primitives) => primitives,
None => return,
}
};
let (half_res, x_align, y_align) = {
let res = renderer.resolution();
(
res.map(|e| e as f32 / 2.0),
(res.x & 1) as f32 * 0.5,
(res.y & 1) as f32 * 0.5,
)
};
let ui = &self.ui;
let p_scale_factor = self.scale.scale_factor_physical();
// Functions for converting for conrod scalar coords to GL vertex coords (-1.0
// to 1.0).
let (ui_win_w, ui_win_h) = (ui.win_w, ui.win_h);
let vx = |x: f64| (x / ui_win_w * 2.0) as f32;
let vy = |y: f64| (y / ui_win_h * 2.0) as f32;
let gl_aabr = |rect: Rect| {
let (l, r, b, t) = rect.l_r_b_t();
let min = Vec2::new(
((vx(l) * half_res.x + x_align).round() - x_align) / half_res.x,
((vy(b) * half_res.y + y_align).round() - y_align) / half_res.y,
);
let max = Vec2::new(
((vx(r) * half_res.x + x_align).round() - x_align) / half_res.x,
((vy(t) * half_res.y + y_align).round() - y_align) / half_res.y,
);
Aabr { min, max }
};
// let window_dim = ui.window_dim();
let theme = &ui.theme;
let widget_graph = ui.widget_graph();
let fonts = &ui.fonts;
let dpi_factor = p_scale_factor as f32;
// We can use information about whether a widget was actually updated to more
// easily track cache invalidations.
let updated_widgets = ui.updated_widgets();
let mut glyph_missing = false;
updated_widgets.iter()
// Filter out widgets that are either:
// - not text primitives, or
// - are text primitives, but were both already in the cache, and not updated this
// frame.
//
// The reason the second condition is so complicated is that we want to handle cases
// where we cleared the whole cache, which can result in glyphs from text updated in a
// previous frame not being present in the text cache.
.filter_map(|(&widget_id, updated)| {
widget_graph.widget(widget_id)
.and_then(|widget| Some((widget.rect, widget.unique_widget_state::<widget::Text>()?)))
.and_then(|(rect, text)| {
// NOTE: This fallback is weird and probably shouldn't exist.
let font_id = text.style.font_id(theme)/*.or_else(|| fonts.ids().next())*/?;
let font = fonts.get(font_id)?;
Some((widget_id, updated, rect, text, font_id, font))
})
})
// Recache the entry.
.for_each(|(widget_id, updated, rect, graph::UniqueWidgetState { state, style }, font_id, font)| {
let entry = match text_cache.entry(widget_id) {
Entry::Occupied(_) if !updated => return,
entry => entry,
};
// Retrieve styling.
let color = style.color(theme);
let font_size = style.font_size(theme);
let line_spacing = style.line_spacing(theme);
let justify = style.justify(theme);
let y_align = conrod_core::position::Align::End;
let text = &state.string;
let line_infos = &state.line_infos;
// Convert conrod coordinates to pixel coordinates.
let trans_x = |x: Scalar| (x + ui_win_w / 2.0) * dpi_factor as Scalar;
let trans_y = |y: Scalar| ((-y) + ui_win_h / 2.0) * dpi_factor as Scalar;
// Produce the text layout iterators.
let lines = line_infos.iter().map(|info| &text[info.byte_range()]);
let line_rects = text::line::rects(line_infos.iter(), font_size, rect,
justify, y_align, line_spacing);
// Grab the positioned glyphs from the text primitives.
let scale = text::f32_pt_to_scale(font_size as f32 * dpi_factor);
let positioned_glyphs = lines.zip(line_rects).flat_map(|(line, line_rect)| {
let (x, y) = (trans_x(line_rect.left()) as f32, trans_y(line_rect.bottom()) as f32);
let point = text::rt::Point { x, y };
font.layout(line, scale, point)
});
// Reuse the mesh allocation if possible at this entry if possible; we
// then clear it to avoid using stale entries.
let mesh = entry.or_insert_with(Mesh::new);
mesh.clear();
let color = srgba_to_linear(color.to_fsa().into());
positioned_glyphs.for_each(|g| {
match glyph_cache.rect_for(font_id.index(), &g) {
Ok(Some((uv_rect, screen_rect))) => {
let uv = Aabr {
min: Vec2::new(uv_rect.min.x, uv_rect.max.y),
max: Vec2::new(uv_rect.max.x, uv_rect.min.y),
};
let rect = Aabr {
min: Vec2::new(
vx(screen_rect.min.x as f64 / p_scale_factor
- ui.win_w / 2.0),
vy(ui.win_h / 2.0
- screen_rect.max.y as f64 / p_scale_factor),
),
max: Vec2::new(
vx(screen_rect.max.x as f64 / p_scale_factor
- ui.win_w / 2.0),
vy(ui.win_h / 2.0
- screen_rect.min.y as f64 / p_scale_factor),
),
};
mesh.push_quad(create_ui_quad(rect, uv, color, UiMode::Text));
},
// Glyph not found, no-op.
Ok(None) => {},
// Glyph was found, but was not yet cached; we'll need to add it to the
// cache and retry.
Err(_) => {
// Queue the unknown glyph to be cached.
glyph_missing = true;
}
}
// NOTE: Important to do this for *all* glyphs to try to make sure that
// any that are uncached are part of the graph. Because we always
// clear the entire cache whenever a new glyph is encountered, by
// adding and checking all glyphs as they come in we guarantee that (1)
// any glyphs in the text cache are in the queue, and (2) any glyphs
// not in the text cache are either in the glyph cache, or (during our
// processing here) we set the retry flag to force a glyph cache
// update. Setting the flag causes all glyphs in the current queue to
// become part of the glyph cache during the second call to
// `maintain_internal`, so as long as the cache refresh succeeded,
// during the second call all glyphs will hit this branch as desired.
glyph_cache.queue_glyph(font_id.index(), g);
});
});
if glyph_missing {
#[allow(clippy::branches_sharing_code)] // TODO: evaluate (ask sharp)
if *retry {
// If a glyph was missing and this was our second try, we know something was
// messed up during the glyph_cache redraw. It is possible that
// the queue contained unneeded glyphs, so we don't necessarily
// have to give up; a more precise enumeration of the
// glyphs required to render this frame might work out. However, this is a
// pretty remote edge case, so we opt to not care about this
// frame (we skip rendering it, basically), and just clear the
// text cache and glyph queue; next frame will then
// start out with an empty slate, and therefore will enqueue precisely the
// glyphs needed for that frame. If *that* frame fails, we're
// in bigger trouble.
text_cache.clear();
glyph_cache.clear();
glyph_cache.clear_queue();
self.ui.needs_redraw();
warn!("Could not recache queued glyphs, skipping frame.");
} else {
// NOTE: If this is the first round after encountering a new glyph, we just
// refresh the whole glyph cache. Technically this is not necessary since
// positioned_glyphs should still be accurate, but it's just the easiest way
// to ensure that all glyph positions get updated. It also helps keep the glyph
// cache reasonable by making sure any glyphs that subsequently get rendered are
// actually in the cache, including glyphs that were mapped to ids but didn't
// happen to be rendered on the frame where the cache was
// refreshed.
text_cache.clear();
tracing::debug!("Updating glyphs and clearing text cache.");
if let Err(err) = glyph_cache.cache_queued(|rect, data| {
let offset = [rect.min.x as u32, rect.min.y as u32];
let size = [rect.width() as u32, rect.height() as u32];
let new_data = data
.iter()
.map(|x| [255, 255, 255, *x])
.collect::<Vec<[u8; 4]>>();
renderer.update_texture(&cache_tex.0, offset, size, &new_data);
}) {
// FIXME: If we actually hit this error, it's still possible we could salvage
// things in various ways (for instance, the current queue might have extra
// stuff in it, so we could try calling maintain_internal a
// third time with a fully clean queue; or we could try to
// increase the glyph texture size, etc. But hopefully
// we will not actually encounter this error.
warn!("Failed to cache queued glyphs: {:?}", err);
// Clear queued glyphs, so that (hopefully) next time we won't have the
// offending glyph or glyph set. We then exit the loop and don't try to
// rerender the frame.
glyph_cache.clear_queue();
self.ui.needs_redraw();
} else {
// Successfully cached, so repeat the loop.
*retry = true;
}
}
return;
}
self.draw_commands.clear();
let mesh = &mut self.mesh;
mesh.clear();
enum State {
Image(TexId),
Plain,
}
let mut current_state = State::Plain;
let mut start = 0;
let window_scissor = self.window_scissor;
let mut current_scissor = window_scissor;
let mut ingame_local_index = 0;
enum Placement {
Interface,
// Number of primitives left to render ingame and visibility
InWorld(usize, bool),
}
let mut placement = Placement::Interface;
// Switches to the `Plain` state and completes the previous `Command` if not
// already in the `Plain` state.
macro_rules! switch_to_plain_state {
() => {
if let State::Image(id) = current_state {
self.draw_commands
.push(DrawCommand::image(start..mesh.vertices().len(), id));
start = mesh.vertices().len();
current_state = State::Plain;
}
};
}
while let Some(prim) = primitives.next() {
let Primitive {
kind,
scizzor,
rect,
id: widget_id,
} = prim;
// Check for a change in the scissor.
let new_scissor = {
let (l, b, w, h) = scizzor.l_b_w_h();
let scale_factor = self.scale.scale_factor_physical();
// Calculate minimum x and y coordinates while
// flipping y axis (from +up to +down) and
// moving origin to top-left corner (from middle).
let min_x = ui.win_w / 2.0 + l;
let min_y = ui.win_h / 2.0 - b - h;
let intersection = Aabr {
min: Vec2 {
x: (min_x * scale_factor) as u16,
y: (min_y * scale_factor) as u16,
},
max: Vec2 {
x: ((min_x + w) * scale_factor) as u16,
y: ((min_y + h) * scale_factor) as u16,
},
}
.intersection(window_scissor);
if intersection.is_valid() && intersection.size().map(|s| s > 0).reduce_and() {
intersection
} else {
// TODO: What should we return here
// We used to return a zero sized aabr but it's invalid to
// use a zero sized scissor so for now we just don't change
// the scissor.
current_scissor
}
};
if new_scissor != current_scissor {
// Finish the current command.
self.draw_commands.push(match current_state {
State::Plain => DrawCommand::plain(start..mesh.vertices().len()),
State::Image(id) => DrawCommand::image(start..mesh.vertices().len(), id),
});
start = mesh.vertices().len();
// Update the scissor and produce a command.
current_scissor = new_scissor;
self.draw_commands.push(DrawCommand::Scissor(new_scissor));
}
match placement {
// No primitives left to place in the world at the current position, go back to
// drawing the interface
Placement::InWorld(0, _) => {
placement = Placement::Interface;
// Finish current state
self.draw_commands.push(match current_state {
State::Plain => DrawCommand::plain(start..mesh.vertices().len()),
State::Image(id) => DrawCommand::image(start..mesh.vertices().len(), id),
});
start = mesh.vertices().len();
// Push new position command
self.draw_commands.push(DrawCommand::WorldPos(None));
},
// Primitives still left to draw ingame
Placement::InWorld(num_prims, visible) => match kind {
// Other types aren't drawn & shouldn't decrement the number of primitives left
// to draw ingame
PrimitiveKind::Other(_) => {},
// Decrement the number of primitives left
_ => {
placement = Placement::InWorld(num_prims - 1, visible);
// Behind the camera
if !visible {
continue;
}
},
},
Placement::Interface => {},
}
match kind {
PrimitiveKind::Image {
image_id,
color,
source_rect,
} => {
let (graphic_id, rotation) = self
.image_map
.get(&image_id)
.expect("Image does not exist in image map");
let gl_aabr = gl_aabr(rect);
let (source_aabr, gl_size) = {
// Transform the source rectangle into uv coordinate.
// TODO: Make sure this is right. Especially the conversions.
let ((uv_l, uv_r, uv_b, uv_t), gl_size) =
match graphic_cache.get_graphic(*graphic_id) {
Some(Graphic::Blank) | None => continue,
Some(Graphic::Image(image, ..)) => {
source_rect.and_then(|src_rect| {
let (image_w, image_h) = image.dimensions();
let (source_w, source_h) = src_rect.w_h();
let gl_size = gl_aabr.size();
if image_w == 0
|| image_h == 0
|| source_w < 1.0
|| source_h < 1.0
|| gl_size.reduce_partial_min() < f32::EPSILON
{
None
} else {
// Multiply drawn image size by ratio of original image
// size to
// source rectangle size (since as the proportion of the
// image gets
// smaller, the drawn size should get bigger), up to the
// actual
// size of the original image.
let ratio_x = (image_w as f64 / source_w).min(
(image_w as f64 / (gl_size.w * half_res.x) as f64)
.max(1.0),
);
let ratio_y = (image_h as f64 / source_h).min(
(image_h as f64 / (gl_size.h * half_res.y) as f64)
.max(1.0),
);
let (l, r, b, t) = src_rect.l_r_b_t();
Some((
(
l / image_w as f64, /* * ratio_x*/
r / image_w as f64, /* * ratio_x*/
b / image_h as f64, /* * ratio_y*/
t / image_h as f64, /* * ratio_y*/
),
Extent2::new(
(gl_size.w as f64 * ratio_x) as f32,
(gl_size.h as f64 * ratio_y) as f32,
),
))
/* ((l / image_w as f64),
(r / image_w as f64),
(b / image_h as f64),
(t / image_h as f64)) */
}
})
},
// No easy way to interpret source_rect for voxels...
Some(Graphic::Voxel(..)) => None,
}
.unwrap_or_else(|| ((0.0, 1.0, 0.0, 1.0), gl_aabr.size()));
(
Aabr {
min: Vec2::new(uv_l, uv_b),
max: Vec2::new(uv_r, uv_t),
},
gl_size,
)
};
let resolution = Vec2::new(
(gl_size.w * half_res.x).round() as u16,
(gl_size.h * half_res.y).round() as u16,
);
// Don't do anything if resolution is zero
if resolution.map(|e| e == 0).reduce_or() {
continue;
// TODO: consider logging unneeded elements
}
let color =
srgba_to_linear(color.unwrap_or(conrod_core::color::WHITE).to_fsa().into());
// Cache graphic at particular resolution.
let (uv_aabr, tex_id) = match graphic_cache.cache_res(
renderer,
pool,
*graphic_id,
resolution,
source_aabr,
*rotation,
) {
// TODO: get dims from graphic_cache (or have it return floats directly)
Some((aabr, tex_id)) => {
let cache_dims = graphic_cache
.get_tex(tex_id)
.0
.get_dimensions()
.xy()
.map(|e| e as f32);
let min = Vec2::new(aabr.min.x as f32, aabr.max.y as f32) / cache_dims;
let max = Vec2::new(aabr.max.x as f32, aabr.min.y as f32) / cache_dims;
(Aabr { min, max }, tex_id)
},
None => continue,
};
match current_state {
// Switch to the image state if we are not in it already.
State::Plain => {
self.draw_commands
.push(DrawCommand::plain(start..mesh.vertices().len()));
start = mesh.vertices().len();
current_state = State::Image(tex_id);
},
// If the image is cached in a different texture switch to the new one
State::Image(id) if id != tex_id => {
self.draw_commands
.push(DrawCommand::image(start..mesh.vertices().len(), id));
start = mesh.vertices().len();
current_state = State::Image(tex_id);
},
State::Image(_) => {},
}
mesh.push_quad(create_ui_quad(gl_aabr, uv_aabr, color, match *rotation {
Rotation::None | Rotation::Cw90 | Rotation::Cw180 | Rotation::Cw270 => {
UiMode::Image
},
Rotation::SourceNorth => UiMode::ImageSourceNorth,
Rotation::TargetNorth => UiMode::ImageTargetNorth,
}));
},
PrimitiveKind::Text { .. } => {
switch_to_plain_state!();
// Mesh should already be cached.
mesh.push_mesh(text_cache.get(&widget_id).unwrap_or(&Mesh::new()));
},
PrimitiveKind::Rectangle { color } => {
let color = srgba_to_linear(color.to_fsa().into());
// Don't draw a transparent rectangle.
if color[3] == 0.0 {
continue;
}
switch_to_plain_state!();
mesh.push_quad(create_ui_quad(
gl_aabr(rect),
Aabr {
min: Vec2::zero(),
max: Vec2::zero(),
},
color,
UiMode::Geometry,
));
},
PrimitiveKind::TrianglesSingleColor { color, triangles } => {
// Don't draw transparent triangle or switch state if there are actually no
// triangles.
let color = srgba_to_linear(Rgba::from(Into::<[f32; 4]>::into(color)));
if triangles.is_empty() || color[3] == 0.0 {
continue;
}
switch_to_plain_state!();
for tri in triangles {
let p1 = Vec2::new(vx(tri[0][0]), vy(tri[0][1]));
let p2 = Vec2::new(vx(tri[1][0]), vy(tri[1][1]));
let p3 = Vec2::new(vx(tri[2][0]), vy(tri[2][1]));
// If triangle is clockwise, reverse it.
let (v1, v2): (Vec3<f32>, Vec3<f32>) = ((p2 - p1).into(), (p3 - p1).into());
let triangle = if v1.cross(v2).z > 0.0 {
[p1.into_array(), p2.into_array(), p3.into_array()]
} else {
[p2.into_array(), p1.into_array(), p3.into_array()]
};
mesh.push_tri(create_ui_tri(
triangle,
[[0.0; 2]; 3],
color,
UiMode::Geometry,
));
}
},
PrimitiveKind::Other(container) => {
if container.type_id == std::any::TypeId::of::<widgets::ingame::State>() {
// Calculate the scale factor to pixels at this 3d point using the camera.
if let Some(view_projection_mat) = view_projection_mat {
// Retrieve world position
let parameters = container
.state_and_style::<widgets::ingame::State, widgets::ingame::Style>()
.unwrap()
.state
.parameters;
let pos_on_screen = (view_projection_mat
* Vec4::from_point(parameters.pos))
.homogenized();
let visible = if pos_on_screen.z > 0.0 && pos_on_screen.z < 1.0 {
let x = pos_on_screen.x;
let y = pos_on_screen.y;
let (w, h) = parameters.dims.into_tuple();
let (half_w, half_h) = (w / ui_win_w as f32, h / ui_win_h as f32);
(x - half_w < 1.0 && x + half_w > -1.0)
&& (y - half_h < 1.0 && y + half_h > -1.0)
} else {
false
};
// Don't process ingame elements outside the frustum
placement = if visible {
// Finish current state
self.draw_commands.push(match current_state {
State::Plain => {
DrawCommand::plain(start..mesh.vertices().len())
},
State::Image(id) => {
DrawCommand::image(start..mesh.vertices().len(), id)
},
});
start = mesh.vertices().len();
// Push new position command
let world_pos = Vec4::from_point(parameters.pos);
if self.ingame_locals.len() > ingame_local_index {
renderer.update_consts(
&mut self.ingame_locals[ingame_local_index],
&[world_pos.into()],
)
} else {
self.ingame_locals
.push(renderer.create_ui_bound_locals(&[world_pos.into()]));
}
self.draw_commands
.push(DrawCommand::WorldPos(Some(ingame_local_index)));
ingame_local_index += 1;
Placement::InWorld(parameters.num, true)
} else {
Placement::InWorld(parameters.num, false)
};
}
}
},
_ => {}, /* TODO: Add this.
*PrimitiveKind::TrianglesMultiColor {..} => {println!("primitive kind
* multicolor with id {:?}", id);} */
}
}
// Enter the final command.
self.draw_commands.push(match current_state {
State::Plain => DrawCommand::plain(start..mesh.vertices().len()),
State::Image(id) => DrawCommand::image(start..mesh.vertices().len(), id),
});
/* // Draw glyph cache (use for debugging).
self.draw_commands
.push(DrawCommand::Scissor(default_scissor(renderer)));
start = mesh.vertices().len();
mesh.push_quad(create_ui_quad(
Aabr {
min: (-1.0, -1.0).into(),
max: (1.0, 1.0).into(),
},
Aabr {
min: (0.0, 1.0).into(),
max: (1.0, 0.0).into(),
},
Rgba::new(1.0, 1.0, 1.0, 0.8),
UiMode::Text,
));
self.draw_commands
.push(DrawCommand::plain(start..mesh.vertices().len())); */
// Create a larger dynamic model if the mesh is larger than the current model
// size.
if self.model.len() < self.mesh.vertices().len() {
self.model = renderer.create_dynamic_model(self.mesh.vertices().len() * 4 / 3);
}
// Update model with new mesh.
renderer.update_model(&self.model, &self.mesh, 0);
}
pub fn render<'pass, 'data: 'pass>(&'data self, drawer: &mut UiDrawer<'_, 'pass>) {
span!(_guard, "render", "Ui::render");
let mut drawer = drawer.prepare(&self.interface_locals, &self.model, self.window_scissor);
for draw_command in self.draw_commands.iter() {
match draw_command {
DrawCommand::Scissor(new_scissor) => {
drawer.set_scissor(*new_scissor);
},
DrawCommand::WorldPos(index) => {
drawer.set_locals(
index.map_or(&self.interface_locals, |i| &self.ingame_locals[i]),
);
},
DrawCommand::Draw { kind, verts } => {
let tex = match kind {
DrawKind::Image(tex_id) => self.cache.graphic_cache().get_tex(*tex_id),
DrawKind::Plain => self.cache.glyph_cache_tex(),
};
drawer.draw(&tex.1, verts.clone()); // Note: trivial clone
},
}
}
}
}
fn default_scissor(physical_resolution: Vec2<u32>) -> Aabr<u16> {
let (screen_w, screen_h) = physical_resolution.into_tuple();
Aabr {
min: Vec2 { x: 0, y: 0 },
max: Vec2 {
x: screen_w as u16,
y: screen_h as u16,
},
}
}