InvokeAI/invokeai/backend/model_manager/config.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

525 lines
18 KiB
Python
Raw Permalink Normal View History

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Configuration definitions for image generation models.
Typical usage:
from invokeai.backend.model_manager import ModelConfigFactory
raw = dict(path='models/sd-1/main/foo.ckpt',
name='foo',
base='sd-1',
type='main',
config='configs/stable-diffusion/v1-inference.yaml',
variant='normal',
format='checkpoint'
)
config = ModelConfigFactory.make_config(raw)
print(config.name)
Validation errors will raise an InvalidModelConfigException error.
"""
2024-02-29 23:04:59 +00:00
import time
from enum import Enum
2024-03-08 04:37:31 +00:00
from typing import Literal, Optional, Type, TypeAlias, Union
import diffusers
import torch
from diffusers.models.modeling_utils import ModelMixin
2024-03-04 08:17:01 +00:00
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
from typing_extensions import Annotated, Any, Dict
from invokeai.app.util.misc import uuid_string
2024-06-13 20:34:27 +00:00
from invokeai.backend.model_hash.hash_validator import validate_hash
from invokeai.backend.raw_model import RawModel
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
# ModelMixin is the base class for all diffusers and transformers models
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor], diffusers.DiffusionPipeline]
class InvalidModelConfigException(Exception):
"""Exception for when config parser doesn't recognized this combination of model type and format."""
class BaseModelType(str, Enum):
"""Base model type."""
Any = "any"
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
2024-08-12 18:04:23 +00:00
Flux = "flux"
# Kandinsky2_1 = "kandinsky-2.1"
class ModelType(str, Enum):
"""Model type."""
ONNX = "onnx"
Main = "main"
VAE = "vae"
LoRA = "lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
CLIPVision = "clip_vision"
CLIPEmbed = "clip_embed"
T2IAdapter = "t2i_adapter"
T5Encoder = "t5_encoder"
SpandrelImageToImage = "spandrel_image_to_image"
class SubModelType(str, Enum):
"""Submodel type."""
UNet = "unet"
2024-08-12 18:04:23 +00:00
Transformer = "transformer"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
VAE = "vae"
VAEDecoder = "vae_decoder"
VAEEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
class ModelVariantType(str, Enum):
"""Variant type."""
Normal = "normal"
Inpaint = "inpaint"
Depth = "depth"
class ModelFormat(str, Enum):
"""Storage format of model."""
Diffusers = "diffusers"
Checkpoint = "checkpoint"
LyCORIS = "lycoris"
ONNX = "onnx"
Olive = "olive"
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
InvokeAI = "invokeai"
T5Encoder = "t5_encoder"
BnbQuantizedLlmInt8b = "bnb_quantized_int8b"
2024-08-19 16:08:24 +00:00
BnbQuantizednf4b = "bnb_quantized_nf4b"
class SchedulerPredictionType(str, Enum):
"""Scheduler prediction type."""
Epsilon = "epsilon"
VPrediction = "v_prediction"
Sample = "sample"
Model Manager Refactor: Install remote models and store their tags and other metadata (#5361) * add basic functionality for model metadata fetching from hf and civitai * add storage * start unit tests * add unit tests and documentation * add missing dependency for pytests * remove redundant fetch; add modified/published dates; updated docs * add code to select diffusers files based on the variant type * implement Civitai installs * make huggingface parallel downloading work * add unit tests for model installation manager - Fixed race condition on selection of download destination path - Add fixtures common to several model_manager_2 unit tests - Added dummy model files for testing diffusers and safetensors downloading/probing - Refactored code for selecting proper variant from list of huggingface repo files - Regrouped ordering of methods in model_install_default.py * improve Civitai model downloading - Provide a better error message when Civitai requires an access token (doesn't give a 403 forbidden, but redirects to the HTML of an authorization page -- arrgh) - Handle case of Civitai providing a primary download link plus additional links for VAEs, config files, etc * add routes for retrieving metadata and tags * code tidying and documentation * fix ruff errors * add file needed to maintain test root diretory in repo for unit tests * fix self->cls in classmethod * add pydantic plugin for mypy * use TestSession instead of requests.Session to prevent any internet activity improve logging fix error message formatting fix logging again fix forward vs reverse slash issue in Windows install tests * Several fixes of problems detected during PR review: - Implement cancel_model_install_job and get_model_install_job routes to allow for better control of model download and install. - Fix thread deadlock that occurred after cancelling an install. - Remove unneeded pytest_plugins section from tests/conftest.py - Remove unused _in_terminal_state() from model_install_default. - Remove outdated documentation from several spots. - Add workaround for Civitai API results which don't return correct URL for the default model. * fix docs and tests to match get_job_by_source() rather than get_job() * Update invokeai/backend/model_manager/metadata/fetch/huggingface.py Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> * Call CivitaiMetadata.model_validate_json() directly Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> * Second round of revisions suggested by @ryanjdick: - Fix type mismatch in `list_all_metadata()` route. - Do not have a default value for the model install job id - Remove static class variable declarations from non Pydantic classes - Change `id` field to `model_id` for the sqlite3 `model_tags` table. - Changed AFTER DELETE triggers to ON DELETE CASCADE for the metadata and tags tables. - Made the `id` field of the `model_metadata` table into a primary key to achieve uniqueness. * Code cleanup suggested in PR review: - Narrowed the declaration of the `parts` attribute of the download progress event - Removed auto-conversion of str to Url in Url-containing sources - Fixed handling of `InvalidModelConfigException` - Made unknown sources raise `NotImplementedError` rather than `Exception` - Improved status reporting on cached HuggingFace access tokens * Multiple fixes: - `job.total_size` returns a valid size for locally installed models - new route `list_models` returns a paged summary of model, name, description, tags and other essential info - fix a few type errors * consolidated all invokeai root pytest fixtures into a single location * Update invokeai/backend/model_manager/metadata/metadata_store.py Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com> * Small tweaks in response to review comments: - Remove flake8 configuration from pyproject.toml - Use `id` rather than `modelId` for huggingface `ModelInfo` object - Use `last_modified` rather than `LastModified` for huggingface `ModelInfo` object - Add `sha256` field to file metadata downloaded from huggingface - Add `Invoker` argument to the model installer `start()` and `stop()` routines (but made it optional in order to facilitate use of the service outside the API) - Removed redundant `PRAGMA foreign_keys` from metadata store initialization code. * Additional tweaks and minor bug fixes - Fix calculation of aggregate diffusers model size to only count the size of files, not files + directories (which gives different unit test results on different filesystems). - Refactor _get_metadata() and _get_download_urls() to have distinct code paths for Civitai, HuggingFace and URL sources. - Forward the `inplace` flag from the source to the job and added unit test for this. - Attach cached model metadata to the job rather than to the model install service. * fix unit test that was breaking on windows due to CR/LF changing size of test json files * fix ruff formatting * a few last minor fixes before merging: - Turn job `error` and `error_type` into properties derived from the exception. - Add TODO comment about the reason for handling temporary directory destruction manually rather than using tempfile.tmpdir(). * add unit tests for reporting HTTP download errors --------- Co-authored-by: Lincoln Stein <lstein@gmail.com> Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-01-14 19:54:53 +00:00
class ModelRepoVariant(str, Enum):
"""Various hugging face variants on the diffusers format."""
Default = "" # model files without "fp16" or other qualifier
Model Manager Refactor: Install remote models and store their tags and other metadata (#5361) * add basic functionality for model metadata fetching from hf and civitai * add storage * start unit tests * add unit tests and documentation * add missing dependency for pytests * remove redundant fetch; add modified/published dates; updated docs * add code to select diffusers files based on the variant type * implement Civitai installs * make huggingface parallel downloading work * add unit tests for model installation manager - Fixed race condition on selection of download destination path - Add fixtures common to several model_manager_2 unit tests - Added dummy model files for testing diffusers and safetensors downloading/probing - Refactored code for selecting proper variant from list of huggingface repo files - Regrouped ordering of methods in model_install_default.py * improve Civitai model downloading - Provide a better error message when Civitai requires an access token (doesn't give a 403 forbidden, but redirects to the HTML of an authorization page -- arrgh) - Handle case of Civitai providing a primary download link plus additional links for VAEs, config files, etc * add routes for retrieving metadata and tags * code tidying and documentation * fix ruff errors * add file needed to maintain test root diretory in repo for unit tests * fix self->cls in classmethod * add pydantic plugin for mypy * use TestSession instead of requests.Session to prevent any internet activity improve logging fix error message formatting fix logging again fix forward vs reverse slash issue in Windows install tests * Several fixes of problems detected during PR review: - Implement cancel_model_install_job and get_model_install_job routes to allow for better control of model download and install. - Fix thread deadlock that occurred after cancelling an install. - Remove unneeded pytest_plugins section from tests/conftest.py - Remove unused _in_terminal_state() from model_install_default. - Remove outdated documentation from several spots. - Add workaround for Civitai API results which don't return correct URL for the default model. * fix docs and tests to match get_job_by_source() rather than get_job() * Update invokeai/backend/model_manager/metadata/fetch/huggingface.py Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> * Call CivitaiMetadata.model_validate_json() directly Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> * Second round of revisions suggested by @ryanjdick: - Fix type mismatch in `list_all_metadata()` route. - Do not have a default value for the model install job id - Remove static class variable declarations from non Pydantic classes - Change `id` field to `model_id` for the sqlite3 `model_tags` table. - Changed AFTER DELETE triggers to ON DELETE CASCADE for the metadata and tags tables. - Made the `id` field of the `model_metadata` table into a primary key to achieve uniqueness. * Code cleanup suggested in PR review: - Narrowed the declaration of the `parts` attribute of the download progress event - Removed auto-conversion of str to Url in Url-containing sources - Fixed handling of `InvalidModelConfigException` - Made unknown sources raise `NotImplementedError` rather than `Exception` - Improved status reporting on cached HuggingFace access tokens * Multiple fixes: - `job.total_size` returns a valid size for locally installed models - new route `list_models` returns a paged summary of model, name, description, tags and other essential info - fix a few type errors * consolidated all invokeai root pytest fixtures into a single location * Update invokeai/backend/model_manager/metadata/metadata_store.py Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com> * Small tweaks in response to review comments: - Remove flake8 configuration from pyproject.toml - Use `id` rather than `modelId` for huggingface `ModelInfo` object - Use `last_modified` rather than `LastModified` for huggingface `ModelInfo` object - Add `sha256` field to file metadata downloaded from huggingface - Add `Invoker` argument to the model installer `start()` and `stop()` routines (but made it optional in order to facilitate use of the service outside the API) - Removed redundant `PRAGMA foreign_keys` from metadata store initialization code. * Additional tweaks and minor bug fixes - Fix calculation of aggregate diffusers model size to only count the size of files, not files + directories (which gives different unit test results on different filesystems). - Refactor _get_metadata() and _get_download_urls() to have distinct code paths for Civitai, HuggingFace and URL sources. - Forward the `inplace` flag from the source to the job and added unit test for this. - Attach cached model metadata to the job rather than to the model install service. * fix unit test that was breaking on windows due to CR/LF changing size of test json files * fix ruff formatting * a few last minor fixes before merging: - Turn job `error` and `error_type` into properties derived from the exception. - Add TODO comment about the reason for handling temporary directory destruction manually rather than using tempfile.tmpdir(). * add unit tests for reporting HTTP download errors --------- Co-authored-by: Lincoln Stein <lstein@gmail.com> Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-01-14 19:54:53 +00:00
FP16 = "fp16"
FP32 = "fp32"
ONNX = "onnx"
OpenVINO = "openvino"
Flax = "flax"
Model Manager Refactor: Install remote models and store their tags and other metadata (#5361) * add basic functionality for model metadata fetching from hf and civitai * add storage * start unit tests * add unit tests and documentation * add missing dependency for pytests * remove redundant fetch; add modified/published dates; updated docs * add code to select diffusers files based on the variant type * implement Civitai installs * make huggingface parallel downloading work * add unit tests for model installation manager - Fixed race condition on selection of download destination path - Add fixtures common to several model_manager_2 unit tests - Added dummy model files for testing diffusers and safetensors downloading/probing - Refactored code for selecting proper variant from list of huggingface repo files - Regrouped ordering of methods in model_install_default.py * improve Civitai model downloading - Provide a better error message when Civitai requires an access token (doesn't give a 403 forbidden, but redirects to the HTML of an authorization page -- arrgh) - Handle case of Civitai providing a primary download link plus additional links for VAEs, config files, etc * add routes for retrieving metadata and tags * code tidying and documentation * fix ruff errors * add file needed to maintain test root diretory in repo for unit tests * fix self->cls in classmethod * add pydantic plugin for mypy * use TestSession instead of requests.Session to prevent any internet activity improve logging fix error message formatting fix logging again fix forward vs reverse slash issue in Windows install tests * Several fixes of problems detected during PR review: - Implement cancel_model_install_job and get_model_install_job routes to allow for better control of model download and install. - Fix thread deadlock that occurred after cancelling an install. - Remove unneeded pytest_plugins section from tests/conftest.py - Remove unused _in_terminal_state() from model_install_default. - Remove outdated documentation from several spots. - Add workaround for Civitai API results which don't return correct URL for the default model. * fix docs and tests to match get_job_by_source() rather than get_job() * Update invokeai/backend/model_manager/metadata/fetch/huggingface.py Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> * Call CivitaiMetadata.model_validate_json() directly Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> * Second round of revisions suggested by @ryanjdick: - Fix type mismatch in `list_all_metadata()` route. - Do not have a default value for the model install job id - Remove static class variable declarations from non Pydantic classes - Change `id` field to `model_id` for the sqlite3 `model_tags` table. - Changed AFTER DELETE triggers to ON DELETE CASCADE for the metadata and tags tables. - Made the `id` field of the `model_metadata` table into a primary key to achieve uniqueness. * Code cleanup suggested in PR review: - Narrowed the declaration of the `parts` attribute of the download progress event - Removed auto-conversion of str to Url in Url-containing sources - Fixed handling of `InvalidModelConfigException` - Made unknown sources raise `NotImplementedError` rather than `Exception` - Improved status reporting on cached HuggingFace access tokens * Multiple fixes: - `job.total_size` returns a valid size for locally installed models - new route `list_models` returns a paged summary of model, name, description, tags and other essential info - fix a few type errors * consolidated all invokeai root pytest fixtures into a single location * Update invokeai/backend/model_manager/metadata/metadata_store.py Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com> * Small tweaks in response to review comments: - Remove flake8 configuration from pyproject.toml - Use `id` rather than `modelId` for huggingface `ModelInfo` object - Use `last_modified` rather than `LastModified` for huggingface `ModelInfo` object - Add `sha256` field to file metadata downloaded from huggingface - Add `Invoker` argument to the model installer `start()` and `stop()` routines (but made it optional in order to facilitate use of the service outside the API) - Removed redundant `PRAGMA foreign_keys` from metadata store initialization code. * Additional tweaks and minor bug fixes - Fix calculation of aggregate diffusers model size to only count the size of files, not files + directories (which gives different unit test results on different filesystems). - Refactor _get_metadata() and _get_download_urls() to have distinct code paths for Civitai, HuggingFace and URL sources. - Forward the `inplace` flag from the source to the job and added unit test for this. - Attach cached model metadata to the job rather than to the model install service. * fix unit test that was breaking on windows due to CR/LF changing size of test json files * fix ruff formatting * a few last minor fixes before merging: - Turn job `error` and `error_type` into properties derived from the exception. - Add TODO comment about the reason for handling temporary directory destruction manually rather than using tempfile.tmpdir(). * add unit tests for reporting HTTP download errors --------- Co-authored-by: Lincoln Stein <lstein@gmail.com> Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-01-14 19:54:53 +00:00
class ModelSourceType(str, Enum):
"""Model source type."""
Path = "path"
Url = "url"
HFRepoID = "hf_repo_id"
DEFAULTS_PRECISION = Literal["fp16", "fp32"]
class MainModelDefaultSettings(BaseModel):
vae: str | None = Field(default=None, description="Default VAE for this model (model key)")
vae_precision: DEFAULTS_PRECISION | None = Field(default=None, description="Default VAE precision for this model")
scheduler: SCHEDULER_NAME_VALUES | None = Field(default=None, description="Default scheduler for this model")
steps: int | None = Field(default=None, gt=0, description="Default number of steps for this model")
cfg_scale: float | None = Field(default=None, ge=1, description="Default CFG Scale for this model")
cfg_rescale_multiplier: float | None = Field(
default=None, ge=0, lt=1, description="Default CFG Rescale Multiplier for this model"
)
width: int | None = Field(default=None, multiple_of=8, ge=64, description="Default width for this model")
height: int | None = Field(default=None, multiple_of=8, ge=64, description="Default height for this model")
model_config = ConfigDict(extra="forbid")
class ControlAdapterDefaultSettings(BaseModel):
# This could be narrowed to controlnet processor nodes, but they change. Leaving this a string is safer.
preprocessor: str | None
model_config = ConfigDict(extra="forbid")
class ModelConfigBase(BaseModel):
"""Base class for model configuration information."""
key: str = Field(description="A unique key for this model.", default_factory=uuid_string)
hash: str = Field(description="The hash of the model file(s).")
path: str = Field(
description="Path to the model on the filesystem. Relative paths are relative to the Invoke root directory."
)
name: str = Field(description="Name of the model.")
base: BaseModelType = Field(description="The base model.")
description: Optional[str] = Field(description="Model description", default=None)
source: str = Field(description="The original source of the model (path, URL or repo_id).")
source_type: ModelSourceType = Field(description="The type of source")
source_api_response: Optional[str] = Field(
description="The original API response from the source, as stringified JSON.", default=None
)
cover_image: Optional[str] = Field(description="Url for image to preview model", default=None)
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
schema["required"].extend(["key", "type", "format"])
model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra)
class CheckpointConfigBase(ModelConfigBase):
"""Model config for checkpoint-style models."""
2024-08-20 17:05:31 +00:00
format: Literal[ModelFormat.Checkpoint, ModelFormat.BnbQuantizednf4b] = Field(
description="Format of the provided checkpoint model", default=ModelFormat.Checkpoint
)
config_path: str = Field(description="path to the checkpoint model config file")
converted_at: Optional[float] = Field(
description="When this model was last converted to diffusers", default_factory=time.time
)
class DiffusersConfigBase(ModelConfigBase):
"""Model config for diffusers-style models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.Default
2024-02-01 04:37:59 +00:00
class LoRAConfigBase(ModelConfigBase):
type: Literal[ModelType.LoRA] = ModelType.LoRA
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
class T5EncoderConfigBase(ModelConfigBase):
type: Literal[ModelType.T5Encoder] = ModelType.T5Encoder
class T5EncoderConfig(T5EncoderConfigBase):
format: Literal[ModelFormat.T5Encoder] = ModelFormat.T5Encoder
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T5Encoder.value}.{ModelFormat.T5Encoder.value}")
class T5EncoderBnbQuantizedLlmInt8bConfig(T5EncoderConfigBase):
format: Literal[ModelFormat.BnbQuantizedLlmInt8b] = ModelFormat.BnbQuantizedLlmInt8b
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T5Encoder.value}.{ModelFormat.BnbQuantizedLlmInt8b.value}")
class LoRALyCORISConfig(LoRAConfigBase):
"""Model config for LoRA/Lycoris models."""
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.LyCORIS.value}")
class LoRADiffusersConfig(LoRAConfigBase):
"""Model config for LoRA/Diffusers models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.Diffusers.value}")
class VAECheckpointConfig(CheckpointConfigBase):
"""Model config for standalone VAE models."""
type: Literal[ModelType.VAE] = ModelType.VAE
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Checkpoint.value}")
class VAEDiffusersConfig(ModelConfigBase):
"""Model config for standalone VAE models (diffusers version)."""
type: Literal[ModelType.VAE] = ModelType.VAE
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Diffusers.value}")
class ControlAdapterConfigBase(BaseModel):
default_settings: Optional[ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
)
class ControlNetDiffusersConfig(DiffusersConfigBase, ControlAdapterConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Diffusers.value}")
2024-02-01 04:37:59 +00:00
class ControlNetCheckpointConfig(CheckpointConfigBase, ControlAdapterConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Checkpoint.value}")
class TextualInversionFileConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFile] = ModelFormat.EmbeddingFile
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFile.value}")
class TextualInversionFolderConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFolder] = ModelFormat.EmbeddingFolder
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFolder.value}")
class MainConfigBase(ModelConfigBase):
type: Literal[ModelType.Main] = ModelType.Main
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
variant: ModelVariantType = ModelVariantType.Normal
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
"""Model config for main checkpoint models."""
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}")
2024-08-19 16:08:24 +00:00
class MainBnbQuantized4bCheckpointConfig(CheckpointConfigBase, MainConfigBase):
"""Model config for main checkpoint models."""
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.format = ModelFormat.BnbQuantizednf4b
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.BnbQuantizednf4b.value}")
class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
"""Model config for main diffusers models."""
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
2024-02-01 04:37:59 +00:00
class IPAdapterBaseConfig(ModelConfigBase):
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
class IPAdapterInvokeAIConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter diffusers format models."""
image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}")
class IPAdapterCheckpointConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter checkpoint format models."""
format: Literal[ModelFormat.Checkpoint]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.Checkpoint.value}")
class CLIPEmbedDiffusersConfig(DiffusersConfigBase):
"""Model config for Clip Embeddings."""
type: Literal[ModelType.CLIPEmbed] = ModelType.CLIPEmbed
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision."""
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPVision.value}.{ModelFormat.Diffusers.value}")
class T2IAdapterConfig(DiffusersConfigBase, ControlAdapterConfigBase):
"""Model config for T2I."""
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T2IAdapter.value}.{ModelFormat.Diffusers.value}")
class SpandrelImageToImageConfig(ModelConfigBase):
"""Model config for Spandrel Image to Image models."""
type: Literal[ModelType.SpandrelImageToImage] = ModelType.SpandrelImageToImage
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.SpandrelImageToImage.value}.{ModelFormat.Checkpoint.value}")
def get_model_discriminator_value(v: Any) -> str:
"""
Computes the discriminator value for a model config.
https://docs.pydantic.dev/latest/concepts/unions/#discriminated-unions-with-callable-discriminator
"""
format_ = None
type_ = None
if isinstance(v, dict):
format_ = v.get("format")
if isinstance(format_, Enum):
format_ = format_.value
type_ = v.get("type")
if isinstance(type_, Enum):
type_ = type_.value
else:
format_ = v.format.value
type_ = v.type.value
v = f"{type_}.{format_}"
return v
AnyModelConfig = Annotated[
Union[
Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()],
Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()],
2024-08-19 16:08:24 +00:00
Annotated[MainBnbQuantized4bCheckpointConfig, MainBnbQuantized4bCheckpointConfig.get_tag()],
Annotated[VAEDiffusersConfig, VAEDiffusersConfig.get_tag()],
Annotated[VAECheckpointConfig, VAECheckpointConfig.get_tag()],
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[T5EncoderConfig, T5EncoderConfig.get_tag()],
Annotated[T5EncoderBnbQuantizedLlmInt8bConfig, T5EncoderBnbQuantizedLlmInt8bConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterInvokeAIConfig, IPAdapterInvokeAIConfig.get_tag()],
Annotated[IPAdapterCheckpointConfig, IPAdapterCheckpointConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[SpandrelImageToImageConfig, SpandrelImageToImageConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
Annotated[CLIPEmbedDiffusersConfig, CLIPEmbedDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
2024-03-08 04:37:31 +00:00
AnyDefaultSettings: TypeAlias = Union[MainModelDefaultSettings, ControlAdapterDefaultSettings]
2024-03-06 19:18:21 +00:00
class ModelConfigFactory(object):
"""Class for parsing config dicts into StableDiffusion Config obects."""
@classmethod
def make_config(
cls,
model_data: Union[Dict[str, Any], AnyModelConfig],
key: Optional[str] = None,
dest_class: Optional[Type[ModelConfigBase]] = None,
timestamp: Optional[float] = None,
) -> AnyModelConfig:
"""
Return the appropriate config object from raw dict values.
:param model_data: A raw dict corresponding the obect fields to be
parsed into a ModelConfigBase obect (or descendent), or a ModelConfigBase
object, which will be passed through unchanged.
:param dest_class: The config class to be returned. If not provided, will
be selected automatically.
"""
model: Optional[ModelConfigBase] = None
if isinstance(model_data, ModelConfigBase):
model = model_data
elif dest_class:
model = dest_class.model_validate(model_data)
else:
# mypy doesn't typecheck TypeAdapters well?
model = AnyModelConfigValidator.validate_python(model_data) # type: ignore
assert model is not None
if key:
model.key = key
if isinstance(model, CheckpointConfigBase) and timestamp is not None:
model.converted_at = timestamp
2024-06-13 20:34:27 +00:00
if model:
validate_hash(model.hash)
return model # type: ignore