veloren/common/src/comp/agent.rs
2021-10-15 22:49:25 +03:00

670 lines
22 KiB
Rust

use crate::{
comp::{humanoid, quadruped_low, quadruped_medium, quadruped_small, ship, Body, UtteranceKind},
path::Chaser,
rtsim::RtSimController,
trade::{PendingTrade, ReducedInventory, SiteId, SitePrices, TradeId, TradeResult},
uid::Uid,
};
use serde::Deserialize;
use specs::{Component, Entity as EcsEntity};
use specs_idvs::IdvStorage;
use std::{collections::VecDeque, fmt};
use strum::IntoEnumIterator;
use strum_macros::EnumIter;
use vek::*;
use super::dialogue::Subject;
pub const DEFAULT_INTERACTION_TIME: f32 = 3.0;
pub const TRADE_INTERACTION_TIME: f32 = 300.0;
#[derive(Copy, Clone, Debug, PartialEq, Deserialize)]
pub enum Alignment {
/// Wild animals and gentle giants
Wild,
/// Dungeon cultists and bandits
Enemy,
/// Friendly folk in villages
Npc,
/// Farm animals and pets of villagers
Tame,
/// Pets you've tamed with a collar
Owned(Uid),
/// Passive objects like training dummies
Passive,
}
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum Mark {
Merchant,
Guard,
}
impl Alignment {
// Always attacks
pub fn hostile_towards(self, other: Alignment) -> bool {
match (self, other) {
(Alignment::Passive, _) => false,
(_, Alignment::Passive) => false,
(Alignment::Enemy, Alignment::Enemy) => false,
(Alignment::Enemy, Alignment::Wild) => false,
(Alignment::Wild, Alignment::Enemy) => false,
(Alignment::Wild, Alignment::Wild) => false,
(Alignment::Npc, Alignment::Wild) => false,
(Alignment::Npc, Alignment::Enemy) => true,
(_, Alignment::Enemy) => true,
(Alignment::Enemy, _) => true,
_ => false,
}
}
// Never attacks
pub fn passive_towards(self, other: Alignment) -> bool {
match (self, other) {
(Alignment::Enemy, Alignment::Enemy) => true,
(Alignment::Owned(a), Alignment::Owned(b)) if a == b => true,
(Alignment::Npc, Alignment::Npc) => true,
(Alignment::Npc, Alignment::Tame) => true,
(Alignment::Enemy, Alignment::Wild) => true,
(Alignment::Wild, Alignment::Enemy) => true,
(Alignment::Tame, Alignment::Npc) => true,
(Alignment::Tame, Alignment::Tame) => true,
(_, Alignment::Passive) => true,
_ => false,
}
}
// TODO: Remove this hack
pub fn is_friendly_to_players(&self) -> bool {
matches!(self, Alignment::Npc | Alignment::Tame | Alignment::Owned(_))
}
}
impl Component for Alignment {
type Storage = IdvStorage<Self>;
}
bitflags::bitflags! {
#[derive(Default)]
pub struct BehaviorCapability: u8 {
const SPEAK = 0b00000001;
}
}
bitflags::bitflags! {
#[derive(Default)]
pub struct BehaviorState: u8 {
const TRADING = 0b00000001;
const TRADING_ISSUER = 0b00000010;
}
}
/// # Behavior Component
/// This component allow an Entity to register one or more behavior tags.
/// These tags act as flags of what an Entity can do, or what it is doing.
/// Behaviors Tags can be added and removed as the Entity lives, to update its
/// state when needed
#[derive(Default, Copy, Clone, Debug)]
pub struct Behavior {
capabilities: BehaviorCapability,
state: BehaviorState,
pub trade_site: Option<SiteId>,
}
impl From<BehaviorCapability> for Behavior {
fn from(capabilities: BehaviorCapability) -> Self {
Behavior {
capabilities,
state: BehaviorState::default(),
trade_site: None,
}
}
}
impl Behavior {
/// Builder function
/// Set capabilities if Option is Some
pub fn maybe_with_capabilities(
mut self,
maybe_capabilities: Option<BehaviorCapability>,
) -> Self {
if let Some(capabilities) = maybe_capabilities {
self.allow(capabilities)
}
self
}
/// Builder function
/// Set trade_site if Option is Some
pub fn with_trade_site(mut self, trade_site: Option<SiteId>) -> Self {
self.trade_site = trade_site;
self
}
/// Set capabilities to the Behavior
pub fn allow(&mut self, capabilities: BehaviorCapability) {
self.capabilities.set(capabilities, true)
}
/// Unset capabilities to the Behavior
pub fn deny(&mut self, capabilities: BehaviorCapability) {
self.capabilities.set(capabilities, false)
}
/// Check if the Behavior is able to do something
pub fn can(&self, capabilities: BehaviorCapability) -> bool {
self.capabilities.contains(capabilities)
}
/// Check if the Behavior is able to trade
pub fn can_trade(&self) -> bool { self.trade_site.is_some() }
/// Set a state to the Behavior
pub fn set(&mut self, state: BehaviorState) { self.state.set(state, true) }
/// Unset a state to the Behavior
pub fn unset(&mut self, state: BehaviorState) { self.state.set(state, false) }
/// Check if the Behavior has a specific state
pub fn is(&self, state: BehaviorState) -> bool { self.state.contains(state) }
}
#[derive(Clone, Debug, Default)]
pub struct Psyche {
/// The proportion of health below which entities will start fleeing.
/// 0.0 = never flees, 1.0 = always flees, 0.5 = flee at 50% health.
pub flee_health: f32,
/// The distance below which the agent will see enemies if it has line of
/// sight.
pub sight_dist: f32,
/// The distance below which the agent can hear enemies without seeing them.
pub listen_dist: f32,
/// The distance below which the agent will attack enemies. Should be lower
/// than `sight_dist`. `None` implied that the agent is always aggro
/// towards enemies that it is aware of.
pub aggro_dist: Option<f32>,
}
impl<'a> From<&'a Body> for Psyche {
fn from(body: &'a Body) -> Self {
Self {
flee_health: match body {
Body::Humanoid(humanoid) => match humanoid.species {
humanoid::Species::Danari => 0.1,
humanoid::Species::Dwarf => 0.2,
humanoid::Species::Elf => 0.3,
humanoid::Species::Human => 0.4,
humanoid::Species::Orc => 0.1,
humanoid::Species::Undead => 0.1,
},
Body::QuadrupedSmall(quadruped_small) => match quadruped_small.species {
quadruped_small::Species::Pig => 0.5,
quadruped_small::Species::Fox => 0.7,
quadruped_small::Species::Sheep => 0.5,
quadruped_small::Species::Boar => 0.2,
quadruped_small::Species::Jackalope => 0.6,
quadruped_small::Species::Skunk => 0.4,
quadruped_small::Species::Cat => 0.8,
quadruped_small::Species::Batfox => 0.4,
quadruped_small::Species::Raccoon => 0.6,
quadruped_small::Species::Quokka => 0.6,
quadruped_small::Species::Dodarock => 0.1,
quadruped_small::Species::Holladon => 0.0,
quadruped_small::Species::Hyena => 0.6,
quadruped_small::Species::Rabbit => 0.9,
quadruped_small::Species::Truffler => 0.2,
quadruped_small::Species::Frog => 0.6,
quadruped_small::Species::Hare => 0.8,
quadruped_small::Species::Goat => 0.5,
_ => 1.0,
},
Body::QuadrupedMedium(quadruped_medium) => match quadruped_medium.species {
quadruped_medium::Species::Tuskram => 0.3,
quadruped_medium::Species::Frostfang => 0.1,
quadruped_medium::Species::Mouflon => 0.3,
quadruped_medium::Species::Catoblepas => 0.2,
quadruped_medium::Species::Deer => 0.4,
quadruped_medium::Species::Hirdrasil => 0.3,
quadruped_medium::Species::Donkey => 0.3,
quadruped_medium::Species::Camel => 0.3,
quadruped_medium::Species::Zebra => 0.3,
quadruped_medium::Species::Antelope => 0.4,
quadruped_medium::Species::Horse => 0.3,
quadruped_medium::Species::Cattle => 0.3,
quadruped_medium::Species::Darkhound => 0.1,
quadruped_medium::Species::Dreadhorn => 0.2,
quadruped_medium::Species::Snowleopard => 0.3,
quadruped_medium::Species::Llama => 0.4,
quadruped_medium::Species::Alpaca => 0.4,
_ => 0.5,
},
Body::QuadrupedLow(quadruped_low) => match quadruped_low.species {
quadruped_low::Species::Salamander => 0.3,
quadruped_low::Species::Monitor => 0.3,
quadruped_low::Species::Asp => 0.1,
quadruped_low::Species::Pangolin => 0.6,
_ => 0.4,
},
Body::BipedSmall(_) => 0.5,
Body::BirdMedium(_) => 0.5,
Body::BirdLarge(_) => 0.1,
Body::FishMedium(_) => 0.85,
Body::FishSmall(_) => 1.0,
Body::BipedLarge(_) => 0.0,
Body::Object(_) => 0.0,
Body::Golem(_) => 0.0,
Body::Theropod(_) => 0.0,
Body::Dragon(_) => 0.0,
Body::Ship(_) => 0.0,
},
sight_dist: 40.0,
listen_dist: 30.0,
aggro_dist: match body {
Body::Humanoid(_) => Some(20.0),
_ => None, // Always aggressive if detected
},
}
}
}
impl Psyche {
/// The maximum distance that targets might be detected by this agent.
pub fn search_dist(&self) -> f32 { self.sight_dist.max(self.listen_dist) }
}
#[derive(Clone, Debug)]
/// Events that affect agent behavior from other entities/players/environment
pub enum AgentEvent {
/// Engage in conversation with entity with Uid
Talk(Uid, Subject),
TradeInvite(Uid),
TradeAccepted(Uid),
FinishedTrade(TradeResult),
UpdatePendingTrade(
// This data structure is large so box it to keep AgentEvent small
Box<(
TradeId,
PendingTrade,
SitePrices,
[Option<ReducedInventory>; 2],
)>,
),
ServerSound(Sound),
Hurt,
}
#[derive(Copy, Clone, Debug)]
pub struct Sound {
pub kind: SoundKind,
pub pos: Vec3<f32>,
pub vol: f32,
pub time: f64,
}
impl Sound {
pub fn new(kind: SoundKind, pos: Vec3<f32>, vol: f32, time: f64) -> Self {
Sound {
kind,
pos,
vol,
time,
}
}
pub fn with_new_vol(mut self, new_vol: f32) -> Self {
self.vol = new_vol;
self
}
}
#[derive(Copy, Clone, Debug)]
pub enum SoundKind {
Unknown,
Movement,
Melee,
Projectile,
Explosion,
Beam,
Shockwave,
Utterance(UtteranceKind, Body),
}
#[derive(Clone, Copy, Debug)]
pub struct Target {
pub target: EcsEntity,
/// Whether the target is hostile
pub hostile: bool,
/// The time at which the target was selected
pub selected_at: f64,
/// Whether the target has come close enough to trigger aggro.
pub aggro_on: bool,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, EnumIter)]
pub enum TimerAction {
Interact,
}
/// A time used for managing agent-related timeouts. The timer is designed to
/// keep track of the start of any number of previous actions. However,
/// starting/progressing an action will end previous actions. Therefore, the
/// timer should be used for actions that are mutually-exclusive.
#[derive(Clone, Debug)]
pub struct Timer {
action_starts: Vec<Option<f64>>,
last_action: Option<TimerAction>,
}
impl Default for Timer {
fn default() -> Self {
Self {
action_starts: TimerAction::iter().map(|_| None).collect(),
last_action: None,
}
}
}
impl Timer {
fn idx_for(action: TimerAction) -> usize {
TimerAction::iter()
.enumerate()
.find(|(_, a)| a == &action)
.unwrap()
.0 // Can't fail, EnumIter is exhaustive
}
/// Reset the timer for the given action, returning true if the timer was
/// not already reset.
pub fn reset(&mut self, action: TimerAction) -> bool {
std::mem::replace(&mut self.action_starts[Self::idx_for(action)], None).is_some()
}
/// Start the timer for the given action, even if it was already started.
pub fn start(&mut self, time: f64, action: TimerAction) {
self.action_starts[Self::idx_for(action)] = Some(time);
self.last_action = Some(action);
}
/// Continue timing the given action, starting it if it was not already
/// started.
pub fn progress(&mut self, time: f64, action: TimerAction) {
if self.last_action != Some(action) {
self.start(time, action);
}
}
/// Return the time that the given action was last performed at.
pub fn time_of_last(&self, action: TimerAction) -> Option<f64> {
self.action_starts[Self::idx_for(action)]
}
/// Return `true` if the time since the action was last started exceeds the
/// given timeout.
pub fn time_since_exceeds(&self, time: f64, action: TimerAction, timeout: f64) -> bool {
self.time_of_last(action)
.map_or(true, |last_time| (time - last_time).max(0.0) > timeout)
}
/// Return `true` while the time since the action was last started is less
/// than the given period. Once the time has elapsed, reset the timer.
pub fn timeout_elapsed(
&mut self,
time: f64,
action: TimerAction,
timeout: f64,
) -> Option<bool> {
if self.time_since_exceeds(time, action, timeout) {
Some(self.reset(action))
} else {
self.progress(time, action);
None
}
}
}
#[allow(clippy::type_complexity)]
#[derive(Clone, Debug)]
pub struct Agent {
pub rtsim_controller: RtSimController,
pub patrol_origin: Option<Vec3<f32>>,
pub target: Option<Target>,
pub chaser: Chaser,
pub behavior: Behavior,
pub psyche: Psyche,
pub inbox: VecDeque<AgentEvent>,
pub action_state: ActionState,
pub timer: Timer,
pub bearing: Vec2<f32>,
pub sounds_heard: Vec<Sound>,
pub awareness: f32,
pub position_pid_controller: Option<PidController<fn(Vec3<f32>, Vec3<f32>) -> f32, 16>>,
}
#[derive(Clone, Debug, Default)]
pub struct ActionState {
pub timer: f32,
pub counter: f32,
pub condition: bool,
pub int_counter: u8,
}
impl Agent {
pub fn from_body(body: &Body) -> Self {
Agent {
rtsim_controller: RtSimController::default(),
patrol_origin: None,
target: None,
chaser: Chaser::default(),
behavior: Behavior::default(),
psyche: Psyche::from(body),
inbox: VecDeque::new(),
action_state: ActionState::default(),
timer: Timer::default(),
bearing: Vec2::zero(),
sounds_heard: Vec::new(),
awareness: 0.0,
position_pid_controller: None,
}
}
pub fn with_patrol_origin(mut self, origin: Vec3<f32>) -> Self {
self.patrol_origin = Some(origin);
self
}
pub fn with_behavior(mut self, behavior: Behavior) -> Self {
self.behavior = behavior;
self
}
pub fn with_no_flee(mut self, no_flee: bool) -> Self {
if no_flee {
self.set_no_flee();
}
self
}
pub fn set_no_flee(&mut self) { self.psyche.flee_health = 0.0; }
// TODO: Get rid of this method, it does weird things
pub fn with_destination(mut self, pos: Vec3<f32>) -> Self {
self.psyche.flee_health = 0.0;
self.rtsim_controller = RtSimController::with_destination(pos);
self.behavior.allow(BehaviorCapability::SPEAK);
self
}
#[allow(clippy::type_complexity)]
pub fn with_position_pid_controller(
mut self,
pid: PidController<fn(Vec3<f32>, Vec3<f32>) -> f32, 16>,
) -> Self {
self.position_pid_controller = Some(pid);
self
}
pub fn with_aggro_no_warn(mut self) -> Self {
self.psyche.aggro_dist = None;
self
}
}
impl Component for Agent {
type Storage = IdvStorage<Self>;
}
#[cfg(test)]
mod tests {
use super::{Behavior, BehaviorCapability, BehaviorState};
/// Test to verify that Behavior is working correctly at its most basic
/// usages
#[test]
pub fn behavior_basic() {
let mut b = Behavior::default();
// test capabilities
assert!(!b.can(BehaviorCapability::SPEAK));
b.allow(BehaviorCapability::SPEAK);
assert!(b.can(BehaviorCapability::SPEAK));
b.deny(BehaviorCapability::SPEAK);
assert!(!b.can(BehaviorCapability::SPEAK));
// test states
assert!(!b.is(BehaviorState::TRADING));
b.set(BehaviorState::TRADING);
assert!(b.is(BehaviorState::TRADING));
b.unset(BehaviorState::TRADING);
assert!(!b.is(BehaviorState::TRADING));
// test `from`
let b = Behavior::from(BehaviorCapability::SPEAK);
assert!(b.can(BehaviorCapability::SPEAK));
}
}
/// PID controllers are used for automatically adapting nonlinear controls (like
/// buoyancy for airships) to target specific outcomes (i.e. a specific height)
#[derive(Clone)]
pub struct PidController<F: Fn(Vec3<f32>, Vec3<f32>) -> f32, const NUM_SAMPLES: usize> {
/// The coefficient of the proportional term
pub kp: f32,
/// The coefficient of the integral term
pub ki: f32,
/// The coefficient of the derivative term
pub kd: f32,
/// The setpoint that the process has as its goal
pub sp: Vec3<f32>,
/// A ring buffer of the last NUM_SAMPLES measured process variables
pv_samples: [(f64, Vec3<f32>); NUM_SAMPLES],
/// The index into the ring buffer of process variables
pv_idx: usize,
/// The total integral error
integral_error: f64,
/// The error function, to change how the difference between the setpoint
/// and process variables are calculated
e: F,
}
impl<F: Fn(Vec3<f32>, Vec3<f32>) -> f32, const NUM_SAMPLES: usize> fmt::Debug
for PidController<F, NUM_SAMPLES>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("PidController")
.field("kp", &self.kp)
.field("ki", &self.ki)
.field("kd", &self.kd)
.field("sp", &self.sp)
.field("pv_samples", &self.pv_samples)
.field("pv_idx", &self.pv_idx)
.finish()
}
}
impl<F: Fn(Vec3<f32>, Vec3<f32>) -> f32, const NUM_SAMPLES: usize> PidController<F, NUM_SAMPLES> {
/// Constructs a PidController with the specified weights, setpoint,
/// starting time, and error function
pub fn new(kp: f32, ki: f32, kd: f32, sp: Vec3<f32>, time: f64, e: F) -> Self {
Self {
kp,
ki,
kd,
sp,
pv_samples: [(time, sp); NUM_SAMPLES],
pv_idx: 0,
integral_error: 0.0,
e,
}
}
/// Adds a measurement of the process variable to the ringbuffer
pub fn add_measurement(&mut self, time: f64, pv: Vec3<f32>) {
self.pv_idx += 1;
self.pv_idx %= NUM_SAMPLES;
self.pv_samples[self.pv_idx] = (time, pv);
self.update_integral_err();
}
/// The amount to set the control variable to is a weighed sum of the
/// proportional error, the integral error, and the derivative error.
/// https://en.wikipedia.org/wiki/PID_controller#Mathematical_form
pub fn calc_err(&self) -> f32 {
self.kp * self.proportional_err()
+ self.ki * self.integral_err()
+ self.kd * self.derivative_err()
}
/// The proportional error is the error function applied to the set point
/// and the most recent process variable measurement
pub fn proportional_err(&self) -> f32 { (self.e)(self.sp, self.pv_samples[self.pv_idx].1) }
/// The integral error is the error function integrated over all previous
/// values, updated per point. The trapezoid rule for numerical integration
/// was chosen because it's fairly easy to calculate and sufficiently
/// accurate. https://en.wikipedia.org/wiki/Trapezoidal_rule#Uniform_grid
pub fn integral_err(&self) -> f32 { self.integral_error as f32 }
fn update_integral_err(&mut self) {
let f = |x| (self.e)(self.sp, x) as f64;
let (a, x0) = self.pv_samples[(self.pv_idx + NUM_SAMPLES - 1) % NUM_SAMPLES];
let (b, x1) = self.pv_samples[self.pv_idx];
let dx = b - a;
// Discard updates with too long between them, likely caused by either
// initialization or latency, since they're likely to be spurious
if dx < 5.0 {
self.integral_error += dx * (f(x1) + f(x0)) / 2.0;
}
}
/// The derivative error is the numerical derivative of the error function
/// based on the most recent 2 samples. Using more than 2 samples might
/// improve the accuracy of the estimate of the derivative, but it would be
/// an estimate of the derivative error further in the past.
/// https://en.wikipedia.org/wiki/Numerical_differentiation#Finite_differences
pub fn derivative_err(&self) -> f32 {
let f = |x| (self.e)(self.sp, x);
let (a, x0) = self.pv_samples[(self.pv_idx + NUM_SAMPLES - 1) % NUM_SAMPLES];
let (b, x1) = self.pv_samples[self.pv_idx];
let h = b - a;
(f(x1) - f(x0)) / h as f32
}
}
/// Get the PID coefficients associated with some Body, since it will likely
/// need to be tuned differently for each body type
pub fn pid_coefficients(body: &Body) -> (f32, f32, f32) {
match body {
Body::Ship(ship::Body::DefaultAirship) => {
let kp = 1.0;
let ki = 0.1;
let kd = 1.2;
(kp, ki, kd)
},
Body::Ship(ship::Body::AirBalloon) => {
let kp = 1.0;
let ki = 0.1;
let kd = 0.8;
(kp, ki, kd)
},
// default to a pure-proportional controller, which is the first step when tuning
_ => (1.0, 0.0, 0.0),
}
}