veloren/voxygen/src/render/renderer.rs

1459 lines
52 KiB
Rust

mod binding;
pub(super) mod drawer;
// Consts and bind groups for post-process and clouds
mod locals;
mod pipeline_creation;
mod screenshot;
mod shaders;
mod shadow_map;
use locals::Locals;
use pipeline_creation::{
IngameAndShadowPipelines, InterfacePipelines, PipelineCreation, Pipelines, ShadowPipelines,
};
use shaders::Shaders;
use shadow_map::{ShadowMap, ShadowMapRenderer};
use super::{
buffer::Buffer,
consts::Consts,
instances::Instances,
mesh::Mesh,
model::{DynamicModel, Model},
pipelines::{
blit, bloom, clouds, debug, figure, postprocess, shadow, sprite, terrain, ui,
GlobalsBindGroup, GlobalsLayouts, ShadowTexturesBindGroup,
},
texture::Texture,
AaMode, AddressMode, FilterMode, OtherModes, PipelineModes, RenderError, RenderMode,
ShadowMapMode, ShadowMode, Vertex,
};
use common::assets::{self, AssetExt, AssetHandle, ReloadWatcher};
use common_base::span;
use core::convert::TryFrom;
#[cfg(feature = "egui-ui")]
use egui_wgpu_backend::wgpu::TextureFormat;
use std::sync::Arc;
use tracing::{error, info, warn};
use vek::*;
// TODO: yeet this somewhere else
/// A type representing data that can be converted to an immutable texture map
/// of ColLight data (used for texture atlases created during greedy meshing).
// TODO: revert to u16
pub type ColLightInfo = (Vec<[u8; 4]>, Vec2<u16>);
const QUAD_INDEX_BUFFER_U16_START_VERT_LEN: u16 = 3000;
const QUAD_INDEX_BUFFER_U32_START_VERT_LEN: u32 = 3000;
/// A type that stores all the layouts associated with this renderer that never
/// change when the RenderMode is modified.
struct ImmutableLayouts {
global: GlobalsLayouts,
debug: debug::DebugLayout,
figure: figure::FigureLayout,
shadow: shadow::ShadowLayout,
sprite: sprite::SpriteLayout,
terrain: terrain::TerrainLayout,
clouds: clouds::CloudsLayout,
bloom: bloom::BloomLayout,
ui: ui::UiLayout,
blit: blit::BlitLayout,
}
/// A type that stores all the layouts associated with this renderer.
struct Layouts {
immutable: Arc<ImmutableLayouts>,
postprocess: Arc<postprocess::PostProcessLayout>,
}
impl core::ops::Deref for Layouts {
type Target = ImmutableLayouts;
fn deref(&self) -> &Self::Target { &self.immutable }
}
/// Render target views
struct Views {
// NOTE: unused for now, maybe... we will want it for something
_win_depth: wgpu::TextureView,
tgt_color: wgpu::TextureView,
tgt_depth: wgpu::TextureView,
bloom_tgts: Option<[wgpu::TextureView; bloom::NUM_SIZES]>,
// TODO: rename
tgt_color_pp: wgpu::TextureView,
}
/// Shadow rendering textures, layouts, pipelines, and bind groups
struct Shadow {
map: ShadowMap,
bind: ShadowTexturesBindGroup,
}
/// Represent two states of the renderer:
/// 1. Only interface pipelines created
/// 2. All of the pipelines have been created
#[allow(clippy::large_enum_variant)] // They are both pretty large
enum State {
// NOTE: this is used as a transient placeholder for moving things out of State temporarily
Nothing,
Interface {
pipelines: InterfacePipelines,
shadow_views: Option<(Texture, Texture)>,
// In progress creation of the remaining pipelines in the background
creating: PipelineCreation<IngameAndShadowPipelines>,
},
Complete {
pipelines: Pipelines,
shadow: Shadow,
recreating: Option<(
PipelineModes,
PipelineCreation<
Result<
(
Pipelines,
ShadowPipelines,
Arc<postprocess::PostProcessLayout>,
),
RenderError,
>,
>,
)>,
},
}
/// A type that encapsulates rendering state. `Renderer` is central to Voxygen's
/// rendering subsystem and contains any state necessary to interact with the
/// GPU, along with pipeline state objects (PSOs) needed to renderer different
/// kinds of models to the screen.
pub struct Renderer {
device: Arc<wgpu::Device>,
queue: wgpu::Queue,
surface: wgpu::Surface,
swap_chain: wgpu::SwapChain,
sc_desc: wgpu::SwapChainDescriptor,
sampler: wgpu::Sampler,
depth_sampler: wgpu::Sampler,
state: State,
// Some if there is a pending need to recreate the pipelines (e.g. RenderMode change or shader
// hotloading)
recreation_pending: Option<PipelineModes>,
layouts: Layouts,
// Note: we keep these here since their bind groups need to be updated if we resize the
// color/depth textures
locals: Locals,
views: Views,
noise_tex: Texture,
quad_index_buffer_u16: Buffer<u16>,
quad_index_buffer_u32: Buffer<u32>,
shaders: AssetHandle<Shaders>,
shaders_watcher: ReloadWatcher,
pipeline_modes: PipelineModes,
other_modes: OtherModes,
resolution: Vec2<u32>,
// If this is Some then a screenshot will be taken and passed to the handler here
take_screenshot: Option<screenshot::ScreenshotFn>,
profiler: wgpu_profiler::GpuProfiler,
profile_times: Vec<wgpu_profiler::GpuTimerScopeResult>,
profiler_features_enabled: bool,
#[cfg(feature = "egui-ui")]
egui_renderpass: egui_wgpu_backend::RenderPass,
// This checks is added because windows resizes the window to 0,0 when
// minimizing and this causes a bunch of validation errors
is_minimized: bool,
// To remember the backend info after initialization for debug purposes
graphics_backend: String,
}
impl Renderer {
/// Create a new `Renderer` from a variety of backend-specific components
/// and the window targets.
pub fn new(
window: &winit::window::Window,
mode: RenderMode,
runtime: &tokio::runtime::Runtime,
) -> Result<Self, RenderError> {
let (pipeline_modes, mut other_modes) = mode.split();
// Enable seamless cubemaps globally, where available--they are essentially a
// strict improvement on regular cube maps.
//
// Note that since we only have to enable this once globally, there is no point
// in doing this on rerender.
// Self::enable_seamless_cube_maps(&mut device);
// TODO: fix panic on wayland with opengl?
// TODO: fix backend defaulting to opengl on wayland.
let backend_bit = std::env::var("WGPU_BACKEND")
.ok()
.and_then(|backend| match backend.to_lowercase().as_str() {
"vulkan" => Some(wgpu::BackendBit::VULKAN),
"metal" => Some(wgpu::BackendBit::METAL),
"dx12" => Some(wgpu::BackendBit::DX12),
"primary" => Some(wgpu::BackendBit::PRIMARY),
"opengl" | "gl" => Some(wgpu::BackendBit::GL),
"dx11" => Some(wgpu::BackendBit::DX11),
"secondary" => Some(wgpu::BackendBit::SECONDARY),
"all" => Some(wgpu::BackendBit::all()),
_ => None,
})
.unwrap_or(
(wgpu::BackendBit::PRIMARY | wgpu::BackendBit::SECONDARY) & !wgpu::BackendBit::GL,
);
let instance = wgpu::Instance::new(backend_bit);
let dims = window.inner_size();
// This is unsafe because the window handle must be valid, if you find a way to
// have an invalid winit::Window then you have bigger issues
#[allow(unsafe_code)]
let surface = unsafe { instance.create_surface(window) };
let adapters = instance
.enumerate_adapters(backend_bit)
.enumerate()
.collect::<Vec<_>>();
for (i, adapter) in adapters.iter() {
let info = adapter.get_info();
info!(
?info.name,
?info.vendor,
?info.backend,
?info.device,
?info.device_type,
"graphics device #{}", i,
);
}
let adapter = match std::env::var("WGPU_ADAPTER").ok() {
Some(filter) if !filter.is_empty() => adapters.into_iter().find_map(|(i, adapter)| {
let info = adapter.get_info();
let full_name = format!("#{} {} {:?}", i, info.name, info.device_type,);
full_name.contains(&filter).then(|| adapter)
}),
Some(_) | None => {
runtime.block_on(instance.request_adapter(&wgpu::RequestAdapterOptionsBase {
power_preference: wgpu::PowerPreference::HighPerformance,
compatible_surface: Some(&surface),
}))
},
}
.ok_or(RenderError::CouldNotFindAdapter)?;
let info = adapter.get_info();
info!(
?info.name,
?info.vendor,
?info.backend,
?info.device,
?info.device_type,
"selected graphics device"
);
let graphics_backend = format!("{:?}", &info.backend);
let limits = wgpu::Limits {
max_push_constant_size: 64,
..Default::default()
};
let trace_env = std::env::var_os("WGPU_TRACE_DIR");
let trace_path = trace_env.as_ref().map(|v| {
let path = std::path::Path::new(v);
// We don't want to continue if we can't actually collect the api trace
assert!(
path.exists(),
"WGPU_TRACE_DIR is set to the path \"{}\" which doesn't exist",
path.display()
);
assert!(
path.is_dir(),
"WGPU_TRACE_DIR is set to the path \"{}\" which is not a directory",
path.display()
);
assert!(
path.read_dir()
.expect("Could not read the directory that is specified by WGPU_TRACE_DIR")
.next()
.is_none(),
"WGPU_TRACE_DIR is set to the path \"{}\" which already contains other files",
path.display()
);
path
});
let (device, queue) = runtime.block_on(adapter.request_device(
&wgpu::DeviceDescriptor {
// TODO
label: None,
features: wgpu::Features::DEPTH_CLAMPING
| wgpu::Features::ADDRESS_MODE_CLAMP_TO_BORDER
| wgpu::Features::PUSH_CONSTANTS
| (adapter.features() & wgpu_profiler::GpuProfiler::REQUIRED_WGPU_FEATURES),
limits,
},
trace_path,
))?;
// Set error handler for wgpu errors
// This is better for use than their default because it includes the error in
// the panic message
device.on_uncaptured_error(move |error| {
error!("{}", &error);
panic!(
"wgpu error (handling all wgpu errors as fatal):\n{:?}\n{:?}",
&error, &info,
);
});
let profiler_features_enabled = device
.features()
.contains(wgpu_profiler::GpuProfiler::REQUIRED_WGPU_FEATURES);
if !profiler_features_enabled {
info!(
"The features for GPU profiling (timestamp queries) are not available on this \
adapter"
);
}
let format = adapter
.get_swap_chain_preferred_format(&surface)
.expect("No supported swap chain format found");
info!("Using {:?} as the swapchain format", format);
let sc_desc = wgpu::SwapChainDescriptor {
usage: wgpu::TextureUsage::RENDER_ATTACHMENT,
format,
width: dims.width,
height: dims.height,
present_mode: other_modes.present_mode.into(),
};
let swap_chain = device.create_swap_chain(&surface, &sc_desc);
let shadow_views = ShadowMap::create_shadow_views(
&device,
(dims.width, dims.height),
&ShadowMapMode::try_from(pipeline_modes.shadow).unwrap_or_default(),
)
.map_err(|err| {
warn!("Could not create shadow map views: {:?}", err);
})
.ok();
let shaders = Shaders::load_expect("");
let shaders_watcher = shaders.reload_watcher();
let layouts = {
let global = GlobalsLayouts::new(&device);
let debug = debug::DebugLayout::new(&device);
let figure = figure::FigureLayout::new(&device);
let shadow = shadow::ShadowLayout::new(&device);
let sprite = sprite::SpriteLayout::new(&device);
let terrain = terrain::TerrainLayout::new(&device);
let clouds = clouds::CloudsLayout::new(&device);
let bloom = bloom::BloomLayout::new(&device);
let postprocess = Arc::new(postprocess::PostProcessLayout::new(
&device,
&pipeline_modes,
));
let ui = ui::UiLayout::new(&device);
let blit = blit::BlitLayout::new(&device);
let immutable = Arc::new(ImmutableLayouts {
global,
debug,
figure,
shadow,
sprite,
terrain,
clouds,
bloom,
ui,
blit,
});
Layouts {
immutable,
postprocess,
}
};
// Arcify the device
let device = Arc::new(device);
let (interface_pipelines, creating) = pipeline_creation::initial_create_pipelines(
Arc::clone(&device),
Layouts {
immutable: Arc::clone(&layouts.immutable),
postprocess: Arc::clone(&layouts.postprocess),
},
shaders.cloned(),
pipeline_modes.clone(),
sc_desc.clone(), // Note: cheap clone
shadow_views.is_some(),
)?;
let state = State::Interface {
pipelines: interface_pipelines,
shadow_views,
creating,
};
let (views, bloom_sizes) = Self::create_rt_views(
&device,
(dims.width, dims.height),
&pipeline_modes,
&other_modes,
);
let create_sampler = |filter| {
device.create_sampler(&wgpu::SamplerDescriptor {
label: None,
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: filter,
min_filter: filter,
mipmap_filter: wgpu::FilterMode::Nearest,
compare: None,
..Default::default()
})
};
let sampler = create_sampler(wgpu::FilterMode::Linear);
let depth_sampler = create_sampler(wgpu::FilterMode::Nearest);
let noise_tex = Texture::new(
&device,
&queue,
&assets::Image::load_expect("voxygen.texture.noise").read().0,
Some(wgpu::FilterMode::Linear),
Some(wgpu::AddressMode::Repeat),
)?;
let clouds_locals =
Self::create_consts_inner(&device, &queue, &[clouds::Locals::default()]);
let postprocess_locals =
Self::create_consts_inner(&device, &queue, &[postprocess::Locals::default()]);
let locals = Locals::new(
&device,
&layouts,
clouds_locals,
postprocess_locals,
&views.tgt_color,
&views.tgt_depth,
views.bloom_tgts.as_ref().map(|tgts| locals::BloomParams {
locals: bloom_sizes.map(|size| {
Self::create_consts_inner(&device, &queue, &[bloom::Locals::new(size)])
}),
src_views: [&views.tgt_color_pp, &tgts[1], &tgts[2], &tgts[3], &tgts[4]],
final_tgt_view: &tgts[0],
}),
&views.tgt_color_pp,
&sampler,
&depth_sampler,
);
let quad_index_buffer_u16 =
create_quad_index_buffer_u16(&device, QUAD_INDEX_BUFFER_U16_START_VERT_LEN as usize);
let quad_index_buffer_u32 =
create_quad_index_buffer_u32(&device, QUAD_INDEX_BUFFER_U32_START_VERT_LEN as usize);
let mut profiler = wgpu_profiler::GpuProfiler::new(4, queue.get_timestamp_period());
other_modes.profiler_enabled &= profiler_features_enabled;
profiler.enable_timer = other_modes.profiler_enabled;
profiler.enable_debug_marker = other_modes.profiler_enabled;
#[cfg(feature = "egui-ui")]
let egui_renderpass =
egui_wgpu_backend::RenderPass::new(&*device, TextureFormat::Bgra8UnormSrgb, 1);
Ok(Self {
device,
queue,
surface,
swap_chain,
sc_desc,
state,
recreation_pending: None,
layouts,
locals,
views,
sampler,
depth_sampler,
noise_tex,
quad_index_buffer_u16,
quad_index_buffer_u32,
shaders,
shaders_watcher,
pipeline_modes,
other_modes,
resolution: Vec2::new(dims.width, dims.height),
take_screenshot: None,
profiler,
profile_times: Vec::new(),
profiler_features_enabled,
#[cfg(feature = "egui-ui")]
egui_renderpass,
is_minimized: false,
graphics_backend,
})
}
/// Get the graphics backend being used
pub fn graphics_backend(&self) -> &str { &self.graphics_backend }
/// Check the status of the intial pipeline creation
/// Returns `None` if complete
/// Returns `Some((total, complete))` if in progress
pub fn pipeline_creation_status(&self) -> Option<(usize, usize)> {
if let State::Interface { creating, .. } = &self.state {
Some(creating.status())
} else {
None
}
}
/// Check the status the pipeline recreation
/// Returns `None` if pipelines are currently not being recreated
/// Returns `Some((total, complete))` if in progress
pub fn pipeline_recreation_status(&self) -> Option<(usize, usize)> {
if let State::Complete { recreating, .. } = &self.state {
recreating.as_ref().map(|(_, c)| c.status())
} else {
None
}
}
/// Change the render mode.
pub fn set_render_mode(&mut self, mode: RenderMode) -> Result<(), RenderError> {
let (pipeline_modes, other_modes) = mode.split();
if self.other_modes != other_modes {
self.other_modes = other_modes;
// Update present mode in swap chain descriptor
self.sc_desc.present_mode = self.other_modes.present_mode.into();
// Only enable profiling if the wgpu features are enabled
self.other_modes.profiler_enabled &= self.profiler_features_enabled;
// Enable/disable profiler
if !self.other_modes.profiler_enabled {
// Clear the times if disabled
core::mem::take(&mut self.profile_times);
}
self.profiler.enable_timer = self.other_modes.profiler_enabled;
self.profiler.enable_debug_marker = self.other_modes.profiler_enabled;
// Recreate render target
self.on_resize(self.resolution);
}
// We can't cancel the pending recreation even if the new settings are equal
// to the current ones becuase the recreation could be triggered by something
// else like shader hotloading
if self.pipeline_modes != pipeline_modes
|| self
.recreation_pending
.as_ref()
.map_or(false, |modes| modes != &pipeline_modes)
{
// Recreate pipelines with new modes
self.recreate_pipelines(pipeline_modes);
}
Ok(())
}
/// Get the pipelines mode.
pub fn pipeline_modes(&self) -> &PipelineModes { &self.pipeline_modes }
/// Get the current profiling times
/// Nested timings immediately follow their parent
/// Returns Vec<(how nested this timing is, label, length in seconds)>
pub fn timings(&self) -> Vec<(u8, &str, f64)> {
use wgpu_profiler::GpuTimerScopeResult;
fn recursive_collect<'a>(
vec: &mut Vec<(u8, &'a str, f64)>,
result: &'a GpuTimerScopeResult,
nest_level: u8,
) {
vec.push((
nest_level,
&result.label,
result.time.end - result.time.start,
));
result
.nested_scopes
.iter()
.for_each(|child| recursive_collect(vec, child, nest_level + 1));
}
let mut vec = Vec::new();
self.profile_times
.iter()
.for_each(|child| recursive_collect(&mut vec, child, 0));
vec
}
/// Resize internal render targets to match window render target dimensions.
pub fn on_resize(&mut self, dims: Vec2<u32>) {
// Avoid panics when creating texture with w,h of 0,0.
if dims.x != 0 && dims.y != 0 {
self.is_minimized = false;
// Resize swap chain
self.resolution = dims;
self.sc_desc.width = dims.x;
self.sc_desc.height = dims.y;
self.swap_chain = self.device.create_swap_chain(&self.surface, &self.sc_desc);
// Resize other render targets
let (views, bloom_sizes) = Self::create_rt_views(
&self.device,
(dims.x, dims.y),
&self.pipeline_modes,
&self.other_modes,
);
self.views = views;
// appease borrow check (TODO: remove after Rust 2021)
let device = &self.device;
let queue = &self.queue;
let views = &self.views;
let bloom_params = self
.views
.bloom_tgts
.as_ref()
.map(|tgts| locals::BloomParams {
locals: bloom_sizes.map(|size| {
Self::create_consts_inner(device, queue, &[bloom::Locals::new(size)])
}),
src_views: [&views.tgt_color_pp, &tgts[1], &tgts[2], &tgts[3], &tgts[4]],
final_tgt_view: &tgts[0],
});
self.locals.rebind(
&self.device,
&self.layouts,
&self.views.tgt_color,
&self.views.tgt_depth,
bloom_params,
&self.views.tgt_color_pp,
&self.sampler,
&self.depth_sampler,
);
// Get mutable reference to shadow views out of the current state
let shadow_views = match &mut self.state {
State::Interface { shadow_views, .. } => {
shadow_views.as_mut().map(|s| (&mut s.0, &mut s.1))
},
State::Complete {
shadow:
Shadow {
map: ShadowMap::Enabled(shadow_map),
..
},
..
} => Some((&mut shadow_map.point_depth, &mut shadow_map.directed_depth)),
State::Complete { .. } => None,
State::Nothing => None, // Should never hit this
};
if let (Some((point_depth, directed_depth)), ShadowMode::Map(mode)) =
(shadow_views, self.pipeline_modes.shadow)
{
match ShadowMap::create_shadow_views(&self.device, (dims.x, dims.y), &mode) {
Ok((new_point_depth, new_directed_depth)) => {
*point_depth = new_point_depth;
*directed_depth = new_directed_depth;
// Recreate the shadow bind group if needed
if let State::Complete {
shadow:
Shadow {
bind,
map: ShadowMap::Enabled(shadow_map),
..
},
..
} = &mut self.state
{
*bind = self.layouts.global.bind_shadow_textures(
&self.device,
&shadow_map.point_depth,
&shadow_map.directed_depth,
);
}
},
Err(err) => {
warn!("Could not create shadow map views: {:?}", err);
},
}
}
} else {
self.is_minimized = true;
}
}
pub fn maintain(&self) {
if self.is_minimized {
self.queue.submit(std::iter::empty());
}
self.device.poll(wgpu::Maintain::Poll)
}
/// Create render target views
fn create_rt_views(
device: &wgpu::Device,
size: (u32, u32),
pipeline_modes: &PipelineModes,
other_modes: &OtherModes,
) -> (Views, [Vec2<f32>; bloom::NUM_SIZES]) {
let upscaled = Vec2::<u32>::from(size)
.map(|e| (e as f32 * other_modes.upscale_mode.factor) as u32)
.into_tuple();
let (width, height, sample_count) = match pipeline_modes.aa {
AaMode::None | AaMode::Fxaa => (upscaled.0, upscaled.1, 1),
AaMode::MsaaX4 => (upscaled.0, upscaled.1, 4),
AaMode::MsaaX8 => (upscaled.0, upscaled.1, 8),
AaMode::MsaaX16 => (upscaled.0, upscaled.1, 16),
};
let levels = 1;
let color_view = |width, height| {
let tex = device.create_texture(&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
},
mip_level_count: levels,
sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba16Float,
usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::RENDER_ATTACHMENT,
});
tex.create_view(&wgpu::TextureViewDescriptor {
label: None,
format: Some(wgpu::TextureFormat::Rgba16Float),
dimension: Some(wgpu::TextureViewDimension::D2),
// TODO: why is this not Color?
aspect: wgpu::TextureAspect::All,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: 0,
array_layer_count: None,
})
};
let tgt_color_view = color_view(width, height);
let tgt_color_pp_view = color_view(width, height);
let mut size_shift = 0;
// TODO: skip creating bloom stuff when it is disabled
let bloom_sizes = [(); bloom::NUM_SIZES].map(|()| {
// .max(1) to ensure we don't create zero sized textures
let size = Vec2::new(width, height).map(|e| (e >> size_shift).max(1));
size_shift += 1;
size
});
let bloom_tgt_views = pipeline_modes
.bloom
.is_on()
.then(|| bloom_sizes.map(|size| color_view(size.x, size.y)));
let tgt_depth_tex = device.create_texture(&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
},
mip_level_count: levels,
sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth32Float,
usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::RENDER_ATTACHMENT,
});
let tgt_depth_view = tgt_depth_tex.create_view(&wgpu::TextureViewDescriptor {
label: None,
format: Some(wgpu::TextureFormat::Depth32Float),
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::DepthOnly,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: 0,
array_layer_count: None,
});
let win_depth_tex = device.create_texture(&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width: size.0,
height: size.1,
depth_or_array_layers: 1,
},
mip_level_count: levels,
sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth32Float,
usage: wgpu::TextureUsage::RENDER_ATTACHMENT,
});
// TODO: Consider no depth buffer for the final draw to the window?
let win_depth_view = win_depth_tex.create_view(&wgpu::TextureViewDescriptor {
label: None,
format: Some(wgpu::TextureFormat::Depth32Float),
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::DepthOnly,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: 0,
array_layer_count: None,
});
(
Views {
tgt_color: tgt_color_view,
tgt_depth: tgt_depth_view,
bloom_tgts: bloom_tgt_views,
tgt_color_pp: tgt_color_pp_view,
_win_depth: win_depth_view,
},
bloom_sizes.map(|s| s.map(|e| e as f32)),
)
}
/// Get the resolution of the render target.
pub fn resolution(&self) -> Vec2<u32> { self.resolution }
/// Get the resolution of the shadow render target.
pub fn get_shadow_resolution(&self) -> (Vec2<u32>, Vec2<u32>) {
match &self.state {
State::Interface { shadow_views, .. } => shadow_views.as_ref().map(|s| (&s.0, &s.1)),
State::Complete {
shadow:
Shadow {
map: ShadowMap::Enabled(shadow_map),
..
},
..
} => Some((&shadow_map.point_depth, &shadow_map.directed_depth)),
State::Complete { .. } | State::Nothing => None,
}
.map(|(point, directed)| (point.get_dimensions().xy(), directed.get_dimensions().xy()))
.unwrap_or_else(|| (Vec2::new(1, 1), Vec2::new(1, 1)))
}
// TODO: Seamless is potentially the default with wgpu but we need further
// investigation into whether this is actually turned on for the OpenGL
// backend
//
/// NOTE: Supported by Vulkan (by default), DirectX 10+ (it seems--it's hard
/// to find proof of this, but Direct3D 10 apparently does it by
/// default, and 11 definitely does, so I assume it's natively supported
/// by DirectX itself), OpenGL 3.2+, and Metal (done by default). While
/// there may be some GPUs that don't quite support it correctly, the
/// impact is relatively small, so there is no reason not to enable it where
/// available.
//fn enable_seamless_cube_maps() {
//todo!()
// unsafe {
// // NOTE: Currently just fail silently rather than complain if the
// computer is on // a version lower than 3.2, where
// seamless cubemaps were introduced. if !device.get_info().
// is_version_supported(3, 2) { return;
// }
// // NOTE: Safe because GL_TEXTURE_CUBE_MAP_SEAMLESS is supported
// by OpenGL 3.2+ // (see https://www.khronos.org/opengl/wiki/Cubemap_Texture#Seamless_cubemap);
// // enabling seamless cube maps should always be safe regardless
// of the state of // the OpenGL context, so no further
// checks are needed. device.with_gl(|gl| {
// gl.Enable(gfx_gl::TEXTURE_CUBE_MAP_SEAMLESS);
// });
// }
//}
/// Start recording the frame
/// When the returned `Drawer` is dropped the recorded draw calls will be
/// submitted to the queue
/// If there is an intermittent issue with the swap chain then Ok(None) will
/// be returned
pub fn start_recording_frame<'a>(
&'a mut self,
globals: &'a GlobalsBindGroup,
) -> Result<Option<drawer::Drawer<'a>>, RenderError> {
span!(
_guard,
"start_recording_frame",
"Renderer::start_recording_frame"
);
if self.is_minimized {
return Ok(None);
}
// Try to get the latest profiling results
if self.other_modes.profiler_enabled {
// Note: this lags a few frames behind
if let Some(profile_times) = self.profiler.process_finished_frame() {
self.profile_times = profile_times;
}
}
// Handle polling background pipeline creation/recreation
// Temporarily set to nothing and then replace in the statement below
let state = core::mem::replace(&mut self.state, State::Nothing);
// Indicator for if pipeline recreation finished and we need to recreate bind
// groups / render targets (handling defered so that State will be valid
// when calling Self::on_resize)
let mut trigger_on_resize = false;
// If still creating initial pipelines, check if complete
self.state = if let State::Interface {
pipelines: interface,
shadow_views,
creating,
} = state
{
match creating.try_complete() {
Ok(pipelines) => {
let IngameAndShadowPipelines { ingame, shadow } = pipelines;
let pipelines = Pipelines::consolidate(interface, ingame);
let shadow_map = ShadowMap::new(
&self.device,
&self.queue,
shadow.point,
shadow.directed,
shadow.figure,
shadow_views,
);
let shadow_bind = {
let (point, directed) = shadow_map.textures();
self.layouts
.global
.bind_shadow_textures(&self.device, point, directed)
};
let shadow = Shadow {
map: shadow_map,
bind: shadow_bind,
};
State::Complete {
pipelines,
shadow,
recreating: None,
}
},
// Not complete
Err(creating) => State::Interface {
pipelines: interface,
shadow_views,
creating,
},
}
// If recreating the pipelines, check if that is complete
} else if let State::Complete {
pipelines,
mut shadow,
recreating: Some((new_pipeline_modes, pipeline_creation)),
} = state
{
match pipeline_creation.try_complete() {
Ok(Ok((pipelines, shadow_pipelines, postprocess_layout))) => {
if let (
Some(point_pipeline),
Some(terrain_directed_pipeline),
Some(figure_directed_pipeline),
ShadowMap::Enabled(shadow_map),
) = (
shadow_pipelines.point,
shadow_pipelines.directed,
shadow_pipelines.figure,
&mut shadow.map,
) {
shadow_map.point_pipeline = point_pipeline;
shadow_map.terrain_directed_pipeline = terrain_directed_pipeline;
shadow_map.figure_directed_pipeline = figure_directed_pipeline;
}
self.pipeline_modes = new_pipeline_modes;
self.layouts.postprocess = postprocess_layout;
// TODO: we have the potential to skip recreating bindings / render targets on
// pipeline recreation trigged by shader reloading (would need to ensure new
// postprocess_layout is not created...)
trigger_on_resize = true;
State::Complete {
pipelines,
shadow,
recreating: None,
}
},
Ok(Err(e)) => {
error!(?e, "Could not recreate shaders from assets due to an error");
State::Complete {
pipelines,
shadow,
recreating: None,
}
},
// Not complete
Err(pipeline_creation) => State::Complete {
pipelines,
shadow,
recreating: Some((new_pipeline_modes, pipeline_creation)),
},
}
} else {
state
};
// Call on_resize to recreate render targets and their bind groups if the
// pipelines were recreated with a new postprocess layout and or changes in the
// render modes
if trigger_on_resize {
self.on_resize(self.resolution);
}
// If the shaders files were changed attempt to recreate the shaders
if self.shaders_watcher.reloaded() {
self.recreate_pipelines(self.pipeline_modes.clone());
}
// Or if we have a recreation pending
if matches!(&self.state, State::Complete {
recreating: None,
..
}) {
if let Some(new_pipeline_modes) = self.recreation_pending.take() {
self.recreate_pipelines(new_pipeline_modes);
}
}
let tex = match self.swap_chain.get_current_frame() {
Ok(frame) => frame.output,
// If lost recreate the swap chain
Err(err @ wgpu::SwapChainError::Lost) => {
warn!("{}. Recreating swap chain. A frame will be missed", err);
self.on_resize(self.resolution);
return Ok(None);
},
Err(wgpu::SwapChainError::Timeout) => {
// This will probably be resolved on the next frame
// NOTE: we don't log this because it happens very frequently with
// PresentMode::Fifo and unlimited FPS on certain machines
return Ok(None);
},
Err(err @ wgpu::SwapChainError::Outdated) => {
warn!("{}. Recreating the swapchain", err);
self.swap_chain = self.device.create_swap_chain(&self.surface, &self.sc_desc);
return Ok(None);
},
Err(err @ wgpu::SwapChainError::OutOfMemory) => return Err(err.into()),
};
let encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("A render encoder"),
});
Ok(Some(drawer::Drawer::new(encoder, self, tex, globals)))
}
/// Recreate the pipelines
fn recreate_pipelines(&mut self, pipeline_modes: PipelineModes) {
match &mut self.state {
State::Complete { recreating, .. } if recreating.is_some() => {
// Defer recreation so that we are not building multiple sets of pipelines in
// the background at once
self.recreation_pending = Some(pipeline_modes);
},
State::Complete {
recreating, shadow, ..
} => {
*recreating = Some((
pipeline_modes.clone(),
pipeline_creation::recreate_pipelines(
Arc::clone(&self.device),
Arc::clone(&self.layouts.immutable),
self.shaders.cloned(),
pipeline_modes,
// NOTE: if present_mode starts to be used to configure pipelines then it
// needs to become a part of the pipeline modes
// (note here since the present mode is accessible
// through the swap chain descriptor)
self.sc_desc.clone(), // Note: cheap clone
shadow.map.is_enabled(),
),
));
},
State::Interface { .. } => {
// Defer recreation so that we are not building multiple sets of pipelines in
// the background at once
self.recreation_pending = Some(pipeline_modes);
},
State::Nothing => {},
}
}
/// Create a new set of constants with the provided values.
pub fn create_consts<T: Copy + bytemuck::Pod>(&mut self, vals: &[T]) -> Consts<T> {
Self::create_consts_inner(&self.device, &self.queue, vals)
}
pub fn create_consts_inner<T: Copy + bytemuck::Pod>(
device: &wgpu::Device,
queue: &wgpu::Queue,
vals: &[T],
) -> Consts<T> {
let mut consts = Consts::new(device, vals.len());
consts.update(queue, vals, 0);
consts
}
/// Update a set of constants with the provided values.
pub fn update_consts<T: Copy + bytemuck::Pod>(&self, consts: &mut Consts<T>, vals: &[T]) {
consts.update(&self.queue, vals, 0)
}
pub fn update_clouds_locals(&mut self, new_val: clouds::Locals) {
self.locals.clouds.update(&self.queue, &[new_val], 0)
}
pub fn update_postprocess_locals(&mut self, new_val: postprocess::Locals) {
self.locals.postprocess.update(&self.queue, &[new_val], 0)
}
/// Create a new set of instances with the provided values.
pub fn create_instances<T: Copy + bytemuck::Pod>(
&mut self,
vals: &[T],
) -> Result<Instances<T>, RenderError> {
let mut instances = Instances::new(&self.device, vals.len());
instances.update(&self.queue, vals, 0);
Ok(instances)
}
/// Ensure that the quad index buffer is large enough for a quad vertex
/// buffer with this many vertices
pub(super) fn ensure_sufficient_index_length<V: Vertex>(
&mut self,
// Length of the vert buffer with 4 verts per quad
vert_length: usize,
) {
let quad_index_length = vert_length / 4 * 6;
match V::QUADS_INDEX {
Some(wgpu::IndexFormat::Uint16) => {
// Make sure the global quad index buffer is large enough
if self.quad_index_buffer_u16.len() < quad_index_length {
// Make sure we aren't over the max
if vert_length > u16::MAX as usize {
panic!(
"Vertex type: {} needs to use a larger index type, length: {}",
core::any::type_name::<V>(),
vert_length
);
}
self.quad_index_buffer_u16 =
create_quad_index_buffer_u16(&self.device, vert_length);
}
},
Some(wgpu::IndexFormat::Uint32) => {
// Make sure the global quad index buffer is large enough
if self.quad_index_buffer_u32.len() < quad_index_length {
// Make sure we aren't over the max
if vert_length > u32::MAX as usize {
panic!(
"More than u32::MAX({}) verts({}) for type({}) using an index buffer!",
u32::MAX,
vert_length,
core::any::type_name::<V>()
);
}
self.quad_index_buffer_u32 =
create_quad_index_buffer_u32(&self.device, vert_length);
}
},
None => {},
}
}
pub fn create_sprite_verts(&mut self, mesh: Mesh<sprite::Vertex>) -> sprite::SpriteVerts {
self.ensure_sufficient_index_length::<sprite::Vertex>(sprite::VERT_PAGE_SIZE as usize);
sprite::create_verts_buffer(&self.device, mesh)
}
/// Create a new model from the provided mesh.
/// If the provided mesh is empty this returns None
pub fn create_model<V: Vertex>(&mut self, mesh: &Mesh<V>) -> Option<Model<V>> {
self.ensure_sufficient_index_length::<V>(mesh.vertices().len());
Model::new(&self.device, mesh)
}
/// Create a new dynamic model with the specified size.
pub fn create_dynamic_model<V: Vertex>(&mut self, size: usize) -> DynamicModel<V> {
DynamicModel::new(&self.device, size)
}
/// Update a dynamic model with a mesh and a offset.
pub fn update_model<V: Vertex>(&self, model: &DynamicModel<V>, mesh: &Mesh<V>, offset: usize) {
model.update(&self.queue, mesh, offset)
}
/// Return the maximum supported texture size.
pub fn max_texture_size(&self) -> u32 { Self::max_texture_size_raw(&self.device) }
/// Return the maximum supported texture size from the factory.
fn max_texture_size_raw(_device: &wgpu::Device) -> u32 {
// This value is temporary as there are plans to include a way to get this in
// wgpu this is just a sane standard for now
8192
}
/// Create a new immutable texture from the provided image.
/// # Panics
/// If the provided data doesn't completely fill the texture this function
/// will panic.
pub fn create_texture_with_data_raw(
&mut self,
texture_info: &wgpu::TextureDescriptor,
view_info: &wgpu::TextureViewDescriptor,
sampler_info: &wgpu::SamplerDescriptor,
data: &[u8],
) -> Texture {
let tex = Texture::new_raw(&self.device, texture_info, view_info, sampler_info);
let size = texture_info.size;
let block_size = texture_info.format.describe().block_size;
assert_eq!(
size.width as usize
* size.height as usize
* size.depth_or_array_layers as usize
* block_size as usize,
data.len(),
"Provided data length {} does not fill the provided texture size {:?}",
data.len(),
size,
);
tex.update(
&self.queue,
[0; 2],
[texture_info.size.width, texture_info.size.height],
data,
);
tex
}
/// Create a new raw texture.
pub fn create_texture_raw(
&mut self,
texture_info: &wgpu::TextureDescriptor,
view_info: &wgpu::TextureViewDescriptor,
sampler_info: &wgpu::SamplerDescriptor,
) -> Texture {
let texture = Texture::new_raw(&self.device, texture_info, view_info, sampler_info);
texture.clear(&self.queue); // Needs to be fully initialized for partial writes to work on Dx12 AMD
texture
}
/// Create a new texture from the provided image.
///
/// Currently only supports Rgba8Srgb
pub fn create_texture(
&mut self,
image: &image::DynamicImage,
filter_method: Option<FilterMode>,
address_mode: Option<AddressMode>,
) -> Result<Texture, RenderError> {
Texture::new(
&self.device,
&self.queue,
image,
filter_method,
address_mode,
)
}
/// Create a new dynamic texture with the
/// specified dimensions.
///
/// Currently only supports Rgba8Srgb
pub fn create_dynamic_texture(&mut self, dims: Vec2<u32>) -> Texture {
Texture::new_dynamic(&self.device, &self.queue, dims.x, dims.y)
}
/// Update a texture with the provided offset, size, and data.
///
/// Currently only supports Rgba8Srgb
pub fn update_texture(
&mut self,
texture: &Texture, /* <T> */
offset: [u32; 2],
size: [u32; 2],
// TODO: be generic over pixel type
data: &[[u8; 4]],
) {
texture.update(&self.queue, offset, size, bytemuck::cast_slice(data))
}
/// Queue to obtain a screenshot on the next frame render
pub fn create_screenshot(
&mut self,
screenshot_handler: impl FnOnce(Result<image::DynamicImage, String>) + Send + 'static,
) {
// Queue screenshot
self.take_screenshot = Some(Box::new(screenshot_handler));
// Take profiler snapshot
if self.other_modes.profiler_enabled {
let file_name = format!(
"frame-trace_{}.json",
std::time::SystemTime::now()
.duration_since(std::time::SystemTime::UNIX_EPOCH)
.map(|d| d.as_millis())
.unwrap_or(0)
);
if let Err(err) = wgpu_profiler::chrometrace::write_chrometrace(
std::path::Path::new(&file_name),
&self.profile_times,
) {
error!(?err, "Failed to save GPU timing snapshot");
} else {
info!("Saved GPU timing snapshot as: {}", file_name);
}
}
}
// Consider reenabling at some time
//
// /// Queue the rendering of the player silhouette in the upcoming frame.
// pub fn render_player_shadow(
// &mut self,
// _model: &figure::FigureModel,
// _col_lights: &Texture<ColLightFmt>,
// _global: &GlobalModel,
// _bones: &Consts<figure::BoneData>,
// _lod: &lod_terrain::LodData,
// _locals: &Consts<shadow::Locals>,
// ) {
// // FIXME: Consider reenabling at some point.
// /* let (point_shadow_maps, directed_shadow_maps) =
// if let Some(shadow_map) = &mut self.shadow_map {
// (
// (
// shadow_map.point_res.clone(),
// shadow_map.point_sampler.clone(),
// ),
// (
// shadow_map.directed_res.clone(),
// shadow_map.directed_sampler.clone(),
// ),
// )
// } else {
// (
// (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
// (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
// )
// };
// let model = &model.opaque;
// self.encoder.draw(
// &gfx::Slice {
// start: model.vertex_range().start,
// end: model.vertex_range().end,
// base_vertex: 0,
// instances: None,
// buffer: gfx::IndexBuffer::Auto,
// },
// &self.player_shadow_pipeline.pso,
// &figure::pipe::Data {
// vbuf: model.vbuf.clone(),
// col_lights: (col_lights.srv.clone(), col_lights.sampler.clone()),
// locals: locals.buf.clone(),
// globals: global.globals.buf.clone(),
// bones: bones.buf.clone(),
// lights: global.lights.buf.clone(),
// shadows: global.shadows.buf.clone(),
// light_shadows: global.shadow_mats.buf.clone(),
// point_shadow_maps,
// directed_shadow_maps,
// noise: (self.noise_tex.srv.clone(),
// self.noise_tex.sampler.clone()), alt: (lod.alt.srv.clone(),
// lod.alt.sampler.clone()), horizon: (lod.horizon.srv.clone(),
// lod.horizon.sampler.clone()), tgt_color:
// self.tgt_color_view.clone(), tgt_depth:
// (self.tgt_depth_view.clone()/* , (0, 0) */), },
// ); */
// }
}
fn create_quad_index_buffer_u16(device: &wgpu::Device, vert_length: usize) -> Buffer<u16> {
assert!(vert_length <= u16::MAX as usize);
let indices = [0, 1, 2, 2, 1, 3]
.iter()
.cycle()
.copied()
.take(vert_length / 4 * 6)
.enumerate()
.map(|(i, b)| (i / 6 * 4 + b) as u16)
.collect::<Vec<_>>();
Buffer::new(device, wgpu::BufferUsage::INDEX, &indices)
}
fn create_quad_index_buffer_u32(device: &wgpu::Device, vert_length: usize) -> Buffer<u32> {
assert!(vert_length <= u32::MAX as usize);
let indices = [0, 1, 2, 2, 1, 3]
.iter()
.cycle()
.copied()
.take(vert_length / 4 * 6)
.enumerate()
.map(|(i, b)| (i / 6 * 4 + b) as u32)
.collect::<Vec<_>>();
Buffer::new(device, wgpu::BufferUsage::INDEX, &indices)
}