* introduce new abstraction layer for GPU devices
* add unit test for device abstraction
* fix ruff
* convert TorchDeviceSelect into a stateless class
* move logic to select context-specific execution device into context API
* add mock hardware environments to pytest
* remove dangling mocker fixture
* fix unit test for running on non-CUDA systems
* remove unimplemented get_execution_device() call
* remove autocast precision
* Multiple changes:
1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.
* add deprecation warnings to choose_torch_device() and choose_precision()
* fix test crash
* remove app_config argument from choose_torch_device() and choose_torch_dtype()
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
`LatentsField` objects have an optional `seed` field. This should only be populated when the latents are noise, generated from a seed.
`DenoiseLatentsInvocation` needs a seed value for scheduler initialization. It's used in a few places, and there is some logic for determining the seed to use with a series of fallbacks:
- Use the seed from the noise (a `LatentsField` object)
- Use the seed from the latents (a `LatentsField` object - normally it won't have a seed)
- Use `0` as a final fallback
In `DenoisLatentsInvocation`, we set the seed in the `LatentsOutput`, even though the output latents are not noise.
This is normally fine, but when we use refiner, we re-use the those same latents for the refiner denoise. This causes that characteristic same-seed-fried look on the refiner pass.
Simple fix - do not set the field in the output latents.
The previous algorithm errored if the image wasn't divisible by the tile size. I've reimplemented it from scratch to mitigate this issue.
The new algorithm is simpler. We create a pool of tiles, then use them to create an image composed completely of tiles. If there is any awkwardly sized space on the edge of the image, the tiles are cropped to fit.
Finally, paste the original image over the tile image.
I've added a jupyter notebook to do a smoke test of infilling methods, and 10 test images.
The other infill algorithms can be easily tested with the notebook on the same images, though I didn't set that up yet.
Tested and confirmed this gives results just as good as the earlier infill, though of course they aren't the same due to the change in the algorithm.
We have had a few bugs with v4 related to file encodings, especially on Windows.
Windows uses its own character encodings instead of `utf-8`, often `cp1252`. Some characters cannot be decoded using `utf-8`, causing `UnicodeDecodeError`.
There are a couple places where this can cause problems:
- In the installer bootstrap, we install or upgrade `pip` and decode the result, using `subprocess`.
The input to this includes the user's home dir. In #6105, the user had one of the problematic characters in their username. `subprocess` attempts and fails to decode the username, which crashes the installer.
To fix this, we need to use `locale.getpreferredencoding()` when executing the command.
- Similarly, in the model install service and config class, we attempt to load a yaml config file. If a problematic character is in the path to the file (which often includes the user's home dir), we can get the same error.
One example is #6129 in which the models.yaml migration fails.
To fix this, we need to open the file with `locale.getpreferredencoding()`.
Compare the installed paths to determine if the model is already installed. Fixes an issue where installed models showed up as uninstalled or vice-versa. Related to relative vs absolute path handling.
Renaming the model file to the model name introduces unnecessary contraints on model names.
For example, a model name can technically be any length, but a model _filename_ cannot be too long.
There are also constraints on valid characters for filenames which shouldn't be applied to model record names.
I believe the old behaviour is a holdover from the old system.
Setting to 'auto' works only for InvokeAI config and auto detects the SD model but will override if user explicitly sets it. If auto used with checkpoint models, we raise an error. Checkpoints will always need to set to non-auto.
Previously, exceptions raised as custom nodes are initialized were fatal errors, causing the app to exit.
With this change, any error on import is caught and the error message printed. App continues to start up without the node.
For example, a custom node that isn't updated for v4.0.0 may raise an error on import if it is attempting to import things that no longer exist.
Prefer an early return/continue to reduce the indentation of the processor loop. Easier to read.
There are other ways to improve its structure but at first glance, they seem to involve changing the logic in scarier ways.
This must not have been tested after the processors were unified. Needed to shift the logic around so the resume event is handled correctly. Clear and easy fix.
* pass model config to _load_model
* make conversion work again
* do not write diffusers to disk when convert_cache set to 0
* adding same model to cache twice is a no-op, not an assertion error
* fix issues identified by psychedelicious during pr review
* following conversion, avoid redundant read of cached submodels
* fix error introduced while merging
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
We switched all model paths to be absolute in #5900. In hindsight, this is a mistake, because it makes the `models_dir` non-portable.
This change reverts to the previous model pathing:
- Invoke-managed models (in the `models_dir`) are stored with relative paths
- Non-invoke-managed models (outside the `models_dir`, i.e. in-place installed models) still have absolute paths.
## Why absolute paths make things non-portable
Let's say my `models_dir` is `/media/rhino/invokeai/models/`. In the DB, all model paths will be absolute children of this path, like this:
- `/media/rhino/invokeai/models/sd-1/main/model1.ckpt`
I want to change my `models_dir` to `/home/bat/invokeai/models/`. I update my `invokeai.yaml` file and physically move the files to that directory.
On startup, the app checks for missing models. Because all of my model paths were absolute, they now point to a nonexistent path. All models are broken.
There are a couple options to recover from this situation, neither of which are reasonable:
1. The user must manually update every model's path. Unacceptable UX.
2. On startup, we check for missing models. For each missing model, we compare its path with the last-known models dir. If there is a match, we replace that portion of the path with the new models dir. Then we re-check to see if the path exists. If it does, we update the models DB entry. Brittle and requires a new DB entry for last-known models dir.
It's better to use relative paths for Invoke-managed models.
These two changes are interrelated.
## Autoimport
The autoimport feature can be easily replicated using the scan folder tab in the model manager. Removing the implicit autoimport reduces surface area and unifies all model installation into the UI.
This functionality is removed, and the `autoimport_dir` config setting is removed.
## Startup model dir scanning
We scanned the invoke-managed models dir on startup and took certain actions:
- Register orphaned model files
- Remove model records from the db when the model path doesn't exist
### Orphaned model files
We should never have orphaned model files during normal use - we manage the models directory, and we only delete files when the user requests it.
During testing or development, when a fresh DB or memory DB is used, we could end up with orphaned models that should be registered.
Instead of always scanning for orphaned models and registering them, we now only do the scan if the new `scan_models_on_startup` config flag is set.
The description for this setting indicates it is intended for use for testing only.
### Remove records for missing model files
This functionality could unexpectedly wipe models from the db.
For example, if your models dir was on external media, and that media was inaccessible during startup, the scan would see all your models as missing and delete them from the db.
The "proactive" scan is removed. Instead, we will scan for missing models and log a warning if we find a model whose path doesn't exist. No possibility for data loss.
I had added this because I mistakenly believed the HF token was required to download HF models.
Turns out this is not the case, and the vast majority of HF models do not need the API token to download.
Previously we only handled expected error types. If a different error was raised, the install job would end up in an unexpected state where it has failed and isn't doing anything, but its status is still running.
This indirectly prevents the installer threads from exiting - they are waiting for all jobs to be completed, including the failed-but-still-running job.
We need to handle any error here to prevent this.
- Enriched dependencies to not just be a string - allows reuse of a dependency as a starter model _and_ dependency of another model. For example, all the SDXL models have the fp16 VAE as a dependency, but you can also download it on its own.
- Looked at popular models on the major model sites to select the list. No SD2 models. All hosted on HF.
* Fix minor bugs involving model manager handling of model paths
- Leave models found in the `autoimport` directory there. Do not move them
into the `models` hierarchy.
- If model name, type or base is updated and model is in the `models` directory,
update its path as appropriate.
- On startup during model scanning, if a model's path is a symbolic link, then resolve
to an absolute path before deciding it is a new model that must be hashed and
registered. (This prevents needless hashing at startup time).
* fix issue with dropped suffix
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Add class `DefaultInvokeAIAppConfig`, which inherits from `InvokeAIAppConfig`. When instantiated, this class does not parse environment variables, so it outputs a "clean" default config. That's the only difference.
Then, we can use this new class in the 3 places:
- When creating the example config file (no env vars should be here)
- When migrating a v3 config (we want to instantiate the migrated config without env vars, so that when we write it out, they are not written to disk)
- When creating a fresh config file (i.e. on first run with an uninitialized root or new config file path - no env vars here!)
For SSDs, `blake3` is about 10x faster than `blake3_single` - 3 files/second vs 30 files/second.
For spinning HDDs, `blake3` is about 100x slower than `blake3_single` - 300 seconds/file vs 3 seconds/file.
For external drives, `blake3` is always worse, but the difference is highly variable. For external spinning drives, it's probably way worse than internal.
The least offensive algorithm is `blake3_single`, and it's still _much_ faster than any other algorithm.