mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
978 lines
34 KiB
Rust
978 lines
34 KiB
Rust
use crate::{
|
|
comp::{
|
|
arthropod, biped_large, biped_small, bird_medium, humanoid, quadruped_low,
|
|
quadruped_medium, quadruped_small, ship, Body, UtteranceKind,
|
|
},
|
|
path::Chaser,
|
|
rtsim::{NpcInput, RtSimController},
|
|
trade::{PendingTrade, ReducedInventory, SiteId, SitePrices, TradeId, TradeResult},
|
|
uid::Uid,
|
|
};
|
|
use serde::{Deserialize, Serialize};
|
|
use specs::{Component, DerefFlaggedStorage, Entity as EcsEntity};
|
|
use std::{collections::VecDeque, fmt};
|
|
use strum::{EnumIter, IntoEnumIterator};
|
|
use vek::*;
|
|
|
|
use super::{dialogue::Subject, Pos};
|
|
|
|
pub const DEFAULT_INTERACTION_TIME: f32 = 3.0;
|
|
pub const TRADE_INTERACTION_TIME: f32 = 300.0;
|
|
const SECONDS_BEFORE_FORGET_SOUNDS: f64 = 180.0;
|
|
|
|
//intentionally very few concurrent action state variables are allowed. This is
|
|
// to keep the complexity of our AI from getting too large, too quickly.
|
|
// Originally I was going to provide 30 of these, but if we decide later that
|
|
// this is too many and somebody is already using 30 in one of their AI, it will
|
|
// be difficult to go back.
|
|
|
|
/// The number of timers that a single Action node can track concurrently
|
|
/// Define constants within a given action node to index between them.
|
|
const ACTIONSTATE_NUMBER_OF_CONCURRENT_TIMERS: usize = 5;
|
|
/// The number of float counters that a single Action node can track
|
|
/// concurrently Define constants within a given action node to index between
|
|
/// them.
|
|
const ACTIONSTATE_NUMBER_OF_CONCURRENT_COUNTERS: usize = 5;
|
|
/// The number of integer counters that a single Action node can track
|
|
/// concurrently Define constants within a given action node to index between
|
|
/// them.
|
|
const ACTIONSTATE_NUMBER_OF_CONCURRENT_INT_COUNTERS: usize = 5;
|
|
/// The number of booleans that a single Action node can track concurrently
|
|
/// Define constants within a given action node to index between them.
|
|
const ACTIONSTATE_NUMBER_OF_CONCURRENT_CONDITIONS: usize = 5;
|
|
/// The number of positions that can be remembered by an agent
|
|
const ACTIONSTATE_NUMBER_OF_CONCURRENT_POSITIONS: usize = 5;
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
|
|
pub enum Alignment {
|
|
/// Wild animals and gentle giants
|
|
Wild,
|
|
/// Dungeon cultists and bandits
|
|
Enemy,
|
|
/// Friendly folk in villages
|
|
Npc,
|
|
/// Farm animals and pets of villagers
|
|
Tame,
|
|
/// Pets you've tamed with a collar
|
|
Owned(Uid),
|
|
/// Passive objects like training dummies
|
|
Passive,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
pub enum Mark {
|
|
Merchant,
|
|
Guard,
|
|
}
|
|
|
|
impl Alignment {
|
|
// Always attacks
|
|
pub fn hostile_towards(self, other: Alignment) -> bool {
|
|
match (self, other) {
|
|
(Alignment::Passive, _) => false,
|
|
(_, Alignment::Passive) => false,
|
|
(Alignment::Enemy, Alignment::Enemy) => false,
|
|
(Alignment::Enemy, Alignment::Wild) => false,
|
|
(Alignment::Wild, Alignment::Enemy) => false,
|
|
(Alignment::Wild, Alignment::Wild) => false,
|
|
(Alignment::Npc, Alignment::Wild) => false,
|
|
(Alignment::Npc, Alignment::Enemy) => true,
|
|
(_, Alignment::Enemy) => true,
|
|
(Alignment::Enemy, _) => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
// Usually never attacks
|
|
pub fn passive_towards(self, other: Alignment) -> bool {
|
|
match (self, other) {
|
|
(Alignment::Enemy, Alignment::Enemy) => true,
|
|
(Alignment::Owned(a), Alignment::Owned(b)) if a == b => true,
|
|
(Alignment::Npc, Alignment::Npc) => true,
|
|
(Alignment::Npc, Alignment::Tame) => true,
|
|
(Alignment::Enemy, Alignment::Wild) => true,
|
|
(Alignment::Wild, Alignment::Enemy) => true,
|
|
(Alignment::Tame, Alignment::Npc) => true,
|
|
(Alignment::Tame, Alignment::Tame) => true,
|
|
(_, Alignment::Passive) => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
// Never attacks
|
|
pub fn friendly_towards(self, other: Alignment) -> bool {
|
|
match (self, other) {
|
|
(Alignment::Enemy, Alignment::Enemy) => true,
|
|
(Alignment::Owned(a), Alignment::Owned(b)) if a == b => true,
|
|
(Alignment::Npc, Alignment::Npc) => true,
|
|
(Alignment::Npc, Alignment::Tame) => true,
|
|
(Alignment::Tame, Alignment::Npc) => true,
|
|
(Alignment::Tame, Alignment::Tame) => true,
|
|
(_, Alignment::Passive) => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Component for Alignment {
|
|
type Storage = DerefFlaggedStorage<Self, specs::VecStorage<Self>>;
|
|
}
|
|
|
|
bitflags::bitflags! {
|
|
#[derive(Clone, Copy, Debug, Default)]
|
|
pub struct BehaviorCapability: u8 {
|
|
const SPEAK = 0b00000001;
|
|
const TRADE = 0b00000010;
|
|
}
|
|
}
|
|
bitflags::bitflags! {
|
|
#[derive(Clone, Copy, Debug, Default)]
|
|
pub struct BehaviorState: u8 {
|
|
const TRADING = 0b00000001;
|
|
const TRADING_ISSUER = 0b00000010;
|
|
}
|
|
}
|
|
|
|
#[derive(Default, Copy, Clone, Debug)]
|
|
pub enum TradingBehavior {
|
|
#[default]
|
|
None,
|
|
RequireBalanced {
|
|
trade_site: SiteId,
|
|
},
|
|
AcceptFood,
|
|
}
|
|
|
|
impl TradingBehavior {
|
|
fn can_trade(&self, alignment: Option<Alignment>, counterparty: Uid) -> bool {
|
|
match self {
|
|
TradingBehavior::RequireBalanced { .. } => true,
|
|
TradingBehavior::AcceptFood => alignment == Some(Alignment::Owned(counterparty)),
|
|
TradingBehavior::None => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// # Behavior Component
|
|
/// This component allow an Entity to register one or more behavior tags.
|
|
/// These tags act as flags of what an Entity can do, or what it is doing.
|
|
/// Behaviors Tags can be added and removed as the Entity lives, to update its
|
|
/// state when needed
|
|
#[derive(Default, Copy, Clone, Debug)]
|
|
pub struct Behavior {
|
|
capabilities: BehaviorCapability,
|
|
state: BehaviorState,
|
|
pub trading_behavior: TradingBehavior,
|
|
}
|
|
|
|
impl From<BehaviorCapability> for Behavior {
|
|
fn from(capabilities: BehaviorCapability) -> Self {
|
|
Behavior {
|
|
capabilities,
|
|
state: BehaviorState::default(),
|
|
trading_behavior: TradingBehavior::None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Behavior {
|
|
/// Builder function
|
|
/// Set capabilities if Option is Some
|
|
#[must_use]
|
|
pub fn maybe_with_capabilities(
|
|
mut self,
|
|
maybe_capabilities: Option<BehaviorCapability>,
|
|
) -> Self {
|
|
if let Some(capabilities) = maybe_capabilities {
|
|
self.allow(capabilities)
|
|
}
|
|
self
|
|
}
|
|
|
|
/// Builder function
|
|
/// Set trade_site if Option is Some
|
|
#[must_use]
|
|
pub fn with_trade_site(mut self, trade_site: Option<SiteId>) -> Self {
|
|
if let Some(trade_site) = trade_site {
|
|
self.trading_behavior = TradingBehavior::RequireBalanced { trade_site };
|
|
}
|
|
self
|
|
}
|
|
|
|
/// Set capabilities to the Behavior
|
|
pub fn allow(&mut self, capabilities: BehaviorCapability) {
|
|
self.capabilities.set(capabilities, true)
|
|
}
|
|
|
|
/// Unset capabilities to the Behavior
|
|
pub fn deny(&mut self, capabilities: BehaviorCapability) {
|
|
self.capabilities.set(capabilities, false)
|
|
}
|
|
|
|
/// Check if the Behavior is able to do something
|
|
pub fn can(&self, capabilities: BehaviorCapability) -> bool {
|
|
self.capabilities.contains(capabilities)
|
|
}
|
|
|
|
/// Check if the Behavior is able to trade
|
|
pub fn can_trade(&self, alignment: Option<Alignment>, counterparty: Uid) -> bool {
|
|
self.trading_behavior.can_trade(alignment, counterparty)
|
|
}
|
|
|
|
/// Set a state to the Behavior
|
|
pub fn set(&mut self, state: BehaviorState) { self.state.set(state, true) }
|
|
|
|
/// Unset a state to the Behavior
|
|
pub fn unset(&mut self, state: BehaviorState) { self.state.set(state, false) }
|
|
|
|
/// Check if the Behavior has a specific state
|
|
pub fn is(&self, state: BehaviorState) -> bool { self.state.contains(state) }
|
|
|
|
/// Get the trade site at which this behavior evaluates prices, if it does
|
|
pub fn trade_site(&self) -> Option<SiteId> {
|
|
if let TradingBehavior::RequireBalanced { trade_site } = self.trading_behavior {
|
|
Some(trade_site)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default)]
|
|
pub struct Psyche {
|
|
/// The proportion of health below which entities will start fleeing.
|
|
/// 0.0 = never flees, 1.0 = always flees, 0.5 = flee at 50% health.
|
|
pub flee_health: f32,
|
|
/// The distance below which the agent will see enemies if it has line of
|
|
/// sight.
|
|
pub sight_dist: f32,
|
|
/// The distance below which the agent can hear enemies without seeing them.
|
|
pub listen_dist: f32,
|
|
/// The distance below which the agent will attack enemies. Should be lower
|
|
/// than `sight_dist`. `None` implied that the agent is always aggro
|
|
/// towards enemies that it is aware of.
|
|
pub aggro_dist: Option<f32>,
|
|
/// A factor that controls how much further an agent will wander when in the
|
|
/// idle state. `1.0` is normal.
|
|
pub idle_wander_factor: f32,
|
|
/// Aggro range is multiplied by this factor. `1.0` is normal.
|
|
///
|
|
/// This includes scaling the effective `sight_dist` and `listen_dist`
|
|
/// when finding new targets to attack, adjusting the strength of
|
|
/// wandering behavior in the idle state, and scaling `aggro_dist` in
|
|
/// certain situations.
|
|
pub aggro_range_multiplier: f32,
|
|
}
|
|
|
|
impl<'a> From<&'a Body> for Psyche {
|
|
fn from(body: &'a Body) -> Self {
|
|
Self {
|
|
flee_health: match body {
|
|
Body::Humanoid(humanoid) => match humanoid.species {
|
|
humanoid::Species::Danari => 0.4,
|
|
humanoid::Species::Dwarf => 0.3,
|
|
humanoid::Species::Elf => 0.4,
|
|
humanoid::Species::Human => 0.4,
|
|
humanoid::Species::Orc => 0.3,
|
|
humanoid::Species::Draugr => 0.3,
|
|
},
|
|
Body::QuadrupedSmall(quadruped_small) => match quadruped_small.species {
|
|
quadruped_small::Species::Pig => 0.5,
|
|
quadruped_small::Species::Fox => 0.7,
|
|
quadruped_small::Species::Sheep => 0.6,
|
|
quadruped_small::Species::Boar => 0.1,
|
|
quadruped_small::Species::Skunk => 0.4,
|
|
quadruped_small::Species::Cat => 0.9,
|
|
quadruped_small::Species::Batfox => 0.1,
|
|
quadruped_small::Species::Raccoon => 0.6,
|
|
quadruped_small::Species::Hyena => 0.2,
|
|
quadruped_small::Species::Dog => 0.8,
|
|
quadruped_small::Species::Rabbit => 0.7,
|
|
quadruped_small::Species::Truffler => 0.2,
|
|
quadruped_small::Species::Hare => 0.3,
|
|
quadruped_small::Species::Goat => 0.5,
|
|
quadruped_small::Species::Porcupine => 0.7,
|
|
quadruped_small::Species::Turtle => 0.7,
|
|
quadruped_small::Species::Beaver => 0.7,
|
|
// FIXME: This is to balance for enemy rats in dungeons
|
|
// Normal rats should probably always flee.
|
|
quadruped_small::Species::Rat
|
|
| quadruped_small::Species::TreantSapling
|
|
| quadruped_small::Species::Holladon
|
|
| quadruped_small::Species::Jackalope => 0.0,
|
|
_ => 1.0,
|
|
},
|
|
Body::QuadrupedMedium(quadruped_medium) => match quadruped_medium.species {
|
|
quadruped_medium::Species::Frostfang => 0.1,
|
|
quadruped_medium::Species::Catoblepas => 0.2,
|
|
quadruped_medium::Species::Darkhound => 0.1,
|
|
quadruped_medium::Species::Dreadhorn => 0.2,
|
|
quadruped_medium::Species::Bonerattler => 0.0,
|
|
quadruped_medium::Species::Tiger => 0.1,
|
|
quadruped_medium::Species::Roshwalr => 0.0,
|
|
quadruped_medium::Species::ClaySteed => 0.0,
|
|
_ => 0.3,
|
|
},
|
|
Body::QuadrupedLow(quadruped_low) => match quadruped_low.species {
|
|
quadruped_low::Species::Salamander | quadruped_low::Species::Elbst => 0.2,
|
|
quadruped_low::Species::Monitor => 0.3,
|
|
quadruped_low::Species::Pangolin => 0.6,
|
|
quadruped_low::Species::Tortoise => 0.2,
|
|
quadruped_low::Species::Rocksnapper => 0.05,
|
|
quadruped_low::Species::Rootsnapper => 0.05,
|
|
quadruped_low::Species::Reefsnapper => 0.05,
|
|
quadruped_low::Species::Asp => 0.05,
|
|
quadruped_low::Species::HermitAlligator => 0.0,
|
|
_ => 0.0,
|
|
},
|
|
Body::BipedSmall(biped_small) => match biped_small.species {
|
|
biped_small::Species::Gnarling => 0.2,
|
|
biped_small::Species::Adlet => 0.2,
|
|
biped_small::Species::Haniwa => 0.1,
|
|
biped_small::Species::Sahagin => 0.1,
|
|
biped_small::Species::Myrmidon => 0.0,
|
|
biped_small::Species::Husk
|
|
| biped_small::Species::Boreal
|
|
| biped_small::Species::Clockwork
|
|
| biped_small::Species::Flamekeeper => 0.0,
|
|
|
|
_ => 0.5,
|
|
},
|
|
Body::BirdMedium(bird_medium) => match bird_medium.species {
|
|
bird_medium::Species::SnowyOwl => 0.4,
|
|
bird_medium::Species::HornedOwl => 0.4,
|
|
bird_medium::Species::Duck => 0.6,
|
|
bird_medium::Species::Cockatiel => 0.6,
|
|
bird_medium::Species::Chicken => 0.5,
|
|
bird_medium::Species::Bat => 0.1,
|
|
bird_medium::Species::Penguin => 0.5,
|
|
bird_medium::Species::Goose => 0.4,
|
|
bird_medium::Species::Peacock => 0.3,
|
|
bird_medium::Species::Eagle => 0.2,
|
|
bird_medium::Species::Parrot => 0.8,
|
|
bird_medium::Species::Crow => 0.4,
|
|
bird_medium::Species::Dodo => 0.8,
|
|
bird_medium::Species::Parakeet => 0.8,
|
|
bird_medium::Species::Puffin => 0.8,
|
|
bird_medium::Species::Toucan => 0.4,
|
|
},
|
|
Body::BirdLarge(_) => 0.0,
|
|
Body::FishSmall(_) => 1.0,
|
|
Body::FishMedium(_) => 0.75,
|
|
Body::BipedLarge(_) => 0.0,
|
|
Body::Object(_) => 0.0,
|
|
Body::ItemDrop(_) => 0.0,
|
|
Body::Golem(_) => 0.0,
|
|
Body::Theropod(_) => 0.0,
|
|
Body::Ship(_) => 0.0,
|
|
Body::Dragon(_) => 0.0,
|
|
Body::Arthropod(arthropod) => match arthropod.species {
|
|
arthropod::Species::Tarantula => 0.0,
|
|
arthropod::Species::Blackwidow => 0.0,
|
|
arthropod::Species::Antlion => 0.0,
|
|
arthropod::Species::Hornbeetle => 0.1,
|
|
arthropod::Species::Leafbeetle => 0.1,
|
|
arthropod::Species::Stagbeetle => 0.1,
|
|
arthropod::Species::Weevil => 0.0,
|
|
arthropod::Species::Cavespider => 0.0,
|
|
arthropod::Species::Moltencrawler => 0.2,
|
|
arthropod::Species::Mosscrawler => 0.2,
|
|
arthropod::Species::Sandcrawler => 0.2,
|
|
arthropod::Species::Dagonite => 0.2,
|
|
arthropod::Species::Emberfly => 0.1,
|
|
},
|
|
Body::Crustacean(_) => 0.0,
|
|
},
|
|
sight_dist: match body {
|
|
Body::BirdLarge(_) => 250.0,
|
|
Body::BipedLarge(biped_large) => match biped_large.species {
|
|
biped_large::Species::Gigasfrost => 200.0,
|
|
_ => 100.0,
|
|
},
|
|
_ => 40.0,
|
|
},
|
|
listen_dist: 30.0,
|
|
aggro_dist: match body {
|
|
Body::Humanoid(_) => Some(20.0),
|
|
_ => None, // Always aggressive if detected
|
|
},
|
|
idle_wander_factor: 1.0,
|
|
aggro_range_multiplier: 1.0,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Psyche {
|
|
/// The maximum distance that targets to attack might be detected by this
|
|
/// agent.
|
|
pub fn search_dist(&self) -> f32 {
|
|
self.sight_dist.max(self.listen_dist) * self.aggro_range_multiplier
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
/// Events that affect agent behavior from other entities/players/environment
|
|
pub enum AgentEvent {
|
|
/// Engage in conversation with entity with Uid
|
|
Talk(Uid, Subject),
|
|
TradeInvite(Uid),
|
|
TradeAccepted(Uid),
|
|
FinishedTrade(TradeResult),
|
|
UpdatePendingTrade(
|
|
// This data structure is large so box it to keep AgentEvent small
|
|
Box<(
|
|
TradeId,
|
|
PendingTrade,
|
|
SitePrices,
|
|
[Option<ReducedInventory>; 2],
|
|
)>,
|
|
),
|
|
ServerSound(Sound),
|
|
Hurt,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub struct Sound {
|
|
pub kind: SoundKind,
|
|
pub pos: Vec3<f32>,
|
|
pub vol: f32,
|
|
pub time: f64,
|
|
}
|
|
|
|
impl Sound {
|
|
pub fn new(kind: SoundKind, pos: Vec3<f32>, vol: f32, time: f64) -> Self {
|
|
Sound {
|
|
kind,
|
|
pos,
|
|
vol,
|
|
time,
|
|
}
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn with_new_vol(mut self, new_vol: f32) -> Self {
|
|
self.vol = new_vol;
|
|
|
|
self
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum SoundKind {
|
|
Unknown,
|
|
Utterance(UtteranceKind, Body),
|
|
Movement,
|
|
Melee,
|
|
Projectile,
|
|
Explosion,
|
|
Beam,
|
|
Shockwave,
|
|
Trap,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct Target {
|
|
pub target: EcsEntity,
|
|
/// Whether the target is hostile
|
|
pub hostile: bool,
|
|
/// The time at which the target was selected
|
|
pub selected_at: f64,
|
|
/// Whether the target has come close enough to trigger aggro.
|
|
pub aggro_on: bool,
|
|
pub last_known_pos: Option<Vec3<f32>>,
|
|
}
|
|
|
|
impl Target {
|
|
pub fn new(
|
|
target: EcsEntity,
|
|
hostile: bool,
|
|
selected_at: f64,
|
|
aggro_on: bool,
|
|
last_known_pos: Option<Vec3<f32>>,
|
|
) -> Self {
|
|
Self {
|
|
target,
|
|
hostile,
|
|
selected_at,
|
|
aggro_on,
|
|
last_known_pos,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, EnumIter)]
|
|
pub enum TimerAction {
|
|
Interact,
|
|
}
|
|
|
|
/// A time used for managing agent-related timeouts. The timer is designed to
|
|
/// keep track of the start of any number of previous actions. However,
|
|
/// starting/progressing an action will end previous actions. Therefore, the
|
|
/// timer should be used for actions that are mutually-exclusive.
|
|
#[derive(Clone, Debug)]
|
|
pub struct Timer {
|
|
action_starts: Vec<Option<f64>>,
|
|
last_action: Option<TimerAction>,
|
|
}
|
|
|
|
impl Default for Timer {
|
|
fn default() -> Self {
|
|
Self {
|
|
action_starts: TimerAction::iter().map(|_| None).collect(),
|
|
last_action: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Timer {
|
|
fn idx_for(action: TimerAction) -> usize {
|
|
TimerAction::iter()
|
|
.enumerate()
|
|
.find(|(_, a)| a == &action)
|
|
.unwrap()
|
|
.0 // Can't fail, EnumIter is exhaustive
|
|
}
|
|
|
|
/// Reset the timer for the given action, returning true if the timer was
|
|
/// not already reset.
|
|
pub fn reset(&mut self, action: TimerAction) -> bool {
|
|
self.action_starts[Self::idx_for(action)].take().is_some()
|
|
}
|
|
|
|
/// Start the timer for the given action, even if it was already started.
|
|
pub fn start(&mut self, time: f64, action: TimerAction) {
|
|
self.action_starts[Self::idx_for(action)] = Some(time);
|
|
self.last_action = Some(action);
|
|
}
|
|
|
|
/// Continue timing the given action, starting it if it was not already
|
|
/// started.
|
|
pub fn progress(&mut self, time: f64, action: TimerAction) {
|
|
if self.last_action != Some(action) {
|
|
self.start(time, action);
|
|
}
|
|
}
|
|
|
|
/// Return the time that the given action was last performed at.
|
|
pub fn time_of_last(&self, action: TimerAction) -> Option<f64> {
|
|
self.action_starts[Self::idx_for(action)]
|
|
}
|
|
|
|
/// Return `true` if the time since the action was last started exceeds the
|
|
/// given timeout.
|
|
pub fn time_since_exceeds(&self, time: f64, action: TimerAction, timeout: f64) -> bool {
|
|
self.time_of_last(action)
|
|
.map_or(true, |last_time| (time - last_time).max(0.0) > timeout)
|
|
}
|
|
|
|
/// Return `true` while the time since the action was last started is less
|
|
/// than the given period. Once the time has elapsed, reset the timer.
|
|
pub fn timeout_elapsed(
|
|
&mut self,
|
|
time: f64,
|
|
action: TimerAction,
|
|
timeout: f64,
|
|
) -> Option<bool> {
|
|
if self.time_since_exceeds(time, action, timeout) {
|
|
Some(self.reset(action))
|
|
} else {
|
|
self.progress(time, action);
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// For use with the builder pattern <https://doc.rust-lang.org/1.0.0/style/ownership/builders.html>
|
|
#[derive(Clone, Debug)]
|
|
pub struct Agent {
|
|
pub rtsim_controller: RtSimController,
|
|
pub patrol_origin: Option<Vec3<f32>>,
|
|
pub target: Option<Target>,
|
|
pub chaser: Chaser,
|
|
pub behavior: Behavior,
|
|
pub psyche: Psyche,
|
|
pub inbox: VecDeque<AgentEvent>,
|
|
pub combat_state: ActionState,
|
|
pub behavior_state: ActionState,
|
|
pub timer: Timer,
|
|
pub bearing: Vec2<f32>,
|
|
pub sounds_heard: Vec<Sound>,
|
|
pub position_pid_controller: Option<PidController<fn(Vec3<f32>, Vec3<f32>) -> f32, 16>>,
|
|
/// Position from which to flee. Intended to be the agent's position plus a
|
|
/// random position offset, to be used when a random flee direction is
|
|
/// required and reset each time the flee timer is reset.
|
|
pub flee_from_pos: Option<Pos>,
|
|
pub awareness: Awareness,
|
|
pub stay_pos: Option<Pos>,
|
|
/// Inputs sent up to rtsim
|
|
pub rtsim_outbox: Option<VecDeque<NpcInput>>,
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
/// Always clamped between `0.0` and `1.0`.
|
|
pub struct Awareness {
|
|
level: f32,
|
|
reached: bool,
|
|
}
|
|
impl fmt::Display for Awareness {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:.2}", self.level) }
|
|
}
|
|
impl Awareness {
|
|
const ALERT: f32 = 1.0;
|
|
const HIGH: f32 = 0.6;
|
|
const LOW: f32 = 0.1;
|
|
const MEDIUM: f32 = 0.3;
|
|
const UNAWARE: f32 = 0.0;
|
|
|
|
pub fn new(level: f32) -> Self {
|
|
Self {
|
|
level: level.clamp(Self::UNAWARE, Self::ALERT),
|
|
reached: false,
|
|
}
|
|
}
|
|
|
|
/// The level of awareness as a decimal.
|
|
pub fn level(&self) -> f32 { self.level }
|
|
|
|
/// The level of awareness in English. To see if awareness has been fully
|
|
/// reached, use `self.reached()`.
|
|
pub fn state(&self) -> AwarenessState {
|
|
if self.level == Self::ALERT {
|
|
AwarenessState::Alert
|
|
} else if self.level.is_between(Self::HIGH, Self::ALERT) {
|
|
AwarenessState::High
|
|
} else if self.level.is_between(Self::MEDIUM, Self::HIGH) {
|
|
AwarenessState::Medium
|
|
} else if self.level.is_between(Self::LOW, Self::MEDIUM) {
|
|
AwarenessState::Low
|
|
} else {
|
|
AwarenessState::Unaware
|
|
}
|
|
}
|
|
|
|
/// Awareness was reached at some point and has not been reset.
|
|
pub fn reached(&self) -> bool { self.reached }
|
|
|
|
pub fn change_by(&mut self, amount: f32) {
|
|
self.level = (self.level + amount).clamp(Self::UNAWARE, Self::ALERT);
|
|
|
|
if self.state() == AwarenessState::Alert {
|
|
self.reached = true;
|
|
} else if self.state() == AwarenessState::Unaware {
|
|
self.reached = false;
|
|
}
|
|
}
|
|
|
|
pub fn set_maximally_aware(&mut self) {
|
|
self.reached = true;
|
|
self.level = Self::ALERT;
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialOrd, PartialEq, Eq)]
|
|
pub enum AwarenessState {
|
|
Unaware = 0,
|
|
Low = 1,
|
|
Medium = 2,
|
|
High = 3,
|
|
Alert = 4,
|
|
}
|
|
|
|
/// State persistence object for the behavior tree
|
|
/// Allows for state to be stored between subsequent, sequential calls of a
|
|
/// single action node. If the executed action node changes between ticks, then
|
|
/// the state should be considered lost.
|
|
#[derive(Clone, Debug, Default)]
|
|
pub struct ActionState {
|
|
pub timers: [f32; ACTIONSTATE_NUMBER_OF_CONCURRENT_TIMERS],
|
|
pub counters: [f32; ACTIONSTATE_NUMBER_OF_CONCURRENT_COUNTERS],
|
|
pub conditions: [bool; ACTIONSTATE_NUMBER_OF_CONCURRENT_CONDITIONS],
|
|
pub int_counters: [u8; ACTIONSTATE_NUMBER_OF_CONCURRENT_INT_COUNTERS],
|
|
pub positions: [Option<Vec3<f32>>; ACTIONSTATE_NUMBER_OF_CONCURRENT_POSITIONS],
|
|
pub initialized: bool,
|
|
}
|
|
|
|
impl Agent {
|
|
/// Instantiates agent from body using the body's psyche
|
|
pub fn from_body(body: &Body) -> Self {
|
|
Agent {
|
|
rtsim_controller: RtSimController::default(),
|
|
patrol_origin: None,
|
|
target: None,
|
|
chaser: Chaser::default(),
|
|
behavior: Behavior::default(),
|
|
psyche: Psyche::from(body),
|
|
inbox: VecDeque::new(),
|
|
combat_state: ActionState::default(),
|
|
behavior_state: ActionState::default(),
|
|
timer: Timer::default(),
|
|
bearing: Vec2::zero(),
|
|
sounds_heard: Vec::new(),
|
|
position_pid_controller: None,
|
|
flee_from_pos: None,
|
|
stay_pos: None,
|
|
awareness: Awareness::new(0.0),
|
|
rtsim_outbox: None,
|
|
}
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn with_patrol_origin(mut self, origin: Vec3<f32>) -> Self {
|
|
self.patrol_origin = Some(origin);
|
|
self
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn with_behavior(mut self, behavior: Behavior) -> Self {
|
|
self.behavior = behavior;
|
|
self
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn with_no_flee_if(mut self, condition: bool) -> Self {
|
|
if condition {
|
|
self.psyche.flee_health = 0.0;
|
|
}
|
|
self
|
|
}
|
|
|
|
pub fn set_no_flee(&mut self) { self.psyche.flee_health = 0.0; }
|
|
|
|
// FIXME: Only one of *three* things in this method sets a location.
|
|
#[must_use]
|
|
pub fn with_destination(mut self, pos: Vec3<f32>) -> Self {
|
|
self.psyche.flee_health = 0.0;
|
|
self.rtsim_controller = RtSimController::with_destination(pos);
|
|
self.behavior.allow(BehaviorCapability::SPEAK);
|
|
self
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn with_idle_wander_factor(mut self, idle_wander_factor: f32) -> Self {
|
|
self.psyche.idle_wander_factor = idle_wander_factor;
|
|
self
|
|
}
|
|
|
|
pub fn with_aggro_range_multiplier(mut self, aggro_range_multiplier: f32) -> Self {
|
|
self.psyche.aggro_range_multiplier = aggro_range_multiplier;
|
|
self
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn with_position_pid_controller(
|
|
mut self,
|
|
pid: PidController<fn(Vec3<f32>, Vec3<f32>) -> f32, 16>,
|
|
) -> Self {
|
|
self.position_pid_controller = Some(pid);
|
|
self
|
|
}
|
|
|
|
/// Makes agent aggressive without warning
|
|
#[must_use]
|
|
pub fn with_aggro_no_warn(mut self) -> Self {
|
|
self.psyche.aggro_dist = None;
|
|
self
|
|
}
|
|
|
|
pub fn forget_old_sounds(&mut self, time: f64) {
|
|
if !self.sounds_heard.is_empty() {
|
|
// Keep (retain) only newer sounds
|
|
self.sounds_heard
|
|
.retain(|&sound| time - sound.time <= SECONDS_BEFORE_FORGET_SOUNDS);
|
|
}
|
|
}
|
|
|
|
pub fn allowed_to_speak(&self) -> bool { self.behavior.can(BehaviorCapability::SPEAK) }
|
|
}
|
|
|
|
impl Component for Agent {
|
|
type Storage = specs::DenseVecStorage<Self>;
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::{humanoid, Agent, Behavior, BehaviorCapability, BehaviorState, Body};
|
|
|
|
/// Test to verify that Behavior is working correctly at its most basic
|
|
/// usages
|
|
#[test]
|
|
pub fn behavior_basic() {
|
|
let mut b = Behavior::default();
|
|
// test capabilities
|
|
assert!(!b.can(BehaviorCapability::SPEAK));
|
|
b.allow(BehaviorCapability::SPEAK);
|
|
assert!(b.can(BehaviorCapability::SPEAK));
|
|
b.deny(BehaviorCapability::SPEAK);
|
|
assert!(!b.can(BehaviorCapability::SPEAK));
|
|
// test states
|
|
assert!(!b.is(BehaviorState::TRADING));
|
|
b.set(BehaviorState::TRADING);
|
|
assert!(b.is(BehaviorState::TRADING));
|
|
b.unset(BehaviorState::TRADING);
|
|
assert!(!b.is(BehaviorState::TRADING));
|
|
// test `from`
|
|
let b = Behavior::from(BehaviorCapability::SPEAK);
|
|
assert!(b.can(BehaviorCapability::SPEAK));
|
|
}
|
|
|
|
/// Makes agent flee
|
|
#[test]
|
|
pub fn enable_flee() {
|
|
let body = Body::Humanoid(humanoid::Body::random());
|
|
let mut agent = Agent::from_body(&body);
|
|
|
|
agent.psyche.flee_health = 1.0;
|
|
agent = agent.with_no_flee_if(false);
|
|
assert_eq!(agent.psyche.flee_health, 1.0);
|
|
}
|
|
|
|
/// Makes agent not flee
|
|
#[test]
|
|
pub fn set_no_flee() {
|
|
let body = Body::Humanoid(humanoid::Body::random());
|
|
let mut agent = Agent::from_body(&body);
|
|
|
|
agent.psyche.flee_health = 1.0;
|
|
agent.set_no_flee();
|
|
assert_eq!(agent.psyche.flee_health, 0.0);
|
|
}
|
|
|
|
#[test]
|
|
pub fn with_aggro_no_warn() {
|
|
let body = Body::Humanoid(humanoid::Body::random());
|
|
let mut agent = Agent::from_body(&body);
|
|
|
|
agent.psyche.aggro_dist = Some(1.0);
|
|
agent = agent.with_aggro_no_warn();
|
|
assert_eq!(agent.psyche.aggro_dist, None);
|
|
}
|
|
}
|
|
|
|
/// PID controllers are used for automatically adapting nonlinear controls (like
|
|
/// buoyancy for airships) to target specific outcomes (i.e. a specific height)
|
|
#[derive(Clone)]
|
|
pub struct PidController<F: Fn(Vec3<f32>, Vec3<f32>) -> f32, const NUM_SAMPLES: usize> {
|
|
/// The coefficient of the proportional term
|
|
pub kp: f32,
|
|
/// The coefficient of the integral term
|
|
pub ki: f32,
|
|
/// The coefficient of the derivative term
|
|
pub kd: f32,
|
|
/// The setpoint that the process has as its goal
|
|
pub sp: Vec3<f32>,
|
|
/// A ring buffer of the last NUM_SAMPLES measured process variables
|
|
pv_samples: [(f64, Vec3<f32>); NUM_SAMPLES],
|
|
/// The index into the ring buffer of process variables
|
|
pv_idx: usize,
|
|
/// The total integral error
|
|
integral_error: f64,
|
|
/// The error function, to change how the difference between the setpoint
|
|
/// and process variables are calculated
|
|
e: F,
|
|
}
|
|
|
|
impl<F: Fn(Vec3<f32>, Vec3<f32>) -> f32, const NUM_SAMPLES: usize> fmt::Debug
|
|
for PidController<F, NUM_SAMPLES>
|
|
{
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
f.debug_struct("PidController")
|
|
.field("kp", &self.kp)
|
|
.field("ki", &self.ki)
|
|
.field("kd", &self.kd)
|
|
.field("sp", &self.sp)
|
|
.field("pv_samples", &self.pv_samples)
|
|
.field("pv_idx", &self.pv_idx)
|
|
.finish()
|
|
}
|
|
}
|
|
|
|
impl<F: Fn(Vec3<f32>, Vec3<f32>) -> f32, const NUM_SAMPLES: usize> PidController<F, NUM_SAMPLES> {
|
|
/// Constructs a PidController with the specified weights, setpoint,
|
|
/// starting time, and error function
|
|
pub fn new(kp: f32, ki: f32, kd: f32, sp: Vec3<f32>, time: f64, e: F) -> Self {
|
|
Self {
|
|
kp,
|
|
ki,
|
|
kd,
|
|
sp,
|
|
pv_samples: [(time, sp); NUM_SAMPLES],
|
|
pv_idx: 0,
|
|
integral_error: 0.0,
|
|
e,
|
|
}
|
|
}
|
|
|
|
/// Adds a measurement of the process variable to the ringbuffer
|
|
pub fn add_measurement(&mut self, time: f64, pv: Vec3<f32>) {
|
|
self.pv_idx += 1;
|
|
self.pv_idx %= NUM_SAMPLES;
|
|
self.pv_samples[self.pv_idx] = (time, pv);
|
|
self.update_integral_err();
|
|
}
|
|
|
|
/// The amount to set the control variable to is a weighed sum of the
|
|
/// proportional error, the integral error, and the derivative error.
|
|
/// https://en.wikipedia.org/wiki/PID_controller#Mathematical_form
|
|
pub fn calc_err(&self) -> f32 {
|
|
self.kp * self.proportional_err()
|
|
+ self.ki * self.integral_err()
|
|
+ self.kd * self.derivative_err()
|
|
}
|
|
|
|
/// The proportional error is the error function applied to the set point
|
|
/// and the most recent process variable measurement
|
|
pub fn proportional_err(&self) -> f32 { (self.e)(self.sp, self.pv_samples[self.pv_idx].1) }
|
|
|
|
/// The integral error is the error function integrated over all previous
|
|
/// values, updated per point. The trapezoid rule for numerical integration
|
|
/// was chosen because it's fairly easy to calculate and sufficiently
|
|
/// accurate. https://en.wikipedia.org/wiki/Trapezoidal_rule#Uniform_grid
|
|
pub fn integral_err(&self) -> f32 { self.integral_error as f32 }
|
|
|
|
fn update_integral_err(&mut self) {
|
|
let f = |x| (self.e)(self.sp, x) as f64;
|
|
let (a, x0) = self.pv_samples[(self.pv_idx + NUM_SAMPLES - 1) % NUM_SAMPLES];
|
|
let (b, x1) = self.pv_samples[self.pv_idx];
|
|
let dx = b - a;
|
|
// Discard updates with too long between them, likely caused by either
|
|
// initialization or latency, since they're likely to be spurious
|
|
if dx < 5.0 {
|
|
self.integral_error += dx * (f(x1) + f(x0)) / 2.0;
|
|
}
|
|
}
|
|
|
|
/// The derivative error is the numerical derivative of the error function
|
|
/// based on the most recent 2 samples. Using more than 2 samples might
|
|
/// improve the accuracy of the estimate of the derivative, but it would be
|
|
/// an estimate of the derivative error further in the past.
|
|
/// https://en.wikipedia.org/wiki/Numerical_differentiation#Finite_differences
|
|
pub fn derivative_err(&self) -> f32 {
|
|
let f = |x| (self.e)(self.sp, x);
|
|
let (a, x0) = self.pv_samples[(self.pv_idx + NUM_SAMPLES - 1) % NUM_SAMPLES];
|
|
let (b, x1) = self.pv_samples[self.pv_idx];
|
|
let h = b - a;
|
|
(f(x1) - f(x0)) / h as f32
|
|
}
|
|
}
|
|
|
|
/// Get the PID coefficients associated with some Body, since it will likely
|
|
/// need to be tuned differently for each body type
|
|
pub fn pid_coefficients(body: &Body) -> Option<(f32, f32, f32)> {
|
|
// A pure-proportional controller is { kp: 1.0, ki: 0.0, kd: 0.0 }
|
|
match body {
|
|
Body::Ship(ship::Body::DefaultAirship) => {
|
|
let kp = 1.0;
|
|
let ki = 0.1;
|
|
let kd = 1.2;
|
|
Some((kp, ki, kd))
|
|
},
|
|
Body::Ship(ship::Body::AirBalloon) => {
|
|
let kp = 1.0;
|
|
let ki = 0.1;
|
|
let kd = 0.8;
|
|
Some((kp, ki, kd))
|
|
},
|
|
_ => None,
|
|
}
|
|
}
|